Guide to the Secure Configuration of Red Hat Enterprise Linux 6

with profile Standard System Security Profile for Red Hat Enterprise Linux 6
This profile contains rules to ensure standard security baseline of a Red Hat Enterprise Linux 6 system. Regardless of your system's workload all of these checks should pass.
This guide presents a catalog of security-relevant configuration settings for Red Hat Enterprise Linux 6. It is a rendering of content structured in the eXtensible Configuration Checklist Description Format (XCCDF) in order to support security automation. The SCAP content is is available in the config_item="scap-security-guide" package which is developed at https://www.open-scap.org/security-policies/scap-security-guide.

Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a italics="catalog, not a checklist," and satisfaction of every item is not likely to be possible or sensible in many operational scenarios. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF italics="Profiles", which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG for Red Hat Enterprise Linux 6, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.

This benchmark is a direct port of a SCAP Security Guide benchmark developed for Red Hat Enterprise Linux. It has been modified through an automated process to remove specific dependencies on Red Hat Enterprise Linux and to function with CentOS. The result is a generally useful SCAP Security Guide benchmark with the following caveats:

  • CentOS is not an exact copy of Red Hat Enterprise Linux. There may be configuration differences that produce false positives and/or false negatives. If this occurs please file a bug report.
  • CentOS has its own build system, compiler options, patchsets, and is a community supported, non-commercial operating system. CentOS does not inherit certifications or evaluations from Red Hat Enterprise Linux. As such, some configuration rules (such as those requiring FIPS 140-2 encryption) will continue to fail on CentOS.

Members of the CentOS community are invited to participate in OpenSCAP and SCAP Security Guide development. Bug reports and patches can be sent to GitHub: https://github.com/OpenSCAP/scap-security-guide. The mailing list is at https://fedorahosted.org/mailman/listinfo/scap-security-guide.

Do not attempt to implement any of the settings in this guide without first testing them in a non-operational environment. The creators of this guidance assume no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.

Profile Information

Profile TitleStandard System Security Profile for Red Hat Enterprise Linux 6
Profile IDxccdf_org.ssgproject.content_profile_standard

CPE Platforms

  • cpe:/o:redhat:enterprise_linux:6
  • cpe:/o:centos:centos:6
  • cpe:/o:redhat:enterprise_linux:6::client
  • cpe:/o:redhat:enterprise_linux:6::computenode

Revision History

Current version: 0.1.39

  • draft (as of 2024-03-21)

Table of Contents

  1. Services
    1. Network Time Protocol
    2. Cron and At Daemons
    3. Obsolete Services
    4. NFS and RPC
    5. Base Services
    6. LDAP
    7. Mail Server Software
    8. Avahi Server
    9. Samba(SMB) Microsoft Windows File Sharing Server
    10. SSH Server
  2. System Settings
    1. System Accounting with <tt>auditd</tt>
    2. Configure Syslog
    3. Network Configuration and Firewalls
    4. SELinux
    5. Account and Access Control
    6. File Permissions and Masks
    7. Installing and Maintaining Software

Checklist

Group   Guide to the Secure Configuration of Red Hat Enterprise Linux 6   Group contains 79 groups and 182 rules
Group   Services   Group contains 23 groups and 42 rules

[ref]   The best protection against vulnerable software is running less software. This section describes how to review the software which Red Hat Enterprise Linux 6 installs on a system and disable software which is not needed. It then enumerates the software packages installed on a default Red Hat Enterprise Linux 6 system and provides guidance about which ones can be safely disabled.

Red Hat Enterprise Linux 6 provides a convenient minimal install option that essentially installs the bare necessities for a functional system. When building Red Hat Enterprise Linux 6 systems, it is highly recommended to select the minimal packages and then build up the system from there.

Group   Network Time Protocol   Group contains 2 rules

[ref]   The Network Time Protocol is used to manage the system clock over a network. Computer clocks are not very accurate, so time will drift unpredictably on unmanaged systems. Central time protocols can be used both to ensure that time is consistent among a network of systems, and that their time is consistent with the outside world.

If every system on a network reliably reports the same time, then it is much easier to correlate log messages in case of an attack. In addition, a number of cryptographic protocols (such as Kerberos) use timestamps to prevent certain types of attacks. If your network does not have synchronized time, these protocols may be unreliable or even unusable.

Depending on the specifics of the network, global time accuracy may be just as important as local synchronization, or not very important at all. If your network is connected to the Internet, using a public timeserver (or one provided by your enterprise) provides globally accurate timestamps which may be essential in investigating or responding to an attack which originated outside of your network.

A typical network setup involves a small number of internal systems operating as NTP servers, and the remainder obtaining time information from those internal servers.

More information on how to configure the NTP server software, including configuration of cryptographic authentication for time data, is available at http://www.ntp.org.

Rule   Enable the NTP Daemon   [ref]

The ntpd service can be enabled with the following command:

$ sudo chkconfig --level 2345 ntpd on

Rationale:

Enabling the ntpd service ensures that the ntpd service will be running and that the system will synchronize its time to any servers specified. This is important whether the system is configured to be a client (and synchronize only its own clock) or it is also acting as an NTP server to other systems. Synchronizing time is essential for authentication services such as Kerberos, but it is also important for maintaining accurate logs and auditing possible security breaches.

The NTP daemon offers all of the functionality of ntpdate, which is now deprecated. Additional information on this is available at http://support.ntp.org/bin/view/Dev/DeprecatingNtpdate

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_ntpd_enabled
Identifiers and References

References:  CCI-000160, AU-8(1), Req-10.4, SRG-OS-000056, SV-50421r1_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable ntpd


Complexity:low
Disruption:low
Strategy:enable
- name: Enable service ntpd
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - ntpd
  tags:
    - service_ntpd_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-27093-4
    - NIST-800-53-AU-8(1)
    - PCI-DSS-Req-10.4
    - DISA-STIG-RHEL-06-000247

Rule   Specify a Remote NTP Server   [ref]

To specify a remote NTP server for time synchronization, edit the file /etc/ntp.conf. Add or correct the following lines, substituting the IP or hostname of a remote NTP server for ntpserver:

server ntpserver
This instructs the NTP software to contact that remote server to obtain time data.

Rationale:

Synchronizing with an NTP server makes it possible to collate system logs from multiple sources or correlate computer events with real time events.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_ntpd_specify_remote_server
Identifiers and References

References:  CCI-000160, AU-8(1), Req-10.4.1, Req-10.4.3, SRG-OS-000056, SV-50422r1_rule

Group   Cron and At Daemons   Group contains 2 rules

[ref]   The cron and at services are used to allow commands to be executed at a later time. The cron service is required by almost all systems to perform necessary maintenance tasks, while at may or may not be required on a given system. Both daemons should be configured defensively.

Rule   Enable cron Service   [ref]

The crond service is used to execute commands at preconfigured times. It is required by almost all systems to perform necessary maintenance tasks, such as notifying root of system activity. The crond service can be enabled with the following command:

$ sudo chkconfig --level 2345 crond on

Rationale:

Due to its usage for maintenance and security-supporting tasks, enabling the cron daemon is essential.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_crond_enabled
Identifiers and References

References:  CM-7, SRG-OS-999999, SV-50406r2_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable crond


Complexity:low
Disruption:low
Strategy:enable
- name: Enable service crond
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - crond
  tags:
    - service_crond_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-27070-2
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000224

Rule   Disable At Service (atd)   [ref]

The at and batch commands can be used to schedule tasks that are meant to be executed only once. This allows delayed execution in a manner similar to cron, except that it is not recurring. The daemon atd keeps track of tasks scheduled via at and batch, and executes them at the specified time. The atd service can be disabled with the following command:

$ sudo chkconfig atd off

Rationale:

The atd service could be used by an unsophisticated insider to carry out activities outside of a normal login session, which could complicate accountability. Furthermore, the need to schedule tasks with at or batch is not common.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_atd_disabled
Identifiers and References

References:  CCI-000381, CM-7, SRG-OS-000096, SV-50442r3_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable atd


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service atd
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - atd
  tags:
    - service_atd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27249-2
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000262
Group   Obsolete Services   Group contains 5 groups and 13 rules

[ref]   This section discusses a number of network-visible services which have historically caused problems for system security, and for which disabling or severely limiting the service has been the best available guidance for some time. As a result of this, many of these services are not installed as part of Red Hat Enterprise Linux 6 by default.

Organizations which are running these services should switch to more secure equivalents as soon as possible. If it remains absolutely necessary to run one of these services for legacy reasons, care should be taken to restrict the service as much as possible, for instance by configuring host firewall software such as iptables to restrict access to the vulnerable service to only those remote hosts which have a known need to use it.

Group   Rlogin, Rsh, and Rexec   Group contains 5 rules

[ref]   The Berkeley r-commands are legacy services which allow cleartext remote access and have an insecure trust model.

Rule   Disable rlogin Service   [ref]

The rlogin service, which is available with the rsh-server package and runs as a service through xinetd, should be disabled. The rlogin service can be disabled with the following command:

$ sudo chkconfig rlogin off

Rationale:

The rlogin service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_service_rlogin_disabled
Identifiers and References

References:  CCI-001436, CM-7, IA-5(1)(c), SRG-OS-000248, SV-50403r2_rule

Rule   Disable rexec Service   [ref]

The rexec service, which is available with the rsh-server package and runs as a service through xinetd, should be disabled. The rexec service can be disabled with the following command:

$ sudo chkconfig rexec off

Rationale:

The rexec service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_service_rexec_disabled
Identifiers and References

References:  CCI-000068, CCI-001436, CM-7, SRG-OS-000033, SV-50399r2_rule

Rule   Disable rsh Service   [ref]

The rsh service, which is available with the rsh-server package and runs as a service through xinetd, should be disabled. The rsh service can be disabled with the following command:

$ sudo chkconfig rsh off

Rationale:

The rsh service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_service_rsh_disabled
Identifiers and References

References:  CCI-000068, CCI-001436, CM-7, IA-5(1)(c), SRG-OS-000033, SV-50395r2_rule

Rule   Uninstall rsh-server Package   [ref]

The rsh-server package can be uninstalled with the following command:

$ sudo yum erase rsh-server

Rationale:

The rsh-server package provides several obsolete and insecure network services. Removing it decreases the risk of those services' accidental (or intentional) activation.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_package_rsh-server_removed
Identifiers and References

References:  CCI-000305, CCI-000381, CM-7, SRG-OS-000095, SV-50392r1_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove rsh-server


Complexity:low
Disruption:low
Strategy:disable
- name: Ensure rsh-server is removed
  package:
    name="{{item}}"
    state=absent
  with_items:
    - rsh-server
  tags:
    - package_rsh-server_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27062-9
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000213


Complexity:low
Disruption:low
Strategy:disable
include remove_rsh-server

class remove_rsh-server {
  package { 'rsh-server':
    ensure => 'purged',
  }
}


Complexity:low
Disruption:low
Strategy:disable

package --remove=rsh-server

Rule   Remove Rsh Trust Files   [ref]

The files /etc/hosts.equiv and ~/.rhosts (in each user's home directory) list remote hosts and users that are trusted by the local system when using the rshd daemon. To remove these files, run the following command to delete them from any location:

$ sudo rm /etc/hosts.equiv
$ rm ~/.rhosts

Rationale:

Trust files are convenient, but when used in conjunction with the R-services, they can allow unauthenticated access to a system.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_no_rsh_trust_files
Identifiers and References

References:  CCI-001436, CM-7, SRG-OS-000248, SV-50292r1_rule



find /home -maxdepth 2 -type f -name .rhosts -exec rm -f '{}' \;

if [ -f /etc/hosts.equiv ]; then
	/bin/rm -f /etc/hosts.equiv
fi


Complexity:low
Disruption:low
Strategy:restrict
- block:
    - name: "Detect shosts.equiv Files on the System"
      find:
          paths: /
          recurse: yes
          patterns: shosts.equiv
      check_mode: no
      register: shosts_equiv_locations

    - name: "Remove Rsh Trust Files"
      file:
          path: "{{ item.path }}"
          state: absent
      with_items: "{{ shosts_equiv_locations.files }}"
      when: shosts_equiv_locations
  tags:
    - no_rsh_trust_files
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27270-8
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000019
Group   Telnet   Group contains 2 rules

[ref]   The telnet protocol does not provide confidentiality or integrity for information transmitted on the network. This includes authentication information such as passwords. Organizations which use telnet should be actively working to migrate to a more secure protocol.

Rule   Uninstall telnet-server Package   [ref]

The telnet-server package can be uninstalled with the following command:

$ sudo yum erase telnet-server

Rationale:

Removing the telnet-server package decreases the risk of the telnet service's accidental (or intentional) activation.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_package_telnet-server_removed
Identifiers and References

References:  CCI-000305, CCI-000381, CM-7, SRG-OS-000095, SV-50388r1_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove telnet-server


Complexity:low
Disruption:low
Strategy:disable
- name: Ensure telnet-server is removed
  package:
    name="{{item}}"
    state=absent
  with_items:
    - telnet-server
  tags:
    - package_telnet-server_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27073-6
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000206


Complexity:low
Disruption:low
Strategy:disable
include remove_telnet-server

class remove_telnet-server {
  package { 'telnet-server':
    ensure => 'purged',
  }
}


Complexity:low
Disruption:low
Strategy:disable

package --remove=telnet-server

Rule   Disable telnet Service   [ref]

The telnet service can be disabled with the following command:

$ sudo chkconfig telnet off

Rationale:

The telnet protocol uses unencrypted network communication, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network. The telnet protocol is also subject to man-in-the-middle attacks.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_service_telnetd_disabled
Identifiers and References

References:  CCI-000068, CCI-001436, CCI-000197, CCI-000877, CCI-000888, CM-7, IA-5(1)(c), SRG-OS-000129, SV-50390r2_rule

Group   NIS   Group contains 2 rules

[ref]   The Network Information Service (NIS), also known as 'Yellow Pages' (YP), and its successor NIS+ have been made obsolete by Kerberos, LDAP, and other modern centralized authentication services. NIS should not be used because it suffers from security problems inherent in its design, such as inadequate protection of important authentication information.

Rule   Disable ypbind Service   [ref]

The ypbind service, which allows the system to act as a client in a NIS or NIS+ domain, should be disabled. The ypbind service can be disabled with the following command:

$ sudo chkconfig ypbind off

Rationale:

Disabling the ypbind service ensures the system is not acting as a client in a NIS or NIS+ domain.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_ypbind_disabled
Identifiers and References

References:  CCI-000305, CM-7, SRG-OS-000096, SV-50405r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable ypbind


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service ypbind
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - ypbind
  tags:
    - service_ypbind_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-26894-6
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000221

Rule   Uninstall ypserv Package   [ref]

The ypserv package can be uninstalled with the following command:

$ sudo yum erase ypserv

Rationale:

Removing the ypserv package decreases the risk of the accidental (or intentional) activation of NIS or NIS+ services.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_package_ypserv_removed
Identifiers and References

References:  CCI-000305, CCI-000381, CM-7, SRG-OS-000095, SV-50404r1_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove ypserv


Complexity:low
Disruption:low
Strategy:disable
- name: Ensure ypserv is removed
  package:
    name="{{item}}"
    state=absent
  with_items:
    - ypserv
  tags:
    - package_ypserv_removed
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27079-3
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000220


Complexity:low
Disruption:low
Strategy:disable
include remove_ypserv

class remove_ypserv {
  package { 'ypserv':
    ensure => 'purged',
  }
}


Complexity:low
Disruption:low
Strategy:disable

package --remove=ypserv
Group   TFTP Server   Group contains 2 rules

[ref]   TFTP is a lightweight version of the FTP protocol which has traditionally been used to configure networking equipment. However, TFTP provides little security, and modern versions of networking operating systems frequently support configuration via SSH or other more secure protocols. A TFTP server should be run only if no more secure method of supporting existing equipment can be found.

Rule   Disable tftp Service   [ref]

The tftp service should be disabled. The tftp service can be disabled with the following command:

$ sudo chkconfig tftp off

Rationale:

Disabling the tftp service ensures the system is not acting as a TFTP server, which does not provide encryption or authentication.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_tftp_disabled
Identifiers and References

References:  CCI-001436, CM-7, SRG-OS-000248, SV-50410r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable tftp


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service tftp
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - tftp
  tags:
    - service_tftp_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27055-3
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000223

Rule   Uninstall tftp-server Package   [ref]

The tftp-server package can be removed with the following command:

$ sudo yum erase tftp-server

Rationale:

Removing the tftp-server package decreases the risk of the accidental (or intentional) activation of tftp services.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_package_tftp-server_removed
Identifiers and References

References:  CCI-000305, CM-7, SRG-OS-000095, SV-50407r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove tftp-server


Complexity:low
Disruption:low
Strategy:disable
- name: Ensure tftp-server is removed
  package:
    name="{{item}}"
    state=absent
  with_items:
    - tftp-server
  tags:
    - package_tftp-server_removed
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-26946-4
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000222


Complexity:low
Disruption:low
Strategy:disable
include remove_tftp-server

class remove_tftp-server {
  package { 'tftp-server':
    ensure => 'purged',
  }
}


Complexity:low
Disruption:low
Strategy:disable

package --remove=tftp-server
Group   Xinetd   Group contains 2 rules

[ref]   The xinetd service acts as a dedicated listener for some network services (mostly, obsolete ones) and can be used to provide access controls and perform some logging. It has been largely obsoleted by other features, and it is not installed by default. The older Inetd service is not even available as part of Red Hat Enterprise Linux 6.

Rule   Disable xinetd Service   [ref]

The xinetd service can be disabled with the following command:

$ sudo chkconfig xinetd off

Rationale:

The xinetd service provides a dedicated listener service for some programs, which is no longer necessary for commonly-used network services. Disabling it ensures that these uncommon services are not running, and also prevents attacks against xinetd itself.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_xinetd_disabled
Identifiers and References

References:  CCI-000305, CM-7, SRG-OS-000096, SV-50383r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable xinetd


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service xinetd
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - xinetd
  tags:
    - service_xinetd_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27046-2
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000203

Rule   Uninstall xinetd Package   [ref]

The xinetd package can be uninstalled with the following command:

$ sudo yum erase xinetd

Rationale:

Removing the xinetd package decreases the risk of the xinetd service's accidental (or intentional) activation.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_package_xinetd_removed
Identifiers and References

References:  CCI-000305, CM-7, SRG-OS-000096, SV-50385r1_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove xinetd


Complexity:low
Disruption:low
Strategy:disable
- name: Ensure xinetd is removed
  package:
    name="{{item}}"
    state=absent
  with_items:
    - xinetd
  tags:
    - package_xinetd_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27005-8
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000204


Complexity:low
Disruption:low
Strategy:disable
include remove_xinetd

class remove_xinetd {
  package { 'xinetd':
    ensure => 'purged',
  }
}


Complexity:low
Disruption:low
Strategy:disable

package --remove=xinetd
Group   NFS and RPC   Group contains 2 groups and 2 rules

[ref]   The Network File System is a popular distributed filesystem for the Unix environment, and is very widely deployed. This section discusses the circumstances under which it is possible to disable NFS and its dependencies, and then details steps which should be taken to secure NFS's configuration. This section is relevant to systems operating as NFS clients, as well as to those operating as NFS servers.

Group   Configure NFS Clients   Group contains 1 group and 2 rules

[ref]   The steps in this section are appropriate for systems which operate as NFS clients.

Group   Mount Remote Filesystems with Restrictive Options   Group contains 2 rules

[ref]   Edit the file /etc/fstab. For each filesystem whose type (column 3) is nfs or nfs4, add the text ,nodev,nosuid to the list of mount options in column 4. If appropriate, also add ,noexec.

See the section titled "Restrict Partition Mount Options" for a description of the effects of these options. In general, execution of files mounted via NFS should be considered risky because of the possibility that an adversary could intercept the request and substitute a malicious file. Allowing setuid files to be executed from remote servers is particularly risky, both for this reason and because it requires the clients to extend root-level trust to the NFS server.

Rule   Mount Remote Filesystems with nosuid   [ref]

Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts.

Rationale:

NFS mounts should not present suid binaries to users. Only vendor-supplied suid executables should be installed to their default location on the local filesystem.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_mount_option_nosuid_remote_filesystems
Identifiers and References

References:  SRG-OS-999999, SV-50455r2_rule

Rule   Mount Remote Filesystems with nodev   [ref]

Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts.

Rationale:

Legitimate device files should only exist in the /dev directory. NFS mounts should not present device files to users.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_mount_option_nodev_remote_filesystems
Identifiers and References

References:  CM-7, MP-2, SRG-OS-999999, SV-50453r2_rule

Group   Base Services   Group contains 6 rules

[ref]   This section addresses the base services that are installed on a Red Hat Enterprise Linux 6 default installation which are not covered in other sections. Some of these services listen on the network and should be treated with particular discretion. Other services are local system utilities that may or may not be extraneous. In general, system services should be disabled if not required.

Rule   Disable Red Hat Network Service (rhnsd)   [ref]

The Red Hat Network service automatically queries Red Hat Network servers to determine whether there are any actions that should be executed, such as package updates. This only occurs if the system was registered to an RHN server or satellite and managed as such. The rhnsd service can be disabled with the following command:

$ sudo chkconfig rhnsd off

Rationale:

Although systems management and patching is extremely important to system security, management by a system outside the enterprise enclave is not desirable for some environments. However, if the system is being managed by RHN or RHN Satellite Server the rhnsd daemon can remain on.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_rhnsd_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50278r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable rhnsd


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rhnsd
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - rhnsd
  tags:
    - service_rhnsd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-26846-6
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000009

Rule   Disable Odd Job Daemon (oddjobd)   [ref]

The oddjobd service exists to provide an interface and access control mechanism through which specified privileged tasks can run tasks for unprivileged client applications. Communication with oddjobd through the system message bus. The oddjobd service can be disabled with the following command:

$ sudo chkconfig oddjobd off

Rationale:

The oddjobd service may provide necessary functionality in some environments, and can be disabled if it is not needed. Execution of tasks by privileged programs, on behalf of unprivileged ones, has traditionally been a source of privilege escalation security issues.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_oddjobd_disabled
Identifiers and References

References:  CCI-000381, CM-7, SRG-OS-000096, SV-50447r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable oddjobd


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service oddjobd
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - oddjobd
  tags:
    - service_oddjobd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27257-5
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000266

Rule   Disable Apache Qpid (qpidd)   [ref]

The qpidd service provides high speed, secure, guaranteed delivery services. It is an implementation of the Advanced Message Queuing Protocol. By default the qpidd service will bind to port 5672 and listen for connection attempts. The qpidd service can be disabled with the following command:

$ sudo chkconfig qpidd off

Rationale:

The qpidd service is automatically installed when the "base" package selection is selected during installation. The qpidd service listens for network connections, which increases the attack surface of the system. If the system is not intended to receive AMQP traffic, then the qpidd service is not needed and should be disabled or removed.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_qpidd_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50449r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable qpidd


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service qpidd
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - qpidd
  tags:
    - service_qpidd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-26928-2
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000267

Rule   Disable Automatic Bug Reporting Tool (abrtd)   [ref]

The Automatic Bug Reporting Tool (abrtd) daemon collects and reports crash data when an application crash is detected. Using a variety of plugins, abrtd can email crash reports to system administrators, log crash reports to files, or forward crash reports to a centralized issue tracking system such as RHTSupport. The abrtd service can be disabled with the following command:

$ sudo chkconfig abrtd off

Rationale:

Mishandling crash data could expose sensitive information about vulnerabilities in software executing on the local system, as well as sensitive information from within a process's address space or registers.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_abrtd_disabled
Identifiers and References

References:  CCI-000381, CM-7, SRG-OS-000096, SV-50441r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable abrtd


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service abrtd
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - abrtd
  tags:
    - service_abrtd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27247-6
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000261

Rule   Disable ntpdate Service (ntpdate)   [ref]

The ntpdate service sets the local hardware clock by polling NTP servers when the system boots. It synchronizes to the NTP servers listed in /etc/ntp/step-tickers or /etc/ntp.conf and then sets the local hardware clock to the newly synchronized system time. The ntpdate service can be disabled with the following command:

$ sudo chkconfig ntpdate off

Rationale:

The ntpdate service may only be suitable for systems which are rebooted frequently enough that clock drift does not cause problems between reboots. In any event, the functionality of the ntpdate service is now available in the ntpd program and should be considered deprecated.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_ntpdate_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50445r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable ntpdate


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service ntpdate
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - ntpdate
  tags:
    - service_ntpdate_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27256-7
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000265

Rule   Disable Network Router Discovery Daemon (rdisc)   [ref]

The rdisc service implements the client side of the ICMP Internet Router Discovery Protocol (IRDP), which allows discovery of routers on the local subnet. If a router is discovered then the local routing table is updated with a corresponding default route. By default this daemon is disabled. The rdisc service can be disabled with the following command:

$ sudo chkconfig rdisc off

Rationale:

General-purpose systems typically have their network and routing information configured statically by a system administrator. Workstations or some special-purpose systems often use DHCP (instead of IRDP) to retrieve dynamic network configuration information.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_rdisc_disabled
Identifiers and References

References:  CCI-000382, AC-4, CM-7, SRG-OS-000096, SV-50451r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable rdisc


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rdisc
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - rdisc
  tags:
    - service_rdisc_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27261-7
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000268
Group   LDAP   Group contains 2 groups and 3 rules

[ref]   LDAP is a popular directory service, that is, a standardized way of looking up information from a central database. Red Hat Enterprise Linux 6 includes software that enables a system to act as both an LDAP client and server.

Group   Configure OpenLDAP Server   Group contains 1 rule

[ref]   This section details some security-relevant settings for an OpenLDAP server. Installation and configuration of OpenLDAP on Red Hat Enterprise Linux 6 is available at: https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Directory_Servers.html.

Rule   Uninstall openldap-servers Package   [ref]

The openldap-servers package should be removed if not in use. Is this system the OpenLDAP server? If not, remove the package.

$ sudo yum erase openldap-servers
The openldap-servers RPM is not installed by default on Red Hat Enterprise Linux 6 systems. It is needed only by the OpenLDAP server, not by the clients which use LDAP for authentication. If the system is not intended for use as an LDAP Server it should be removed.

Rationale:

The openldap-servers package is not installed by default on RHEL6 systems. It is needed only by the OpenLDAP server system, not clients which use LDAP for authentication. If the system is not intended for use as an LDAP server, openldap-servers should be removed.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_package_openldap-servers_removed
Identifiers and References

References:  CCI-000366, CM-7, SRG-OS-999999, SV-50428r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove openldap-servers


Complexity:low
Disruption:low
Strategy:disable
- name: Ensure openldap-servers is removed
  package:
    name="{{item}}"
    state=absent
  with_items:
    - openldap-servers
  tags:
    - package_openldap-servers_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-26858-1
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000256


Complexity:low
Disruption:low
Strategy:disable
include remove_openldap-servers

class remove_openldap-servers {
  package { 'openldap-servers':
    ensure => 'purged',
  }
}


Complexity:low
Disruption:low
Strategy:disable

package --remove=openldap-servers
Group   Configure OpenLDAP Clients   Group contains 2 rules

[ref]   This section provides information on which security settings are important to configure in OpenLDAP clients by manually editing the appropriate configuration files. Red Hat Enterprise Linux 6 provides an automated configuration tool called authconfig and a graphical wrapper for authconfig called system-config-authentication. However, these tools do not provide as much control over configuration as manual editing of configuration files. The authconfig tools do not allow you to specify locations of SSL certificate files, which is useful when trying to use SSL cleanly across several protocols. Installation and configuration of OpenLDAP on Red Hat Enterprise Linux 6 is available at https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Directory_Servers.html.

Rule   Configure LDAP Client to Use TLS For All Transactions   [ref]

Configure LDAP to enforce TLS use. First, edit the file /etc/pam_ldap.conf, and add or correct the following lines:

ssl start_tls
Then review the LDAP server and ensure TLS has been configured.

Rationale:

The ssl directive specifies whether to use ssl or not. If not specified it will default to no. It should be set to start_tls rather than doing LDAP over SSL.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_ldap_client_start_tls
Identifiers and References

References:  CCI-000776, CCI-000778, CCI-001453, CM-7





# Use LDAP for authentication
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysconfig/authconfig' 'USELDAPAUTH' 'yes' 'CCE-26690-8' '%s=%s'

# Configure client to use TLS for all authentications
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/nslcd.conf' 'ssl' 'start_tls' 'CCE-26690-8' '%s %s'

Rule   Configure Certificate Directives for LDAP Use of TLS   [ref]

Ensure a copy of a trusted CA certificate has been placed in the file /etc/pki/tls/CA/cacert.pem. Configure LDAP to enforce TLS use and to trust certificates signed by that CA. First, edit the file /etc/pam_ldap.conf, and add or correct either of the following lines:

tls_cacertdir /etc/pki/tls/CA
or
tls_cacertfile /etc/pki/tls/CA/cacert.pem
Then review the LDAP server and ensure TLS has been configured.

Rationale:

The tls_cacertdir or tls_cacertfile directives are required when tls_checkpeer is configured (which is the default for openldap versions 2.1 and up). These directives define the path to the trust certificates signed by the site CA.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_ldap_client_tls_cacertpath
Identifiers and References

References:  CCI-000776, CCI-000778, CCI-001453, CM-7

Group   Mail Server Software   Group contains 1 group and 1 rule

[ref]   Mail servers are used to send and receive email over the network. Mail is a very common service, and Mail Transfer Agents (MTAs) are obvious targets of network attack. Ensure that systems are not running MTAs unnecessarily, and configure needed MTAs as defensively as possible.

Very few systems at any site should be configured to directly receive email over the network. Users should instead use mail client programs to retrieve email from a central server that supports protocols such as IMAP or POP3. However, it is normal for most systems to be independently capable of sending email, for instance so that cron jobs can report output to an administrator. Most MTAs, including Postfix, support a submission-only mode in which mail can be sent from the local system to a central site MTA (or directly delivered to a local account), but the system still cannot receive mail directly over a network.

The alternatives program in Red Hat Enterprise Linux permits selection of other mail server software (such as Sendmail), but Postfix is the default and is preferred. Postfix was coded with security in mind and can also be more effectively contained by SELinux as its modular design has resulted in separate processes performing specific actions. More information is available on its website, http://www.postfix.org.

Group   Configure SMTP For Mail Clients   Group contains 1 rule

[ref]   This section discusses settings for Postfix in a submission-only e-mail configuration.

Rule   Disable Postfix Network Listening   [ref]

Edit the file /etc/postfix/main.cf to ensure that only the following inet_interfaces line appears:

inet_interfaces = localhost

Rationale:

This ensures postfix accepts mail messages (such as cron job reports) from the local system only, and not from the network, which protects it from network attack.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_postfix_network_listening_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50423r2_rule

Group   Avahi Server   Group contains 1 group and 1 rule

[ref]   The Avahi daemon implements the DNS Service Discovery and Multicast DNS protocols, which provide service and host discovery on a network. It allows a system to automatically identify resources on the network, such as printers or web servers. This capability is also known as mDNSresponder and is a major part of Zeroconf networking.

Group   Disable Avahi Server if Possible   Group contains 1 rule

[ref]   Because the Avahi daemon service keeps an open network port, it is subject to network attacks. Disabling it can reduce the system's vulnerability to such attacks.

Rule   Disable Avahi Server Software   [ref]

The avahi-daemon service can be disabled with the following command:

$ sudo chkconfig avahi-daemon off

Rationale:

Because the Avahi daemon service keeps an open network port, it is subject to network attacks. Its functionality is convenient but is only appropriate if the local network can be trusted.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_service_avahi-daemon_disabled
Identifiers and References

References:  CCI-000366, CM-7, SRG-OS-999999, SV-50419r2_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable avahi-daemon


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service avahi-daemon
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - avahi-daemon
  tags:
    - service_avahi-daemon_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-27087-6
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000246
Group   Samba(SMB) Microsoft Windows File Sharing Server   Group contains 1 group and 2 rules

[ref]   When properly configured, the Samba service allows Linux systems to provide file and print sharing to Microsoft Windows systems. There are two software packages that provide Samba support. The first, samba-client, provides a series of command line tools that enable a client system to access Samba shares. The second, simply labeled samba, provides the Samba service. It is this second package that allows a Linux system to act as an Active Directory server, a domain controller, or as a domain member. Only the samba-client package is installed by default.

Group   Configure Samba if Necessary   Group contains 2 rules

[ref]   All settings for the Samba daemon can be found in /etc/samba/smb.conf. Settings are divided between a [global] configuration section and a series of user created share definition sections meant to describe file or print shares on the system. By default, Samba will operate in user mode and allow client systems to access local home directories and printers. It is recommended that these settings be changed or that additional limitations be set in place.

Rule   Require Client SMB Packet Signing, if using mount.cifs   [ref]

Require packet signing of clients who mount Samba shares using the mount.cifs program (e.g., those who specify shares in /etc/fstab). To do so, ensure signing options (either sec=krb5i or sec=ntlmv2i) are used.

See the mount.cifs(8) man page for more information. A Samba client should only communicate with servers who can support SMB packet signing.

Rationale:

Packet signing can prevent man-in-the-middle attacks which modify SMB packets in transit.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_mount_option_smb_client_signing
Identifiers and References

References:  SRG-OS-999999, SV-50458r2_rule

Rule   Require Client SMB Packet Signing, if using smbclient   [ref]

To require samba clients running smbclient to use packet signing, add the following to the [global] section of the Samba configuration file, /etc/samba/smb.conf:

client signing = mandatory
Requiring samba clients such as smbclient to use packet signing ensures they can only communicate with servers that support packet signing.

Rationale:

Packet signing can prevent man-in-the-middle attacks which modify SMB packets in transit.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_require_smb_client_signing
Identifiers and References

References:  SRG-OS-999999, SV-50457r1_rule



######################################################################
#By Luke "Brisk-OH" Brisk
#luke.brisk@boeing.com or luke.brisk@gmail.com
######################################################################

CLIENTSIGNING=$( grep -ic 'client signing' /etc/samba/smb.conf )

if [ "$CLIENTSIGNING" -eq 0 ];  then
	# Add to global section
	sed -i 's/\[global\]/\[global\]\n\n\tclient signing = mandatory/g' /etc/samba/smb.conf
else
	sed -i 's/[[:blank:]]*client[[:blank:]]signing[[:blank:]]*=[[:blank:]]*no/        client signing = mandatory/g' /etc/samba/smb.conf
fi


Complexity:low
Disruption:medium
Strategy:configure
- name: Check if /etc/samba/smb.conf exists
  stat:
    path: /etc/samba/smb.conf
  register: st_smb
  tags:
    - require_smb_client_signing
    - unknown_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-26328-5
    - DISA-STIG-RHEL-06-000272

- name: Require Client SMB Packet Signing, if using smbclient
  lineinfile:
    dest: /etc/samba/smb.conf
    line: client signing = mandatory
    state: present
    insertafter: [global]
  when: st_smb.stat.exists
  tags:
    - require_smb_client_signing
    - unknown_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-26328-5
    - DISA-STIG-RHEL-06-000272
Group   SSH Server   Group contains 1 group and 10 rules

[ref]   The SSH protocol is recommended for remote login and remote file transfer. SSH provides confidentiality and integrity for data exchanged between two systems, as well as server authentication, through the use of public key cryptography. The implementation included with the system is called OpenSSH, and more detailed documentation is available from its website, http://www.openssh.org. Its server program is called sshd and provided by the RPM package openssh-server.

Group   Configure OpenSSH Server if Necessary   Group contains 10 rules

[ref]   If the system needs to act as an SSH server, then certain changes should be made to the OpenSSH daemon configuration file /etc/ssh/sshd_config. The following recommendations can be applied to this file. See the sshd_config(5) man page for more detailed information.

Rule   Disable SSH Support for .rhosts Files   [ref]

SSH can emulate the behavior of the obsolete rsh command in allowing users to enable insecure access to their accounts via .rhosts files.

To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config:

IgnoreRhosts yes

Rationale:

SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sshd_disable_rhosts
Identifiers and References

References:  CCI-000765, CCI-000766, AC-3, SRG-OS-000106, SV-50412r1_rule



# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^IgnoreRhosts' 'yes' 'CCE-27124-7' '%s %s'


Complexity:low
Disruption:low
Strategy:restrict
- name: Disable SSH Support for .rhosts Files
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^IgnoreRhosts
    line: IgnoreRhosts yes
    validate: sshd -t -f %s
  tags:
    - sshd_disable_rhosts
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27124-7
    - NIST-800-53-AC-3
    - DISA-STIG-RHEL-06-000234

Rule   Set SSH Idle Timeout Interval   [ref]

SSH allows administrators to set an idle timeout interval. After this interval has passed, the idle user will be automatically logged out.

To set an idle timeout interval, edit the following line in /etc/ssh/sshd_config as follows:

ClientAliveInterval 300
The timeout interval is given in seconds. To have a timeout of 15 minutes, set interval to 900.

If a shorter timeout has already been set for the login shell, that value will preempt any SSH setting made here. Keep in mind that some processes may stop SSH from correctly detecting that the user is idle.

Rationale:

Causing idle users to be automatically logged out guards against compromises one system leading trivially to compromises on another.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sshd_set_idle_timeout
Identifiers and References

References:  CCI-000879, CCI-001133, AC-2(5), SA-8, Req-8.1.8, SRG-OS-000163, SV-50409r1_rule




sshd_idle_timeout_value="300"

grep -q ^ClientAliveInterval /etc/ssh/sshd_config && \
  sed -i "s/ClientAliveInterval.*/ClientAliveInterval $sshd_idle_timeout_value/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "ClientAliveInterval $sshd_idle_timeout_value" >> /etc/ssh/sshd_config
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value sshd_idle_timeout_value # promote to variable
  set_fact:
    sshd_idle_timeout_value: 300
  tags:
    - always

- name: Set SSH Idle Timeout Interval
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^ClientAliveInterval
    line: "ClientAliveInterval {{ sshd_idle_timeout_value }}"
    validate: sshd -t -f %s
  #notify: restart sshd
  tags:
    - sshd_set_idle_timeout
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26919-1
    - NIST-800-53-AC-2(5)
    - NIST-800-53-SA-8
    - PCI-DSS-Req-8.1.8
    - DISA-STIG-RHEL-06-000230

Rule   Enable SSH Warning Banner   [ref]

To enable the warning banner and ensure it is consistent across the system, add or correct the following line in /etc/ssh/sshd_config:

Banner /etc/issue
Another section contains information on how to create an appropriate system-wide warning banner.

Rationale:

The warning message reinforces policy awareness during the login process and facilitates possible legal action against attackers. Alternatively, systems whose ownership should not be obvious should ensure usage of a banner that does not provide easy attribution.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sshd_enable_warning_banner
Identifiers and References

References:  CCI-000048, AC-8(a), SRG-OS-000023, SV-50416r1_rule



grep -q ^Banner /etc/ssh/sshd_config && \
  sed -i "s/Banner.*/Banner \/etc\/issue/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "Banner /etc/issue" >> /etc/ssh/sshd_config
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: Enable SSH Warning Banner
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^Banner
    line: Banner /etc/issue
    validate: sshd -t -f %s
  tags:
    - sshd_enable_warning_banner
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27112-2
    - NIST-800-53-AC-8(a)
    - DISA-STIG-RHEL-06-000240

Rule   Disable Host-Based Authentication   [ref]

SSH's cryptographic host-based authentication is more secure than .rhosts authentication. However, it is not recommended that hosts unilaterally trust one another, even within an organization.

To disable host-based authentication, add or correct the following line in /etc/ssh/sshd_config:

HostbasedAuthentication no

Rationale:

SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_disable_host_auth
Identifiers and References

References:  CCI-000765, CCI-000766, AC-3, SRG-OS-000106, SV-50413r1_rule



grep -q ^HostbasedAuthentication /etc/ssh/sshd_config && \
  sed -i "s/HostbasedAuthentication.*/HostbasedAuthentication no/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "HostbasedAuthentication no" >> /etc/ssh/sshd_config
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: Disable Host-Based Authentication
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^HostbasedAuthentication
    line: HostbasedAuthentication no
  tags:
    - disable_host_auth
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27091-8
    - NIST-800-53-AC-3
    - DISA-STIG-RHEL-06-000236

Rule   Disable SSH Access via Empty Passwords   [ref]

To explicitly disallow remote login from accounts with empty passwords, add or correct the following line in /etc/ssh/sshd_config:

PermitEmptyPasswords no
Any accounts with empty passwords should be disabled immediately, and PAM configuration should prevent users from being able to assign themselves empty passwords.

Rationale:

Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_sshd_disable_empty_passwords
Identifiers and References

References:  CCI-000765, CCI-000766, AC-3, SRG-OS-000106, SV-50415r1_rule



# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^PermitEmptyPasswords' 'no' 'CCE-26887-0' '%s %s'


Complexity:low
Disruption:low
Strategy:restrict
- name: Disable SSH Access via Empty Passwords
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^PermitEmptyPasswords
    line: PermitEmptyPasswords no
    validate: sshd -t -f %s
  tags:
    - sshd_disable_empty_passwords
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26887-0
    - NIST-800-53-AC-3
    - DISA-STIG-RHEL-06-000239

Rule   Use Only Approved Ciphers   [ref]

Limit the ciphers to those algorithms which are FIPS-approved. Counter (CTR) mode is also preferred over cipher-block chaining (CBC) mode. The following line in /etc/ssh/sshd_config demonstrates use of FIPS-approved ciphers:

Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc
The man page sshd_config(5) contains a list of supported ciphers.

Rationale:

Approved algorithms should impart some level of confidence in their implementation. These are also required for compliance.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sshd_use_approved_ciphers
Identifiers and References

References:  CCI-000803, CCI-001144, CCI-001145, CCI-001146, AC-3, AC-17(2), SI-7, IA-5(1)(c), IA-7, SRG-OS-000169, SV-50418r1_rule



grep -q ^Ciphers /etc/ssh/sshd_config && \
  sed -i "s/Ciphers.*/Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc" >> /etc/ssh/sshd_config
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: Use Only Approved Ciphers
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^Ciphers
    line: Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc
    validate: sshd -t -f %s
  #notify: restart sshd
  tags:
    - sshd_use_approved_ciphers
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26555-3
    - NIST-800-53-AC-3
    - NIST-800-53-AC-17(2)
    - NIST-800-53-SI-7
    - NIST-800-53-IA-5(1)(c)
    - NIST-800-53-IA-7
    - DISA-STIG-RHEL-06-000243

Rule   Set SSH Client Alive Count   [ref]

To ensure the SSH idle timeout occurs precisely when the ClientAliveCountMax is set, edit /etc/ssh/sshd_config as follows:

ClientAliveCountMax 0

Rationale:

This ensures a user login will be terminated as soon as the ClientAliveCountMax is reached.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sshd_set_keepalive
Identifiers and References

References:  CCI-000879, CCI-001133, AC-2(5), SA-8, SRG-OS-000126, SV-50411r1_rule



grep -q ^ClientAliveCountMax /etc/ssh/sshd_config && \
  sed -i "s/ClientAliveCountMax.*/ClientAliveCountMax 0/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "ClientAliveCountMax 0" >> /etc/ssh/sshd_config
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: Set SSH Client Alive Count
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^ClientAliveCountMax
    line: ClientAliveCountMax 0
    validate: sshd -t -f %s
  #notify: restart sshd
  tags:
    - sshd_set_keepalive
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26282-4
    - NIST-800-53-AC-2(5)
    - NIST-800-53-SA-8
    - DISA-STIG-RHEL-06-000231

Rule   Do Not Allow SSH Environment Options   [ref]

To ensure users are not able to present environment options to the SSH daemon, add or correct the following line in /etc/ssh/sshd_config:

PermitUserEnvironment no

Rationale:

SSH environment options potentially allow users to bypass access restriction in some configurations.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sshd_do_not_permit_user_env
Identifiers and References

References:  CCI-001414, SRG-OS-000242, SV-50417r1_rule



grep -q ^PermitUserEnvironment /etc/ssh/sshd_config && \
  sed -i "s/PermitUserEnvironment.*/PermitUserEnvironment no/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "PermitUserEnvironment no" >> /etc/ssh/sshd_config
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: Do Not Allow SSH Environment Options
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^PermitUserEnvironment
    line: PermitUserEnvironment no
    validate: sshd -t -f %s
  tags:
    - sshd_do_not_permit_user_env
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27201-3
    - DISA-STIG-RHEL-06-000241

Rule   Allow Only SSH Protocol 2   [ref]

Only SSH protocol version 2 connections should be permitted. The default setting in /etc/ssh/sshd_config is correct, and can be verified by ensuring that the following line appears:

Protocol 2

Rationale:

SSH protocol version 1 suffers from design flaws that result in security vulnerabilities and should not be used.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_sshd_allow_only_protocol2
Identifiers and References

References:  CCI-000776, CCI-000774, CCI-001436, AC-3(10), IA-5(1)(c), SRG-OS-000112, SV-50408r1_rule



# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^Protocol' '2' 'CCE-27072-8' '%s %s'


Complexity:low
Disruption:low
Strategy:restrict

- name: "Allow Only SSH Protocol 2"
  lineinfile:
    dest: /etc/ssh/sshd_config
    regexp: "^Protocol [0-9]"
    line: "Protocol 2"
    validate: sshd -t -f %s
  #notify: :reload ssh
  tags:
    - sshd_allow_only_protocol2
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27072-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-IA-5(1)(c)
    - DISA-STIG-RHEL-06-000227
Group   System Settings   Group contains 54 groups and 140 rules

[ref]   Contains rules that check correct system settings.

Group   System Accounting with <tt>auditd</tt>   Group contains 4 groups and 34 rules

[ref]   The audit service provides substantial capabilities for recording system activities. By default, the service audits about SELinux AVC denials and certain types of security-relevant events such as system logins, account modifications, and authentication events performed by programs such as sudo. Under its default configuration, auditd has modest disk space requirements, and should not noticeably impact system performance.

Government networks often have substantial auditing requirements and auditd can be configured to meet these requirements. Examining some example audit records demonstrates how the Linux audit system satisfies common requirements. The following example from Fedora Documentation available at http://docs.fedoraproject.org/en-US/Fedora/13/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages.html shows the substantial amount of information captured in a two typical "raw" audit messages, followed by a breakdown of the most important fields. In this example the message is SELinux-related and reports an AVC denial (and the associated system call) that occurred when the Apache HTTP Server attempted to access the /var/www/html/file1 file (labeled with the samba_share_t type):

type=AVC msg=audit(1226874073.147:96): avc:  denied  { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0 
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13 
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
  • msg=audit(1226874073.147:96)
    • The number in parentheses is the unformatted time stamp (Epoch time) for the event, which can be converted to standard time by using the date command.
  • { getattr }
    • The item in braces indicates the permission that was denied. getattr indicates the source process was trying to read the target file's status information. This occurs before reading files. This action is denied due to the file being accessed having the wrong label. Commonly seen permissions include getattr, read, and write.
  • comm="httpd"
    • The executable that launched the process. The full path of the executable is found in the exe= section of the system call (SYSCALL) message, which in this case, is exe="/usr/sbin/httpd".
  • path="/var/www/html/file1"
    • The path to the object (target) the process attempted to access.
  • scontext="unconfined_u:system_r:httpd_t:s0"
    • The SELinux context of the process that attempted the denied action. In this case, it is the SELinux context of the Apache HTTP Server, which is running in the httpd_t domain.
  • tcontext="unconfined_u:object_r:samba_share_t:s0"
    • The SELinux context of the object (target) the process attempted to access. In this case, it is the SELinux context of file1. Note: the samba_share_t type is not accessible to processes running in the httpd_t domain.
  • From the system call (SYSCALL) message, two items are of interest:
    • success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates the system call was not successful (SELinux denied access). success=yes indicates the system call was successful - this can be seen for permissive domains or unconfined domains, such as initrc_t and kernel_t.
    • exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this case, is exe="/usr/sbin/httpd".

Group   Configure <tt>auditd</tt> Data Retention   Group contains 4 rules

[ref]   The audit system writes data to /var/log/audit/audit.log. By default, auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of data in total, and refuses to write entries when the disk is too full. This minimizes the risk of audit data filling its partition and impacting other services. This also minimizes the risk of the audit daemon temporarily disabling the system if it cannot write audit log (which it can be configured to do). For a busy system or a system which is thoroughly auditing system activity, the default settings for data retention may be insufficient. The log file size needed will depend heavily on what types of events are being audited. First configure auditing to log all the events of interest. Then monitor the log size manually for awhile to determine what file size will allow you to keep the required data for the correct time period.

Using a dedicated partition for /var/log/audit prevents the auditd logs from disrupting system functionality if they fill, and, more importantly, prevents other activity in /var from filling the partition and stopping the audit trail. (The audit logs are size-limited and therefore unlikely to grow without bound unless configured to do so.) Some machines may have requirements that no actions occur which cannot be audited. If this is the case, then auditd can be configured to halt the machine if it runs out of space. Note: Since older logs are rotated, configuring auditd this way does not prevent older logs from being rotated away before they can be viewed. If your system is configured to halt when logging cannot be performed, make sure this can never happen under normal circumstances! Ensure that /var/log/audit is on its own partition, and that this partition is larger than the maximum amount of data auditd will retain normally.

Rule   Configure auditd Max Log File Size   [ref]

Determine the amount of audit data (in megabytes) which should be retained in each log file. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting the correct value of 6 for STOREMB:

max_log_file = STOREMB
Set the value to 6 (MB) or higher for general-purpose systems. Larger values, of course, support retention of even more audit data.

Rationale:

The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_auditd_data_retention_max_log_file
Identifiers and References

References:  AU-1(b), AU-11, IR-5, Req-10.7, SRG-OS-999999, SV-50434r1_rule




var_auditd_max_log_file="6"

AUDITCONFIG=/etc/audit/auditd.conf

grep -q ^max_log_file $AUDITCONFIG && \
  sed -i 's/^max_log_file.*/max_log_file = '"$var_auditd_max_log_file"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
  echo "max_log_file = $var_auditd_max_log_file" >> $AUDITCONFIG
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_auditd_max_log_file # promote to variable
  set_fact:
    var_auditd_max_log_file: 6
  tags:
    - always

- name: Configure auditd Max Log File Size
  lineinfile:
    dest: /etc/audit/auditd.conf
    line: "max_log_file {{ var_auditd_max_log_file }}"
    state: present
  #notify: reload auditd
  tags:
    - auditd_data_retention_max_log_file
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27550-3
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-11
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.7
    - DISA-STIG-RHEL-06-000160

Rule   Configure auditd admin_space_left Action on Low Disk Space   [ref]

The auditd service can be configured to take an action when disk space is running low but prior to running out of space completely. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting ACTION appropriately:

admin_space_left_action = ACTION
Set this value to single to cause the system to switch to single-user mode for corrective action. Acceptable values also include suspend and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. Details regarding all possible values for ACTION are described in the auditd.conf man page.

Rationale:

Administrators should be made aware of an inability to record audit records. If a separate partition or logical volume of adequate size is used, running low on space for audit records should never occur.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_auditd_data_retention_admin_space_left_action
Identifiers and References

References:  CCI-000140, CCI-001343, AU-1(b), AU-4, AU-5(b), IR-5, Req-10.7, SRG-OS-999999, SV-68627r3_rule




var_auditd_admin_space_left_action="single"

grep -q ^admin_space_left_action /etc/audit/auditd.conf && \
  sed -i "s/admin_space_left_action.*/admin_space_left_action = $var_auditd_admin_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
    echo "admin_space_left_action = $var_auditd_admin_space_left_action" >> /etc/audit/auditd.conf
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_auditd_admin_space_left_action # promote to variable
  set_fact:
    var_auditd_admin_space_left_action: single
  tags:
    - always

- name: Configure auditd admin_space_left Action on Low Disk Space
  lineinfile:
    dest: /etc/audit/auditd.conf
    line: "admin_space_left_action = {{ var_auditd_admin_space_left_action }}"
    regexp: "^admin_space_left_action*"
  #notify: reload auditd
  tags:
    - auditd_data_retention_admin_space_left_action
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27239-3
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-4
    - NIST-800-53-AU-5(b)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.7
    - DISA-STIG-RHEL-06-000163

Rule   Configure auditd Number of Logs Retained   [ref]

Determine how many log files auditd should retain when it rotates logs. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting NUMLOGS with the correct value of 5:

num_logs = NUMLOGS
Set the value to 5 for general-purpose systems. Note that values less than 2 result in no log rotation.

Rationale:

The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_auditd_data_retention_num_logs
Identifiers and References

References:  AU-1(b), AU-11, IR-5, Req-10.7, SRG-OS-999999, SV-50437r1_rule




var_auditd_num_logs="5"

AUDITCONFIG=/etc/audit/auditd.conf

grep -q ^num_logs $AUDITCONFIG && \
  sed -i 's/^num_logs.*/num_logs = '"$var_auditd_num_logs"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
  echo "num_logs = $var_auditd_num_logs" >> $AUDITCONFIG
fi

Rule   Configure auditd max_log_file_action Upon Reaching Maximum Log Size   [ref]

The default action to take when the logs reach their maximum size is to rotate the log files, discarding the oldest one. To configure the action taken by auditd, add or correct the line in /etc/audit/auditd.conf:

max_log_file_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • ignore
  • syslog
  • suspend
  • rotate
  • keep_logs
Set the ACTION to rotate to ensure log rotation occurs. This is the default. The setting is case-insensitive.

Rationale:

Automatically rotating logs (by setting this to rotate) minimizes the chances of the system unexpectedly running out of disk space by being overwhelmed with log data. However, for systems that must never discard log data, or which use external processes to transfer it and reclaim space, keep_logs can be employed.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_auditd_data_retention_max_log_file_action
Identifiers and References

References:  AU-1(b), AU-4, AU-11, IR-5, Req-10.7, SRG-OS-999999, SV-50435r2_rule




var_auditd_max_log_file_action="rotate"

AUDITCONFIG=/etc/audit/auditd.conf

grep -q ^max_log_file_action $AUDITCONFIG && \
  sed -i 's/^max_log_file_action.*/max_log_file_action = '"$var_auditd_max_log_file_action"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
  echo "max_log_file_action = $var_auditd_max_log_file_action" >> $AUDITCONFIG
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_auditd_max_log_file_action # promote to variable
  set_fact:
    var_auditd_max_log_file_action: rotate
  tags:
    - always

- name: Configure auditd max_log_file_action Upon Reaching Maximum Log Size
  lineinfile:
    dest: /etc/audit/auditd.conf
    line: "max_log_file_action {{ var_auditd_max_log_file_action }}"
    state: present
  #notify: reload auditd
  tags:
    - auditd_data_retention_max_log_file_action
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27237-7
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-4
    - NIST-800-53-AU-11
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.7
    - DISA-STIG-RHEL-06-000161
Group   Configure <tt>auditd</tt> Rules for Comprehensive Auditing   Group contains 2 groups and 28 rules

[ref]   The auditd program can perform comprehensive monitoring of system activity. This section describes recommended configuration settings for comprehensive auditing, but a full description of the auditing system's capabilities is beyond the scope of this guide. The mailing list linux-audit@redhat.com exists to facilitate community discussion of the auditing system.

The audit subsystem supports extensive collection of events, including:

  • Tracing of arbitrary system calls (identified by name or number) on entry or exit.
  • Filtering by PID, UID, call success, system call argument (with some limitations), etc.
  • Monitoring of specific files for modifications to the file's contents or metadata.

Auditing rules at startup are controlled by the file /etc/audit/audit.rules. Add rules to it to meet the auditing requirements for your organization. Each line in /etc/audit/audit.rules represents a series of arguments that can be passed to auditctl and can be individually tested during runtime. See documentation in /usr/share/doc/audit-VERSION and in the related man pages for more details.

If copying any example audit rulesets from /usr/share/doc/audit-VERSION, be sure to comment out the lines containing arch= which are not appropriate for your system's architecture. Then review and understand the following rules, ensuring rules are activated as needed for the appropriate architecture.

After reviewing all the rules, reading the following sections, and editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart

Group   Record Events that Modify the System's Discretionary Access Controls   Group contains 13 rules

[ref]   At a minimum, the audit system should collect file permission changes for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod
    -a always,exit -F arch=b32 -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod
    -a always,exit -F arch=b32 -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod
    -a always,exit -F arch=b64 -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod
    -a always,exit -F arch=b64 -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rule   Record Events that Modify the System's Discretionary Access Controls - fchown   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S fchown -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S fchown -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fchown
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50353r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in ${RULE_ARCHS[@]}
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit fchown tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_fchown

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_fchown.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_fchown.files | map(attribute='path') | list | first }}"
  when: find_fchown.matched > 0

- name: Inserts/replaces the fchown rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_fchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27177-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000188

- name: Inserts/replaces the fchown rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27177-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000188
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchown rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_fchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27177-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000188

- name: Inserts/replaces the fchown rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27177-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000188

Rule   Record Events that Modify the System's Discretionary Access Controls - setxattr   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S setxattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S setxattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_setxattr
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50366r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit setxattr tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_setxattr

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_setxattr.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_setxattr.files | map(attribute='path') | list | first }}"
  when: find_setxattr.matched > 0

- name: Inserts/replaces the setxattr rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_setxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27185-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000196

- name: Inserts/replaces the setxattr rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_setxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27185-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000196
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the setxattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_setxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27185-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000196

- name: Inserts/replaces the setxattr rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_setxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27185-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000196

Rule   Record Events that Modify the System's Discretionary Access Controls - chown   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chown -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S chown -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_chown
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50346r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in ${RULE_ARCHS[@]}
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit chown tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_chown

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_chown.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_chown.files | map(attribute='path') | list | first }}"
  when: find_chown.matched > 0

- name: Inserts/replaces the chown rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_chown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27173-4
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000185

- name: Inserts/replaces the chown rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_chown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27173-4
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000185
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the chown rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_chown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27173-4
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000185

- name: Inserts/replaces the chown rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_chown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27173-4
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000185

Rule   Record Events that Modify the System's Discretionary Access Controls - lsetxattr   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S lsetxattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_lsetxattr
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50362r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit lsetxattr tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_lsetxattr

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_lsetxattr.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_lsetxattr.files | map(attribute='path') | list | first }}"
  when: find_lsetxattr.matched > 0

- name: Inserts/replaces the lsetxattr rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_lsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27183-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000194

- name: Inserts/replaces the lsetxattr rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_lsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27183-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000194
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the lsetxattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27183-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000194

- name: Inserts/replaces the lsetxattr rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_lsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27183-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000194

Rule   Record Events that Modify the System's Discretionary Access Controls - lchown   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_lchown
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50359r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in ${RULE_ARCHS[@]}
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit lchown tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_lchown

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_lchown.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_lchown.files | map(attribute='path') | list | first }}"
  when: find_lchown.matched > 0

- name: Inserts/replaces the lchown rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_lchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27181-7
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000192

- name: Inserts/replaces the lchown rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_lchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27181-7
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000192
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the lchown rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_lchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27181-7
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000192

- name: Inserts/replaces the lchown rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_lchown
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27181-7
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000192

Rule   Record Events that Modify the System's Discretionary Access Controls - chmod   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chmod -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S chmod  -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_chmod
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50344r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chmod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit chmod tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_chmod

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_chmod.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_chmod.files | map(attribute='path') | list | first }}"
  when: find_chmod.matched > 0

- name: Inserts/replaces the chmod rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_chmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26280-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000184

- name: Inserts/replaces the chmod rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_chmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26280-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000184
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the chmod rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_chmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26280-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000184

- name: Inserts/replaces the chmod rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_chmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26280-8
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000184

Rule   Record Events that Modify the System's Discretionary Access Controls - removexattr   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S removexattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S removexattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_removexattr
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50364r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit removexattr tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_removexattr

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_removexattr.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_removexattr.files | map(attribute='path') | list | first }}"
  when: find_removexattr.matched > 0

- name: Inserts/replaces the removexattr rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_removexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27184-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000195

- name: Inserts/replaces the removexattr rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_removexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27184-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000195
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the removexattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_removexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27184-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000195

- name: Inserts/replaces the removexattr rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_removexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27184-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000195

Rule   Record Events that Modify the System's Discretionary Access Controls - fchmod   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S fchmod -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S fchmod -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fchmod
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50348r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chmod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit fchmod tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_fchmod

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_fchmod.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_fchmod.files | map(attribute='path') | list | first }}"
  when: find_fchmod.matched > 0

- name: Inserts/replaces the fchmod rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_fchmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27174-2
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000186

- name: Inserts/replaces the fchmod rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27174-2
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000186
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchmod rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_fchmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27174-2
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000186

- name: Inserts/replaces the fchmod rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchmod
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27174-2
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000186

Rule   Record Events that Modify the System's Discretionary Access Controls - fchownat   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S fchownat -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S fchownat -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fchownat
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50355r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in ${RULE_ARCHS[@]}
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit fchownat tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_fchownat

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_fchownat.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_fchownat.files | map(attribute='path') | list | first }}"
  when: find_fchownat.matched > 0

- name: Inserts/replaces the fchownat rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_fchownat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27178-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000189

- name: Inserts/replaces the fchownat rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchownat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27178-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000189
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchownat rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_fchownat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27178-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000189

- name: Inserts/replaces the fchownat rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchownat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27178-3
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000189

Rule   Record Events that Modify the System's Discretionary Access Controls - fremovexattr   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fremovexattr
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50357r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit fremovexattr tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_fremovexattr

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_fremovexattr.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_fremovexattr.files | map(attribute='path') | list | first }}"
  when: find_fremovexattr.matched > 0

- name: Inserts/replaces the fremovexattr rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_fremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27179-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000190

- name: Inserts/replaces the fremovexattr rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27179-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000190
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fremovexattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27179-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000190

- name: Inserts/replaces the fremovexattr rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27179-1
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000190

Rule   Record Events that Modify the System's Discretionary Access Controls - lremovexattr   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S lremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_lremovexattr
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50360r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit lremovexattr tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_lremovexattr

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_lremovexattr.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_lremovexattr.files | map(attribute='path') | list | first }}"
  when: find_lremovexattr.matched > 0

- name: Inserts/replaces the lremovexattr rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_lremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27182-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000193

- name: Inserts/replaces the lremovexattr rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_lremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27182-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000193
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the lremovexattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27182-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000193

- name: Inserts/replaces the lremovexattr rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_lremovexattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27182-5
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000193

Rule   Record Events that Modify the System's Discretionary Access Controls - fsetxattr   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S fsetxattr -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fsetxattr
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50358r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit fsetxattr tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_fsetxattr

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_fsetxattr.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_fsetxattr.files | map(attribute='path') | list | first }}"
  when: find_fsetxattr.matched > 0

- name: Inserts/replaces the fsetxattr rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_fsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27180-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000191

- name: Inserts/replaces the fsetxattr rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27180-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000191
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fsetxattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27180-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000191

- name: Inserts/replaces the fsetxattr rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fsetxattr
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27180-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000191

Rule   Record Events that Modify the System's Discretionary Access Controls - fchmodat   [ref]

At a minimum the audit system should collect file permission changes for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod

Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_dac_modification_fchmodat
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-000064, SV-50351r3_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="chmod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict

#
# What architecture are we on?
#
- name: Set architecture for audit fchmodat tasks
  set_fact:
    audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"

#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "-F key=perm_mod$"
    patterns: "*.rules"
  register: find_fchmodat

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files: 
      - /etc/audit/rules.d/privileged.rules
  when: find_fchmodat.matched == 0

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - "{{ find_fchmodat.files | map(attribute='path') | list | first }}"
  when: find_fchmodat.matched > 0

- name: Inserts/replaces the fchmodat rule in rules.d when on x86
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  tags:
    - audit_rules_dac_modification_fchmodat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27175-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000187

- name: Inserts/replaces the fchmodat rule in rules.d when on x86_64
  lineinfile:
    path: "{{ all_files[0] }}"
    line: "-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
    create: yes
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchmodat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27175-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000187
#    
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchmodat rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
  with_items:
    - "-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  tags:
    - audit_rules_dac_modification_fchmodat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27175-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000187

- name: Inserts/replaces the fchmodat rule in audit.rules when on x86_64
  lineinfile:
    line: "{{ item }}"
    state: present
    dest: /etc/audit/audit.rules
    create: yes
  with_items:
    - "-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
  when: audit_arch == 'b64'
  tags:
    - audit_rules_dac_modification_fchmodat
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27175-9
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.5.5
    - DISA-STIG-RHEL-06-000187
Group   Records Events that Modify Date and Time Information   Group contains 5 rules

[ref]   Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time. All changes to the system time should be audited.

Rule   Record Attempts to Alter Time Through stime   [ref]

Add the following line to /etc/audit/audit.rules for both 32-bit and 64-bit systems:

# audit_time_rules
-a always,exit -F arch=b32 -S stime -k audit_time_rules
Since the 64-bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64-bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32-bit and 64-bit systems). The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_time_stime
Identifiers and References

References:  CCI-001487, CCI-000169, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, SRG-OS-000062, SV-50326r4_rule



# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}


# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 6 OS
function rhel6_perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation itself
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}

rhel6_perform_audit_adjtimex_settimeofday_stime_remediation

Rule   Record attempts to alter time through settimeofday   [ref]

On a 32-bit system, add the following to /etc/audit/audit.rules:

# audit_time_rules
-a always,exit -F arch=b32 -S settimeofday -k audit_time_rules
On a 64-bit system, add the following to /etc/audit/audit.rules:
# audit_time_rules
-a always,exit -F arch=b64 -S settimeofday -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_time_settimeofday
Identifiers and References

References:  CCI-001487, CCI-000169, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, SRG-OS-000062, SV-50323r3_rule



# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}


# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 6 OS
function rhel6_perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation itself
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}

rhel6_perform_audit_adjtimex_settimeofday_stime_remediation

Rule   Record Attempts to Alter the localtime File   [ref]

Add the following to /etc/audit/audit.rules:

-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport and should always be used.

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_time_watch_localtime
Identifiers and References

References:  CCI-001487, CCI-000169, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, SRG-OS-000062, SV-50331r2_rule





# Perform the remediation
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"

Rule   Record Attempts to Alter Time Through clock_settime   [ref]

On a 32-bit system, add the following to /etc/audit/audit.rules:

# time-change
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
On a 64-bit system, add the following to /etc/audit/audit.rules:
# time-change
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_time_clock_settime
Identifiers and References

References:  CCI-001487, CCI-000169, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, SRG-OS-000062, SV-50328r3_rule





# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S clock_settime -F a0=.* \(-F key=\|-k \).*"
	GROUP="clock_settime"
	FULL_RULE="-a always,exit -F arch=$ARCH -S clock_settime -F a0=0x0 -k time-change"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Rule   Record attempts to alter time through adjtimex   [ref]

On a 32-bit system, add the following to /etc/audit/audit.rules:

# audit_time_rules
-a always,exit -F arch=b32 -S adjtimex -k audit_time_rules
On a 64-bit system, add the following to /etc/audit/audit.rules:
# audit_time_rules
-a always,exit -F arch=b64 -S adjtimex -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_time_adjtimex
Identifiers and References

References:  CCI-001487, CCI-000169, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, SRG-OS-000062



# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}


# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 6 OS
function rhel6_perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation itself
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}

rhel6_perform_audit_adjtimex_settimeofday_stime_remediation

Rule   Ensure auditd Collects File Deletion Events by User   [ref]

At a minimum the audit system should collect file deletion events for all users and root. Add the following to /etc/audit/audit.rules, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=500 -F auid!=4294967295 -k delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_file_deletion_events
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.2, Req-10.2.5.b, SRG-OS-000064, SV-50376r4_rule





# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in ${RULE_ARCHS[@]}
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k delete"
	# Use escaped BRE regex to specify rule group
	GROUP="\(rmdir\|unlink\|rename\)"
	FULL_RULE="-a always,exit -F arch=$ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=500 -F auid!=4294967295 -k delete"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Rule   Ensure auditd Collects System Administrator Actions   [ref]

At a minimum the audit system should collect administrator actions for all users and root. Add the following to /etc/audit/audit.rules:

-w /etc/sudoers -p wa -k actions

Rationale:

The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_sysadmin_actions
Identifiers and References

References:  CCI-000126, AC-2(7)(b), AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.2, Req-10.2.5.b, SRG-OS-000064, SV-50379r2_rule





# Perform the remediation
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/sudoers" "wa" "actions"

Rule   Record Events that Modify the System's Network Environment   [ref]

Add the following to /etc/audit/audit.rules, setting ARCH to either b32 or b64 as appropriate for your system:

# audit_rules_networkconfig_modification
-a always,exit -F arch=ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification

Rationale:

The network environment should not be modified by anything other than administrator action. Any change to network parameters should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_networkconfig_modification
Identifiers and References

References:  AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-999999, SV-50341r4_rule





# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -k *"
	# Use escaped BRE regex to specify rule group
	GROUP="set\(host\|domain\)name"
	FULL_RULE="-a always,exit -F arch=$ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

# Then perform the remediations for the watch rules
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/issue" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "auditctl" "/etc/issue.net" "wa" "audit_rules_networkconfig_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/hosts" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "auditctl" "/etc/sysconfig/network" "wa" "audit_rules_networkconfig_modification"

Rule   Record Events that Modify User/Group Information   [ref]

Add the following to /etc/audit/audit.rules, in order to capture events that modify account changes:

# audit_rules_usergroup_modification
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_usergroup_modification
Identifiers and References

References:  CCI-000018, CCI-001403, CCI-001404, CCI-001405, CCI-001684, CCI-001683, CCI-001685, CCI-001686, AC-2(4), AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.5, SRG-OS-000004, SRG-OS-000239, SRG-OS-000240, SRG-OS-000241, SV-50332r2_rule





# Perform the remediation
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/group" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "auditctl" "/etc/passwd" "wa" "audit_rules_usergroup_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/gshadow" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "auditctl" "/etc/shadow" "wa" "audit_rules_usergroup_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/security/opasswd" "wa" "audit_rules_usergroup_modification"

Rule   Ensure auditd Collects Information on Kernel Module Loading and Unloading   [ref]

Add the following to /etc/audit/audit.rules in order to capture kernel module loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:

-w /sbin/insmod -p x -k modules
-w /sbin/rmmod -p x -k modules
-w /sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module -S delete_module -k modules

Rationale:

The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_kernel_module_loading
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.7, SRG-OS-000064, SV-50381r2_rule





# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
# Note: 32-bit kernel modules can't be loaded / unloaded on 64-bit kernel =>
#       it's not required on a 64-bit system to check also for the presence
#       of 32-bit's equivalent of the corresponding rule. Therefore for
#       each system it's enought to check presence of system's native rule form.
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -k *"
	# Use escaped BRE regex to specify rule group
	GROUP="\(init\|delete\)_module"
	FULL_RULE="-a always,exit -F arch=$ARCH -S init_module -S delete_module -k modules"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

# Then perform the remediations for the watch rules
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/sbin/insmod" "x" "modules"
fix_audit_watch_rule "auditctl" "/sbin/rmmod" "x" "modules"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/sbin/modprobe" "x" "modules"

Rule   Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful)   [ref]

At a minimum the audit system should collect unauthorized file accesses for all users and root. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=500 -F auid!=4294967295 -k access
-a always,exit -F arch=b32 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=500 -F auid!=4294967295 -k access
If the system is 64 bit then also add the following:
-a always,exit -F arch=b64 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=500 -F auid!=4294967295 -k access
-a always,exit -F arch=b64 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=500 -F auid!=4294967295 -k access

Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_unsuccessful_file_modification
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.4, Req-10.2.1, SRG-OS-000064, SV-50367r2_rule





# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	# First fix the -EACCES requirement
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EACCES -F auid>=500 -F auid!=4294967295 -k *"
	# Use escaped BRE regex to specify rule group
	GROUP="\(creat\|open\|truncate\)"
	FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=500 -F auid!=4294967295 -k access"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"

	# Then fix the -EPERM requirement
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EPERM -F auid>=500 -F auid!=4294967295 -k *"
	# No need to change content of $GROUP variable - it's the same as for -EACCES case above
	FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=500 -F auid!=4294967295 -k access"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"

done

Rule   System Audit Logs Must Have Mode 0640 or Less Permissive   [ref]

If log_group in /etc/audit/auditd.conf is set to a group other than the root group account, change the mode of the audit log files with the following command:

$ sudo chmod 0640 audit_file

Otherwise, change the mode of the audit log files with the following command:
$ sudo chmod 0600 audit_file

Rationale:

If users can write to audit logs, audit trails can be modified or destroyed.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_var_log_audit
Identifiers and References

References:  CCI-000166, AC-6, AU-1(b), AU-9, IR-5, Req-10.5, SRG-OS-000058, SV-50299r1_rule




if `grep -q ^log_group /etc/audit/auditd.conf` ; then
  GROUP=$(awk -F "=" '/log_group/ {print $2}' /etc/audit/auditd.conf | tr -d ' ')
  if ! [ "${GROUP}" == 'root' ] ; then
    chmod 0640 /var/log/audit/audit.log
    chmod 0440 /var/log/audit/audit.log.*
  else
    chmod 0600 /var/log/audit/audit.log
    chmod 0400 /var/log/audit/audit.log.*
  fi

  chmod 0640 /etc/audit/audit*
  chmod 0640 /etc/audit/rules.d/*
else
  chmod 0600 /var/log/audit/audit.log
  chmod 0400 /var/log/audit/audit.log.*
  chmod 0640 /etc/audit/audit*
  chmod 0640 /etc/audit/rules.d/*
fi

Rule   Ensure auditd Collects Information on Exporting to Media (successful)   [ref]

At a minimum the audit system should collect media exportation events for all users and root. Add the following to /etc/audit/audit.rules, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S mount -F auid>=500 -F auid!=4294967295 -k export

Rationale:

The unauthorized exportation of data to external media could result in an information leak where classified information, Privacy Act information, and intellectual property could be lost. An audit trail should be created each time a filesystem is mounted to help identify and guard against information loss.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_media_export
Identifiers and References

References:  CCI-000126, AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.7, SRG-OS-000064, SV-50369r3_rule





# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=500 -F auid!=4294967295 -k *"
	GROUP="mount"
	FULL_RULE="-a always,exit -F arch=$ARCH -S mount -F auid>=500 -F auid!=4294967295 -k export"
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Rule   Ensure auditd Collects Information on the Use of Privileged Commands   [ref]

At a minimum the audit system should collect the execution of privileged commands for all users and root. To find the relevant setuid / setgid programs, run the following command for each local partition PART:

$ sudo find PART -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null
Then, for each setuid / setgid program on the system, add a line of the following form to /etc/audit/audit.rules, where SETUID_PROG_PATH is the full path to each setuid / setgid program in the list:
-a always,exit -F path=SETUID_PROG_PATH -F perm=x -F auid>=500 -F auid!=4294967295 -k privileged

Rationale:

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_privileged_commands
Identifiers and References

References:  CCI-000040, AC-3(10)), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AC-6(9), AU-12(a), AU-12(c), IR-5, Req-10.2.2, SRG-OS-000020, SV-50368r4_rule





# Perform the remediation
# Function to perform remediation for 'audit_rules_privileged_commands' rule
#
# Expects two arguments:
#
# audit_tool		tool used to load audit rules
# 			One of 'auditctl' or 'augenrules'
#
# min_auid		Minimum original ID the user logged in with
# 			'500' for RHEL-6 and before, '1000' for RHEL-7 and after.
#
# Example Call(s):
#
#      perform_audit_rules_privileged_commands_remediation "auditctl" "500"
#      perform_audit_rules_privileged_commands_remediation "augenrules"	"1000"
#
function perform_audit_rules_privileged_commands_remediation {
#
# Load function arguments into local variables
local tool="$1"
local min_auid="$2"

# Check sanity of the input
if [ $# -ne "2" ]
then
	echo "Usage: perform_audit_rules_privileged_commands_remediation 'auditctl | augenrules' '500 | 1000'"
	echo "Aborting."
	exit 1
fi

declare -a files_to_inspect=()

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then:
# * add '/etc/audit/audit.rules'to the list of files to be inspected,
# * specify '/etc/audit/audit.rules' as the output audit file, where
#   missing rules should be inserted
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("/etc/audit/audit.rules")
	output_audit_file="/etc/audit/audit.rules"
#
# If the audit tool is 'augenrules', then:
# * add '/etc/audit/rules.d/*.rules' to the list of files to be inspected
#   (split by newline),
# * specify /etc/audit/rules.d/privileged.rules' as the output file, where
#   missing rules should be inserted
elif [ "$tool" == 'augenrules' ]
then
	IFS=$'\n' files_to_inspect=($(find /etc/audit/rules.d -maxdepth 1 -type f -name '*.rules' -print))
	output_audit_file="/etc/audit/rules.d/privileged.rules"
fi

# Obtain the list of SUID/SGID binaries on the particular system (split by newline)
# into privileged_binaries array
IFS=$'\n' privileged_binaries=($(find / -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null))

# Keep list of SUID/SGID binaries that have been already handled within some previous iteration
declare -a sbinaries_to_skip=()

# For each found sbinary in privileged_binaries list
for sbinary in "${privileged_binaries[@]}"
do

	# Check if this sbinary wasn't already handled in some of the previous iterations
	# Return match only if whole sbinary definition matched (not in the case just prefix matched!!!)
	if [[ $(sed -ne "\|${sbinary}|p" <<< "${sbinaries_to_skip[*]}") ]]
	then
		# If so, don't process it second time & go to process next sbinary
		continue
	fi

	# Reset the counter of inspected files when starting to check
	# presence of existing audit rule for new sbinary
	local count_of_inspected_files=0

	# Define expected rule form for this binary
	expected_rule="-a always,exit -F path=${sbinary} -F perm=x -F auid>=${min_auid} -F auid!=4294967295 -k privileged"

	# If list of audit rules files to be inspected is empty, just add new rule and move on to next binary
	if [[ ${#files_to_inspect[@]} -eq 0 ]]; then
		echo "$expected_rule" >> "$output_audit_file"
		continue
	fi

	# Replace possible slash '/' character in sbinary definition so we could use it in sed expressions below
	sbinary_esc=${sbinary//$'/'/$'\/'}

	# For each audit rules file from the list of files to be inspected
	for afile in "${files_to_inspect[@]}"
	do

		# Search current audit rules file's content for match. Match criteria:
		# * existing rule is for the same SUID/SGID binary we are currently processing (but
		#   can contain multiple -F path= elements covering multiple SUID/SGID binaries)
		# * existing rule contains all arguments from expected rule form (though can contain
		#   them in arbitrary order)
	
		base_search=$(sed -e '/-a always,exit/!d' -e '/-F path='"${sbinary_esc}"'/!d' \
				-e '/-F path=[^[:space:]]\+/!d'   -e '/-F perm=.*/!d'                 \
				-e '/-F auid>='"${min_auid}"'/!d' -e '/-F auid!=4294967295/!d'        \
				-e '/-k privileged/!d' "$afile")

		# Increase the count of inspected files for this sbinary
		count_of_inspected_files=$((count_of_inspected_files + 1))

		# Require execute access type to be set for existing audit rule
		exec_access='x'

		# Search current audit rules file's content for presence of rule pattern for this sbinary
		if [[ $base_search ]]
		then

			# Current audit rules file already contains rule for this binary =>
			# Store the exact form of found rule for this binary for further processing
			concrete_rule=$base_search

			# Select all other SUID/SGID binaries possibly also present in the found rule
			IFS=$'\n' handled_sbinaries=($(grep -o -e "-F path=[^[:space:]]\+" <<< "$concrete_rule"))
			IFS=$' ' handled_sbinaries=(${handled_sbinaries[@]//-F path=/})

			# Merge the list of such SUID/SGID binaries found in this iteration with global list ignoring duplicates
			sbinaries_to_skip=($(for i in "${sbinaries_to_skip[@]}" "${handled_sbinaries[@]}"; do echo "$i"; done | sort -du))

			# Separate concrete_rule into three sections using hash '#'
			# sign as a delimiter around rule's permission section borders
			concrete_rule="$(echo "$concrete_rule" | sed -n "s/\(.*\)\+\(-F perm=[rwax]\+\)\+/\1#\2#/p")"

			# Split concrete_rule into head, perm, and tail sections using hash '#' delimiter
			IFS=$'#' read -r rule_head rule_perm rule_tail <<<  "$concrete_rule"

			# Extract already present exact access type [r|w|x|a] from rule's permission section
			access_type=${rule_perm//-F perm=/}

			# Verify current permission access type(s) for rule contain 'x' (execute) permission
			if ! grep -q "$exec_access" <<< "$access_type"
			then

				# If not, append the 'x' (execute) permission to the existing access type bits
				access_type="$access_type$exec_access"
				# Reconstruct the permissions section for the rule
				new_rule_perm="-F perm=$access_type"
				# Update existing rule in current audit rules file with the new permission section
				sed -i "s#${rule_head}\(.*\)${rule_tail}#${rule_head}${new_rule_perm}${rule_tail}#" "$afile"

			fi

		# If the required audit rule for particular sbinary wasn't found yet, insert it under following conditions:
		#
		# * in the "auditctl" mode of operation insert particular rule each time
		#   (because in this mode there's only one file -- /etc/audit/audit.rules to be inspected for presence of this rule),
		#
		# * in the "augenrules" mode of operation insert particular rule only once and only in case we have already
		#   searched all of the files from /etc/audit/rules.d/*.rules location (since that audit rule can be defined
		#   in any of those files and if not, we want it to be inserted only once into /etc/audit/rules.d/privileged.rules file)
		#
		elif [ "$tool" == "auditctl" ] || [[ "$tool" == "augenrules" && $count_of_inspected_files -eq "${#files_to_inspect[@]}" ]]
		then

			# Current audit rules file's content doesn't contain expected rule for this
			# SUID/SGID binary yet => append it
			echo "$expected_rule" >> "$output_audit_file"
			continue
		fi

	done

done
}

perform_audit_rules_privileged_commands_remediation "auditctl" "500"


Complexity:low
Disruption:low
Strategy:restrict

- name: Search for privileged commands
  shell: "find / -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null | cat"
  check_mode: no
  register: find_result
  tags:
    - audit_rules_privileged_commands
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26457-2
    - NIST-800-53-AC-3(10))
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.2.2
    - DISA-STIG-RHEL-06-000198

# Inserts/replaces the rule in /etc/audit/rules.d

- name: Search /etc/audit/rules.d for audit rule entries
  find:
    paths: "/etc/audit/rules.d"
    recurse: no
    contains: "^.*path={{ item }} .*$"
    patterns: "*.rules"
  with_items:
    - "{{ find_result.stdout_lines }}"
  register: files_result
  tags:
    - audit_rules_privileged_commands
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26457-2
    - NIST-800-53-AC-3(10))
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.2.2
    - DISA-STIG-RHEL-06-000198
  
- name: Overwrites the rule in rules.d
  lineinfile:
    path: "{{ item.1.path }}"
    line: '-a always,exit -F path={{ item.0.item }} -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged'
    create: no
    regexp: "^.*path={{ item.0.item }} .*$"
  with_subelements:
    - "{{ files_result.results }}"
    - files
  tags:
    - audit_rules_privileged_commands
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26457-2
    - NIST-800-53-AC-3(10))
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.2.2
    - DISA-STIG-RHEL-06-000198
    
- name: Adds the rule in rules.d
  lineinfile:
    path: /etc/audit/rules.d/privileged.rules
    line: '-a always,exit -F path={{ item.item }} -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged'
    create: yes
  with_items:
    - "{{ files_result.results }}"
  when: item.matched == 0
  tags:
    - audit_rules_privileged_commands
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26457-2
    - NIST-800-53-AC-3(10))
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.2.2
    - DISA-STIG-RHEL-06-000198
  
# Adds/overwrites the rule in /etc/audit/audit.rules

- name: Inserts/replaces the rule in audit.rules
  lineinfile:
    path: /etc/audit/audit.rules
    line: '-a always,exit -F path={{ item.item }} -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged'
    create: yes
    regexp: "^.*path={{ item.item }} .*$"
  with_items:
    - "{{ files_result.results }}"
  tags:
    - audit_rules_privileged_commands
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26457-2
    - NIST-800-53-AC-3(10))
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.2.2
    - DISA-STIG-RHEL-06-000198


Rule   Record Events that Modify the System's Mandatory Access Controls   [ref]

Add the following to /etc/audit/audit.rules:

-w /etc/selinux/ -p wa -k MAC-policy

Rationale:

The system's mandatory access policy (SELinux) should not be arbitrarily changed by anything other than administrator action. All changes to MAC policy should be audited.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_audit_rules_mac_modification
Identifiers and References

References:  AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, SRG-OS-999999, SV-50342r2_rule





# Perform the remediation
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/selinux/" "wa" "MAC-policy"

Rule   Enable Auditing for Processes Which Start Prior to the Audit Daemon   [ref]

To ensure all processes can be audited, even those which start prior to the audit daemon, add the argument audit=1 to the kernel line in /etc/grub.conf, in the manner below:

kernel /vmlinuz-version ro vga=ext root=/dev/VolGroup00/LogVol00 rhgb quiet audit=1

Rationale:

Each process on the system carries an "auditable" flag which indicates whether its activities can be audited. Although auditd takes care of enabling this for all processes which launch after it does, adding the kernel argument ensures it is set for every process during boot.

Severity: 
low
Rule ID:xccdf_org.ssgproject.content_rule_bootloader_audit_argument
Identifiers and References

References:  CCI-000169, AC-17(1), AU-14(1), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-10, IR-5, Req-10.3, SRG-OS-000062, SV-50238r4_rule



/sbin/grubby --update-kernel=ALL --args="audit=1"


Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: "Enable Auditing for Processes Which Start Prior to the Audit Daemon"
  shell: /sbin/grubby --update-kernel=ALL --args="audit=1"
  tags:
    - bootloader_audit_argument
    - low_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26785-6
    - NIST-800-53-AC-17(1)
    - NIST-800-53-AU-14(1)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-2(a)
    - NIST-800-53-AU-2(c)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-10
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10.3
    - DISA-STIG-RHEL-06-000525

Rule   Enable auditd Service   [ref]

The auditd service is an essential userspace component of the Linux Auditing System, as it is responsible for writing audit records to disk. The auditd service can be enabled with the following command:

$ sudo chkconfig --level 2345 auditd on

Rationale:

Ensuring the auditd service is active ensures audit records generated by the kernel can be written to disk, or that appropriate actions will be taken if other obstacles exist.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_auditd_enabled
Identifiers and References

References:  CCI-000347, CCI-000157, CCI-000172, CCI-000880, CCI-001353, CCI-001462, CCI-001487, CCI-001115, CCI-001454, CCI-000067, CCI-000158, CCI-000831, CCI-001190, CCI-001312, CCI-001263, CCI-000130, CCI-000120, CCI-001589, AC-17(1), AU-1(b), AU-10, AU-12(a), AU-12(c), IR-5, Req-10, SRG-OS-000255, SRG-OS-000032, SRG-OS-000037, SV-50429r2_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable auditd


Complexity:low
Disruption:low
Strategy:enable
- name: Enable service auditd
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - auditd
  tags:
    - service_auditd_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-27058-7
    - NIST-800-53-AC-17(1)
    - NIST-800-53-AU-1(b)
    - NIST-800-53-AU-10
    - NIST-800-53-AU-12(a)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-IR-5
    - PCI-DSS-Req-10
    - DISA-STIG-RHEL-06-000145
Group   Configure Syslog   Group contains 3 groups and 7 rules

[ref]   The syslog service has been the default Unix logging mechanism for many years. It has a number of downsides, including inconsistent log format, lack of authentication for received messages, and lack of authentication, encryption, or reliable transport for messages sent over a network. However, due to its long history, syslog is a de facto standard which is supported by almost all Unix applications.

In Red Hat Enterprise Linux 6, rsyslog has replaced ksyslogd as the syslog daemon of choice, and it includes some additional security features such as reliable, connection-oriented (i.e. TCP) transmission of logs, the option to log to database formats, and the encryption of log data en route to a central logging server. This section discusses how to configure rsyslog for best effect, and how to use tools provided with the system to maintain and monitor logs.

Group   Rsyslog Logs Sent To Remote Host   Group contains 1 rule

[ref]   If system logs are to be useful in detecting malicious activities, it is necessary to send logs to a remote server. An intruder who has compromised the root account on a machine may delete the log entries which indicate that the system was attacked before they are seen by an administrator.

However, it is recommended that logs be stored on the local host in addition to being sent to the loghost, especially if rsyslog has been configured to use the UDP protocol to send messages over a network. UDP does not guarantee reliable delivery, and moderately busy sites will lose log messages occasionally, especially in periods of high traffic which may be the result of an attack. In addition, remote rsyslog messages are not authenticated in any way by default, so it is easy for an attacker to introduce spurious messages to the central log server. Also, some problems cause loss of network connectivity, which will prevent the sending of messages to the central server. For all of these reasons, it is better to store log messages both centrally and on each host, so that they can be correlated if necessary.

Rule   Ensure Logs Sent To Remote Host   [ref]

To configure rsyslog to send logs to a remote log server, open /etc/rsyslog.conf and read and understand the last section of the file, which describes the multiple directives necessary to activate remote logging. Along with these other directives, the system can be configured to forward its logs to a particular log server by adding or correcting one of the following lines, substituting loghost.example.com appropriately. The choice of protocol depends on the environment of the system; although TCP and RELP provide more reliable message delivery, they may not be supported in all environments.
To use UDP for log message delivery:

*.* @loghost.example.com

To use TCP for log message delivery:
*.* @@loghost.example.com

To use RELP for log message delivery:
*.* :omrelp:loghost.example.com

Rationale:

A log server (loghost) receives syslog messages from one or more systems. This data can be used as an additional log source in the event a system is compromised and its local logs are suspect. Forwarding log messages to a remote loghost also provides system administrators with a centralized place to view the status of multiple hosts within the enterprise.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_rsyslog_remote_loghost
Identifiers and References

References:  CCI-001348, CCI-000136, AU-3(2), AU-9, SRG-OS-000215, SRG-OS-000043, SV-50321r1_rule




rsyslog_remote_loghost_address="(N/A)"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/rsyslog.conf' '^\*\.\*' "@@$rsyslog_remote_loghost_address" 'CCE-26801-1' '%s %s'


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value rsyslog_remote_loghost_address # promote to variable
  set_fact:
    rsyslog_remote_loghost_address: (N/A)
  tags:
    - always

- name: "Set rsyslog remote loghost"
  lineinfile:
    dest: /etc/rsyslog.conf
    regexp: "^\\*\\.\\*"
    line: "*.* @@{{ rsyslog_remote_loghost_address }}"
    create: yes
  tags:
    - rsyslog_remote_loghost
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26801-1
    - NIST-800-53-AU-3(2)
    - NIST-800-53-AU-9
    - DISA-STIG-RHEL-06-000136
Group   Ensure Proper Configuration of Log Files   Group contains 3 rules

[ref]   The file /etc/rsyslog.conf controls where log message are written. These are controlled by lines called rules, which consist of a selector and an action. These rules are often customized depending on the role of the system, the requirements of the environment, and whatever may enable the administrator to most effectively make use of log data. The default rules in Red Hat Enterprise Linux 6 are:

*.info;mail.none;authpriv.none;cron.none                /var/log/messages
authpriv.*                                              /var/log/secure
mail.*                                                  -/var/log/maillog
cron.*                                                  /var/log/cron
*.emerg                                                 *
uucp,news.crit                                          /var/log/spooler
local7.*                                                /var/log/boot.log
See the man page rsyslog.conf(5) for more information. Note that the rsyslog daemon can be configured to use a timestamp format that some log processing programs may not understand. If this occurs, edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

Rule   Ensure System Log Files Have Correct Permissions   [ref]

The file permissions for all log files written by rsyslog should be set to 600, or more restrictive. These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's permissions:

$ ls -l LOGFILE
If the permissions are not 600 or more restrictive, run the following command to correct this:
$ sudo chmod 0600 LOGFILE

Rationale:

Log files can contain valuable information regarding system configuration. If the system log files are not protected unauthorized users could change the logged data, eliminating their forensic value.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_rsyslog_files_permissions
Identifiers and References

References:  CCI-001314, SI-11, Req-10.5.1, Req-10.5.2, SRG-OS-000206, SV-50424r2_rule




# List of log file paths to be inspected for correct permissions
# * Primarily inspect log file paths listed in /etc/rsyslog.conf
RSYSLOG_ETC_CONFIG="/etc/rsyslog.conf"
# * And also the log file paths listed after rsyslog's $IncludeConfig directive
#   (store the result into array for the case there's shell glob used as value of IncludeConfig)
RSYSLOG_INCLUDE_CONFIG=($(grep -e "\$IncludeConfig[[:space:]]\+[^[:space:];]\+" /etc/rsyslog.conf | cut -d ' ' -f 2))
# Declare an array to hold the final list of different log file paths
declare -a LOG_FILE_PATHS

# Browse each file selected above as containing paths of log files
# ('/etc/rsyslog.conf' and '/etc/rsyslog.d/*.conf' in the default configuration)
for LOG_FILE in "${RSYSLOG_ETC_CONFIG}" "${RSYSLOG_INCLUDE_CONFIG[@]}"
do
	# From each of these files extract just particular log file path(s), thus:
	# * Ignore lines starting with space (' '), comment ('#"), or variable syntax ('$') characters,
	# * Ignore empty lines,
	# * From the remaining valid rows select only fields constituting a log file path
	# Text file column is understood to represent a log file path if and only if all of the following are met:
	# * it contains at least one slash '/' character,
	# * it doesn't contain space (' '), colon (':'), and semicolon (';') characters
	# Search log file for path(s) only in case it exists!
	if [[ -f "${LOG_FILE}" ]]
	then
		MATCHED_ITEMS=$(sed -e "/^[[:space:]|#|$]/d ; s/[^\/]*[[:space:]]*\([^:;[:space:]]*\)/\1/g ; /^$/d" "${LOG_FILE}")
		# Since above sed command might return more than one item (delimited by newline), split the particular
		# matches entries into new array specific for this log file
		readarray -t ARRAY_FOR_LOG_FILE <<< "$MATCHED_ITEMS"
		# Concatenate the two arrays - previous content of $LOG_FILE_PATHS array with
		# items from newly created array for this log file
		LOG_FILE_PATHS=("${LOG_FILE_PATHS[@]}" "${ARRAY_FOR_LOG_FILE[@]}")
		# Delete the temporary array
		unset ARRAY_FOR_LOG_FILE
	fi
done

for PATH in "${LOG_FILE_PATHS[@]}"
do
	# Sanity check - if particular $PATH is empty string, skip it from further processing
	if [ -z "$PATH" ]
	then
		continue
	fi
	# Per https://access.redhat.com/solutions/66805 '/var/log/boot.log' log file needs special care => perform it
	if [ "$PATH" == "/var/log/boot.log" ]
	then
		# Ensure permissions of /var/log/boot.log are configured to be updated in /etc/rc.local
		if ! /bin/grep -q "boot.log" "/etc/rc.local"
		then
			echo "/bin/chmod 600 /var/log/boot.log" >> /etc/rc.local
		fi
		# Ensure /etc/rc.d/rc.local has user-executable permission
		# (in order to be actually executed during boot)
		if [ "$(/usr/bin/stat -c %a /etc/rc.d/rc.local)" -ne 744 ]
		then
			/bin/chmod u+x /etc/rc.d/rc.local
		fi
	fi
	# Also for each log file check if its permissions differ from 600. If so, correct them
	if [ "$(/usr/bin/stat -c %a "$PATH")" -ne 600 ]
	then
		/bin/chmod 600 "$PATH"
	fi
done

Rule   Ensure Log Files Are Owned By Appropriate User   [ref]

The owner of all log files written by rsyslog should be root. These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's owner:

$ ls -l LOGFILE
If the owner is not root, run the following command to correct this:
$ sudo chown root LOGFILE

Rationale:

The log files generated by rsyslog contain valuable information regarding system configuration, user authentication, and other such information. Log files should be protected from unauthorized access.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_rsyslog_files_ownership
Identifiers and References

References:  CCI-001314, AC-6, SI-11, Req-10.5.1, Req-10.5.2, SRG-OS-000206, SV-50319r2_rule

Rule   Ensure Log Files Are Owned By Appropriate Group   [ref]

The group-owner of all log files written by rsyslog should be root. These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's group owner:

$ ls -l LOGFILE
If the owner is not root, run the following command to correct this:
$ sudo chgrp root LOGFILE

Rationale:

The log files generated by rsyslog contain valuable information regarding system configuration, user authentication, and other such information. Log files should be protected from unauthorized access.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_rsyslog_files_groupownership
Identifiers and References

References:  CCI-001314, AC-6, SI-11, Req-10.5.1, Req-10.5.2, SRG-OS-000206, SV-50320r2_rule

Group   Ensure All Logs are Rotated by <tt>logrotate</tt>   Group contains 1 rule

[ref]   Edit the file /etc/logrotate.d/syslog. Find the first line, which should look like this (wrapped for clarity):

/var/log/messages /var/log/secure /var/log/maillog /var/log/spooler \
  /var/log/boot.log /var/log/cron {
Edit this line so that it contains a one-space-separated listing of each log file referenced in /etc/rsyslog.conf.

All logs in use on a system must be rotated regularly, or the log files will consume disk space over time, eventually interfering with system operation. The file /etc/logrotate.d/syslog is the configuration file used by the logrotate program to maintain all log files written by syslog. By default, it rotates logs weekly and stores four archival copies of each log. These settings can be modified by editing /etc/logrotate.conf, but the defaults are sufficient for purposes of this guide.

Note that logrotate is run nightly by the cron job /etc/cron.daily/logrotate. If particularly active logs need to be rotated more often than once a day, some other mechanism must be used.

Rule   Ensure Logrotate Runs Periodically   [ref]

The logrotate utility allows for the automatic rotation of log files. The frequency of rotation is specified in /etc/logrotate.conf, which triggers a cron task. To configure logrotate to run daily, add or correct the following line in /etc/logrotate.conf:

# rotate log files frequency
daily

Rationale:

Log files that are not properly rotated run the risk of growing so large that they fill up the /var/log partition. Valuable logging information could be lost if the /var/log partition becomes full.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_ensure_logrotate_activated
Identifiers and References

References:  CCI-000366, AU-9, Req-10.7, SRG-OS-999999, SV-50425r1_rule




LOGROTATE_CONF_FILE="/etc/logrotate.conf"
CRON_DAILY_LOGROTATE_FILE="/etc/cron.daily/logrotate"

# daily rotation is configured
grep -q "^daily$" $LOGROTATE_CONF_FILE|| echo "daily" >> $LOGROTATE_CONF_FILE

# remove any line configuring weekly, monthly or yearly rotation
sed -i -r "/^(weekly|monthly|yearly)$/d" $LOGROTATE_CONF_FILE

# configure cron.daily if not already
if ! grep -q "^[[:space:]]*/usr/sbin/logrotate[[:alnum:][:blank:][:punct:]]*$LOGROTATE_CONF_FILE$" $CRON_DAILY_LOGROTATE_FILE; then
	echo "#!/bin/sh" > $CRON_DAILY_LOGROTATE_FILE
	echo "/usr/sbin/logrotate $LOGROTATE_CONF_FILE" >> $CRON_DAILY_LOGROTATE_FILE
fi

Rule   Enable rsyslog Service   [ref]

The rsyslog service provides syslog-style logging by default on Red Hat Enterprise Linux 6. The rsyslog service can be enabled with the following command:

$ sudo chkconfig --level 2345 rsyslog on

Rationale:

The rsyslog service must be running in order to provide logging services, which are essential to system administration.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_rsyslog_enabled
Identifiers and References

References:  CCI-001557, CCI-001312, CCI-001311, AU-12



Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable rsyslog


Complexity:low
Disruption:low
Strategy:enable
- name: Enable service rsyslog
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - rsyslog
  tags:
    - service_rsyslog_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-26807-8
    - NIST-800-53-AU-12

Rule   Ensure rsyslog is Installed   [ref]

Rsyslog is installed by default. The rsyslog package can be installed with the following command:

$ sudo yum install rsyslog

Rationale:

The rsyslog package provides the rsyslog daemon, which provides system logging services.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_package_rsyslog_installed
Identifiers and References

References:  CCI-001311, CCI-001312, AU-9(2)



Complexity:low
Disruption:low
Strategy:enable
# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install rsyslog


Complexity:low
Disruption:low
Strategy:enable
- name: Ensure rsyslog is installed
  package:
    name="{{item}}"
    state=present
  with_items:
    - rsyslog
  tags:
    - package_rsyslog_installed
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-26809-4
    - NIST-800-53-AU-9(2)


Complexity:low
Disruption:low
Strategy:enable
include install_rsyslog

class install_rsyslog {
  package { 'rsyslog':
    ensure => 'installed',
  }
}


Complexity:low
Disruption:low
Strategy:enable

package --add=rsyslog
Group   Network Configuration and Firewalls   Group contains 10 groups and 24 rules

[ref]   Most machines must be connected to a network of some sort, and this brings with it the substantial risk of network attack. This section discusses the security impact of decisions about networking which must be made when configuring a system.

This section also discusses firewalls, network access controls, and other network security frameworks, which allow system-level rules to be written that can limit an attackers' ability to connect to your system. These rules can specify that network traffic should be allowed or denied from certain IP addresses, hosts, and networks. The rules can also specify which of the system's network services are available to particular hosts or networks.

Group   iptables and ip6tables   Group contains 2 groups and 4 rules

[ref]   A host-based firewall called netfilter is included as part of the Linux kernel distributed with the system. It is activated by default. This firewall is controlled by the program iptables, and the entire capability is frequently referred to by this name. An analogous program called ip6tables handles filtering for IPv6.

Unlike TCP Wrappers, which depends on the network server program to support and respect the rules written, netfilter filtering occurs at the kernel level, before a program can even process the data from the network packet. As such, any program on the system is affected by the rules written.

This section provides basic information about strengthening the iptables and ip6tables configurations included with the system. For more complete information that may allow the construction of a sophisticated ruleset tailored to your environment, please consult the references at the end of this section.

Group   Strengthen the Default Ruleset   Group contains 1 rule

[ref]   The default rules can be strengthened. The system scripts that activate the firewall rules expect them to be defined in the configuration files iptables and ip6tables in the directory /etc/sysconfig. Many of the lines in these files are similar to the command line arguments that would be provided to the programs /sbin/iptables or /sbin/ip6tables - but some are quite different.

The following recommendations describe how to strengthen the default ruleset configuration file. An alternative to editing this configuration file is to create a shell script that makes calls to the iptables program to load in rules, and then invokes service iptables save to write those loaded rules to /etc/sysconfig/iptables.

The following alterations can be made directly to /etc/sysconfig/iptables and /etc/sysconfig/ip6tables. Instructions apply to both unless otherwise noted. Language and address conventions for regular iptables are used throughout this section; configuration for ip6tables will be either analogous or explicitly covered.

Rule   Set Default iptables Policy for Incoming Packets   [ref]

To set the default policy to DROP (instead of ACCEPT) for the built-in INPUT chain which processes incoming packets, add or correct the following line in /etc/sysconfig/iptables:

:INPUT DROP [0:0]

Rationale:

In iptables the default policy is applied only after all the applicable rules in the table are examined for a match. Setting the default policy to DROP implements proper design for a firewall, i.e. any packets which are not explicitly permitted should not be accepted.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_set_iptables_default_rule
Identifiers and References

References:  CCI-000066, CCI-001109, CCI-001154, CCI-001414, CM-7, SRG-OS-000231, SV-50314r2_rule



sed -i 's/^:INPUT ACCEPT.*/:INPUT DROP [0:0]/g' /etc/sysconfig/iptables
Group   Inspect and Activate Default Rules   Group contains 3 rules

[ref]   View the currently-enforced iptables rules by running the command:

$ sudo iptables -nL --line-numbers
The command is analogous for ip6tables.

If the firewall does not appear to be active (i.e., no rules appear), activate it and ensure that it starts at boot by issuing the following commands (and analogously for ip6tables):
$ sudo service iptables restart
The default iptables rules are:
Chain INPUT (policy ACCEPT)
num  target     prot opt source       destination
1    ACCEPT     all  --  0.0.0.0/0    0.0.0.0/0    state RELATED,ESTABLISHED 
2    ACCEPT     icmp --  0.0.0.0/0    0.0.0.0/0
3    ACCEPT     all  --  0.0.0.0/0    0.0.0.0/0
4    ACCEPT     tcp  --  0.0.0.0/0    0.0.0.0/0    state NEW tcp dpt:22 
5    REJECT     all  --  0.0.0.0/0    0.0.0.0/0    reject-with icmp-host-prohibited 

Chain FORWARD (policy ACCEPT)
num  target     prot opt source       destination
1    REJECT     all  --  0.0.0.0/0    0.0.0.0/0    reject-with icmp-host-prohibited 

Chain OUTPUT (policy ACCEPT)
num  target     prot opt source       destination
The ip6tables default rules are essentially the same.

Rule   Verify ip6tables Enabled if Using IPv6   [ref]

The ip6tables service can be enabled with the following command:

$ sudo chkconfig --level 2345 ip6tables on

Rationale:

The ip6tables service provides the system's host-based firewalling capability for IPv6 and ICMPv6.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_ip6tables_enabled
Identifiers and References

References:  CCI-000032, CCI-000066, CCI-001115, CCI-001118, CCI-001092, CCI-001117, CCI-001098, CCI-001100, CCI-001097, CCI-001414, AC-4, CA-3(c), CM-7, SRG-OS-000152, SRG-OS-000145, SRG-OS-000146, SV-50350r3_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable ip6tables


Complexity:low
Disruption:low
Strategy:enable
- name: Enable service ip6tables
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - ip6tables
  tags:
    - service_ip6tables_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-27006-6
    - NIST-800-53-AC-4
    - NIST-800-53-CA-3(c)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000103

Rule   Verify iptables Enabled   [ref]

The iptables service can be enabled with the following command:

$ sudo chkconfig --level 2345 iptables on

Rationale:

The iptables service provides the system's host-based firewalling capability for IPv4 and ICMP.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_service_iptables_enabled
Identifiers and References

References:  CCI-000032, CCI-000066, CCI-001115, CCI-001118, CCI-001092, CCI-001117, CCI-001098, CCI-001100, CCI-001097, CCI-001414, AC-4, CA-3(c), CM-7, SRG-OS-000146, SRG-OS-000152, SRG-OS-000145, SV-50313r2_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable iptables


Complexity:low
Disruption:low
Strategy:enable
- name: Enable service iptables
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - iptables
  tags:
    - service_iptables_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-27018-1
    - NIST-800-53-AC-4
    - NIST-800-53-CA-3(c)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000117

Rule   Set Default ip6tables Policy for Incoming Packets   [ref]

To set the default policy to DROP (instead of ACCEPT) for the built-in INPUT chain which processes incoming packets, add or correct the following line in /etc/sysconfig/ip6tables:

:INPUT DROP [0:0]
If changes were required, reload the ip6tables rules:
$ sudo service ip6tables reload

Rationale:

In ip6tables, the default policy is applied only after all the applicable rules in the table are examined for a match. Setting the default policy to DROP implements proper design for a firewall, i.e. any packets which are not explicitly permitted should not be accepted.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_set_ip6tables_default_rule
Identifiers and References

References:  CCI-000066, CM-7, SRG-OS-000231, SV-50244r2_rule



sed -i 's/^:INPUT ACCEPT.*/:INPUT DROP [0:0]/g' /etc/sysconfig/ip6tables
Group   IPv6   Group contains 2 groups and 1 rule

[ref]   The system includes support for Internet Protocol version 6. A major and often-mentioned improvement over IPv4 is its enormous increase in the number of available addresses. Another important feature is its support for automatic configuration of many network settings.

Group   Configure IPv6 Settings if Necessary   Group contains 1 group and 1 rule

[ref]   A major feature of IPv6 is the extent to which systems implementing it can automatically configure their networking devices using information from the network. From a security perspective, manually configuring important configuration information is preferable to accepting it from the network in an unauthenticated fashion.

Group   Disable Automatic Configuration   Group contains 1 rule

[ref]   Disable the system's acceptance of router advertisements and redirects by adding or correcting the following line in /etc/sysconfig/network (note that this does not disable sending router solicitations):

IPV6_AUTOCONF=no

Rule   Configure Accepting IPv6 Redirects By Default   [ref]

To set the runtime status of the net.ipv6.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv6.conf.default.accept_redirects = 0

Rationale:

An illicit ICMP redirect message could result in a man-in-the-middle attack.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_default_accept_redirects
Identifiers and References

References:  4.4.1.2, CCI-001551, CM-7, SRG-OS-999999, SV-50349r3_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_default_accept_redirects_value="(N/A)"

#
# Set runtime for net.ipv6.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_redirects=$sysctl_net_ipv6_conf_default_accept_redirects_value

#
# If net.ipv6.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.default.accept_redirects' "$sysctl_net_ipv6_conf_default_accept_redirects_value" 'CCE-27166-8'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv6_conf_default_accept_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv6_conf_default_accept_redirects_value: (N/A)
  tags:
    - always

- name: Ensure sysctl net.ipv6.conf.default.accept_redirects is set
  sysctl:
    name: net.ipv6.conf.default.accept_redirects
    value: "{{ sysctl_net_ipv6_conf_default_accept_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_default_accept_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27166-8
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000099
Group   Kernel Parameters Which Affect Networking   Group contains 2 groups and 15 rules

[ref]   The sysctl utility is used to set parameters which affect the operation of the Linux kernel. Kernel parameters which affect networking and have security implications are described here.

Group   Network Related Kernel Runtime Parameters for Hosts and Routers   Group contains 12 rules

[ref]   Certain kernel parameters should be set for systems which are acting as either hosts or routers to improve the system's ability defend against certain types of IPv4 protocol attacks.

Rule   Configure Kernel Parameter for Accepting Source-Routed Packets By Default   [ref]

To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.accept_source_route = 0

Rationale:

Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_accept_source_route
Identifiers and References

References:  CCI-001551, AC-4, CM-7, SC-5, SC-7, SRG-OS-999999, SV-50330r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_accept_source_route_value="0"

#
# Set runtime for net.ipv4.conf.default.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_source_route=$sysctl_net_ipv4_conf_default_accept_source_route_value

#
# If net.ipv4.conf.default.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.accept_source_route = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.accept_source_route' "$sysctl_net_ipv4_conf_default_accept_source_route_value" 'CCE-26983-7'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_accept_source_route_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_accept_source_route_value: 0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.accept_source_route is set
  sysctl:
    name: net.ipv4.conf.default.accept_source_route
    value: "{{ sysctl_net_ipv4_conf_default_accept_source_route_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_accept_source_route
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26983-7
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - DISA-STIG-RHEL-06-000089

Rule   Configure Kernel Parameter to Ignore Bogus ICMP Error Responses   [ref]

To set the runtime status of the net.ipv4.icmp_ignore_bogus_error_responses kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.icmp_ignore_bogus_error_responses = 1

Rationale:

Ignoring bogus ICMP error responses reduces log size, although some activity would not be logged.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_icmp_ignore_bogus_error_responses
Identifiers and References

References:  CM-7, SC-5, SRG-OS-999999, SV-50338r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value="(N/A)"

#
# Set runtime for net.ipv4.icmp_ignore_bogus_error_responses
#
/sbin/sysctl -q -n -w net.ipv4.icmp_ignore_bogus_error_responses=$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value

#
# If net.ipv4.icmp_ignore_bogus_error_responses present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.icmp_ignore_bogus_error_responses = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.icmp_ignore_bogus_error_responses' "$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value" 'CCE-26993-6'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value # promote to variable
  set_fact:
    sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value: (N/A)
  tags:
    - always

- name: Ensure sysctl net.ipv4.icmp_ignore_bogus_error_responses is set
  sysctl:
    name: net.ipv4.icmp_ignore_bogus_error_responses
    value: "{{ sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_icmp_ignore_bogus_error_responses
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26993-6
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - DISA-STIG-RHEL-06-000093

Rule   Configure Kernel Parameter for Accepting ICMP Redirects By Default   [ref]

To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.accept_redirects = 0

Rationale:

This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_accept_redirects
Identifiers and References

References:  CCI-001551, AC-4, CM-7, SC-5, SC-7, SRG-OS-999999, SV-50334r3_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_accept_redirects_value="0"

#
# Set runtime for net.ipv4.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_redirects=$sysctl_net_ipv4_conf_default_accept_redirects_value

#
# If net.ipv4.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.accept_redirects' "$sysctl_net_ipv4_conf_default_accept_redirects_value" 'CCE-27015-7'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_accept_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_accept_redirects_value: 0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.accept_redirects is set
  sysctl:
    name: net.ipv4.conf.default.accept_redirects
    value: "{{ sysctl_net_ipv4_conf_default_accept_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_accept_redirects
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27015-7
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - DISA-STIG-RHEL-06-000091

Rule   Configure Kernel Parameter to Use Reverse Path Filtering by Default   [ref]

To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_rp_filter
Identifiers and References

References:  AC-4, SC-5, SC-7, SRG-OS-999999, SV-50345r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_rp_filter_value="1"

#
# Set runtime for net.ipv4.conf.default.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.rp_filter=$sysctl_net_ipv4_conf_default_rp_filter_value

#
# If net.ipv4.conf.default.rp_filter present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.rp_filter = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.rp_filter' "$sysctl_net_ipv4_conf_default_rp_filter_value" 'CCE-26915-9'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_rp_filter_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_rp_filter_value: 1
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.rp_filter is set
  sysctl:
    name: net.ipv4.conf.default.rp_filter
    value: "{{ sysctl_net_ipv4_conf_default_rp_filter_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_rp_filter
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26915-9
    - NIST-800-53-AC-4
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - DISA-STIG-RHEL-06-000097

Rule   Configure Kernel Parameter for Accepting Secure Redirects for All Interfaces   [ref]

To set the runtime status of the net.ipv4.conf.all.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_secure_redirects
Identifiers and References

References:  CCI-001503, CCI-001551, AC-4, CM-7, SC-5, SRG-OS-999999, SV-50327r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_secure_redirects_value="0"

#
# Set runtime for net.ipv4.conf.all.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.secure_redirects=$sysctl_net_ipv4_conf_all_secure_redirects_value

#
# If net.ipv4.conf.all.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.secure_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.secure_redirects' "$sysctl_net_ipv4_conf_all_secure_redirects_value" 'CCE-26854-0'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_secure_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_secure_redirects_value: 0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.secure_redirects is set
  sysctl:
    name: net.ipv4.conf.all.secure_redirects
    value: "{{ sysctl_net_ipv4_conf_all_secure_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_secure_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26854-0
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - DISA-STIG-RHEL-06-000086

Rule   Configure Kernel Parameter to Use TCP Syncookies   [ref]

To set the runtime status of the net.ipv4.tcp_syncookies kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.tcp_syncookies=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.tcp_syncookies = 1

Rationale:

A TCP SYN flood attack can cause a denial of service by filling a system's TCP connection table with connections in the SYN_RCVD state. Syncookies can be used to track a connection when a subsequent ACK is received, verifying the initiator is attempting a valid connection and is not a flood source. This feature is activated when a flood condition is detected, and enables the system to continue servicing valid connection requests.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_tcp_syncookies
Identifiers and References

References:  CCI-001092, CCI-001095, AC-4, SC-5(2), SC-5(3), SRG-OS-000142, SV-50340r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_tcp_syncookies_value="1"

#
# Set runtime for net.ipv4.tcp_syncookies
#
/sbin/sysctl -q -n -w net.ipv4.tcp_syncookies=$sysctl_net_ipv4_tcp_syncookies_value

#
# If net.ipv4.tcp_syncookies present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.tcp_syncookies = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.tcp_syncookies' "$sysctl_net_ipv4_tcp_syncookies_value" 'CCE-27053-8'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_tcp_syncookies_value # promote to variable
  set_fact:
    sysctl_net_ipv4_tcp_syncookies_value: 1
  tags:
    - always

- name: Ensure sysctl net.ipv4.tcp_syncookies is set
  sysctl:
    name: net.ipv4.tcp_syncookies
    value: "{{ sysctl_net_ipv4_tcp_syncookies_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_tcp_syncookies
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27053-8
    - NIST-800-53-AC-4
    - NIST-800-53-SC-5(2)
    - NIST-800-53-SC-5(3)
    - DISA-STIG-RHEL-06-000095

Rule   Configure Kernel Parameter for Accepting ICMP Redirects for All Interfaces   [ref]

To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.accept_redirects = 0

Rationale:

Accepting ICMP redirects has few legitimate uses. It should be disabled unless it is absolutely required.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_accept_redirects
Identifiers and References

References:  CCI-001503, CCI-001551, CM-7, SC-5, SRG-OS-999999, SV-50325r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_accept_redirects_value="0"

#
# Set runtime for net.ipv4.conf.all.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_redirects=$sysctl_net_ipv4_conf_all_accept_redirects_value

#
# If net.ipv4.conf.all.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.accept_redirects' "$sysctl_net_ipv4_conf_all_accept_redirects_value" 'CCE-27027-2'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_accept_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_accept_redirects_value: 0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.accept_redirects is set
  sysctl:
    name: net.ipv4.conf.all.accept_redirects
    value: "{{ sysctl_net_ipv4_conf_all_accept_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_accept_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27027-2
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - DISA-STIG-RHEL-06-000084

Rule   Configure Kernel Parameter to Log Martian Packets   [ref]

To set the runtime status of the net.ipv4.conf.all.log_martians kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.log_martians=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.log_martians = 1

Rationale:

The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_log_martians
Identifiers and References

References:  CCI-000126, AC-3(10), CM-7, SC-5(3), SRG-OS-999999, SV-50329r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_log_martians_value="1"

#
# Set runtime for net.ipv4.conf.all.log_martians
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.log_martians=$sysctl_net_ipv4_conf_all_log_martians_value

#
# If net.ipv4.conf.all.log_martians present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.log_martians = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.log_martians' "$sysctl_net_ipv4_conf_all_log_martians_value" 'CCE-27066-0'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_log_martians_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_log_martians_value: 1
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.log_martians is set
  sysctl:
    name: net.ipv4.conf.all.log_martians
    value: "{{ sysctl_net_ipv4_conf_all_log_martians_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_log_martians
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27066-0
    - NIST-800-53-AC-3(10)
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5(3)
    - DISA-STIG-RHEL-06-000088

Rule   Configure Kernel Parameter to Use Reverse Path Filtering for All Interfaces   [ref]

To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_rp_filter
Identifiers and References

References:  CCI-001551, AC-4, SC-5, SC-7, SRG-OS-999999, SV-50343r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_rp_filter_value="1"

#
# Set runtime for net.ipv4.conf.all.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.rp_filter=$sysctl_net_ipv4_conf_all_rp_filter_value

#
# If net.ipv4.conf.all.rp_filter present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.rp_filter = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.rp_filter' "$sysctl_net_ipv4_conf_all_rp_filter_value" 'CCE-26979-5'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_rp_filter_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_rp_filter_value: 1
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.rp_filter is set
  sysctl:
    name: net.ipv4.conf.all.rp_filter
    value: "{{ sysctl_net_ipv4_conf_all_rp_filter_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_rp_filter
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26979-5
    - NIST-800-53-AC-4
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - DISA-STIG-RHEL-06-000096

Rule   Configure Kernel Parameter to Ignore ICMP Broadcast Echo Requests   [ref]

To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.icmp_echo_ignore_broadcasts = 1

Rationale:

Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_icmp_echo_ignore_broadcasts
Identifiers and References

References:  CCI-001551, CM-7, SC-5, SRG-OS-999999, SV-50336r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value="1"

#
# Set runtime for net.ipv4.icmp_echo_ignore_broadcasts
#
/sbin/sysctl -q -n -w net.ipv4.icmp_echo_ignore_broadcasts=$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value

#
# If net.ipv4.icmp_echo_ignore_broadcasts present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.icmp_echo_ignore_broadcasts = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.icmp_echo_ignore_broadcasts' "$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value" 'CCE-26883-9'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value # promote to variable
  set_fact:
    sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value: 1
  tags:
    - always

- name: Ensure sysctl net.ipv4.icmp_echo_ignore_broadcasts is set
  sysctl:
    name: net.ipv4.icmp_echo_ignore_broadcasts
    value: "{{ sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_icmp_echo_ignore_broadcasts
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26883-9
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - DISA-STIG-RHEL-06-000092

Rule   Configure Kernel Parameter for Accepting Secure Redirects By Default   [ref]

To set the runtime status of the net.ipv4.conf.default.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.secure_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_secure_redirects
Identifiers and References

References:  CCI-001551, AC-4, CM-7, SC-5, SC-7, SRG-OS-999999, SV-50333r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_secure_redirects_value="0"

#
# Set runtime for net.ipv4.conf.default.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.secure_redirects=$sysctl_net_ipv4_conf_default_secure_redirects_value

#
# If net.ipv4.conf.default.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.secure_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.secure_redirects' "$sysctl_net_ipv4_conf_default_secure_redirects_value" 'CCE-26831-8'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_secure_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_secure_redirects_value: 0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.secure_redirects is set
  sysctl:
    name: net.ipv4.conf.default.secure_redirects
    value: "{{ sysctl_net_ipv4_conf_default_secure_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_secure_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26831-8
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - DISA-STIG-RHEL-06-000090

Rule   Configure Kernel Parameter for Accepting Source-Routed Packets for All Interfaces   [ref]

To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.accept_source_route = 0

Rationale:

Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_accept_source_route
Identifiers and References

References:  CCI-001551, CM-7, SC-5, SRG-OS-999999, SV-50324r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_accept_source_route_value="0"

#
# Set runtime for net.ipv4.conf.all.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_source_route=$sysctl_net_ipv4_conf_all_accept_source_route_value

#
# If net.ipv4.conf.all.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.accept_source_route = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.accept_source_route' "$sysctl_net_ipv4_conf_all_accept_source_route_value" 'CCE-27037-1'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_accept_source_route_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_accept_source_route_value: 0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.accept_source_route is set
  sysctl:
    name: net.ipv4.conf.all.accept_source_route
    value: "{{ sysctl_net_ipv4_conf_all_accept_source_route_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_accept_source_route
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27037-1
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - DISA-STIG-RHEL-06-000083
Group   Network Parameters for Hosts Only   Group contains 3 rules

[ref]   If the system is not going to be used as a router, then setting certain kernel parameters ensure that the host will not perform routing of network traffic.

Rule   Disable Kernel Parameter for IP Forwarding   [ref]

To set the runtime status of the net.ipv4.ip_forward kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.ip_forward=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.ip_forward = 0

Rationale:

IP forwarding permits the kernel to forward packets from one network interface to another. The ability to forward packets between two networks is only appropriate for systems acting as routers.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_ip_forward
Identifiers and References

References:  CCI-000366, CM-7, SC-5, SRG-OS-999999, SV-50312r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.ip_forward
#
/sbin/sysctl -q -n -w net.ipv4.ip_forward=0

#
# If net.ipv4.ip_forward present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.ip_forward = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.ip_forward' "0" 'CCE-26866-4'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.ip_forward is set to 0
  sysctl:
    name: net.ipv4.ip_forward
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_ip_forward
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26866-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - DISA-STIG-RHEL-06-000082

Rule   Disable Kernel Parameter for Sending ICMP Redirects for All Interfaces   [ref]

To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.send_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.send_redirects = 0

Rationale:

Sending ICMP redirects permits the system to instruct other systems to update their routing information. The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_send_redirects
Identifiers and References

References:  CCI-001551, CM-7, SC-5(1), SRG-OS-999999, SV-50402r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.conf.all.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.send_redirects=0

#
# If net.ipv4.conf.all.send_redirects present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.conf.all.send_redirects = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.send_redirects' "0" 'CCE-27004-1'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.send_redirects is set to 0
  sysctl:
    name: net.ipv4.conf.all.send_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_send_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27004-1
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5(1)
    - DISA-STIG-RHEL-06-000081

Rule   Disable Kernel Parameter for Sending ICMP Redirects by Default   [ref]

To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.send_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.send_redirects = 0

Rationale:

Sending ICMP redirects permits the system to instruct other systems to update their routing information. The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_send_redirects
Identifiers and References

References:  CCI-001551, AC-4, CM-7, SC-5, SC-7, SRG-OS-999999, SV-50401r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.conf.default.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.send_redirects=0

#
# If net.ipv4.conf.default.send_redirects present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.conf.default.send_redirects = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.send_redirects' "0" 'CCE-27001-7'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.send_redirects is set to 0
  sysctl:
    name: net.ipv4.conf.default.send_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_send_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27001-7
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - DISA-STIG-RHEL-06-000080
Group   Uncommon Network Protocols   Group contains 4 rules

[ref]   The system includes support for several network protocols which are not commonly used. Although security vulnerabilities in kernel networking code are not frequently discovered, the consequences can be dramatic. Ensuring uncommon network protocols are disabled reduces the system's risk to attacks targeted at its implementation of those protocols.

Rule   Disable DCCP Support   [ref]

The Datagram Congestion Control Protocol (DCCP) is a relatively new transport layer protocol, designed to support streaming media and telephony. To configure the system to prevent the dccp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install dccp /bin/true

Rationale:

Disabling DCCP protects the system against exploitation of any flaws in its implementation.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_kernel_module_dccp_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50315r5_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install dccp" /etc/modprobe.d/dccp.conf ; then
	sed -i 's/^install dccp.*/install dccp /bin/true/g' /etc/modprobe.d/dccp.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/dccp.conf
	echo "install dccp /bin/true" >> /etc/modprobe.d/dccp.conf
fi


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'dccp' is disabled
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - dccp
  tags:
    - kernel_module_dccp_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26448-1
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000124

Rule   Disable RDS Support   [ref]

The Reliable Datagram Sockets (RDS) protocol is a transport layer protocol designed to provide reliable high- bandwidth, low-latency communications between nodes in a cluster. To configure the system to prevent the rds kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install rds /bin/true

Rationale:

Disabling RDS protects the system against exploitation of any flaws in its implementation.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_kernel_module_rds_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50317r3_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install rds" /etc/modprobe.d/rds.conf ; then
	sed -i 's/^install rds.*/install rds /bin/true/g' /etc/modprobe.d/rds.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/rds.conf
	echo "install rds /bin/true" >> /etc/modprobe.d/rds.conf
fi


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'rds' is disabled
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - rds
  tags:
    - kernel_module_rds_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26239-4
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000126

Rule   Disable TIPC Support   [ref]

The Transparent Inter-Process Communication (TIPC) protocol is designed to provide communications between nodes in a cluster. To configure the system to prevent the tipc kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install tipc /bin/true

Rationale:

Disabling TIPC protects the system against exploitation of any flaws in its implementation.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_kernel_module_tipc_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50318r5_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install tipc" /etc/modprobe.d/tipc.conf ; then
	sed -i 's/^install tipc.*/install tipc /bin/true/g' /etc/modprobe.d/tipc.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/tipc.conf
	echo "install tipc /bin/true" >> /etc/modprobe.d/tipc.conf
fi


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'tipc' is disabled
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - tipc
  tags:
    - kernel_module_tipc_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26696-5
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000127

Rule   Disable SCTP Support   [ref]

The Stream Control Transmission Protocol (SCTP) is a transport layer protocol, designed to support the idea of message-oriented communication, with several streams of messages within one connection. To configure the system to prevent the sctp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install sctp /bin/true

Rationale:

Disabling SCTP protects the system against exploitation of any flaws in its implementation.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_kernel_module_sctp_disabled
Identifiers and References

References:  CCI-000382, CM-7, SRG-OS-000096, SV-50316r5_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install sctp" /etc/modprobe.d/sctp.conf ; then
	sed -i 's/^install sctp.*/install sctp /bin/true/g' /etc/modprobe.d/sctp.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/sctp.conf
	echo "install sctp /bin/true" >> /etc/modprobe.d/sctp.conf
fi


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'sctp' is disabled
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - sctp
  tags:
    - kernel_module_sctp_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26410-1
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000125
Group   SELinux   Group contains 4 rules

[ref]   SELinux is a feature of the Linux kernel which can be used to guard against misconfigured or compromised programs. SELinux enforces the idea that programs should be limited in what files they can access and what actions they can take.

The default SELinux policy, as configured on Red Hat Enterprise Linux 6, has been sufficiently developed and debugged that it should be usable on almost any Red Hat machine with minimal configuration and a small amount of system administrator training. This policy prevents system services - including most of the common network-visible services such as mail servers, FTP servers, and DNS servers - from accessing files which those services have no valid reason to access. This action alone prevents a huge amount of possible damage from network attacks against services, from trojaned software, and so forth.

This guide recommends that SELinux be enabled using the default (targeted) policy on every Red Hat system, unless that system has unusual requirements which make a stronger policy appropriate.

Rule   Configure SELinux Policy   [ref]

The SELinux targeted policy is appropriate for general-purpose desktops and servers, as well as systems in many other roles. To configure the system to use this policy, add or correct the following line in /etc/selinux/config:

SELINUXTYPE=targeted
Other policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases.

Rationale:

Setting the SELinux policy to targeted or a more specialized policy ensures the system will confine processes that are likely to be targeted for exploitation, such as network or system services. Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to targeted.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_selinux_policytype
Identifiers and References

References:  CCI-000022, CCI-000032, AC-3, AC-3(3), AC-4, AC-6, AU-9, SRG-OS-999999, SV-65579r1_rule




var_selinux_policy_name="targeted"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysconfig/selinux' '^SELINUXTYPE=' $var_selinux_policy_name 'CCE-26875-5' '%s=%s'


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_selinux_policy_name # promote to variable
  set_fact:
    var_selinux_policy_name: targeted
  tags:
    - always

- name: "Configure SELinux Policy"
  lineinfile:
    path: /etc/sysconfig/selinux
    regexp: '^SELINUXTYPE='
    line: "SELINUXTYPE={{ var_selinux_policy_name }}"
    create: yes
  tags:
    - selinux_policytype
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26875-5
    - NIST-800-53-AC-3
    - NIST-800-53-AC-3(3)
    - NIST-800-53-AC-4
    - NIST-800-53-AC-6
    - NIST-800-53-AU-9
    - DISA-STIG-RHEL-06-000023

Rule   Ensure SELinux Not Disabled in /etc/grub.conf   [ref]

SELinux can be disabled at boot time by an argument in /etc/grub.conf. Remove any instances of selinux=0 from the kernel arguments in that file to prevent SELinux from being disabled at boot.

Rationale:

Disabling a major host protection feature, such as SELinux, at boot time prevents it from confining system services at boot time. Further, it increases the chances that it will remain off during system operation.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_enable_selinux_bootloader
Identifiers and References

References:  CCI-000022, CCI-000032, AC-3, AC-3(3), AC-6, AU-9, SRG-OS-999999, SV-65547r2_rule



sed -i --follow-symlinks "s/selinux=0//gI" /etc/grub.conf
sed -i --follow-symlinks "s/enforcing=0//gI" /etc/grub.conf


Complexity:low
Disruption:low
Strategy:restrict
- name: Ensure SELinux Not Disabled in /etc/default/grub
  replace:
    dest: /etc/default/grub
    regexp: selinux=0
  tags:
    - enable_selinux_bootloader
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26956-3
    - NIST-800-53-AC-3
    - NIST-800-53-AC-3(3)
    - NIST-800-53-AC-6
    - NIST-800-53-AU-9
    - DISA-STIG-RHEL-06-000017

Rule   Ensure No Device Files are Unknown to SELinux   [ref]

Device files, which are used for communication with important system resources, should be labeled with proper SELinux types. If any device files carry the SELinux type device_t, report the bug so that policy can be corrected. Supply information about what the device is and what programs use it.

Rationale:

If a device file carries the SELinux type device_t, then SELinux cannot properly restrict access to the device file.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_selinux_all_devicefiles_labeled
Identifiers and References

References:  CCI-000022, CCI-000032, AC-6, AU-9, CM-7, SRG-OS-999999, SV-65589r1_rule

Rule   Ensure SELinux State is Enforcing   [ref]

The SELinux state should be set to enforcing at system boot time. In the file /etc/selinux/config, add or correct the following line to configure the system to boot into enforcing mode:

SELINUX=enforcing

Rationale:

Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_selinux_state
Identifiers and References

References:  CCI-000022, CCI-000032, CCI-000026, AC-3, AC-3(3), AC-4, AC-6, AU-9, SRG-OS-999999, SV-65573r1_rule




var_selinux_state="enforcing"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state 'CCE-26969-6' '%s=%s'

fixfiles onboot
fixfiles -f relabel


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_selinux_state # promote to variable
  set_fact:
    var_selinux_state: enforcing
  tags:
    - always

- name: "Ensure SELinux State is Enforcing"
  lineinfile:
    path: /etc/sysconfig/selinux
    regexp: '^SELINUX='
    line: "SELINUX={{ var_selinux_state }}"
    create: yes
  tags:
    - selinux_state
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26969-6
    - NIST-800-53-AC-3
    - NIST-800-53-AC-3(3)
    - NIST-800-53-AC-4
    - NIST-800-53-AC-6
    - NIST-800-53-AU-9
    - DISA-STIG-RHEL-06-000020
Group   Account and Access Control   Group contains 16 groups and 31 rules

[ref]   In traditional Unix security, if an attacker gains shell access to a certain login account, they can perform any action or access any file to which that account has access. Therefore, making it more difficult for unauthorized people to gain shell access to accounts, particularly to privileged accounts, is a necessary part of securing a system. This section introduces mechanisms for restricting access to accounts under Red Hat Enterprise Linux 6.

Group   Protect Accounts by Configuring PAM   Group contains 4 groups and 11 rules

[ref]   PAM, or Pluggable Authentication Modules, is a system which implements modular authentication for Linux programs. PAM provides a flexible and configurable architecture for authentication, and it should be configured to minimize exposure to unnecessary risk. This section contains guidance on how to accomplish that.

PAM is implemented as a set of shared objects which are loaded and invoked whenever an application wishes to authenticate a user. Typically, the application must be running as root in order to take advantage of PAM, because PAM's modules often need to be able to access sensitive stores of account information, such as /etc/shadow. Traditional privileged network listeners (e.g. sshd) or SUID programs (e.g. sudo) already meet this requirement. An SUID root application, userhelper, is provided so that programs which are not SUID or privileged themselves can still take advantage of PAM.

PAM looks in the directory /etc/pam.d for application-specific configuration information. For instance, if the program login attempts to authenticate a user, then PAM's libraries follow the instructions in the file /etc/pam.d/login to determine what actions should be taken.

One very important file in /etc/pam.d is /etc/pam.d/system-auth. This file, which is included by many other PAM configuration files, defines 'default' system authentication measures. Modifying this file is a good way to make far-reaching authentication changes, for instance when implementing a centralized authentication service.

Group   Set Password Hashing Algorithm   Group contains 3 rules

[ref]   The system's default algorithm for storing password hashes in /etc/shadow is SHA-512. This can be configured in several locations.

Rule   Set Password Hashing Algorithm in /etc/login.defs   [ref]

In /etc/login.defs, add or correct the following line to ensure the system will use SHA-512 as the hashing algorithm:

ENCRYPT_METHOD SHA512

Rationale:

Using a stronger hashing algorithm makes password cracking attacks more difficult.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_logindefs
Identifiers and References

References:  CCI-000803, IA-5(b), IA-5(c), IA-5(1)(c), IA-7, Req-8.2.1, SRG-OS-000120, SV-50377r1_rule



if grep --silent ^ENCRYPT_METHOD /etc/login.defs ; then
	sed -i 's/^ENCRYPT_METHOD.*/ENCRYPT_METHOD SHA512/g' /etc/login.defs
else
	echo "" >> /etc/login.defs
	echo "ENCRYPT_METHOD SHA512" >> /etc/login.defs
fi


Complexity:low
Disruption:low
Strategy:restrict
- name: Set Password Hashing Algorithm in /etc/login.defs
  lineinfile:
      dest: /etc/login.defs
      regexp: ^#?ENCRYPT_METHOD
      line: ENCRYPT_METHOD SHA512
      state: present
  tags:
    - set_password_hashing_algorithm_logindefs
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27228-6
    - NIST-800-53-IA-5(b)
    - NIST-800-53-IA-5(c)
    - NIST-800-53-IA-5(1)(c)
    - NIST-800-53-IA-7
    - PCI-DSS-Req-8.2.1
    - DISA-STIG-RHEL-06-000063

Rule   Set Password Hashing Algorithm in /etc/pam.d/system-auth   [ref]

In /etc/pam.d/system-auth, the password section of the file controls which PAM modules execute during a password change. Set the pam_unix.so module in the password section to include the argument sha512, as shown below:

password    sufficient    pam_unix.so sha512 other arguments...
This will help ensure when local users change their passwords, hashes for the new passwords will be generated using the SHA-512 algorithm. This is the default.

Rationale:

Using a stronger hashing algorithm makes password cracking attacks more difficult.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_systemauth
Identifiers and References

References:  CCI-000803, IA-5(b), IA-5(c), IA-5(1)(c), IA-7, Req-8.2.1, SRG-OS-000120, SV-50375r3_rule




AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"

for pamFile in "${AUTH_FILES[@]}"
do
	if ! grep -q "^password.*sufficient.*pam_unix.so.*sha512" $pamFile; then
		sed -i --follow-symlinks "/^password.*sufficient.*pam_unix.so/ s/$/ sha512/" $pamFile
	fi
done

Rule   Set Password Hashing Algorithm in /etc/libuser.conf   [ref]

In /etc/libuser.conf, add or correct the following line in its [defaults] section to ensure the system will use the SHA-512 algorithm for password hashing:

crypt_style = sha512

Rationale:

Using a stronger hashing algorithm makes password cracking attacks more difficult.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_libuserconf
Identifiers and References

References:  CCI-000803, IA-5(b), IA-5(c), IA-5(1)(c), IA-7, Req-8.2.1, SRG-OS-000120, SV-50378r1_rule



Complexity:low
Disruption:low
Strategy:restrict
- name: Set Password Hashing Algorithm in /etc/libuser.conf
  lineinfile:
    dest: /etc/libuser.conf
    insertafter: "^.default]"
    regexp: ^#?crypt_style
    line: crypt_style = sha512
    state: present
  tags:
    - set_password_hashing_algorithm_libuserconf
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27229-4
    - NIST-800-53-IA-5(b)
    - NIST-800-53-IA-5(c)
    - NIST-800-53-IA-5(1)(c)
    - NIST-800-53-IA-7
    - PCI-DSS-Req-8.2.1
    - DISA-STIG-RHEL-06-000064
Group   Set Lockouts for Failed Password Attempts   Group contains 2 rules

[ref]   The pam_faillock PAM module provides the capability to lock out user accounts after a number of failed login attempts. Its documentation is available in /usr/share/doc/pam-VERSION/txts/README.pam_faillock.

Rule   Limit Password Reuse   [ref]

Do not allow users to reuse recent passwords. This can be accomplished by using the remember option for the pam_unix or pam_pwhistory PAM modules. In the file /etc/pam.d/system-auth, append remember=5 to the line which refers to the pam_unix.so or pam_pwhistory.somodule, as shown below:

  • for the pam_unix.so case:
    password sufficient pam_unix.so existing_options remember=5
  • for the pam_pwhistory.so case:
    password requisite pam_pwhistory.so existing_options remember=5
The DoD STIG requirement is 5 passwords.

Rationale:

Preventing re-use of previous passwords helps ensure that a compromised password is not re-used by a user.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_unix_remember
Identifiers and References

References:  CCI-000200, IA-5(f), IA-5(1)(e), Req-8.2.5, SRG-OS-000077, SV-50459r5_rule




var_password_pam_unix_remember="5"

AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"

for pamFile in "${AUTH_FILES[@]}"
do
	if grep -q "remember=" $pamFile; then
		sed -i --follow-symlinks "s/\(^password.*sufficient.*pam_unix.so.*\)\(\(remember *= *\)[^ $]*\)/\1remember=$var_password_pam_unix_remember/" $pamFile
	else
		sed -i --follow-symlinks "/^password[[:space:]]\+sufficient[[:space:]]\+pam_unix.so/ s/$/ remember=$var_password_pam_unix_remember/" $pamFile
	fi
done


Complexity:low
Disruption:medium
Strategy:configure
- name: XCCDF Value var_password_pam_unix_remember # promote to variable
  set_fact:
    var_password_pam_unix_remember: 5
  tags:
    - always

- name: "Do not allow users to reuse recent passwords - system-auth (change)"
  replace:
    dest: /etc/pam.d/system-auth
    follow: yes
    regexp: '^(password\s+sufficient\s+pam_unix\.so\s.*remember\s*=\s*)(\S+)(.*)$'
    replace: '\g<1>{{ var_password_pam_unix_remember }}\g<3>'
  tags:
    - accounts_password_pam_unix_remember
    - medium_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-26741-9
    - NIST-800-53-IA-5(f)
    - NIST-800-53-IA-5(1)(e)
    - PCI-DSS-Req-8.2.5
    - DISA-STIG-RHEL-06-000274

- name: "Do not allow users to reuse recent passwords - system-auth (add)"
  replace:
    dest: /etc/pam.d/system-auth
    follow: yes
    regexp: '^password\s+sufficient\s+pam_unix\.so\s(?!.*remember\s*=\s*).*$'
    replace: '\g<0> remember={{ var_password_pam_unix_remember }}'
  tags:
    - accounts_password_pam_unix_remember
    - medium_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-26741-9
    - NIST-800-53-IA-5(f)
    - NIST-800-53-IA-5(1)(e)
    - PCI-DSS-Req-8.2.5
    - DISA-STIG-RHEL-06-000274

Rule   Set Deny For Failed Password Attempts   [ref]

To configure the system to lock out accounts after a number of incorrect login attempts using pam_faillock.so, modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:

  • Add the following line immediately before the pam_unix.so statement in the AUTH section:
    auth required pam_faillock.so preauth silent deny=(N/A) unlock_time=(N/A) fail_interval=(N/A)
  • Add the following line immediately after the pam_unix.so statement in the AUTH section:
    auth [default=die] pam_faillock.so authfail deny=(N/A) unlock_time=(N/A) fail_interval=(N/A)
  • Add the following line immediately before the pam_unix.so statement in the ACCOUNT section:
    account required pam_faillock.so

Rationale:

Locking out user accounts after a number of incorrect attempts prevents direct password guessing attacks.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_accounts_passwords_pam_faillock_deny
Identifiers and References

References:  CCI-000044, AC-7(a), Req-8.1.6, SRG-OS-000021, SV-50374r4_rule




var_accounts_passwords_pam_faillock_deny="(N/A)"

AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"

# This script fixes absence of pam_faillock.so in PAM stack or the
# absense of deny=[0-9]+ in pam_faillock.so arguments
# When inserting auth pam_faillock.so entries,
# the entry with preauth argument will be added before pam_unix.so module
# and entry with authfail argument will be added before pam_deny.so module.

# The placement of pam_faillock.so entries will not be changed
# if they are already present


# Invoke the function without args, so its body is substituded right here.
function set_faillock_option_to_value_in_pam_file {
	# If invoked with no arguments, exit. This is an intentional behavior.
	[ $# -gt 1 ] || return 0
	[ $# -ge 3 ] || die "$0 requires exactly zero, three, or four arguments"
	[ $# -le 4 ] || die "$0 requires exactly zero, three, or four arguments"
	local _pamFile="$1" _option="$2" _value="$3" _insert_lines_callback="$4"
	# pam_faillock.so already present?
	if grep -q "^auth.*pam_faillock.so.*" "$_pamFile"; then

		# pam_faillock.so present, is the option present?
		if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*$_option=" "$_pamFile"; then

			# both pam_faillock.so & option present, just correct option to the right value
			sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\($_option *= *\).*/\1\2$_value/" "$_pamFile"
			sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\($_option *= *\).*/\1\2$_value/" "$_pamFile"

		# pam_faillock.so present, but the option not yet
		else

			# append correct option value to appropriate places
			sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ $_option=$_value/" "$_pamFile"
			sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ $_option=$_value/" "$_pamFile"
		fi

	# pam_faillock.so not present yet
	else
		test -z "$_insert_lines_callback" || "$_insert_lines_callback" "$_option" "$_value" "$_pamFile"
		# insert pam_faillock.so preauth & authfail rows with proper value of the option in question
	fi
}

set_faillock_option_to_value_in_pam_file


function insert_lines_if_pam_faillock_so_not_present {
	# insert pam_faillock.so preauth row with proper value of the 'deny' option before pam_unix.so
	sed -i --follow-symlinks "/^auth.*pam_unix.so.*/i auth        required      pam_faillock.so preauth silent $_option=$_value" $_pamFile
	# insert pam_faillock.so authfail row with proper value of the 'deny' option before pam_deny.so, after all modules which determine authentication outcome.
	sed -i --follow-symlinks "/^auth.*pam_deny.so.*/i auth        [default=die] pam_faillock.so authfail $_option=$_value" $_pamFile
}



for pamFile in "${AUTH_FILES[@]}"
do
	# 'true &&' has to be there due to build system limitation
	true && set_faillock_option_to_value_in_pam_file "$pamFile" deny "$var_accounts_passwords_pam_faillock_deny" insert_lines_if_pam_faillock_so_not_present

	# add pam_faillock.so into account phase
	if ! grep -q "^account.*required.*pam_faillock.so" $pamFile; then
		sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account     required      pam_faillock.so" $pamFile
	fi
done


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_accounts_passwords_pam_faillock_deny # promote to variable
  set_fact:
    var_accounts_passwords_pam_faillock_deny: (N/A)
  tags:
    - always
- name: XCCDF Value var_accounts_passwords_pam_faillock_unlock_time # promote to variable
  set_fact:
    var_accounts_passwords_pam_faillock_unlock_time: (N/A)
  tags:
    - always
- name: XCCDF Value var_accounts_passwords_pam_faillock_fail_interval # promote to variable
  set_fact:
    var_accounts_passwords_pam_faillock_fail_interval: (N/A)
  tags:
    - always

- name: set auth pam_faillock before pam_unix.so
  pamd:
    name: system-auth
    type: auth
    control: sufficient
    module_path: pam_unix.so
    new_type: auth
    new_control: required
    new_module_path: pam_faillock.so
    module_arguments: 'preauth
        silent
        deny={{ var_accounts_passwords_pam_faillock_deny }}
        unlock_time={{ var_accounts_passwords_pam_faillock_unlock_time }}
        fail_interval={{ var_accounts_passwords_pam_faillock_fail_interval }}'
    state: before
  tags:
    - accounts_passwords_pam_faillock_deny
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26844-1
    - NIST-800-53-AC-7(a)
    - PCI-DSS-Req-8.1.6
    - DISA-STIG-RHEL-06-000061

- name: set auth pam_faillock after pam_unix.so
  pamd:
    name: system-auth
    type: auth
    control: sufficient
    module_path: pam_unix.so
    new_type: auth
    new_control: '[default=die]'
    new_module_path: pam_faillock.so
    module_arguments: 'preauth
        silent
        deny={{ var_accounts_passwords_pam_faillock_deny }}
        unlock_time={{ var_accounts_passwords_pam_faillock_unlock_time }}
        fail_interval={{ var_accounts_passwords_pam_faillock_fail_interval }}'
    state: after
  tags:
    - accounts_passwords_pam_faillock_deny
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26844-1
    - NIST-800-53-AC-7(a)
    - PCI-DSS-Req-8.1.6
    - DISA-STIG-RHEL-06-000061

- name: set account pam_faillock before pam_unix.so
  pamd:
    name: system-auth
    type: account
    control: required
    module_path: pam_unix.so
    new_type: account
    new_control: required
    new_module_path: pam_faillock.so
    state: before
  tags:
    - accounts_passwords_pam_faillock_deny
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-26844-1
    - NIST-800-53-AC-7(a)
    - PCI-DSS-Req-8.1.6
    - DISA-STIG-RHEL-06-000061
Group   Set Password Quality Requirements   Group contains 1 group and 6 rules

[ref]   The default pam_cracklib PAM module provides strength checking for passwords. It performs a number of checks, such as making sure passwords are not similar to dictionary words, are of at least a certain length, are not the previous password reversed, and are not simply a change of case from the previous password. It can also require passwords to be in certain character classes.

The man page pam_cracklib(8) provides information on the capabilities and configuration of each.

Group   Set Password Quality Requirements, if using pam_cracklib   Group contains 6 rules

[ref]   The pam_cracklib PAM module can be configured to meet requirements for a variety of policies.

For example, to configure pam_cracklib to require at least one uppercase character, lowercase character, digit, and other (special) character, locate the following line in /etc/pam.d/system-auth:

password requisite pam_cracklib.so try_first_pass retry=3
and then alter it to read:
password required pam_cracklib.so try_first_pass retry=3 maxrepeat=3 minlen=14 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=-1 difok=4
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth. The arguments can be modified to ensure compliance with your organization's security policy. Discussion of each parameter follows.

Rule   Set Password Strength Minimum Digit Characters   [ref]

The pam_cracklib module's dcredit parameter controls requirements for usage of digits in a password. When set to a negative number, any password will be required to contain that many digits. When set to a positive number, pam_cracklib will grant +1 additional length credit for each digit. Add dcredit=-1 after pam_cracklib.so to require use of a digit in passwords.

Rationale:

Requiring digits makes password guessing attacks more difficult by ensuring a larger search space.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_dcredit
Identifiers and References

References:  CCI-000194, IA-5(b), IA-5(c), Req-8.2.3, SRG-OS-000071, SV-50282r1_rule




var_password_pam_dcredit="-1"

if grep -q "dcredit=" /etc/pam.d/system-auth; then
	sed -i --follow-symlinks "s/\(dcredit *= *\).*/\1$var_password_pam_dcredit/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/pam_cracklib.so/ s/$/ dcredit=$var_password_pam_dcredit/" /etc/pam.d/system-auth
fi

Rule   Set Password Strength Minimum Different Characters   [ref]

The pam_cracklib module's difok parameter controls requirements for usage of different characters during a password change. Add difok=3 after pam_cracklib.so to require differing characters when changing passwords. The DoD requirement is 4.

Rationale:

Requiring a minimum number of different characters during password changes ensures that newly changed passwords should not resemble previously compromised ones. Note that passwords which are changed on compromised systems will still be compromised, however.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_difok
Identifiers and References

References:  CCI-000195, IA-5(b), IA-5(c), IA-5(1)(b), SRG-OS-000072, SV-50373r2_rule




var_password_pam_difok="3"

if grep -q "difok=" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "s/\(difok *= *\).*/\1$var_password_pam_difok/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/pam_cracklib.so/ s/$/ difok=$var_password_pam_difok/" /etc/pam.d/system-auth
fi

Rule   Set Password Strength Minimum Special Characters   [ref]

The pam_cracklib module's ocredit= parameter controls requirements for usage of special (or ``other'') characters in a password. When set to a negative number, any password will be required to contain that many special characters. When set to a positive number, pam_cracklib will grant +1 additional length credit for each special character. Add ocredit=-2 after pam_cracklib.so to require use of a special character in passwords.

Rationale:

Requiring a minimum number of special characters makes password guessing attacks more difficult by ensuring a larger search space.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_ocredit
Identifiers and References

References:  CCI-001619, IA-5(b), IA-5(c), IA-5(1)(a), SRG-OS-000266, SV-50371r1_rule




var_password_pam_ocredit="-2"

if grep -q "ocredit=" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "s/\(ocredit *= *\).*/\1$var_password_pam_ocredit/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/pam_cracklib.so/ s/$/ ocredit=$var_password_pam_ocredit/" /etc/pam.d/system-auth
fi

Rule   Set Password Strength Minimum Lowercase Characters   [ref]

The pam_cracklib module's lcredit= parameter controls requirements for usage of lowercase letters in a password. When set to a negative number, any password will be required to contain that many lowercase characters. When set to a positive number, pam_cracklib will grant +1 additional length credit for each lowercase character. Add lcredit=-1 after pam_cracklib.so to require use of a lowercase character in passwords.

Rationale:

Requiring a minimum number of lowercase characters makes password guessing attacks more difficult by ensuring a larger search space.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_lcredit
Identifiers and References

References:  CCI-000193, IA-5(b), IA-5(c), IA-5(1)(a), Req-8.2.3, SRG-OS-000070, SV-50372r2_rule




var_password_pam_lcredit="-2"

if grep -q "lcredit=" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "s/\(lcredit *= *\).*/\1$var_password_pam_lcredit/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/pam_cracklib.so/ s/$/ lcredit=$var_password_pam_lcredit/" /etc/pam.d/system-auth
fi

Rule   Set Password Strength Minimum Uppercase Characters   [ref]

The pam_cracklib module's ucredit= parameter controls requirements for usage of uppercase letters in a password. When set to a negative number, any password will be required to contain that many uppercase characters. When set to a positive number, pam_cracklib will grant +1 additional length credit for each uppercase character. Add ucredit=-1 after pam_cracklib.so to require use of an upper case character in passwords.

Rationale:

Requiring a minimum number of uppercase characters makes password guessing attacks more difficult by ensuring a larger search space.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_ucredit
Identifiers and References

References:  3.5.7, CCI-000192, IA-5(b), IA-5(c), IA-5(1)(a), Req-8.2.3, SRG-OS-000069, SV-50370r1_rule




var_password_pam_ucredit="-2"

if grep -q "ucredit=" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "s/\(ucredit *= *\).*/\1$var_password_pam_ucredit/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/pam_cracklib.so/ s/$/ ucredit=$var_password_pam_ucredit/" /etc/pam.d/system-auth
fi

Rule   Set Password Retry Prompts Permitted Per-Session   [ref]

To configure the number of retry prompts that are permitted per-session:

Edit the pam_cracklib.so statement in /etc/pam.d/system-auth to show retry=3, or a lower value if site policy is more restrictive.

The DoD requirement is a maximum of 3 prompts per session.

Rationale:

Setting the password retry prompts that are permitted on a per-session basis to a low value requires some software, such as SSH, to re-connect. This can slow down and draw additional attention to some types of password-guessing attacks. Note that this is different from account lockout, which is provided by the pam_faillock module.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_pam_retry
Identifiers and References

References:  CCI-001092, IA-5(c)



Complexity:low
Disruption:medium
Strategy:configure
- name: XCCDF Value var_password_pam_retry # promote to variable
  set_fact:
    var_password_pam_retry: 3
  tags:
    - always

- name: "Set Password Retry Prompts Permitted Per-Session - system-auth (change)"
  replace:
    dest: /etc/pam.d/system-auth
    follow: yes
    regexp: '(^.*\spam_pwquality.so\s.*retry\s*=\s*)(\S+)(.*$)'
    replace: '\g<1>{{ var_password_pam_retry }}\g<3>'
  tags:
    - accounts_password_pam_retry
    - unknown_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-27123-9
    - NIST-800-53-IA-5(c)

- name: "Set Password Retry Prompts Permitted Per-Session - system-auth (add)"
  replace:
    dest: /etc/pam.d/system-auth
    follow: yes
    regexp: '^.*\spam_pwquality.so\s(?!.*retry\s*=\s*).*$'
    replace: '\g<0> retry={{ var_password_pam_retry }}'
  tags:
    - accounts_password_pam_retry
    - unknown_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-27123-9
    - NIST-800-53-IA-5(c)
Group   Protect Physical Console Access   Group contains 3 groups and 7 rules

[ref]   It is impossible to fully protect a system from an attacker with physical access, so securing the space in which the system is located should be considered a necessary step. However, there are some steps which, if taken, make it more difficult for an attacker to quickly or undetectably modify a system from its console.

Group   Configure Screen Locking   Group contains 1 group and 1 rule

[ref]   When a user must temporarily leave an account logged-in, screen locking should be employed to prevent passersby from abusing the account. User education and training is particularly important for screen locking to be effective, and policies can be implemented to reinforce this.

Automatic screen locking is only meant as a safeguard for those cases where a user forgot to lock the screen.

Group   Configure Console Screen Locking   Group contains 1 rule

[ref]   A console screen locking mechanism is provided in the screen package, which is not installed by default.

Rule   Install the screen Package   [ref]

To enable console screen locking, install the screen package:

$ sudo yum install screen
Instruct users to begin new terminal sessions with the following command:
$ screen
The console can now be locked with the following key combination:
ctrl+a x

Rationale:

Installing screen ensures a console locking capability is available for users who may need to suspend console logins.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_package_screen_installed
Identifiers and References

References:  CCI-000058, SRG-OS-000030, SV-50391r1_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install screen


Complexity:low
Disruption:low
Strategy:enable
- name: Ensure screen is installed
  package:
    name="{{item}}"
    state=present
  with_items:
    - screen
  tags:
    - package_screen_installed
    - unknown_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-26940-7
    - DISA-STIG-RHEL-06-000071


Complexity:low
Disruption:low
Strategy:enable
include install_screen

class install_screen {
  package { 'screen':
    ensure => 'installed',
  }
}


Complexity:low
Disruption:low
Strategy:enable

package --add=screen
Group   Set Boot Loader Password   Group contains 4 rules

[ref]   During the boot process, the boot loader is responsible for starting the execution of the kernel and passing options to it. The boot loader allows for the selection of different kernels - possibly on different partitions or media. The default Red Hat Enterprise Linux boot loader for x86 systems is called GRUB. Options it can pass to the kernel include single-user mode, which provides root access without any authentication, and the ability to disable SELinux. To prevent local users from modifying the boot parameters and endangering security, protect the boot loader configuration with a password and ensure its configuration file's permissions are set properly.

Rule   Verify /etc/grub.conf Group Ownership   [ref]

The file /etc/grub.conf should be group-owned by the root group to prevent destruction or modification of the file. To properly set the group owner of /etc/grub.conf, run the command:

$ sudo chgrp root /etc/grub.conf 

Rationale:

The root group is a highly-privileged group. Furthermore, the group-owner of this file should not have any access privileges anyway.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_group_owner_grub_conf
Identifiers and References

References:  CCI-000225, AC-6(7), Req-7.1, SRG-OS-999999, SV-50382r2_rule



chgrp root /etc/grub.conf

Rule   Verify /etc/grub.conf User Ownership   [ref]

The file /etc/grub.conf should be owned by the root user to prevent destruction or modification of the file. To properly set the owner of /etc/grub.conf, run the command:

$ sudo chown root /etc/grub.conf 

Rationale:

Only root should be able to modify important boot parameters.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_user_owner_grub_conf
Identifiers and References

References:  CCI-000225, AC-6(7), Req-7.1, SRG-OS-999999, SV-50380r2_rule



chown root /etc/grub.conf

Rule   Set Boot Loader Password   [ref]

The grub boot loader should have password protection enabled to protect boot-time settings. To do so, select a password and then generate a hash from it by running the following command:

$ grub-crypt --sha-512
When prompted to enter a password, insert the following line into /etc/grub.conf immediately after the header comments. (Use the output from grub-crypt as the value of password-hash):
password --encrypted password-hash
NOTE: To meet FISMA Moderate, the bootloader password MUST differ from the root password.

Rationale:

Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_bootloader_password
Identifiers and References

References:  CCI-000213, IA-2(1), IA-5(e) AC-3, SRG-OS-000080, SV-50386r4_rule

Rule   Verify /boot/grub/grub.conf Permissions   [ref]

File permissions for /boot/grub/grub.conf should be set to 600, which is the default. To properly set the permissions of /boot/grub/grub.conf, run the command:

$ sudo chmod 600 /boot/grub/grub.conf

Rationale:

Proper permissions ensure that only the root user can modify important boot parameters.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_grub_conf
Identifiers and References

References:  CCI-000225, AC-6(7), SRG-OS-999999, SV-50384r4_rule



chmod 600 /boot/grub/grub.conf

Rule   Disable Interactive Boot   [ref]

To disable the ability for users to perform interactive startups, perform both of the following:

  1. Edit the file /etc/sysconfig/init. Add or correct the line:
    PROMPT=no
  2. Inspect the kernel boot arguments (which follow the word kernel) in /etc/grub.conf and ensure the confirm argument is not present.
Both the PROMPT option of the /etc/sysconfig/init file and the confirm kernel boot argument of the /etc/grub.conf file allow the console user to perform an interactive system startup, in which it is possible to select the set of services which are started on boot.

Rationale:

Using interactive boot, the console user could disable auditing, firewalls, or other services, weakening system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_disable_interactive_boot
Identifiers and References

References:  CCI-000213, SC-2, AC-3, SRG-OS-000080, SV-50389r1_rule




# Ensure value of PROMPT key in /etc/sysconfig/init is set to 'no'
grep -q ^PROMPT /etc/sysconfig/init && \
  sed -i "s/PROMPT.*/PROMPT=no/g" /etc/sysconfig/init
if ! [ $? -eq 0 ]; then
    echo "PROMPT=no" >> /etc/sysconfig/init
fi

# Ensure 'confirm' kernel boot argument is not present in some of
# kernel lines in /etc/grub.conf
sed -i --follow-symlinks "s/confirm//gI" /etc/grub.conf

Rule   Require Authentication for Single User Mode   [ref]

Single-user mode is intended as a system recovery method, providing a single user root access to the system by providing a boot option at startup. By default, no authentication is performed if single-user mode is selected.

To require entry of the root password even if the system is started in single-user mode, add or correct the following line in the file /etc/sysconfig/init:

SINGLE=/sbin/sulogin

Rationale:

This prevents attackers with physical access from trivially bypassing security on the machine and gaining root access. Such accesses are further prevented by configuring the bootloader password.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_require_singleuser_auth
Identifiers and References

References:  CCI-000213, IA-2(1), AC-3, SRG-OS-000080, SV-50387r1_rule



grep -q ^SINGLE /etc/sysconfig/init && \
  sed -i "s/SINGLE.*/SINGLE=\/sbin\/sulogin/g" /etc/sysconfig/init
if ! [ $? -eq 0 ]; then
    echo "SINGLE=/sbin/sulogin" >> /etc/sysconfig/init
fi
Group   Secure Session Configuration Files for Login Accounts   Group contains 1 group and 2 rules

[ref]   When a user logs into a Unix account, the system configures the user's session by reading a number of files. Many of these files are located in the user's home directory, and may have weak permissions as a result of user error or misconfiguration. If an attacker can modify or even read certain types of account configuration information, they can often gain full access to the affected user's account. Therefore, it is important to test and correct configuration file permissions for interactive accounts, particularly those of privileged users such as root or system administrators.

Group   Ensure that No Dangerous Directories Exist in Root's Path   Group contains 1 rule

[ref]   The active path of the root account can be obtained by starting a new root shell and running:

$ sudo echo $PATH
This will produce a colon-separated list of directories in the path.

Certain path elements could be considered dangerous, as they could lead to root executing unknown or untrusted programs, which could contain malicious code. Since root may sometimes work inside untrusted directories, the . character, which represents the current directory, should never be in the root path, nor should any directory which can be written to by an unprivileged or semi-privileged (system) user.

It is a good practice for administrators to always execute privileged commands by typing the full path to the command.

Rule   Ensure that Root's Path Does Not Include World or Group-Writable Directories   [ref]

For each element in root's path, run:

$ sudo ls -ld DIR
and ensure that write permissions are disabled for group and other.

Rationale:

Such entries increase the risk that root could execute code provided by unprivileged users, and potentially malicious code.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_root_path_dirs_no_write
Identifiers and References

References:  CCI-000366, CM-6(b)



Complexity:low
Disruption:medium
Strategy:restrict
- name: "Fail if user is not root"
  fail:
    msg: 'Root account required to read root $PATH'
  when: ansible_user != "root"
  tags:
    - accounts_root_path_dirs_no_write
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - medium_disruption
    - CCE-26768-2
    - NIST-800-53-CM-6(b)

- name: "Get root paths which are not symbolic links"
  shell: 'tr ":" "\n" <<< "$PATH" | xargs -I% find % -maxdepth 0 -type d'
  changed_when: False
  failed_when: False
  register: root_paths
  when: ansible_user == "root"
  check_mode: no
  tags:
    - accounts_root_path_dirs_no_write
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - medium_disruption
    - CCE-26768-2
    - NIST-800-53-CM-6(b)

- name: "Disable writability to root directories"
  file:
    path: "{{item}}"
    mode: "g-w,o-w"
  with_items: "{{ root_paths.stdout_lines }}"
  when: root_paths.stdout_lines is defined
  tags:
    - accounts_root_path_dirs_no_write
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - medium_disruption
    - CCE-26768-2
    - NIST-800-53-CM-6(b)

Rule   Set Interactive Session Timeout   [ref]

Terminating an idle session within a short time period reduces the window of opportunity for unauthorized personnel to take control of a management session enabled on the console or console port that has been left unattended.

Rationale:

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_accounts_tmout
Identifiers and References


Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_accounts_tmout # promote to variable
  set_fact:
    var_accounts_tmout: 600
  tags:
    - always

- name: Set Interactive Session Timeout
  lineinfile:
      create: yes
      dest: /etc/profile
      regexp: ^#?TMOUT
      line: "TMOUT={{ var_accounts_tmout }}"
  tags:
    - accounts_tmout
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27333-4
Group   Warning Banners for System Accesses   Group contains 1 rule

[ref]   Each system should expose as little information about itself as possible.

System banners, which are typically displayed just before a login prompt, give out information about the service or the host's operating system. This might include the distribution name and the system kernel version, and the particular version of a network service. This information can assist intruders in gaining access to the system as it can reveal whether the system is running vulnerable software. Most network services can be configured to limit what information is displayed.

Many organizations implement security policies that require a system banner provide notice of the system's ownership, provide warning to unauthorized users, and remind authorized users of their consent to monitoring.

Rule   Modify the System Login Banner   [ref]

To configure the system login banner:

Edit /etc/issue. Replace the default text with a message compliant with the local site policy or a legal disclaimer. The DoD required text is either:

You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only. By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests -- not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.


OR:

Use of this or any other DoD interest computer system constitutes consent to monitoring at all times.
This is a DoD interest computer system. All DoD interest computer systems and related equipment are intended for the communication, transmission, processing, and storage of official U.S. Government or other authorized information only. All DoD interest computer systems are subject to monitoring at all times to ensure proper functioning of equipment and systems including security devices and systems, to prevent unauthorized use and violations of statutes and security regulations, to deter criminal activity, and for other similar purposes. Any user of a DoD interest computer system should be aware that any information placed in the system is subject to monitoring and is not subject to any expectation of privacy.
If monitoring of this or any other DoD interest computer system reveals possible evidence of violation of criminal statutes, this evidence and any other related information, including identification information about the user, may be provided to law enforcement officials. If monitoring of this or any other DoD interest computer systems reveals violations of security regulations or unauthorized use, employees who violate security regulations or make unauthorized use of DoD interest computer systems are subject to appropriate disciplinary action.
Use of this or any other DoD interest computer system constitutes consent to monitoring at all times.


OR:

I've read & consent to terms in IS user agreem't.

Rationale:

An appropriate warning message reinforces policy awareness during the login process and facilitates possible legal action against attackers.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_banner_etc_issue
Identifiers and References

References:  CCI-000048, CCI-001384, CCI-001385, CCI-001386, CCI-001387, CCI-001388, AC-8(a), AC-8(b), AC-8(c), SRG-OS-000228, SV-50394r3_rule




login_banner_text="--[\s\n]+WARNING[\s\n]+--[\s\n]*This[\s\n]+system[\s\n]+is[\s\n]+for[\s\n]+the[\s\n]+use[\s\n]+of[\s\n]+authorized[\s\n]+users[\s\n]+only.[\s\n]+Individuals[\s\n]*using[\s\n]+this[\s\n]+computer[\s\n]+system[\s\n]+without[\s\n]+authority[\s\n]+or[\s\n]+in[\s\n]+excess[\s\n]+of[\s\n]+their[\s\n]*authority[\s\n]+are[\s\n]+subject[\s\n]+to[\s\n]+having[\s\n]+all[\s\n]+their[\s\n]+activities[\s\n]+on[\s\n]+this[\s\n]+system[\s\n]*monitored[\s\n]+and[\s\n]+recorded[\s\n]+by[\s\n]+system[\s\n]+personnel.[\s\n]+Anyone[\s\n]+using[\s\n]+this[\s\n]*system[\s\n]+expressly[\s\n]+consents[\s\n]+to[\s\n]+such[\s\n]+monitoring[\s\n]+and[\s\n]+is[\s\n]+advised[\s\n]+that[\s\n]*if[\s\n]+such[\s\n]+monitoring[\s\n]+reveals[\s\n]+possible[\s\n]+evidence[\s\n]+of[\s\n]+criminal[\s\n]+activity[\s\n]*system[\s\n]+personnel[\s\n]+may[\s\n]+provide[\s\n]+the[\s\n]+evidence[\s\n]+of[\s\n]+such[\s\n]+monitoring[\s\n]+to[\s\n]+law[\s\n]*enforcement[\s\n]+officials."

# There was a regular-expression matching various banners, needs to be expanded
expanded=$(echo "$login_banner_text" | sed 's/\[\\s\\n\][+*]/ /g;s/\\//g;s/[^-]- /\n\n-/g')
formatted=$(echo "$expanded" | fold -sw 80)

cat <<EOF >/etc/issue
$formatted
EOF

printf "\n" >> /etc/issue
Group   Protect Accounts by Restricting Password-Based Login   Group contains 3 groups and 10 rules

[ref]   Conventionally, Unix shell accounts are accessed by providing a username and password to a login program, which tests these values for correctness using the /etc/passwd and /etc/shadow files. Password-based login is vulnerable to guessing of weak passwords, and to sniffing and man-in-the-middle attacks against passwords entered over a network or at an insecure console. Therefore, mechanisms for accessing accounts by entering usernames and passwords should be restricted to those which are operationally necessary.

Group   Set Password Expiration Parameters   Group contains 4 rules

[ref]   The file /etc/login.defs controls several password-related settings. Programs such as passwd, su, and login consult /etc/login.defs to determine behavior with regard to password aging, expiration warnings, and length. See the man page login.defs(5) for more information.

Users should be forced to change their passwords, in order to decrease the utility of compromised passwords. However, the need to change passwords often should be balanced against the risk that users will reuse or write down passwords if forced to change them too often. Forcing password changes every 90-360 days, depending on the environment, is recommended. Set the appropriate value as PASS_MAX_DAYS and apply it to existing accounts with the -M flag.

The PASS_MIN_DAYS (-m) setting prevents password changes for 7 days after the first change, to discourage password cycling. If you use this setting, train users to contact an administrator for an emergency password change in case a new password becomes compromised. The PASS_WARN_AGE (-W) setting gives users 7 days of warnings at login time that their passwords are about to expire.

For example, for each existing human user USER, expiration parameters could be adjusted to a 180 day maximum password age, 7 day minimum password age, and 7 day warning period with the following command:

$ sudo chage -M 180 -m 7 -W 7 USER

Group   Restrict Root Logins   Group contains 4 rules

[ref]   Direct root logins should be allowed only for emergency use. In normal situations, the administrator should access the system via a unique unprivileged account, and then use su or sudo to execute privileged commands. Discouraging administrators from accessing the root account directly ensures an audit trail in organizations with multiple administrators. Locking down the channels through which root can connect directly also reduces opportunities for password-guessing against the root account. The login program uses the file /etc/securetty to determine which interfaces should allow root logins. The virtual devices /dev/console and /dev/tty* represent the system consoles (accessible via the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default installation). The default securetty file also contains /dev/vc/*. These are likely to be deprecated in most environments, but may be retained for compatibility. Root should also be prohibited from connecting via network protocols. Other sections of this document include guidance describing how to prevent root from logging in via SSH.

Rule   Restrict Serial Port Root Logins   [ref]

To restrict root logins on serial ports, ensure lines of this form do not appear in /etc/securetty:

ttyS0
ttyS1

Rationale:

Preventing direct root login to serial port interfaces helps ensure accountability for actions taken on the systems using the root account.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_restrict_serial_port_logins
Identifiers and References

References:  CCI-000770, AC-6(2), SRG-OS-000109, SV-50295r1_rule



sed -i '/ttyS/d' /etc/securetty


Complexity:low
Disruption:low
Strategy:restrict
- name: "Restrict Serial Port Root Logins"
  lineinfile:
    dest: /etc/securetty
    regexp: 'ttyS[0-9]'
    state: absent
  tags:
    - restrict_serial_port_logins
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - CCE-27047-0
    - NIST-800-53-AC-6(2)
    - DISA-STIG-RHEL-06-000028

Rule   Ensure that System Accounts Do Not Run a Shell Upon Login   [ref]

Some accounts are not associated with a human user of the system, and exist to perform some administrative function. Should an attacker be able to log into these accounts, they should not be granted access to a shell.

The login shell for each local account is stored in the last field of each line in /etc/passwd. System accounts are those user accounts with a user ID less than UID_MIN, where value of the UID_MIN directive is set in /etc/login.defs configuration file. In the default configuration UID_MIN is set to 500, thus system accounts are those user accounts with a user ID less than 500. The user ID is stored in the third field. If any system account SYSACCT (other than root) has a login shell, disable it with the command:

$ sudo usermod -s /sbin/nologin SYSACCT

Rationale:

Ensuring shells are not given to system accounts upon login makes it more difficult for attackers to make use of system accounts.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_no_shelllogin_for_systemaccounts
Identifiers and References

References:  CCI-000178, AC-2

Rule   Verify Only Root Has UID 0   [ref]

If any account other than root has a UID of 0, this misconfiguration should be investigated and the accounts other than root should be removed or have their UID changed.

Rationale:

An account has root authority if it has a UID of 0. Multiple accounts with a UID of 0 afford more opportunity for potential intruders to guess a password for a privileged account. Proper configuration of sudo is recommended to afford multiple system administrators access to root privileges in an accountable manner.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_accounts_no_uid_except_zero
Identifiers and References

References:  CCI-000366, AC-6, IA-2(1), SRG-OS-999999, SV-50301r2_rule



awk -F: '$3 == 0 && $1 != "root" { print $1 }' /etc/passwd | xargs passwd -l
Group   Verify Proper Storage and Existence of Password Hashes   Group contains 2 rules

[ref]   By default, password hashes for local accounts are stored in the second field (colon-separated) in /etc/shadow. This file should be readable only by processes running with root credentials, preventing users from casually accessing others' password hashes and attempting to crack them. However, it remains possible to misconfigure the system and store password hashes in world-readable files such as /etc/passwd, or to even store passwords themselves in plaintext on the system. Using system-provided tools for password change/creation should allow administrators to avoid such misconfiguration.

Rule   Prevent Log In to Accounts With Empty Password   [ref]

If an account is configured for password authentication but does not have an assigned password, it may be possible to log onto the account without authentication. Remove any instances of the nullok option in /etc/pam.d/system-auth to prevent logins with empty passwords.

Rationale:

If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_no_empty_passwords
Identifiers and References

References:  IA-5(b), IA-5(c), IA-5(1)(a), Req-8.2.3, SRG-OS-999999, SV-50298r2_rule



sed --follow-symlinks -i 's/\<nullok\>//g' /etc/pam.d/system-auth
sed --follow-symlinks -i 's/\<nullok\>//g' /etc/pam.d/password-auth


Complexity:low
Disruption:medium
Strategy:configure
- name: "Prevent Log In to Accounts With Empty Password - system-auth"
  replace:
    dest: /etc/pam.d/system-auth
    follow: yes
    regexp: 'nullok'
  tags:
    - no_empty_passwords
    - high_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-27038-9
    - NIST-800-53-IA-5(b)
    - NIST-800-53-IA-5(c)
    - NIST-800-53-IA-5(1)(a)
    - PCI-DSS-Req-8.2.3
    - DISA-STIG-RHEL-06-000030

- name: "Prevent Log In to Accounts With Empty Password - password-auth"
  replace:
    dest: /etc/pam.d/password-auth
    follow: yes
    regexp: 'nullok'
  tags:
    - no_empty_passwords
    - high_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - CCE-27038-9
    - NIST-800-53-IA-5(b)
    - NIST-800-53-IA-5(c)
    - NIST-800-53-IA-5(1)(a)
    - PCI-DSS-Req-8.2.3
    - DISA-STIG-RHEL-06-000030

Rule   Verify All Account Password Hashes are Shadowed   [ref]

If any password hashes are stored in /etc/passwd (in the second field, instead of an x), the cause of this misconfiguration should be investigated. The account should have its password reset and the hash should be properly stored, or the account should be deleted entirely.

Rationale:

The hashes for all user account passwords should be stored in the file /etc/shadow and never in /etc/passwd, which is readable by all users.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_accounts_password_all_shadowed
Identifiers and References

References:  CCI-000201, IA-5(h), Req-8.2.1, SRG-OS-999999, SV-50300r1_rule

Group   File Permissions and Masks   Group contains 7 groups and 24 rules

[ref]   Traditional Unix security relies heavily on file and directory permissions to prevent unauthorized users from reading or modifying files to which they should not have access.

Several of the commands in this section search filesystems for files or directories with certain characteristics, and are intended to be run on every local partition on a given system. When the variable PART appears in one of the commands below, it means that the command is intended to be run repeatedly, with the name of each local partition substituted for PART in turn.

The following command prints a list of all xfs partitions on the local system, which is the default filesystem for Red Hat Enterprise Linux 7 installations:

$ mount -t xfs | awk '{print $3}'
For any systems that use a different local filesystem type, modify this command as appropriate.

Group   Verify Permissions on Important Files and Directories   Group contains 2 groups and 20 rules

[ref]   Permissions for many files on a system must be set restrictively to ensure sensitive information is properly protected. This section discusses important permission restrictions which can be verified to ensure that no harmful discrepancies have arisen.

Group   Verify Permissions on Files with Local Account Information and Credentials   Group contains 12 rules

Rule   Verify Permissions on shadow File   [ref]

To properly set the permissions of /etc/shadow, run the command:

$ sudo chmod 0000 /etc/shadow

Rationale:

The /etc/shadow file contains the list of local system accounts and stores password hashes. Protection of this file is critical for system security. Failure to give ownership of this file to root provides the designated owner with access to sensitive information which could weaken the system security posture.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_etc_shadow
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50305r1_rule



Complexity:low
Disruption:low
Strategy:configure
chmod 0000 /etc/shadow


Complexity:low
Disruption:low
Strategy:configure
- name: Ensure permission 0000 on /etc/shadow
  file:
    path="{{item}}"
    mode=0000
  with_items:
    - /etc/shadow
  tags:
    - file_permissions_etc_shadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26992-8
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000035

Rule   Verify Group Who Owns shadow File   [ref]

To properly set the group owner of /etc/shadow, run the command:

$ sudo chgrp root /etc/shadow 

Rationale:

The /etc/shadow file stores password hashes. Protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_groupowner_shadow_file
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50304r1_rule



chgrp root /etc/shadow

Rule   Verify User Who Owns group File   [ref]

To properly set the owner of /etc/group, run the command:

$ sudo chown root /etc/group 

Rationale:

The /etc/group file contains information regarding groups that are configured on the system. Protection of this file is important for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_owner_etc_group
Identifiers and References

References:  AC-6, Req-8.7.c, SRG-OS-999999, SV-50258r1_rule



Complexity:low
Disruption:low
Strategy:configure

chown root /etc/group


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/group file(s)
  find:
    paths: "{{ '/etc/group' | dirname }}"
    patterns: "{{ '/etc/group' | basename }}"
  register: files_found
  tags:
    - file_owner_etc_group
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26822-7
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000042

- name: Set user ownership to root
  file:
    path: "{{ item.path }}"
    owner: root
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_owner_etc_group
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26822-7
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000042

Rule   Verify Permissions on group File   [ref]

To properly set the permissions of /etc/group, run the command:

$ sudo chmod 644 /etc/group

Rationale:

The /etc/group file contains information regarding groups that are configured on the system. Protection of this file is important for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_etc_group
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50261r1_rule



Complexity:low
Disruption:low
Strategy:configure

chmod 0644 /etc/group


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/group file(s)
  find:
    paths: "{{ '/etc/group' | dirname }}"
    patterns: "{{ '/etc/group' | basename }}"
  register: files_found
  tags:
    - file_permissions_etc_group
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26954-8
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000044

- name: Set permissions
  file:
    path: "{{ item.path }}"
    mode: 0644
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_permissions_etc_group
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26954-8
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000044

Rule   Verify User Who Owns passwd File   [ref]

To properly set the owner of /etc/passwd, run the command:

$ sudo chown root /etc/passwd 

Rationale:

The /etc/passwd file contains information about the users that are configured on the system. Protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_owner_etc_passwd
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50250r1_rule



Complexity:low
Disruption:low
Strategy:configure

chown root /etc/passwd


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/passwd file(s)
  find:
    paths: "{{ '/etc/passwd' | dirname }}"
    patterns: "{{ '/etc/passwd' | basename }}"
  register: files_found
  tags:
    - file_owner_etc_passwd
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26953-0
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000039

- name: Set user ownership to root
  file:
    path: "{{ item.path }}"
    owner: root
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_owner_etc_passwd
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26953-0
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000039

Rule   Verify Group Who Owns gshadow File   [ref]

To properly set the group owner of /etc/gshadow, run the command:

$ sudo chgrp root /etc/gshadow 

Rationale:

The /etc/gshadow file contains group password hashes. Protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_groupowner_etc_gshadow
Identifiers and References

References:  CCI-000225, AC-6, SRG-OS-999999, SV-50248r1_rule



Complexity:low
Disruption:low
Strategy:configure

chgrp root /etc/gshadow


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/gshadow file(s)
  find:
    paths: "{{ '/etc/gshadow' | dirname }}"
    patterns: "{{ '/etc/gshadow' | basename }}"
  register: files_found
  tags:
    - file_groupowner_etc_gshadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26975-3
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000037

- name: Set group ownership to root
  file:
    path: "{{ item.path }}"
    group: root
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_groupowner_etc_gshadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26975-3
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000037

Rule   Verify Group Who Owns passwd File   [ref]

To properly set the group owner of /etc/passwd, run the command:

$ sudo chgrp root /etc/passwd 

Rationale:

The /etc/passwd file contains information about the users that are configured on the system. Protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_groupowner_etc_passwd
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50251r1_rule



Complexity:low
Disruption:low
Strategy:configure

chgrp root /etc/passwd


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/passwd file(s)
  find:
    paths: "{{ '/etc/passwd' | dirname }}"
    patterns: "{{ '/etc/passwd' | basename }}"
  register: files_found
  tags:
    - file_groupowner_etc_passwd
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26856-5
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000040

- name: Set group ownership to root
  file:
    path: "{{ item.path }}"
    group: root
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_groupowner_etc_passwd
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26856-5
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000040

Rule   Verify User Who Owns gshadow File   [ref]

To properly set the owner of /etc/gshadow, run the command:

$ sudo chown root /etc/gshadow 

Rationale:

The /etc/gshadow file contains group password hashes. Protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_owner_etc_gshadow
Identifiers and References

References:  CCI-000366, AC-6, SRG-OS-999999, SV-50243r1_rule



Complexity:low
Disruption:low
Strategy:configure

chown root /etc/gshadow


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/gshadow file(s)
  find:
    paths: "{{ '/etc/gshadow' | dirname }}"
    patterns: "{{ '/etc/gshadow' | basename }}"
  register: files_found
  tags:
    - file_owner_etc_gshadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-27026-4
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000036

- name: Set user ownership to root
  file:
    path: "{{ item.path }}"
    owner: root
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_owner_etc_gshadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-27026-4
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000036

Rule   Verify Group Who Owns group File   [ref]

To properly set the group owner of /etc/group, run the command:

$ sudo chgrp root /etc/group 

Rationale:

The /etc/group file contains information regarding groups that are configured on the system. Protection of this file is important for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_groupowner_etc_group
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50259r1_rule



Complexity:low
Disruption:low
Strategy:configure

chgrp root /etc/group


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/group file(s)
  find:
    paths: "{{ '/etc/group' | dirname }}"
    patterns: "{{ '/etc/group' | basename }}"
  register: files_found
  tags:
    - file_groupowner_etc_group
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26930-8
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000043

- name: Set group ownership to root
  file:
    path: "{{ item.path }}"
    group: root
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_groupowner_etc_group
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26930-8
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000043

Rule   Verify Permissions on gshadow File   [ref]

To properly set the permissions of /etc/gshadow, run the command:

$ sudo chmod 0000 /etc/gshadow

Rationale:

The /etc/gshadow file contains group password hashes. Protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_etc_gshadow
Identifiers and References

References:  CCI-000225, AC-6, SRG-OS-999999, SV-50249r1_rule



Complexity:low
Disruption:low
Strategy:configure

chmod 0000 /etc/gshadow


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/gshadow file(s)
  find:
    paths: "{{ '/etc/gshadow' | dirname }}"
    patterns: "{{ '/etc/gshadow' | basename }}"
  register: files_found
  tags:
    - file_permissions_etc_gshadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26951-4
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000038

- name: Set permissions
  file:
    path: "{{ item.path }}"
    mode: 0000
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_permissions_etc_gshadow
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26951-4
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000038

Rule   Verify User Who Owns shadow File   [ref]

To properly set the owner of /etc/shadow, run the command:

$ sudo chown root /etc/shadow 

Rationale:

The /etc/shadow file contains the list of local system accounts and stores password hashes. Protection of this file is critical for system security. Failure to give ownership of this file to root provides the designated owner with access to sensitive information which could weaken the system security posture.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_userowner_shadow_file
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50303r1_rule



chown root /etc/shadow

Rule   Verify Permissions on passwd File   [ref]

To properly set the permissions of /etc/passwd, run the command:

$ sudo chmod 0644 /etc/passwd

Rationale:

If the /etc/passwd file is writable by a group-owner or the world the risk of its compromise is increased. The file contains the list of accounts on the system and associated information, and protection of this file is critical for system security.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_etc_passwd
Identifiers and References

References:  CCI-000225, AC-6, Req-8.7.c, SRG-OS-999999, SV-50257r1_rule



Complexity:low
Disruption:low
Strategy:configure

chmod 0644 /etc/passwd


Complexity:low
Disruption:low
Strategy:configure

- name: Find /etc/passwd file(s)
  find:
    paths: "{{ '/etc/passwd' | dirname }}"
    patterns: "{{ '/etc/passwd' | basename }}"
  register: files_found
  tags:
    - file_permissions_etc_passwd
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26868-0
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000041

- name: Set permissions
  file:
    path: "{{ item.path }}"
    mode: 0644
  with_items:
    - "{{ files_found.files }}"
  tags:
    - file_permissions_etc_passwd
    - medium_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - CCE-26868-0
    - NIST-800-53-AC-6
    - PCI-DSS-Req-8.7.c
    - DISA-STIG-RHEL-06-000041
Group   Verify File Permissions Within Some Important Directories   Group contains 4 rules

[ref]   Some directories contain files whose confidentiality or integrity is notably important and may also be susceptible to misconfiguration over time, particularly if unpackaged software is installed. As such, an argument exists to verify that files' permissions within these directories remain configured correctly and restrictively.

Rule   Verify that System Executables Have Restrictive Permissions   [ref]

System executables are stored in the following directories by default:

/bin
/sbin
/usr/bin
/usr/libexec
/usr/local/bin
/usr/local/sbin
/usr/sbin
All files in these directories should not be group-writable or world-writable. If any file FILE in these directories is found to be group-writable or world-writable, correct its permission with the following command:
$ sudo chmod go-w FILE

Rationale:

System binaries are executed by privileged users, as well as system services, and restrictive permissions are necessary to ensure execution of these programs cannot be co-opted.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_binary_dirs
Identifiers and References

References:  CCI-001499, AC-6, SRG-OS-000259, SV-50269r3_rule



DIRS="/bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin /usr/libexec"
for dirPath in $DIRS; do
	find "$dirPath" -perm /022 -exec chmod go-w '{}' \;
done


Complexity:medium
Disruption:medium
Strategy:restrict
- name: "Read list of world and group writable system executables"
  shell: "find /bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin /usr/libexec -perm /022 -type f"
  register: world_writable_library_files
  changed_when: False
  failed_when: False
  check_mode: no
  tags:
    - file_permissions_binary_dirs
    - medium_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-27289-8
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000047

- name: "Remove world/group writability of system executables"
  file:
    path: "{{item}}"
    mode: "go-w"
  with_items: "{{ world_writable_library_files.stdout_lines }}"
  when: world_writable_library_files.stdout_lines | length > 0
  tags:
    - file_permissions_binary_dirs
    - medium_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-27289-8
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000047

Rule   Verify that Shared Library Files Have Root Ownership   [ref]

System-wide shared library files, which are linked to executables during process load time or run time, are stored in the following directories by default:

/lib
/lib64
/usr/lib
/usr/lib64
Kernel modules, which can be added to the kernel during runtime, are also stored in /lib/modules. All files in these directories should be owned by the root user. If the directory, or any file in these directories, is found to be owned by a user other than root correct its ownership with the following command:
$ sudo chown root FILE

Rationale:

Files from shared library directories are loaded into the address space of processes (including privileged ones) or of the kernel itself at runtime. Proper ownership is necessary to protect the integrity of the system.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_ownership_library_dirs
Identifiers and References

References:  CCI-001499, AC-6, SRG-OS-000259, SV-50266r4_rule



for LIBDIR in /usr/lib /usr/lib64 /lib /lib64
do
  if [ -d $LIBDIR ]
  then
    find -L $LIBDIR \! -user root -exec chown root {} \; 
  fi
done


Complexity:medium
Disruption:medium
Strategy:restrict
- name: "Read list libraries without root ownership"
  shell: "find -L /usr/lib /usr/lib64 /lib /lib64 \\! -user root"
  register: libraries_not_owned_by_root
  changed_when: False
  failed_when: False
  check_mode: no
  tags:
    - file_ownership_library_dirs
    - medium_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-27424-1
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000046

- name: "Set ownership of system libraries to root"
  file:
    path: "{{item}}"
    owner: "root"
  with_items: "{{ libraries_not_owned_by_root.stdout_lines }}"
  when: libraries_not_owned_by_root | length > 0
  tags:
    - file_ownership_library_dirs
    - medium_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-27424-1
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000046

Rule   Verify that System Executables Have Root Ownership   [ref]

System executables are stored in the following directories by default:

/bin
/sbin
/usr/bin
/usr/libexec
/usr/local/bin
/usr/local/sbin
/usr/sbin
All files in these directories should be owned by the root user. If any file FILE in these directories is found to be owned by a user other than root, correct its ownership with the following command:
$ sudo chown root FILE

Rationale:

System binaries are executed by privileged users as well as system services, and restrictive permissions are necessary to ensure that their execution of these programs cannot be co-opted.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_ownership_binary_dirs
Identifiers and References

References:  CCI-001499, AC-6, SRG-OS-000259, SV-50272r1_rule



find /bin/ \
/usr/bin/ \
/usr/local/bin/ \
/sbin/ \
/usr/sbin/ \
/usr/local/sbin/ \
/usr/libexec \
\! -user root -execdir chown root {} \;


Complexity:medium
Disruption:medium
Strategy:restrict
- name: "Read list of system executables without root ownership"
  shell: "find /bin/ /usr/bin/ /usr/local/bin/ /sbin/ /usr/sbin/ /usr/local/sbin/ /usr/libexec \\! -user root"
  register: no_root_system_executables
  changed_when: False
  failed_when: False
  check_mode: no
  tags:
    - file_ownership_binary_dirs
    - medium_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-27623-8
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000048

- name: "Set ownership to root of system executables"
  file:
    path: "{{item}}"
    owner: "root"
  with_items: "{{ no_root_system_executables.stdout_lines }}"
  when: no_root_system_executables.stdout_lines | length > 0
  tags:
    - file_ownership_binary_dirs
    - medium_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-27623-8
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000048

Rule   Verify that Shared Library Files Have Restrictive Permissions   [ref]

System-wide shared library files, which are linked to executables during process load time or run time, are stored in the following directories by default:

/lib
/lib64
/usr/lib
/usr/lib64
Kernel modules, which can be added to the kernel during runtime, are stored in /lib/modules. All files in these directories should not be group-writable or world-writable. If any file in these directories is found to be group-writable or world-writable, correct its permission with the following command:
$ sudo chmod go-w FILE

Rationale:

Files from shared library directories are loaded into the address space of processes (including privileged ones) or of the kernel itself at runtime. Restrictive permissions are necessary to protect the integrity of the system.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_library_dirs
Identifiers and References

References:  CCI-001499, AC-6, SRG-OS-000259, SV-50265r3_rule



DIRS="/lib /lib64 /usr/lib /usr/lib64"
for dirPath in $DIRS; do
	find "$dirPath" -perm /022 -type f -exec chmod go-w '{}' \;
done


Complexity:high
Disruption:medium
Strategy:restrict
- name: "Read list of world and group writable files in libraries directories"
  shell: "find /lib /lib64 /usr/lib /usr/lib64 -perm /022 -type f"
  register: world_writable_library_files
  changed_when: False
  failed_when: False
  check_mode: no
  tags:
    - file_permissions_library_dirs
    - medium_severity
    - restrict_strategy
    - high_complexity
    - medium_disruption
    - CCE-27381-3
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000045

- name: "Disable world/group writability to library files"
  file:
    path: "{{item}}"
    mode: "go-w"
  with_items: "{{ world_writable_library_files.stdout_lines }}"
  when: world_writable_library_files.stdout_lines | length > 0
  tags:
    - file_permissions_library_dirs
    - medium_severity
    - restrict_strategy
    - high_complexity
    - medium_disruption
    - CCE-27381-3
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000045

Rule   Ensure All SGID Executables Are Authorized   [ref]

The SGID (set group id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SGID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SGID files.

Rationale:

Executable files with the SGID permission run with the privileges of the owner of the file. SGID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_sgid
Identifiers and References

References:  AC-6(1)

Rule   Ensure No World-Writable Files Exist   [ref]

It is generally a good idea to remove global (other) write access to a file when it is discovered. However, check with documentation for specific applications before making changes. Also, monitor for recurring world-writable files, as these may be symptoms of a misconfigured application or user account. Finally, this applies to real files and not virtual files that are a part of pseudo file systems such as sysfs or procfs.

Rationale:

Data in world-writable files can be modified by any user on the system. In almost all circumstances, files can be configured using a combination of user and group permissions to support whatever legitimate access is needed without the risk caused by world-writable files.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_world_writable
Identifiers and References

References:  AC-6, SRG-OS-999999, SV-50444r3_rule

Rule   Ensure All SUID Executables Are Authorized   [ref]

The SUID (set user id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SGID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SUID files.

Rationale:

Executable files with the SUID permission run with the privileges of the owner of the file. SUID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_file_permissions_unauthorized_suid
Identifiers and References

References:  AC-6(1)

Rule   Verify that All World-Writable Directories Have Sticky Bits Set   [ref]

When the so-called 'sticky bit' is set on a directory, only the owner of a given file may remove that file from the directory. Without the sticky bit, any user with write access to a directory may remove any file in the directory. Setting the sticky bit prevents users from removing each other's files. In cases where there is no reason for a directory to be world-writable, a better solution is to remove that permission rather than to set the sticky bit. However, if a directory is used by a particular application, consult that application's documentation instead of blindly changing modes.
To set the sticky bit on a world-writable directory DIR, run the following command:

$ sudo chmod +t DIR

Rationale:

Failing to set the sticky bit on public directories allows unauthorized users to delete files in the directory structure.

The only authorized public directories are those temporary directories supplied with the system, or those designed to be temporary file repositories. The setting is normally reserved for directories used by the system, by users for temporary file storage (such as /tmp), and for directories requiring global read/write access.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_dir_perms_world_writable_sticky_bits
Identifiers and References

References:  AC-6, SRG-OS-999999, SV-50498r2_rule

Group   Restrict Programs from Dangerous Execution Patterns   Group contains 1 group and 2 rules

[ref]   The recommendations in this section are designed to ensure that the system's features to protect against potentially dangerous program execution are activated. These protections are applied at the system initialization or kernel level, and defend against certain types of badly-configured or compromised programs.

Group   Enable ExecShield   Group contains 2 rules

[ref]   ExecShield describes kernel features that provide protection against exploitation of memory corruption errors such as buffer overflows. These features include random placement of the stack and other memory regions, prevention of execution in memory that should only hold data, and special handling of text buffers. These protections are enabled by default and controlled through sysctl variables kernel.exec-shield and kernel.randomize_va_space.

Rule   Enable ExecShield   [ref]

To set the runtime status of the kernel.exec-shield kernel parameter, run the following command:

$ sudo sysctl -w kernel.exec-shield=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
kernel.exec-shield = 1

Rationale:

ExecShield uses the segmentation feature on all x86 systems to prevent execution in memory higher than a certain address. It writes an address as a limit in the code segment descriptor, to control where code can be executed, on a per-process basis. When the kernel places a process's memory regions such as the stack and heap higher than this address, the hardware prevents execution in that address range.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_kernel_exec_shield
Identifiers and References

References:  CCI-002530, SC-39, SRG-OS-999999, SV-50398r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for kernel.exec-shield
#
/sbin/sysctl -q -n -w kernel.exec-shield=1

#
# If kernel.exec-shield present in /etc/sysctl.conf, change value to "1"
#	else, add "kernel.exec-shield = 1" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^kernel.exec-shield' "1" 'CCE-27007-4'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl kernel.exec-shield is set to 1
  sysctl:
    name: kernel.exec-shield
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_kernel_exec_shield
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-27007-4
    - NIST-800-53-SC-39
    - DISA-STIG-RHEL-06-000079

Rule   Enable Randomized Layout of Virtual Address Space   [ref]

To set the runtime status of the kernel.randomize_va_space kernel parameter, run the following command:

$ sudo sysctl -w kernel.randomize_va_space=2
If this is not the system's default value, add the following line to /etc/sysctl.conf:
kernel.randomize_va_space = 2

Rationale:

Address space layout randomization (ASLR) makes it more difficult for an attacker to predict the location of attack code they have introduced into a process's address space during an attempt at exploitation. Additionally, ASLR makes it more difficult for an attacker to know the location of existing code in order to re-purpose it using return oriented programming (ROP) techniques.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_sysctl_kernel_randomize_va_space
Identifiers and References

References:  SC-30(2), SRG-OS-999999, SV-50397r2_rule



Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for kernel.randomize_va_space
#
/sbin/sysctl -q -n -w kernel.randomize_va_space=2

#
# If kernel.randomize_va_space present in /etc/sysctl.conf, change value to "2"
#	else, add "kernel.randomize_va_space = 2" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' "2" 'CCE-26999-3'


Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl kernel.randomize_va_space is set to 2
  sysctl:
    name: kernel.randomize_va_space
    value: 2
    state: present
    reload: yes
  tags:
    - sysctl_kernel_randomize_va_space
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - CCE-26999-3
    - NIST-800-53-SC-30(2)
    - DISA-STIG-RHEL-06-000078
Group   Restrict Dynamic Mounting and Unmounting of Filesystems   Group contains 1 rule

[ref]   Linux includes a number of facilities for the automated addition and removal of filesystems on a running system. These facilities may be necessary in many environments, but this capability also carries some risk -- whether direct risk from allowing users to introduce arbitrary filesystems, or risk that software flaws in the automated mount facility itself could allow an attacker to compromise the system.

This command can be used to list the types of filesystems that are available to the currently executing kernel:

$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'
If these filesystems are not required then they can be explicitly disabled in a configuratio file in /etc/modprobe.d.

Rule   Disable the Automounter   [ref]

The autofs daemon mounts and unmounts filesystems, such as user home directories shared via NFS, on demand. In addition, autofs can be used to handle removable media, and the default configuration provides the cdrom device as /misc/cd. However, this method of providing access to removable media is not common, so autofs can almost always be disabled if NFS is not in use. Even if NFS is required, it may be possible to configure filesystem mounts statically by editing /etc/fstab rather than relying on the automounter.

The autofs service can be disabled with the following command:

$ sudo chkconfig autofs off

Rationale:

Disabling the automounter permits the administrator to statically control filesystem mounting through /etc/fstab.

Severity: 
low
Rule ID:xccdf_org.ssgproject.content_rule_service_autofs_disabled
Identifiers and References

References:  CCI-000366, AC-19(a), AC-19(d), AC-19(e), SRG-OS-999999, SV-50237r1_rule



Complexity:low
Disruption:low
Strategy:disable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if [ "x$chkconfig_util" != x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
  # The service may not be running because it has been started and failed,
  # so let's reset the state so OVAL checks pass.
  # Service should be 'inactive', not 'failed' after reboot though.
  $service_util reset-failed $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if [ "x$xinetd" != x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if [ "$service_operation" = 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command disable autofs


Complexity:low
Disruption:low
Strategy:disable
- name: Disable service autofs
  service:
    name="{{item}}"
    enabled="no"
    state="stopped"
  register: service_result
  failed_when: "service_result|failed and ('Could not find the requested service' not in service_result.msg)"
  with_items:
    - autofs
  tags:
    - service_autofs_disabled
    - low_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - CCE-26976-1
    - NIST-800-53-AC-19(a)
    - NIST-800-53-AC-19(d)
    - NIST-800-53-AC-19(e)
    - DISA-STIG-RHEL-06-000526
Group   Restrict Partition Mount Options   Group contains 1 rule

[ref]   System partitions can be mounted with certain options that limit what files on those partitions can do. These options are set in the /etc/fstab configuration file, and can be used to make certain types of malicious behavior more difficult.

Rule   Add noexec Option to Removable Media Partitions   [ref]

The noexec mount option prevents the direct execution of binaries on the mounted filesystem. Preventing the direct execution of binaries from removable media (such as a USB key) provides a defense against malicious software that may be present on such untrusted media. Add the noexec option to the fourth column of /etc/fstab for the line which controls mounting of any removable media partitions.

Rationale:

Allowing users to execute binaries from removable media such as USB keys exposes the system to potential compromise.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_mount_option_noexec_removable_partitions
Identifiers and References

References:  CCI-000087, AC-19(a), AC-19(d), AC-19(e), CM-7, MP-2, SRG-OS-000035, SV-50456r1_rule




var_removable_partition="(N/A)"
function include_mount_options_functions {
	:
}

# $1: mount point
# $2: new mount point option
function ensure_mount_option_in_fstab {
	local _mount_point="$1" _new_opt="$2" _mount_point_match_regexp="" _previous_mount_opts=""
	_mount_point_match_regexp="$(get_mount_point_regexp "$_mount_point")"

	if [ $(grep "$_mount_point_match_regexp" /etc/fstab | grep -c "$_new_opt" ) -eq 0 ]; then
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/fstab | awk '{print $4}')
		sed -i "s|\(${_mount_point_match_regexp}.*${_previous_mount_opts}\)|\1,${_new_opt}|" /etc/fstab
	fi
}

# $1: mount point
function get_mount_point_regexp {
		printf "[[:space:]]%s[[:space:]]" "$1"
}

# $1: mount point
function assert_mount_point_in_fstab {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	grep "$_mount_point_match_regexp" -q /etc/fstab \
		|| { echo "The mount point '$1' is not even in /etc/fstab, so we can't set up mount options" >&2; return 1; }
}

# $1: mount point
function remove_defaults_from_fstab_if_overriden {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	if [ $(grep "$_mount_point_match_regexp" /etc/fstab | grep -q "defaults,") -gt 0 ]
	then
		sed -i "s|\(${_mount_point_match_regexp}.*\)defaults,|\1|" /etc/fstab
	fi
}

# $1: mount point
function ensure_partition_is_mounted {
	local _mount_point="$1"
	mkdir -p "$_mount_point" || return 1
	if mountpoint -q "$_mount_point"; then
		mount -o remount --target "$_mount_point"
	else
		mount --target "$_mount_point"
	fi
}

include_mount_options_functions

# test "$mount_has_to_exist" = 'yes'
test "no" = 'yes' && assert_mount_point_in_fstab "$var_removable_partition" \
	|| { echo "Not remediating, because there is no record of $var_removable_partition in /etc/fstab" >&2; exit 1; }

ensure_mount_option_in_fstab "$var_removable_partition" "noexec"

ensure_partition_is_mounted "$var_removable_partition"


Complexity:low
Disruption:high
Strategy:configure
- name: XCCDF Value var_removable_partition # promote to variable
  set_fact:
    var_removable_partition: (N/A)
  tags:
    - always

- name: get back device associated to mountpoint
  shell: mount | grep ' {{ var_removable_partition }} ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_noexec_removable_partitions
    - unknown_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - CCE-27196-5
    - NIST-800-53-AC-19(a)
    - NIST-800-53-AC-19(d)
    - NIST-800-53-AC-19(e)
    - NIST-800-53-CM-7
    - NIST-800-53-MP-2
    - DISA-STIG-RHEL-06-000271

- name: get back device previous mount option
  shell: mount | grep ' {{ var_removable_partition }} ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_noexec_removable_partitions
    - unknown_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - CCE-27196-5
    - NIST-800-53-AC-19(a)
    - NIST-800-53-AC-19(d)
    - NIST-800-53-AC-19(e)
    - NIST-800-53-CM-7
    - NIST-800-53-MP-2
    - DISA-STIG-RHEL-06-000271

- name: get back device fstype
  shell: mount | grep ' {{ var_removable_partition }} ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_noexec_removable_partitions
    - unknown_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - CCE-27196-5
    - NIST-800-53-AC-19(a)
    - NIST-800-53-AC-19(d)
    - NIST-800-53-AC-19(e)
    - NIST-800-53-CM-7
    - NIST-800-53-MP-2
    - DISA-STIG-RHEL-06-000271

- name: Ensure permission noexec are set on var_removable_partition
  mount:
    path: "{{ var_removable_partition }}"
    src: "{{device_name.stdout}}"
    opts: "{{ device_cur_mountoption.stdout }},noexec"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_noexec_removable_partitions
    - unknown_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - CCE-27196-5
    - NIST-800-53-AC-19(a)
    - NIST-800-53-AC-19(d)
    - NIST-800-53-AC-19(e)
    - NIST-800-53-CM-7
    - NIST-800-53-MP-2
    - DISA-STIG-RHEL-06-000271
Group   Installing and Maintaining Software   Group contains 7 groups and 16 rules

[ref]   The following sections contain information on security-relevant choices during the initial operating system installation process and the setup of software updates.

Group   Software Integrity Checking   Group contains 2 groups and 3 rules

[ref]   Both the AIDE (Advanced Intrusion Detection Environment) software and the RPM package management system provide mechanisms for verifying the integrity of installed software. AIDE uses snapshots of file metadata (such as hashes) and compares these to current system files in order to detect changes. The RPM package management system can conduct integrity checks by comparing information in its metadata database with files installed on the system.

Integrity checking cannot prevent intrusions, but can detect that they have occurred. Requirements for software integrity checking may be highly dependent on the environment in which the system will be used. Snapshot-based approaches such as AIDE may induce considerable overhead in the presence of frequent software updates.

Group   Verify Integrity with RPM   Group contains 2 rules

[ref]   The RPM package management system includes the ability to verify the integrity of installed packages by comparing the installed files with information about the files taken from the package metadata stored in the RPM database. Although an attacker could corrupt the RPM database (analogous to attacking the AIDE database as described above), this check can still reveal modification of important files. To list which files on the system differ from what is expected by the RPM database:

$ rpm -qVa
See the man page for rpm to see a complete explanation of each column.

Rule   Verify and Correct File Permissions with RPM   [ref]

The RPM package management system can check file access permissions of installed software packages, including many that are important to system security. After locating a file with incorrect permissions which can be found with

$ rpm -Va | grep '^.M'
, run the following command to determine which package owns it:
$ rpm -qf FILENAME
Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --setperms PACKAGENAME

Rationale:

Permissions on system binaries and configuration files that are too generous could allow an unauthorized user to gain privileges that they should not have. The permissions set by the vendor should be maintained. Any deviations from this baseline should be investigated.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_rpm_verify_permissions
Identifiers and References

References:  CCI-001493, CCI-001494, CCI-001495, AC-6, CM-6(d), SI-7, Req-11.5, SRG-OS-999999, SRG-OS-000256, SV-50252r2_rule



Complexity:high
Disruption:medium
Strategy:restrict

# Declare array to hold list of RPM packages we need to correct permissions for
declare -a SETPERMS_RPM_LIST

# Create a list of files on the system having permissions different from what
# is expected by the RPM database
FILES_WITH_INCORRECT_PERMS=($(rpm -Va --nofiledigest | grep '^.M' | cut -d ' ' -f4-))

# For each file path from that list:
# * Determine the RPM package the file path is shipped by,
# * Include it into SETPERMS_RPM_LIST array

for FILE_PATH in "${FILES_WITH_INCORRECT_PERMS[@]}"
do
	RPM_PACKAGE=$(rpm -qf "$FILE_PATH")
	SETPERMS_RPM_LIST=("${SETPERMS_RPM_LIST[@]}" "$RPM_PACKAGE")
done

# Remove duplicate mention of same RPM in $SETPERMS_RPM_LIST (if any)
SETPERMS_RPM_LIST=( $(echo "${SETPERMS_RPM_LIST[@]}" | tr ' ' '\n' | sort -u | tr '\n' ' ') )

# For each of the RPM packages left in the list -- reset its permissions to the
# correct values
for RPM_PACKAGE in "${SETPERMS_RPM_LIST[@]}"
do
	rpm --setperms "${RPM_PACKAGE}"
done


Complexity:high
Disruption:medium
Strategy:restrict
- name: "Read list of files with incorrect permissions"
  shell: "rpm -Va | grep '^.M' | cut -d ' ' -f5- | sed -r 's;^.*\\s+(.+);\\1;g'"
  register: files_with_incorrect_permissions
  failed_when: False
  changed_when: False
  check_mode: no
  tags:
    - rpm_verify_permissions
    - unknown_severity
    - restrict_strategy
    - high_complexity
    - medium_disruption
    - CCE-26731-0
    - NIST-800-53-AC-6
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000518

- name: "Correct file permissions with RPM"
  shell: "rpm --setperms $(rpm -qf '{{item}}')"
  with_items: "{{ files_with_incorrect_permissions.stdout_lines }}"
  when: files_with_incorrect_permissions.stdout_lines | length > 0
  tags:
    - rpm_verify_permissions
    - unknown_severity
    - restrict_strategy
    - high_complexity
    - medium_disruption
    - CCE-26731-0
    - NIST-800-53-AC-6
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000518

Rule   Verify File Hashes with RPM   [ref]

The RPM package management system can check the hashes of installed software packages, including many that are important to system security. Run the following command to list which files on the system have hashes that differ from what is expected by the RPM database:

$ rpm -Va | grep '^..5'
A "c" in the second column indicates that a file is a configuration file, which may appropriately be expected to change. If the file was not expected to change, investigate the cause of the change using audit logs or other means. The package can then be reinstalled to restore the file. Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME

Rationale:

The hashes of important files like system executables should match the information given by the RPM database. Executables with erroneous hashes could be a sign of nefarious activity on the system.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_rpm_verify_hashes
Identifiers and References

References:  CCI-001496, CM-6(d), SI-7, Req-11.5, SRG-OS-999999, SRG-OS-000278, SV-50247r4_rule



Complexity:high
Disruption:medium
- name: "Set fact: Package manager reinstall command (dnf)"
  set_fact:
    package_manager_reinstall_cmd: dnf reinstall -y
  when: ansible_distribution == "Fedora"
  tags:
    - rpm_verify_hashes
    - unknown_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - CCE-27223-7
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000519

- name: "Set fact: Package manager reinstall command (yum)"
  set_fact:
    package_manager_reinstall_cmd: yum reinstall -y
  when: ansible_distribution == "RedHat" or ansible_distribution == "OracleLinux"
  tags:
    - rpm_verify_hashes
    - unknown_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - CCE-27223-7
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000519

- name: "Read files with incorrect hash"
  shell: "rpm -Va | grep -E '^..5.* /(bin|sbin|lib|lib64|usr)/' | sed -r 's;^.*\\s+(.+);\\1;g'"
  register: files_with_incorrect_hash
  changed_when: False
  when: package_manager_reinstall_cmd is defined
  check_mode: no
  tags:
    - rpm_verify_hashes
    - unknown_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - CCE-27223-7
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000519

- name: "Reinstall packages of files with incorrect hash"
  shell: "{{package_manager_reinstall_cmd}} $(rpm -qf '{{item}}')"
  with_items: "{{ files_with_incorrect_hash.stdout_lines }}"
  when: package_manager_reinstall_cmd is defined and (files_with_incorrect_hash.stdout_lines | length > 0)
  tags:
    - rpm_verify_hashes
    - unknown_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - CCE-27223-7
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000519
Group   Verify Integrity with AIDE   Group contains 1 rule

[ref]   AIDE conducts integrity checks by comparing information about files with previously-gathered information. Ideally, the AIDE database is created immediately after initial system configuration, and then again after any software update. AIDE is highly configurable, with further configuration information located in /usr/share/doc/aide-VERSION.

Rule   Install AIDE   [ref]

Install the AIDE package with the command:

$ sudo yum install aide

Rationale:

The AIDE package must be installed if it is to be available for integrity checking.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_package_aide_installed
Identifiers and References

References:  CCI-001069, CM-3(d), CM-3(e), CM-6(d), SC-28, SI-7, Req-11.5, SRG-OS-000232, SV-50290r1_rule



Complexity:low
Disruption:low
Strategy:enable
# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install aide


Complexity:low
Disruption:low
Strategy:enable
- name: Ensure aide is installed
  package:
    name="{{item}}"
    state=present
  with_items:
    - aide
  tags:
    - package_aide_installed
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - CCE-27024-9
    - NIST-800-53-CM-3(d)
    - NIST-800-53-CM-3(e)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-SC-28
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - DISA-STIG-RHEL-06-000016


Complexity:low
Disruption:low
Strategy:enable
include install_aide

class install_aide {
  package { 'aide':
    ensure => 'installed',
  }
}


Complexity:low
Disruption:low
Strategy:enable

package --add=aide
Group   Disk Partitioning   Group contains 5 rules

[ref]   To ensure separation and protection of data, there are top-level system directories which should be placed on their own physical partition or logical volume. The installer's default partitioning scheme creates separate logical volumes for /, /boot, and swap.

  • If starting with any of the default layouts, check the box to "Review and modify partitioning." This allows for the easy creation of additional logical volumes inside the volume group already created, though it may require making /'s logical volume smaller to create space. In general, using logical volumes is preferable to using partitions because they can be more easily adjusted later.
  • If creating a custom layout, create the partitions mentioned in the previous paragraph (which the installer will require anyway), as well as separate ones described in the following sections.
If a system has already been installed, and the default partitioning scheme was used, it is possible but nontrivial to modify it to create separate logical volumes for the directories listed above. The Logical Volume Manager (LVM) makes this possible. See the LVM HOWTO at http://tldp.org/HOWTO/LVM-HOWTO/ for more detailed information on LVM.

Rule   Ensure /home Located On Separate Partition   [ref]

If user home directories will be stored locally, create a separate partition for /home at installation time (or migrate it later using LVM). If /home will be mounted from another system such as an NFS server, then creating a separate partition is not necessary at installation time, and the mountpoint can instead be configured later.

Rationale:

Ensuring that /home is mounted on its own partition enables the setting of more restrictive mount options, and also helps ensure that users cannot trivially fill partitions used for log or audit data storage.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_partition_for_home
Identifiers and References

References:  CCI-001208, SC-32, SRG-OS-999999, SV-50273r1_rule

Rule   Ensure /tmp Located On Separate Partition   [ref]

The /tmp directory is a world-writable directory used for temporary file storage. Ensure it has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

The /tmp partition is used as temporary storage by many programs. Placing /tmp in its own partition enables the setting of more restrictive mount options, which can help protect programs which use it.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_partition_for_tmp
Identifiers and References

References:  CCI-001208, SC-32, SRG-OS-999999, SV-50255r1_rule

Rule   Ensure /var Located On Separate Partition   [ref]

The /var directory is used by daemons and other system services to store frequently-changing data. Ensure that /var has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

Ensuring that /var is mounted on its own partition enables the setting of more restrictive mount options. This helps protect system services such as daemons or other programs which use it. It is not uncommon for the /var directory to contain world-writable directories installed by other software packages.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_partition_for_var
Identifiers and References

References:  CCI-001208, SC-32, SRG-OS-999999, SV-50256r1_rule

Rule   Ensure /var/log/audit Located On Separate Partition   [ref]

Audit logs are stored in the /var/log/audit directory. Ensure that it has its own partition or logical volume at installation time, or migrate it later using LVM. Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon.

Rationale:

Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_partition_for_var_log_audit
Identifiers and References

References:  CCI-000137, CCI-000138, CCI-001208, AU-4, AU-9, SC-32, SRG-OS-000044, SV-50267r1_rule

Rule   Ensure /var/log Located On Separate Partition   [ref]

System logs are stored in the /var/log directory. Ensure that it has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

Placing /var/log in its own partition enables better separation between log files and other files in /var/.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_partition_for_var_log
Identifiers and References

References:  CCI-001208, AU-9, SC-32, SRG-OS-999999, SV-50263r1_rule

Group   Updating Software   Group contains 4 rules

[ref]   The yum command line tool is used to install and update software packages. The system also provides a graphical software update tool in the System menu, in the Administration submenu, called Software Update.

Red Hat Enterprise Linux systems contain an installed software catalog called the RPM database, which records metadata of installed packages. Consistently using yum or the graphical Software Update for all software installation allows for insight into the current inventory of installed software on the system.

Rule   Ensure gpgcheck Enabled In Main Yum Configuration   [ref]

The gpgcheck option controls whether RPM packages' signatures are always checked prior to installation. To configure yum to check package signatures before installing them, ensure the following line appears in /etc/yum.conf in the [main] section:

gpgcheck=1

Rationale:

Ensuring the validity of packages' cryptographic signatures prior to installation ensures the authenticity of the software and protects against malicious tampering.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_ensure_gpgcheck_globally_activated
Identifiers and References

References:  CCI-000352, CCI-000663, SI-7, MA-1(b), Req-6.2, SRG-OS-000103, SV-50283r1_rule



# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if grep -q $grep_case_insensitive_option "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/yum.conf' '^gpgcheck' '1' 'CCE-26709-6'


Complexity:low
Disruption:medium
- name: Check existence of yum on Fedora
  stat:
    path: /etc/yum.conf
  register: yum_config_file
  check_mode: no
  when: ansible_distribution == "Fedora"

# Old versions of Fedora use yum

- name: Ensure GPG check is globally activated (yum)
  ini_file:
    dest: "{{item}}"
    section: main
    option: gpgcheck
    value: 1
    create: False
  with_items: "/etc/yum.conf"
  when: ansible_distribution == "RedHat" or ansible_distribution == "CentOS" or yum_config_file.stat.exists
  tags:
    - ensure_gpgcheck_globally_activated
    - medium_severity
    - unknown_strategy
    - low_complexity
    - medium_disruption
    - CCE-26709-6
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000013

- name: Ensure GPG check is globally activated (dnf)
  ini_file:
    dest: "{{item}}"
    section: main
    option: gpgcheck
    value: 1
    create: False
  with_items: "/etc/dnf/dnf.conf"
  when: ansible_distribution == "Fedora"
  tags:
    - ensure_gpgcheck_globally_activated
    - medium_severity
    - unknown_strategy
    - low_complexity
    - medium_disruption
    - CCE-26709-6
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000013

Rule   Ensure Software Patches Installed   [ref]

If the system is joined to the Red Hat Network, a Red Hat Satellite Server, or a yum server, run the following command to install updates:

$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages) can be manually downloaded from the Red Hat Network and installed using rpm.

Rationale:

Installing software updates is a fundamental mitigation against the exploitation of publicly-known vulnerabilities.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_security_patches_up_to_date
Identifiers and References

References:  CCI-001227, CCI-001233, SI-2, MA-1(b), Req-6.2, SRG-OS-000191, SV-50281r1_rule



Complexity:low
Disruption:high
Reboot:true
Strategy:patch
yum -y update


Complexity:low
Disruption:high
Reboot:true
Strategy:patch
- name: "Security patches are up to date"
  package:
    name: "*"
    state: "latest"
  tags:
    - security_patches_up_to_date
    - medium_severity
    - patch_strategy
    - low_complexity
    - high_disruption
    - CCE-27635-2
    - NIST-800-53-SI-2
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000011

Rule   Ensure Red Hat GPG Key Installed   [ref]

To ensure the system can cryptographically verify base software packages come from Red Hat (and to connect to the Red Hat Network to receive them), the Red Hat GPG key must properly be installed. To install the Red Hat GPG key, run:

$ sudo subscription-manager register
If the system is not connected to the Internet or an RHN Satellite, then install the Red Hat GPG key from trusted media such as the Red Hat installation CD-ROM or DVD. Assuming the disc is mounted in /media/cdrom, use the following command as the root user to import it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY

Rationale:

The Red Hat GPG key is necessary to cryptographically verify packages are from Red Hat.

Severity: 
high
Rule ID:xccdf_org.ssgproject.content_rule_ensure_redhat_gpgkey_installed
Identifiers and References

References:  CCI-000351, SI-7, MA-1(b), Req-6.2, SRG-OS-000090, SV-50276r3_rule



# The two fingerprints below are retrieved from https://access.redhat.com/security/team/key
readonly REDHAT_RELEASE_2_FINGERPRINT="567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51"
readonly REDHAT_AUXILIARY_FINGERPRINT="43A6 E49C 4A38 F4BE 9ABF 2A53 4568 9C88 2FA6 58E0"
# Location of the key we would like to import (once it's integrity verified)
readonly REDHAT_RELEASE_KEY="/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"

RPM_GPG_DIR_PERMS=$(stat -c %a "$(dirname "$REDHAT_RELEASE_KEY")")

# Verify /etc/pki/rpm-gpg directory permissions are safe
if [ "${RPM_GPG_DIR_PERMS}" -le "755" ]
then
  # If they are safe, try to obtain fingerprints from the key file
  # (to ensure there won't be e.g. CRC error).
  IFS=$'\n' GPG_OUT=($(gpg --with-fingerprint "${REDHAT_RELEASE_KEY}" | grep 'Key fingerprint ='))
  GPG_RESULT=$?
  # Reset IFS back to default
  unset IFS
  # No CRC error, safe to proceed
  if [ "${GPG_RESULT}" -eq "0" ]
  then
    tr -s ' ' <<< "${GPG_OUT}" | grep -vE "${REDHAT_RELEASE_2_FINGERPRINT}|${REDHAT_AUXILIARY_FINGERPRINT}" || {
      # If file doesn't contains any keys with unknown fingerprint, import it
      rpm --import "${REDHAT_RELEASE_KEY}"
    }
  fi
fi


Complexity:medium
Disruption:medium
Strategy:restrict
- name: "Read permission of GPG key directory"
  stat:
    path: /etc/pki/rpm-gpg/
  register: gpg_key_directory_permission
  check_mode: no
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-26506-6
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000008

# It should fail if it doesn't find any fingerprints in file - maybe file was not parsed well.

- name: Read signatures in GPG key
  shell: gpg --with-fingerprint '/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release' | grep 'Key fingerprint =' | tr -s ' ' | sed 's;.*= ;;g'
  changed_when: False
  register: gpg_fingerprints
  check_mode: no
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-26506-6
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000008

- name: Set Fact - Valid fingerprints
  set_fact:
     gpg_valid_fingerprints: ("567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51" "43A6 E49C 4A38 F4BE 9ABF 2A53 4568 9C88 2FA6 58E0")
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-26506-6
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000008

- name: Import RedHat GPG key
  rpm_key:
    state: present
    key: /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
  when:
    (gpg_key_directory_permission.stat.mode <= '0755')
    and (( gpg_fingerprints.stdout_lines | difference(gpg_valid_fingerprints)) | length == 0)
    and (gpg_fingerprints.stdout_lines | length > 0)
    and (ansible_distribution == "RedHat")
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - CCE-26506-6
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000008

Rule   Ensure gpgcheck Enabled For All Yum Package Repositories   [ref]

To ensure signature checking is not disabled for any repos, remove any lines from files in /etc/yum.repos.d of the form:

gpgcheck=0

Rationale:

Ensuring all packages' cryptographic signatures are valid prior to installation ensures the authenticity of the software and protects against malicious tampering.

Severity: 
low
Rule ID:xccdf_org.ssgproject.content_rule_ensure_gpgcheck_never_disabled
Identifiers and References

References:  CCI-000352, CCI-000663, SI-7, MA-1(b), Req-6.2, SRG-OS-000103, SV-50288r1_rule



sed -i 's/gpgcheck=.*/gpgcheck=1/g' /etc/yum.repos.d/*


Complexity:low
Disruption:medium
#
- name: Find All Yum Repositories
  find:
    paths: "/etc/yum.repos.d/"
    patterns: "*.repo"
  register: yum_find

- name: Ensure gpgcheck Enabled For All Yum Package Repositories
  with_items: "{{ yum_find.files }}"
  lineinfile:
    create: yes
    dest: "{{ item.path }}"
    regexp: '^gpgcheck'
    line: 'gpgcheck=1'
  tags:
    - ensure_gpgcheck_never_disabled
    - low_severity
    - unknown_strategy
    - low_complexity
    - medium_disruption
    - CCE-26647-8
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - PCI-DSS-Req-6.2
    - DISA-STIG-RHEL-06-000015
Group   GNOME Desktop Environment   Group contains 1 group and 4 rules

[ref]   GNOME is a graphical desktop environment bundled with many Linux distributions that allow users to easily interact with the operating system graphically rather than textually. The GNOME Graphical Display Manager (GDM) provides login, logout, and user switching contexts as well as display server management.

GNOME is developed by the GNOME Project and is considered the default Red Hat Graphical environment.

For more information on GNOME and the GNOME Project, see https://www.gnome.org

Group   Configure GNOME Screen Locking   Group contains 4 rules

[ref]   In the default GNOME desktop, the screen can be locked by choosing Lock Screen from the System menu.

The gconftool-2 program can be used to enforce mandatory screen locking settings for the default GNOME environment. The following sections detail commands to enforce idle activation of the screensaver, screen locking, a blank-screen screensaver, and an idle activation time.

Because users should be trained to lock the screen when they step away from the computer, the automatic locking feature is only meant as a backup. The Lock Screen icon from the System menu can also be dragged to the taskbar in order to facilitate even more convenient screen-locking.

The root account cannot be screen-locked, but this should have no practical effect as the root account should never be used to log into an X Windows environment, and should only be used to for direct login via console in emergency circumstances.

For more information about configuring GNOME screensaver, see http://live.gnome.org/GnomeScreensaver. For more information about enforcing preferences in the GNOME environment using the GConf configuration system, see http://projects.gnome.org/gconf and the man page gconftool-2(1).

Rule   Implement Blank Screensaver   [ref]

Run the following command to set the screensaver mode in the GNOME desktop to a blank screen:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type string \
  --set /apps/gnome-screensaver/mode blank-only

Rationale:

Setting the screensaver mode to blank-only conceals the contents of the display from passersby.

Severity: 
unknown
Rule ID:xccdf_org.ssgproject.content_rule_gconf_gnome_screensaver_mode_blank
Identifiers and References

References:  CCI-000060, AC-11(b), Req-8.1.8, SRG-OS-000031, SV-50440r3_rule



# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the screensaver mode in the GNOME desktop to a blank screen
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type string \
            --set /apps/gnome-screensaver/mode blank-only

Rule   Enable Screen Lock Activation After Idle Period   [ref]

Run the following command to activate locking of the screensaver in the GNOME desktop when it is activated:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /apps/gnome-screensaver/lock_enabled true

Rationale:

Enabling the activation of the screen lock after an idle period ensures password entry will be required in order to access the system, preventing access by passersby.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_gconf_gnome_screensaver_lock_enabled
Identifiers and References

References:  CCI-000057, AC-11(a), Req-8.1.8, SRG-OS-000029, SV-50439r3_rule



# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the screensaver locking activation in the GNOME desktop when the
# screensaver is activated
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type bool \
            --set /apps/gnome-screensaver/lock_enabled true

Rule   GNOME Desktop Screensaver Mandatory Use   [ref]

Run the following command to activate the screensaver in the GNOME desktop after a period of inactivity:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /apps/gnome-screensaver/idle_activation_enabled true

Rationale:

Enabling idle activation of the screensaver ensures the screensaver will be activated after the idle delay. Applications requiring continuous, real-time screen display (such as network management products) require the login session does not have administrator rights and the display station is located in a controlled-access area.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_gconf_gnome_screensaver_idle_activation_enabled
Identifiers and References

References:  CCI-000057, AC-11(a), Req-8.1.8, SRG-OS-000029, SV-50431r3_rule



# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the screensaver activation in the GNOME desktop after a period of inactivity
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type bool \
            --set /apps/gnome-screensaver/idle_activation_enabled true

Rule   Set GNOME Login Inactivity Timeout   [ref]

Run the following command to set the idle time-out value for inactivity in the GNOME desktop to 900 minutes:

$ sudo gconftool-2 \
  --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type int \
  --set /desktop/gnome/session/idle_delay 900

Rationale:

Setting the idle delay controls when the screensaver will start, and can be combined with screen locking to prevent access from passersby.

Severity: 
medium
Rule ID:xccdf_org.ssgproject.content_rule_gconf_gnome_screensaver_idle_delay
Identifiers and References

References:  CCI-000057, AC-11(a), Req-8.1.8, SRG-OS-000029, SV-50430r3_rule




inactivity_timeout_value="900"

# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the idle time-out value for inactivity in the GNOME desktop to meet the
# requirement
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type int \
            --set /desktop/gnome/session/idle_delay ${inactivity_timeout_value}
Red Hat and Red Hat Enterprise Linux are either registered trademarks or trademarks of Red Hat, Inc. in the United States and other countries. All other names are registered trademarks or trademarks of their respective companies.