Actual source code: nepimpl.h

slepc-3.14.2 2021-02-01
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2020, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #if !defined(SLEPCNEPIMPL_H)
 12: #define SLEPCNEPIMPL_H

 14: #include <slepcnep.h>
 15: #include <slepc/private/slepcimpl.h>

 17: SLEPC_EXTERN PetscBool NEPRegisterAllCalled;
 18: SLEPC_EXTERN PetscErrorCode NEPRegisterAll(void);
 19: SLEPC_EXTERN PetscLogEvent NEP_SetUp,NEP_Solve,NEP_Refine,NEP_FunctionEval,NEP_JacobianEval,NEP_Resolvent;

 21: typedef struct _NEPOps *NEPOps;

 23: struct _NEPOps {
 24:   PetscErrorCode (*solve)(NEP);
 25:   PetscErrorCode (*setup)(NEP);
 26:   PetscErrorCode (*setfromoptions)(PetscOptionItems*,NEP);
 27:   PetscErrorCode (*publishoptions)(NEP);
 28:   PetscErrorCode (*destroy)(NEP);
 29:   PetscErrorCode (*reset)(NEP);
 30:   PetscErrorCode (*view)(NEP,PetscViewer);
 31:   PetscErrorCode (*computevectors)(NEP);
 32: };

 34: /*
 35:      Maximum number of monitors you can run with a single NEP
 36: */
 37: #define MAXNEPMONITORS 5

 39: typedef enum { NEP_STATE_INITIAL,
 40:                NEP_STATE_SETUP,
 41:                NEP_STATE_SOLVED,
 42:                NEP_STATE_EIGENVECTORS } NEPStateType;

 44: /*
 45:      How the problem function T(lambda) has been defined by the user
 46:      - Callback: one callback to build the function matrix, another one for the Jacobian
 47:      - Split: in split form sum_j(A_j*f_j(lambda))
 48: */
 49: typedef enum { NEP_USER_INTERFACE_CALLBACK=1,
 50:                NEP_USER_INTERFACE_SPLIT } NEPUserInterface;

 52: /*
 53:    To check for unsupported features at NEPSetUp_XXX()
 54: */
 55: typedef enum { NEP_FEATURE_CALLBACK=1,      /* callback user interface */
 56:                NEP_FEATURE_REGION=4,        /* nontrivial region for filtering */
 57:                NEP_FEATURE_CONVERGENCE=16,  /* convergence test selected by user */
 58:                NEP_FEATURE_STOPPING=32,     /* stopping test */
 59:                NEP_FEATURE_TWOSIDED=64      /* two-sided variant */
 60:              } NEPFeatureType;

 62: /*
 63:    Defines the NEP data structure.
 64: */
 65: struct _p_NEP {
 66:   PETSCHEADER(struct _NEPOps);
 67:   /*------------------------- User parameters ---------------------------*/
 68:   PetscInt       max_it;           /* maximum number of iterations */
 69:   PetscInt       nev;              /* number of eigenvalues to compute */
 70:   PetscInt       ncv;              /* number of basis vectors */
 71:   PetscInt       mpd;              /* maximum dimension of projected problem */
 72:   PetscInt       nini;             /* number of initial vectors (negative means not copied yet) */
 73:   PetscScalar    target;           /* target value */
 74:   PetscReal      tol;              /* tolerance */
 75:   NEPConv        conv;             /* convergence test */
 76:   NEPStop        stop;             /* stopping test */
 77:   NEPWhich       which;            /* which part of the spectrum to be sought */
 78:   NEPProblemType problem_type;     /* which kind of problem to be solved */
 79:   NEPRefine      refine;           /* type of refinement to be applied after solve */
 80:   PetscInt       npart;            /* number of partitions of the communicator */
 81:   PetscReal      rtol;             /* tolerance for refinement */
 82:   PetscInt       rits;             /* number of iterations of the refinement method */
 83:   NEPRefineScheme scheme;          /* scheme for solving linear systems within refinement */
 84:   PetscBool      trackall;         /* whether all the residuals must be computed */
 85:   PetscBool      twosided;         /* whether to compute left eigenvectors (two-sided solver) */

 87:   /*-------------- User-provided functions and contexts -----------------*/
 88:   PetscErrorCode (*computefunction)(NEP,PetscScalar,Mat,Mat,void*);
 89:   PetscErrorCode (*computejacobian)(NEP,PetscScalar,Mat,void*);
 90:   void           *functionctx;
 91:   void           *jacobianctx;
 92:   PetscErrorCode (*converged)(NEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 93:   PetscErrorCode (*convergeduser)(NEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
 94:   PetscErrorCode (*convergeddestroy)(void*);
 95:   PetscErrorCode (*stopping)(NEP,PetscInt,PetscInt,PetscInt,PetscInt,NEPConvergedReason*,void*);
 96:   PetscErrorCode (*stoppinguser)(NEP,PetscInt,PetscInt,PetscInt,PetscInt,NEPConvergedReason*,void*);
 97:   PetscErrorCode (*stoppingdestroy)(void*);
 98:   void           *convergedctx;
 99:   void           *stoppingctx;
100:   PetscErrorCode (*monitor[MAXNEPMONITORS])(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
101:   PetscErrorCode (*monitordestroy[MAXNEPMONITORS])(void**);
102:   void           *monitorcontext[MAXNEPMONITORS];
103:   PetscInt       numbermonitors;

105:   /*----------------- Child objects and working data -------------------*/
106:   DS             ds;               /* direct solver object */
107:   BV             V;                /* set of basis vectors and computed eigenvectors */
108:   BV             W;                /* left basis vectors (if left eigenvectors requested) */
109:   RG             rg;               /* optional region for filtering */
110:   SlepcSC        sc;               /* sorting criterion data */
111:   Mat            function;         /* function matrix */
112:   Mat            function_pre;     /* function matrix (preconditioner) */
113:   Mat            jacobian;         /* Jacobian matrix */
114:   Mat            *A;               /* matrix coefficients of split form */
115:   FN             *f;               /* matrix functions of split form */
116:   PetscInt       nt;               /* number of terms in split form */
117:   MatStructure   mstr;             /* pattern of split matrices */
118:   Vec            *IS;              /* references to user-provided initial space */
119:   PetscScalar    *eigr,*eigi;      /* real and imaginary parts of eigenvalues */
120:   PetscReal      *errest;          /* error estimates */
121:   PetscInt       *perm;            /* permutation for eigenvalue ordering */
122:   PetscInt       nwork;            /* number of work vectors */
123:   Vec            *work;            /* work vectors */
124:   KSP            refineksp;        /* ksp used in refinement */
125:   PetscSubcomm   refinesubc;       /* context for sub-communicators */
126:   void           *data;            /* placeholder for solver-specific stuff */

128:   /* ----------------------- Status variables --------------------------*/
129:   NEPStateType   state;            /* initial -> setup -> solved -> eigenvectors */
130:   PetscInt       nconv;            /* number of converged eigenvalues */
131:   PetscInt       its;              /* number of iterations so far computed */
132:   PetscInt       n,nloc;           /* problem dimensions (global, local) */
133:   PetscReal      *nrma;            /* computed matrix norms */
134:   NEPUserInterface fui;            /* how the user has defined the nonlinear operator */
135:   PetscBool      useds;            /* whether the solver uses the DS object or not */
136:   Mat            resolvent;        /* shell matrix to be used in NEPApplyResolvent */
137:   NEPConvergedReason reason;
138: };

140: /*
141:     Macros to test valid NEP arguments
142: */
143: #if !defined(PETSC_USE_DEBUG)

145: #define NEPCheckProblem(h,arg) do {} while (0)
146: #define NEPCheckCallback(h,arg) do {} while (0)
147: #define NEPCheckSplit(h,arg) do {} while (0)
148: #define NEPCheckDerivatives(h,arg) do {} while (0)
149: #define NEPCheckSolved(h,arg) do {} while (0)

151: #else

153: #define NEPCheckProblem(h,arg) \
154:   do { \
155:     if (!((h)->fui)) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"The nonlinear eigenproblem has not been specified yet. Parameter #%d",arg); \
156:   } while (0)

158: #define NEPCheckCallback(h,arg) \
159:   do { \
160:     if ((h)->fui!=NEP_USER_INTERFACE_CALLBACK) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"This operation requires the nonlinear eigenproblem specified with callbacks. Parameter #%d",arg); \
161:   } while (0)

163: #define NEPCheckSplit(h,arg) \
164:   do { \
165:     if ((h)->fui!=NEP_USER_INTERFACE_SPLIT) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"This operation requires the nonlinear eigenproblem in split form. Parameter #%d",arg); \
166:   } while (0)

168: #define NEPCheckSolved(h,arg) \
169:   do { \
170:     if ((h)->state<NEP_STATE_SOLVED) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"Must call NEPSolve() first: Parameter #%d",arg); \
171:   } while (0)

173: #endif

175: /* Check for unsupported features */
176: #define NEPCheckUnsupportedCondition(nep,mask,condition,msg) \
177:   do { \
178:     if (condition) { \
179:       if (((mask) & NEP_FEATURE_CALLBACK) && (nep)->fui==NEP_USER_INTERFACE_CALLBACK) SETERRQ2(PetscObjectComm((PetscObject)(nep)),PETSC_ERR_SUP,"The solver '%s'%s cannot be used with callback functions (use the split operator)",((PetscObject)(nep))->type_name,(msg)); \
180:       if ((mask) & NEP_FEATURE_REGION) { \
181:         PetscBool      __istrivial; \
182:         PetscErrorCode __RGIsTrivial((nep)->rg,&__istrivial);CHKERRQ(__ierr); \
183:         if (!__istrivial) SETERRQ2(PetscObjectComm((PetscObject)(nep)),PETSC_ERR_SUP,"The solver '%s'%s does not support region filtering",((PetscObject)(nep))->type_name,(msg)); \
184:       } \
185:       if (((mask) & NEP_FEATURE_CONVERGENCE) && (nep)->converged!=NEPConvergedRelative) SETERRQ2(PetscObjectComm((PetscObject)(nep)),PETSC_ERR_SUP,"The solver '%s'%s only supports the default convergence test",((PetscObject)(nep))->type_name,(msg)); \
186:       if (((mask) & NEP_FEATURE_STOPPING) && (nep)->stopping!=NEPStoppingBasic) SETERRQ2(PetscObjectComm((PetscObject)(nep)),PETSC_ERR_SUP,"The solver '%s'%s only supports the default stopping test",((PetscObject)(nep))->type_name,(msg)); \
187:       if (((mask) & NEP_FEATURE_TWOSIDED) && (nep)->twosided) SETERRQ2(PetscObjectComm((PetscObject)(nep)),PETSC_ERR_SUP,"The solver '%s'%s cannot compute left eigenvectors (no two-sided variant)",((PetscObject)(nep))->type_name,(msg)); \
188:     } \
189:   } while (0)
190: #define NEPCheckUnsupported(nep,mask) NEPCheckUnsupportedCondition(nep,mask,PETSC_TRUE,"")

192: /* Check for ignored features */
193: #define NEPCheckIgnoredCondition(nep,mask,condition,msg) \
194:   do { \
195:     PetscErrorCode __ierr; \
196:     if (condition) { \
197:       if (((mask) & NEP_FEATURE_CALLBACK) && (nep)->fui==NEP_USER_INTERFACE_CALLBACK) { __PetscInfo2((nep),"The solver '%s'%s ignores the user interface settings\n",((PetscObject)(nep))->type_name,(msg)); } \
198:       if ((mask) & NEP_FEATURE_REGION) { \
199:         PetscBool __istrivial; \
200:         __RGIsTrivial((nep)->rg,&__istrivial);CHKERRQ(__ierr); \
201:         if (!__istrivial) { __PetscInfo2((nep),"The solver '%s'%s ignores the specified region\n",((PetscObject)(nep))->type_name,(msg)); } \
202:       } \
203:       if (((mask) & NEP_FEATURE_CONVERGENCE) && (nep)->converged!=NEPConvergedRelative) { __PetscInfo2((nep),"The solver '%s'%s ignores the convergence test settings\n",((PetscObject)(nep))->type_name,(msg)); } \
204:       if (((mask) & NEP_FEATURE_STOPPING) && (nep)->stopping!=NEPStoppingBasic) { __PetscInfo2((nep),"The solver '%s'%s ignores the stopping test settings\n",((PetscObject)(nep))->type_name,(msg)); } \
205:       if (((mask) & NEP_FEATURE_TWOSIDED) && (nep)->twosided) { __PetscInfo2((nep),"The solver '%s'%s ignores the two-sided flag\n",((PetscObject)(nep))->type_name,(msg)); } \
206:     } \
207:   } while (0)
208: #define NEPCheckIgnored(nep,mask) NEPCheckIgnoredCondition(nep,mask,PETSC_TRUE,"")

210: SLEPC_INTERN PetscErrorCode NEPSetDimensions_Default(NEP,PetscInt,PetscInt*,PetscInt*);
211: SLEPC_INTERN PetscErrorCode NEPComputeVectors(NEP);
212: SLEPC_INTERN PetscErrorCode NEPReset_Problem(NEP);
213: SLEPC_INTERN PetscErrorCode NEPGetDefaultShift(NEP,PetscScalar*);
214: SLEPC_INTERN PetscErrorCode NEPComputeVectors_Schur(NEP);
215: SLEPC_INTERN PetscErrorCode NEPComputeResidualNorm_Private(NEP,PetscBool,PetscScalar,Vec,Vec*,PetscReal*);
216: SLEPC_INTERN PetscErrorCode NEPNewtonRefinementSimple(NEP,PetscInt*,PetscReal,PetscInt);

218: #endif