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Abstract

This document is intended for knowledgeable users of C (or any other language using a C-like grammar,
like Perl or Java) who would like to know more about, or make the transition to, C++. This document is
the main textbook for Frank’s C++ programming courses, which are yearly organized at the University
of Groningen. The C++ Annotations do not cover all aspects of C++, though. In particular, C++’s basic

grammar is not covered when equal to C’s grammar. Any basic book on C may be consulted to refresh
that part of C++’s grammar.

If you want a hard-copy version of the C++ Annotations: printable versions are available in zip-
archives containing files in postscript, pdf and other formats at

https://gitlab.com/fbb-git/cppannotations—-zip

Pages of files having names starting with cplusplus are in A4 paper size, pages of files having names

starting with cplusplusus are in the US legal paper size. The C++ Annotations are also available as
a Kindle book.

The latest version of the C++ Annotations in html-format can be browsed at:
https://fbb-git.gitlab.io/cppannotations/

and/or at
http://www.icce.rug.nl/documents/



Contents

1 Overview Of The Chapters

2 Introduction

2.1 What’s new in the C++ Annotations . . . . . . . . . . . . . . .. . . . e

2.2 C++shistory . . .. ....

2.2.1 History of the C++ Annotations . . . . ... ... ... ... ... ..........

2.2.2  Compiling a C program using a C++ compiler . . . . ... ... ... ........

2.2.3  Compiling a C++ program . . . . . . . . . . . . i i e e e e

2.3 C++:advantagesand claims . . . . . . . . ... ...

2.4 What is Object-Oriented Programming? . . . . ... .. .. .. ... ... ..........

2.5 Differencesbetween Cand C++ . . . . . . . . . . . . e

2.5.1 The function ‘main’

2.5.2 End-of-linecomment . .. ... .. ... ..
2.5.3 Strict typechecking . . . . . . . ... ...
2.5.4 Function Overloading . . . . . . . . . . . . . . . . . e
2.5.5 Default function arguments . . .. .. ... . ... ... ... .. ... ...
2.5.6 NULL-pointers vs. O-pointers and nullptr . . . .. ... ... ... .........
2.5.7 The ‘void’ parameter list . . . . .. .. .. .. ... .. ...
2.5.8 The ‘#define __cplusplus’ . . . . . . . . .. . . . e
2.5.9 Using standard C functions . . . . .. ... .. ... ... .. ... ... ...,
2.5.10 Header filesforbothCand C++ . . . . . .. .. .. ... ... . ... .......
2.5.11 Defininglocal variables . . . . . . . . . . . . .. ...
2.5.12 The keyword ‘typedef’ . . . . . . . . .. ...
2.5.13 Functions as partofastruct . . ... ... ... ... . ... ... . ... ...
2.5.14 Evaluation orderofoperands. . . . . . ... .. .. . ... ... ...

3 A First Impression Of C++
3.1 Notable differences with C

© © 00 = & ot ot B bk~ W

I e e e e e e e Y o = S e S
© 0 0 O Ut R kxR~ WD - O O

21



3.2

3.3

3.4

3.5

3.1.2 Namespaces . . . . . v v i v it e e e e e e e e e e e e e 24

3.1.3 The scope resolution operator :: . . . ... .. ... . .. ... ... 24
3.1.4 ‘cout’, ‘cin’,and ‘cerr’ . . . . . . ... e e 25
Functions as part of structs . . . . . . . . . .. . .. ... 26
3.2.1 Data hiding: public, privateand class . . . . . ... ... .. ... ... ....... 27
3.22 StructsinCvs.structsinC++ . . . . . ... ... 29
Several additions to C’s grammar . . . . . . . . . . ... ... 30
3.3.1 References . . ... . . . . . 30
3.3.2 Rvalue References . . . . . . . . .. .. L 33
3.3.3 Lvalues,rvaluesandmore . . . .. .. .. . . . . .. ... 36
3.3.4 Strongly typed enumerations. . . . . . ... ... ... .. 37
3.3.5 Inmitializerlists . . . . . . . . . ... 38
3.3.6  Initializers for bit-fields . . . . . .. ... ... L L oL 40
3.3.7 Typeinference using ‘auto’ . . . . . . . .. . . . .. .. ... 41
3.3.8 Defining types and ‘using’ declarations . . . . . .. .. ... ... .......... 45
3.3.9 Range-based for-loops . . . . . . . ... ... 46
3.3.10 Raw String Literals . . . . . . . . . . . . .. . .. .. e 48
3.3.11 Binaryconstants . . . . . . . . . .. L e e 49
3.3.12 Selection statements with initializers . . . . . . ... ... ... L0000, 49
3.3.13 Attributes . . . . . .. 50
3.3.14 Three-way comparison (<=>>) . . . . . . . i v v vt e e e e e 52
New language-defined datatypes . . . . . . . . . . . .. ... .. .. .. .. . ... ... .. 52
3.4.1 Thedatatype ‘bool’ . . . . . . . . . ... 53
3.4.2 Thedatatype ‘wchar_t’ . . . . . ... ... ... . .. ... 54
3.4.3 Unicodeencoding . . . . . .. . . . . . . i e e e e 54
3.4.4 Thedatatype longlongint’ . . ... ... ... ... ... ... .. ... ..... 54
3.4.5 Thedatatype‘size_t’ . .. .. . . . . . . ... e 54
3.4.6 stdibyte . . . . . e e e 55
3.4.7 Digit separators . . . . . . . . . .. e e e e 55
Anewsyntaxforcasts . . . . . . . . . ... e 55
3.5.1 The ‘static_cast’™-operator . . . . . . . . .. ... ... 56
3.5.2 The ‘const_cast’-operator . . . . . . .. .. . .. ... 57
3.5.3 The ‘reinterpret_cast’-operator . . . . . .. . .. .. ... ... ... ... ... 57
3.5.4 The ‘dynamic_cast’-operator . . . . .. ... .. .. . .. ... ... 58



3.6 Keywords and reservednamesin C++ . . . . . .. . .. .. ... ...

4 Namespaces

4.1 NameSPaACES . . . . v v v o e e e e e e e e e e e e e e e e e
4.1.1 Defining namespaces . . . . . . . o v vttt e e e e e e
4.1.2 Referringtoentities . . . . . . . . . . ...
4.1.3 The standard namespace . . . . . . . . . . . .. e e e
4.1.4 Nesting namespaces and namespace aliasing . . . . .. ... ... .........

4.2 The std::chrono namespace (handlingtime) . . . .. ... ... ... .............
4.2.1 Time resolutions: std:ratio . . . . . . .. ... L oL L
4.2.2 Amounts of time: std::chrono::duration . . . . . ... ... ... ... L.
4.2.3 Clocks measuring time . . . . . . . . . .. . . . it
4.2.4 Points in time: std::chrono::time_point . . . . . .. ... .. ... ... ... ...,

4.3 The std::filesystem namespace . . . . . . . . . . . .. e e e e e
4.3.1 the’ file_clock’type . . . . . . . . . . ...
4.3.2 The class’error_code’ . . . . . . ..
4.3.3 Names of file system entries: path . . . . ... ... ... ... ............
4.3.4 Handling directories: directory_entry . . . . . . . . ... .. ... ... ... ... .
4.3.5 Types (file_type) and permissions (perms) of file system elements: file_status
4.3.6 Information about the space of file systems: space_info . . ... ..........
4.3.7 File system exceptions: filesystem_error . . . . ... ... ... ... ........

5 The ‘string’ Data Type
5.1 Operationson strings . . . . . . . . . . . . i i e e e e e
5.2 Astdistring reference . . . . . .. .. e
5.2.1 Inmitializers . . . . . . . . . ..
522 Tterators. . . . . . . . e
5.2.3  0perators . . . . . . . e e e e e
5.24 Member functions . . . . . .. ...
5.2.5 Conversion functions . . . ... ... ... .. L

6 The IO-stream Library
6.1 Special headerfiles . . . . . . . . . . . . e
6.2 The foundation: the class ‘los_base’ . . . . . . . . . . e

6.3 Interfacing ‘streambuf’ objects: the class G0s8’ . . . . . ... ... ... ... .........

iv



6.4 Output . . . . . . . . e e e 122
6.4.1 Basic output: the class ‘ostream’ . . . . .. ... ... ... .. ... ... 123
6.4.2 Output to files: the class ‘ofstream’ . . . . ... ... ... ... ........... 125
6.4.3 Output to memory: the class ‘ostringstream’ . . . . . .. ... ... ......... 127
6.4.4 The ‘put_time’ manipulator . . . . . . . ... ... ... ... 128

6.5 Input . . . . . . . . e e e e 131
6.5.1 Basicinput: the class istream’ . . . . ... ... ... ... .. ... .. ... ... 131
6.5.2 Input from files: the class ‘ifstream’ . . . . ... .. ... ... ............ 134
6.5.3 Input from memory: the class ‘istringstream’ . . . . ... ... ... ........ 135
6.5.4 Copyingstreams . . . . . . . . . . . e e e e 136
6.5.5 Coupling streams . . . . . . . . . . .. ... 137

6.6 Advanced topics . . . . . . . . ... e e 138
6.6.1 Movingstreams . . . . . . . . . ... e e 138
6.6.2 Redirecting streams . . . . . . . . . . ... e e 138
6.6.3 Reading AND Writing streams . . . . . . . . . . .. . .. .. ..., 140

Classes 147

7.1 Theconstructor . . . . . . . . . . e e 149
7.1.1 Afirstapplication . . . .. .. . . .. ... 150
7.1.2  Constructors: with and without arguments . . .. .. ... ... .......... 153

7.2 Ambiguity resolution . . . . . . ... e e e 156
7.2.1 TypesData’vs. Data() . . . . . . . .. . . . e 157
7.2.2 Superfluous parentheses . . . . . ... ... ... .. ... ... . ... 157
7.2.3 Existingtypes . . . . . . . .. e e e 158

7.3 Objects inside objects: composition . . . . . . . .. ... ... 159
7.3.1 Composition and (const) objects: (const) member initializers . ... ........ 159
7.3.2 Composition and reference objects: reference member initializers . .. ... ... 161

7.4 Data member initializers . . . . . . . ... L 162
7.4.1 Delegating constructors . . . . . . . . . ... ... 164

7.5 Uniform initialization . . . . . . . . .. ... e 165

7.6 Defaulted and deleted class members . . . . . ... ... ... oL, 167

7.7 Const member functions and constobjects . . . . . .. ... ... ... ... ... ..., 168
7.7.1 Anonymousobjects . . .. .. . ... 169



7.8.1 Defining membersinline . ... .. .. ... ... .. ... ... ... 173

7.8.2  When to use inline functions . . . . .. .. ... ... Lo oL oo 174
7.8.3 Inlinevariables. . . . . . . . . . e 175
7.9 Local classes: classes inside functions . . . .. .. ... ... . Lo L oL 176
7.10 The keyword ‘mutable’ . . . . . . . . . . . . . .. 177
7.11 Header file organization . . . . . . . . . . . . . . . . . . e e 178
7.11.1 Using namespacesin headerfiles . . . .. ... ... .. ... .. .......... 182
7.12 Modules . . . . . . . e e 183
7.12.1 An minimal demoexample . . . . . . . . ... ... 183
7.12.2 Compileroptions . . . . . . . . . . . e 185
7.12.3 The file ‘module.modulemap’ . . . . . . . .. ... ... . 185
7.12.4 Evaluation . ... .. .. ... 188
7.13 Sizeof applied to class datamembers . . . . . . ... ... ... 189
Static Data And Functions 191
8.1 Staticdata . . . . . . . .. . 191
8.1.1 Privatestaticdata . . . .. .. ... ... 192
8.1.2 Publicstaticdata . . ... .. ... . ... 193
8.1.3 Initializing staticconstdata . . . ... ... .. ... ... ... ... . ... ..., 194
8.1.4 Generalized constant expressions (constexpr) . . . . ... ... ... ... ..... 194
8.2 Static member functions . . . ... .. L 198
8.2.1 Callingconventions . . . . . . . . . . . . . . e e 199
Classes And Memory Allocation 201
9.1 Operators ‘new’ and ‘delete’ . . . . ... . . . . ... ... ... 202
9.1.1  Allocating arrays . . . . . . . . o v i i e e e e e e e e e 203
9.1.2 Deleting arrays . . . . . . . . . . e e e e e 204
9.1.3 Enlarging arrays . . . . . . . . ... e e e e e e e e e 205
9.1.4 Managing ‘raw’ MeMOTY . . . . . v v v v v v e it e e e e e e e e e e e e 206
9.1.5 The ‘placement new’ operator . . . . . .. . . . . . . .. 207
9.2 Thedestructor . . . . . . . . . e 209
9.2.1 Object pointers revisited . . . . . . . . . . . . . ... 211
9.2.2 The function set_new_handler() . . . . . . . .. ... ... .. . 214
9.3 The assignment operator . . . . . . . . . . . ... e e 215
9.3.1 Overloading the assignmentoperator . . . . .. ... .. ... ............ 216

vi



9.4.1 Sequential assignmentsandthis . .. ... ... .. ... .............. 219

9.5 The copy constructor: initialization vs. assignment . . ... ... ... ........... 220
9.6 Revising the assignmentoperator . . . . . . . . .. .. ... ... 222
9.6.1  SWapPINgG . . . . . . . e e e e e e e e 223

9.7 Movingdata . . . . . . ... e e e 227
9.7.1 The move constructor (dynamicdata) . . . . .. ... ... ... ... ........ 229
9.7.2 The move constructor (composition) . . . . . .. ... ... ... .. ......... 230
9.7.3 Move-assignment . . . . . .. ... e e e e e e 232
9.7.4 Revising the assignment operator (part II) . . . . . . . ... ... ... ....... 232
9.7.5 Moving and the destructor . . . .. .. ... ... ... ... ... ... ... ... 233
9.7.6  Move-onlyclasses . .. .. .. . .. . ... e e 233
9.7.7 Default move constructors and assignment operators . . . ... .......... 234
9.7.8 Moving: implications for class design . . . . .. ... ... ... ........... 236

9.8 Copy Elision and Return Value Optimization . . . ... ... ... ... ........... 236
9.9 Unrestricted Unions . . . . . . .. . . e 238
9.9.1 Implementing the destructor . . . . . ... ... ... ... .. ...... .. ..., 239
9.9.2 Embedding an unrestricted union in a surroundingclass . ... .. ... ... .. 240
9.9.3 Swapping unrestrictedunions . . . . ... ... ... 242
9.9.4 Assignment . . . . ... L e e e e e 244

9.10 Aggregate Data Types . . . . . . . . . . . e e e 244
9.11 Conclusion . . . . . . . .. e 245
10 Exceptions 247
10.1 Exception syntax . . . . . . . . . .. e e e e e e e e e 247
10.2 An example using eXceptions . . . . . . . . . . .. e e e e e e e e 248
10.2.1 Anachronisms: ‘setjmp’ and longjmp’ . . . . . . .. ... ... ... ... 250
10.2.2 Exceptions: the preferred alternative . . . . . . .. ... ... .. .......... 251

10.3 Throwing exceptions . . . . . . . . . . . 0 i i i e e e 253
10.3.1 The empty ‘throw’ statement . . . . . . .. .. ... ... ... ... .. ....... 256

10.4 The try block . . . . . . . . . e e 257
10.5 Catching exceptions . . . . . . . . . . . . e e e e e e 258
10.5.1 Thedefaultcatcher . ... ... ... ... ... . . . ... 260

10.6 Declaring (deprecated) exception throwers . . . . ... ... ... .. ... ......... 261
10.6.1 mnoexcept . . . . . . . L e e e e e 263



10.8 Standard exceptions . . . . . . . . ... e e e
10.8.1 Standard exceptions: touseornottouse? . ... .. ... ... ... ........
10.9 System error, error_category, and error_condition . . .. ... ... ... ... .......
10.9.1 The class ‘std::error_category’ . . . . . . . . . . . . ...
10.9.2 The class ‘std::error_condition’ . . . . . . . . . . . ...
10.9.3 Theclass system_error . . . . . . . . . . . . .. . ..
10.10Exception guarantees . . . . . . . . . . .. e e e e e e e
10.10.1 The basic guarantee . . . . . . . . . . . . i i i it e e e e e e e
10.10.2 The strong guarantee . . . . . . . . . . . . . . . . e
10.10.3 The nothrow guarantee . . . . . . . . . . . . . . . . ... . ...,
10.1TFunction try blocks . . . . . . . . . .. e e

10.12ZExceptions in constructors and destructors . . . . . . . ... ... ... ... ... .. ...

11 More Operator Overloading
11.1 Overloading ‘operator[]() . . . . . . . . . . . . . . e e
11.2 Overloading insertion and extraction operators . . . . . .. .. ... ... ... .......
11.3 Conversion operators . . . . . . . o v v v i e e e e e e e e e e e e e e e
11.4 The keyword ‘explicit’ . . . . . . . . . . . . . e
11.4.1 Explicit conversionoperators. . . . . . . . . . . . . . .. e
11.5 Overloading increment and decrement operators . . . . . . . ... ... ... ........
11.6 Overloading binary operators . . . . . . . . . . . . . i i i i it e e
11.6.1 Member function reference bindings (& and &&) . . .. ... ... ... ......
11.6.2 The three-way comparison operator ‘<=>" . . . . ... ... ... ... .......
11.7 Overloading ‘operator new(size_t) . . . . . . . . . . . . . . . e
11.8 Overloading ‘operator delete(void =)’ . . . . . . . . . . . . . . ... ...
11.9 Operators ‘new[]’and ‘delete[]’. . . . . . . . . . . . . . . . .. ... .
11.9.1 Overloading ‘newl[l . . . . . . . . . . . .. . . ..
11.9.2 Overloading ‘delete[]’ . . . . . . .. . . . . . . .. . . . . e
11.9.3 The ‘operator delete(void %, size_t) family . . ... ... ... ... .. .......
11.9.4 ‘newl[], ‘delete[]’ and exceptions . . .. .. . ... ... ... ... ...,
11.10Function Objects . . . . . . . . . . . . e e e
11.10.1 Constructing manipulators . . . . . . . . . . ... ... ... ... ..
11.11Lambda eXpressions . . . . . . . . vt i e e e e e e e e e e e e e e

11.11.1 Lambda expressions: Syntax . . . . . . . . . . o v v v it e e e e e e e



11.12The case of [iolfstream::open() . . . . . . . . . . . . . . . . e 326

11.13User-defined literals . . . . . . . . . . .. 327
11.140verloadable operators . . . . . . . . . . ... e e 328
12 Abstract Containers 331
12.1 Notations used in this chapter . . . . . . . . . . . . . . .. ... .. .. ... 333
12.2 The ‘pair’ container . . . . . . . . . . . . . e e 333
12.3 Allocators . . . . . . L. 335
12.4 Available Containers . . . . . . . . . . . . e 336
12.4.1 The ‘array’ container . . . . . . . . . . . . . . i i e e 336
12.4.2 The ‘vector’ container . . . . . . .. . ... L L 337
12.4.3 The ‘list’ container . . . . . . . ... e 340
12.4.4 The ‘queue’container . . . . . . . . . . . . . i i i it e 347
12.4.5 The ‘priority_queue’ container . . . . . . . . . . . . ... ... 348
12.4.6 The ‘deque’container . . . . . . .. . . . . . ... ... 350
12.4.7 The ‘map’ container . . . . . . . . . . . . . . i i e e 353
12.4.8 The ‘multimap’ container . . . . . . . . .. . .. .. ... ... . 361
12.4.9 The ‘set’ container . . . . . . . . .. .. L 363
12.4.10 The ‘multiset’ container . . . . . . . . . ... .. L 365
12.4.11 The ‘stack’ container . . . . . . . . . .. . L 367
12.4.12 The ‘unordered_map’ container (‘hash table’) . ... ... ... ... ........ 369
12.4.13 The ‘unordered_set’ container . . . . . . . . . . . . v v i i i i 375
12.4.14 Heterogeneouslookup . . . . . . . . . . . . . . .. ... e 378

12.5 The ‘complex’container . . . . . . . . . . . . . . i e e e e e e 378
13 Inheritance 381
13.1 Related types. . . . . . . . o o o e e e e 382
13.1.1 Inheritance depth: desirable? . .. . ... ... ... ... ... .. .. ....... 384

13.2 Access rights: public, private, protected . . . . . . . . ... ... ... L L. 385
13.2.1 Public, protected and private derivation . . . ... ... ... ... ... ...... 386
13.2.2 Promoting accessrights . . . . . . . . . .. ... ... ... 387

13.3 The constructor of a derivedclass . . . . . . .. .. . ... . L 388
13.3.1 Move construction . . . . . .. ... 389
13.3.2 Move assignment . . . . . . . . ... e e e e e 390
13.3.3 Inheriting constructors . . . . . .. . ... ... ... 390



13.4 The destructor of aderived class . . . . . . . . . . . . . . . e 391

13.5 Redefining member functions . . . . . . . . . . .. .. ... .. 392
13.6 Multiple inheritance . . . . . . . . . . . . . .. . e 394
13.7 Conversions between base classes and derivedclasses . . . . .. ... ... ... ...... 397
13.7.1 Conversions with object assignments . . . . ... ... ... ... .......... 397
13.7.2 Conversions with pointer assignments . . . .. .. ... ... ............ 398

13.8 Using non-default constructors withnew[]. . . . . . . ... ... ... ... ... ...... 399
14 Polymorphism 405
14.1 Virtual functions . . . . . . . L 407
14.2 Virtual destructors . . . . . . . ... 410
14.3 Pure virtual functions . . . . . . . ... L 411
14.3.1 Implementing pure virtual functions . . . . .. .. ... ... .. .......... 412

14.4 Explicit virtual overrides . . . . . . . . . . ... e e 413
14.5 Virtual functions and multiple inheritance . . ... ... ... ... ... .. ........ 414
14.5.1 Ambiguity in multiple inheritance. . . . . . .. .. ... ... ... .. .. ... .. 415
14.5.2 Virtualbaseclasses . . . . . . . . . .. 416
14.5.3 When virtual derivation is not appropriate .. . . . . . ... ... ... ... ..... 419

14.6 Run-time type identification . . . . . . . . . . . .. ... 421
14.6.1 The dynamic_castoperator . . . . . . . . . . .. . . ... ... 421
14.6.2 The ‘typeid’ operator. . . . . . . . . . .. e 424

14.7 Inheritance: when to use to achievewhat? . . . . . . ... ... ... ... ..o . 426
14.8 The ‘streambuf’class . . . . . . .. .. . 428
14.8.1 Protected ‘streambuf’ members . . .. ... ... oo oL 430
14.8.2 Theclass filebuf’. . . . . . . ... 434
14.8.3 Safely interfacing streams to another std::streambuf . . . . . .. .. ... ... .. 435

14.9 A polymorphic exceptionclass . . . . . . . . .. e 436
14.10How polymorphism is implemented . . . . . . . .. ... ... ... ... ... . ...... 438
14.11Undefined reference to vtable ... . . . . . . . . .. 441
14.1Virtual constructors . . . . . . . ... L 442
15 Friends 447
15.1 Friend functions . . . . . . . . . . L 447
15.2 Extended friend declarations . . . . . ... .. ... L Lo 449



16.1 Pointers to members: anexample . . . . . . .. ... ... . 451

16.2 Defining pointers tomembers . . . . . . . . .. ... 452
16.3 Using pointerstomembers . . . . . . . . . . . . ... 454
16.4 Pointers to staticmembers . . . . . . . ... L L 457
16.5 Pointer sizes . . . . . . . . . .. e 458
17 Nested Classes 463
17.1 Defining nested class members . . . . . . . . . . . . ... ... ... 465
17.2 Declaring nested classes . . . . . . . . . . . . e e 466
17.3 Accessing private members in nested classes . . . . .. ... ... ... ... ..., 466
17.4 Nesting enumerations . . . . . . . . . . . . . . 0 i e e e 471
17.4.1 Empty enumerations . . . . . . . . . . . . . . e e 472

17.5 Revisiting virtual constructors . . . . . .. .. ... ... ... ... 473
18 The Standard Template Library 475
18.1 Predefined function objects . . . . . . . . . . . . ... 475
18.1.1 Arithmetic functionobjects . . . . . . . . . . ... ... ... 477
18.1.2 Relational functionobjects . . . . . . ... ... ... ... 480
18.1.3 Logical functionobjects . . . . . . . . . . . . ... ... 481
18.1.4 The ‘std:mot_fn’negator . . . ... .. .. . . ... ... ... 481

18.2 Tterators . . . . . . . . 482
18.2.1 std::distance and std::size . . . . .. ... Lo Lo 485
18.2.2 Imsertiterators . . . . . . . . . . . . .. 486
18.2.3 Iterators for ‘istream’ objects . . . . . . . . . .. ... ... 487
18.2.4 Iterators for ‘ostream’ objects. . . . . . . . . . .. ... ... 489

18.3 The class ’unique_ptr’ . . . . . . . . . . . e e e e e e 490
18.3.1 Defining ‘unique_ptr’objects . . . . . . . . . ... 491
18.3.2 Creating a plain ‘unique_ptr’ . . . . . . . . . .. . ... 492
18.3.3 Moving another ‘unique_ptr’ . . . . . . . . . .. ... .. 492
18.3.4 Pointing to a newly allocated object . . . . . . ... ... ... ... ... ...... 493
18.3.5 Operatorsand members . . . . .. .. .. . ... ... ... 494
18.3.6 Using ‘unique_ptr’ objects forarrays . ... .. .. ... ... ... .. ....... 495

18.4 The class ‘shared_ptr’ . . . . . . . . . . . . . . . e 496
18.4.1 Defining ‘shared_ptr’objects . . . . . . . . . .. ... ... .. 496
18.4.2 Creating a plain ‘shared_ptr’ . . . . . . .. . .. ... ... ... ... 497



18.4.4 Operatorsand members . . . . .. . . .. . ... ... ... 498

18.4.5 Castingsharedpointers. . . . . . . . . . . . ... .. .. ... . e 499
18.4.6 Using ‘shared_ptr’ objects forarrays . ... ... ... ... ... ... ....... 500

18.5 Smart ‘smart pointer’ construction: ‘make_shared’ and ‘make_unique’ . .. ... ... .. 501
18.6 Classes having pointer data members . . . .. ... .. .. ... ... .. .......... 501
18.7 Comparison classes . . . . . . . . . .. e e e e e 504
18.7.1 Theclass ‘weak_equality’ . . . . . . . . . . . . . ... ... 504
18.7.2 The class ‘strong_equality’ . . . .. .. ... .. ... .. ... ... 504
18.7.3 The class ‘partial_ordering’ . . . . . . . . . . . . ... ... 505
18.7.4 The class ‘weak_ordering’ . . . . . . . . . . . . . . ... 505
18.7.5 The class ‘strong_ordering’ . . . . . . . . . . .. ... ... 506

18.8 Regular Expressions . . . . . . . . . . . . . e e e e 506
18.8.1 The regular expression mini language . . ... ... ... ... ... ........ 507
18.8.2 Defining regular expressions: std:iregex . . . . . . . .. ... ... ... 509
18.8.3 Retrieving matches: std::match_results. . . . ... ... ... .. ... ....... 512
18.8.4 Regular expression matching functions . . . . . .. .. ... ... L. 514

18.9 Randomization and Statistical Distributions . . . . ... .. ... ... ... ... ..... 520
18.9.1 Random Number Generators . . . . . . ... .. ... ... ... ... 521
18.9.2 Statistical distributions . . . . . .. ... o L L 522
18.10KIE . . o . o e e e 535
19 The STL Generic Algorithms 539
19.1 The Generic Algorithms . . . . . . . . . . . . . . . e 539
19.1.1 accumulate . . . . . . . .. 540
19.1.2 adjacent_difference . . . . . . . . . ... ... 541
19.1.3 adjacent_find . . . . . . . . ... e 542
19.1.4 binary_search . . . . . . . . . . ... e 543
19.1.5 COPY &« v v e e e e e e e e e e e 545
19.1.6 copy_backward . . . . . . . .. ... 545
19.1.7 count. . . .. . . e 546
19.1.8 count_if . . . . . . 547
19.1.9 equal. . . . . . .. e e 547
19.1.10 equal_range . . . . . . . . .. e e e e e 549
19.1.11 exchange . . . . . . . . . . e e e e 550



19113 fill n ..o L 551

19.1.14 find . . . . L e 552
19.1.15 find_end . . . . . . .. e 553
19.1.16 find_first_of . . . . . . . . 554
19.1.17 find_if . . . L 555
19.1.18 for_each . . . . . . . 556
19.1.19 generate . . . . . . . L e e e e e e e e 559
19.1.20 generate_n . . . . . .. L e e e e e e e e e 559
19.121 includes . . . . . . .o e 560
19.1.22 inner_product . . . . . . . . ... e e e e e e 562
19.1.23 inplace_merge . . . . . . . . ... e e e e 563
19.1.24 iter_SwWap . . . . . . e e e e e e e e e e e e e e 564
19.1.25 lexicographical_compare . . . . . . . . . . . . . . 565
19.1.26 lower_bound . . . . . . . . . e 567
19.1.27 MaX . . o o e e 568
19.1.28 max_element . . . . . . . .. e 569
19.1.29 merge . . . . .. e e e e e e e e e 570
19.1.30 MIn. . . . oL e e 571
19.1.31 min_element . . . . . . . . 572
19.1.32 mismatch . . . . . .o 573
19.1.33 next_permutation . . . ... .. .. ... e 574
19.1.34 nth_element . . . . . . . . . e 576
19.1.835 partial_sort . . . . . . . .. e e e e 577
19.1.36 partial_sort_copy . . . . . . . ... e e e e e 578
19.1.37 partial_sum . . . . . . ... e e 579
19.1.88 partition . . . . . . . . L e e e e 580
19.1.39 prev_permutation . . . .. . .. .. ... .. 581
19.1.40 remOvVe . . . . . . e e e e e e e 582
19.1.41 Te€mMOVE_COPY - « « v v v o e e e e e e e e e e e e e e e e e e e e e e e e 583
19.1.42 remove_copy_if . . . . . . . L e e 584
19.1.43 remove_if . . . . . L e e 585
19.1.44 replace . . . . . . . L e 586
19.1.45 replace_copy . . . . . o i e e e e e e e e e e 586
19.1.46 replace_copy_if . . . . . . .. e 587



19.1.48 reverse . . . . . . o o e e e e e e e 588

19.1.49 reVerSE_COPY - « v v v v o e e e e e e e e e e e e e e e e e e e e e 589
19.1.50 rotate . . . . . . . 590
19.1.51 rotate_CoOPY . . . .« o o e e e e e e e e e e 590
19.1.52 search . . . . . . . L 591
19.1.53 search_n . . . . . . . e 592
19.1.54 set_difference . . . . . . . . . e 593
19.1.55 set_intersection . . . . . . . . . . . e e e 594
19.1.56 set_symmetric_difference . . . . . . . . ... ... ... . 595
19.1.57 set_union . . . . . . o o e e e e e 596
19158 sort . . . . o o 597
19.1.59 stable_partition . . . . . . . . . . . ... e e 598
19.1.60 stable_sort . . . . . . ... e 599
19.1.61 SWaAP . . . . o o e e e e e e e e e e e e e e 601
19.1.62 SWaP_TaNZES . . . . . v o v e e e e e e e e e e e e e e e e e e e e 602
19.1.63 transform . . . . . .. 603
19.1.64 unique . . . . . oL e e 604
19.1.65 UNIQUE_COPY  + « « « v v v e e e e e e e e e e e e e e e e e e e e 606
19.1.66 upper_bound . . . . . . ... e e 607
19.1.67 Heap algorithms . . . . . . . . . . . . . .. e 609

20 Multi Threading 615
20.1 Multi Threading . . . . . . . . . . . e e e e e 616
20.1.1 The namespace std::this_thread . . . . .. .. ... ... ... ... ......... 616
20.1.2 Theclass std::thread . . . . . ... .. L 617

20.2 Synchronization (mutexes) . . . . . . . . . . .. ... e e e e 626
20.2.1 Initialization in multi-threaded programs . . . .. ... ... ... ......... 628
20.2.2 Shared mutexes . . . . . . . . . . e 630

20.3 Locks and lock handling . . . . .. .. ... .. ... . . . .. .. 631
20.3.1 Deadlocks . . . . . . . 634
20.3.2 Sharedlocks . . . . . . . . .. 636
20.4 Event handling (condition variables) . . . . .. .. ... ... ... ... ... . ... .... 637
20.4.1 The class std::condition_variable . . . .. . . . . . . .. .. ... .. 639
20.4.2 The class std::condition_variable_any . . . . . . .. . ... ... ........... 641

Xiv



20.5 Atomic actions: mutexes not required . . . .. .. ... ... ... .. 644

20.6 An example: threaded quicksort . . . . . . . .. ... ... ... 647
20.7 Shared States . . . . . . . . e 651
20.8 Asynchronous return objects: std::future . . . . . ... ... ... L. 652
20.8.1 The std::future_error exception and the std::future_errcenum ... ... ... .. 654

20.9 Shared asynchronous return objects: std::shared_future . .. ... ... .......... 655
20.108tarting a new thread: std::async . . . . . . . . .. ... . ... 657
20.11Preparing a task for execution: std::packaged_task . ... ... ... ..... ... .... 660
20.12The class ‘std::promise’ . . . . . . . . . . .. e e e e e 664
20.12.1 Exception propagation: std::exception_ptr . . . .. ... .. ... ... .. ..... 667
20.13An example: multi-threaded compilations . . . . . ... .. ... ... ... ......... 668
20.14Transactional Memory . . . . . . . . . . . .. e e e e e 672
21 Function and Variable Templates 675
21.1 Defining function templates . . . . . . . . . . . . ... .. 675
21.1.1 Considerations regarding template parameters . . . . . .. ... .. ... ..... 677
21.1.2 Autoand decltype . . . . . . . . . ... 680
21.1.3 Late-specifiedreturntype . .. .. .. .. . . . ... ... ... .. 683

21.2 Passing arguments by reference (reference wrappers) . . . . .. ... ... ... ...... 685
21.3 Using local and unnamed types as template arguments . . . . ... ... .......... 686
21.4 Template parameter deduction . . . . . .. .. .. ... ... ... ... ... 687
21.4.1 Lvalue transformations . . . . . .. ... ... .. 688
21.4.2 Qualification transformations . . . .. .. . .. ... ... ... 690
21.4.3 Transformationtoabaseclass . . . ... ... ... ... ... . ... ... ... 690
21.4.4 The template parameter deduction algorithm . . . ... ... ... ... ...... 691
21.4.5 Template type contractions . . . . . . . .. . . . .. .. ... ... 692

21.5 Declaring function templates . . . . . . . . .. ... ... . 693
21.5.1 Instantiation declarations . . ... .. ... ... ... .. L., 694

21.6 Instantiating function templates . . . . . . .. ... ... ... ... . ... 694
21.6.1 Instantiations: no ‘code bloat’ . . . ... .. ... ... L L L. 696
21.7 Using explicit template types . . . . . . . . . . ... 697
21.8 Overloading function templates . . . . . . . . . . . . .. . ... .. .. .. ... 698
21.8.1 An example using overloaded function templates . . . . ... ... ... ...... 699
21.8.2 Ambiguities when overloading function templates . . . .. ... .......... 700

XV



21.9 Specializing templates for deviatingtypes . . . . . . . . ... ... ... ... 701

21.9.1 Avoiding too many specializations . . . . . . .. .. ... ... ... ... ... 703
21.9.2 Declaring specializations . . . . . ... .. .. ... . 704
21.9.3 Complications when using the insertion operator . . . . . . .. ... ... ..... 704
21.108tatic assertions . . . . . . .. L e e e 705
21.1MNumeric imits . . . . . . . . L e e 705
21.12Polymorphous wrappers for function objects . . . . . . . ... ... L L. 708
21.13Compiling template definitions and instantiations . . . . . ... ... .. ... ....... 709
21.14The function selection mechanism . . . . . ... .. ... ... L Lo oL 710
21.14.1 Determining the template type parameters . . .. ... ... ... ... ...... 711
21.155FINAE: Substitution Failure IsNot AnError . . . . . ... ... ... ... ........ 714
21.16Conditional function definitions using ‘if constexpr’ . . . . . . ... ... ... ... .... 715
21.17Summary of the template declarationsyntax . . . ... ... ... ... ........... 715
21.18Variables as templates (template variables) . . . . . .. ... ... ... ........... 716
22 Class Templates 717
22.0.1 Template Argument Deduction . . . ... ... ... .. .. ............. 718

22.1 Defining class templates . . . . . . . . . . . .. e 724
22.1.1 Constructing the circular queue: CirQue . . . . . . . .. .. ... ... .. ..... 725
22.1.2 Non-type parameters . . . . . . . . . . . . e e e e 726
22.1.3 Member templates . . . . . . . ... 728
22.1.4 CirQue’s constructors and member functions . . . ... ... ... ... ...... 730
22.1.5 Using CirQueobjects . . . . . . . . . . . . . . e e 735
22.1.6 Default class template parameters . . ... .. ... ... ... ... ........ 735
22.1.7 Declaring classtemplates . . . . . . . . .. ... 736
22.1.8 Preventing template instantiations . . . . ... ... ... ... 0oL, 736
22.1.9 Generic lambda expressions . . . . . . ... ... e e 738

22.2 Static data members . . . . ... 741
22.2.1 Extended use of the keyword ‘typename’ . . . . . . . . ... ... ... ... ... 741

22.3 Specializing class templates for deviatingtypes. . . . . . . . . ... ... ... . ... ... 744
22.3.1 Example of a class specialization . .. ... . ... ... ... ... ......... 745

22.4 Partial specializations . . . . . . . . . . . ... e e 747
22.4.1 Intermezzo: some simple matrix algebraic concepts . . .. ... ... ... .... 748
22.4.2 The Matrix class template . . . . ... ... .. ... ... .. ... ... ..., 749



22.4.4 The MatrixColumn partial specialization. . . . .. ... ... ... ......... 752

22.4.5 The 1x1 matrix: avoid ambiguity . . . ... .. .. ... ... ... . ... ..... 753

22.5 Variadic templates . . . . . . . . . e e e 754
22.5.1 Defining and using variadic templates . . ... ... . ... ... .......... 756
22.5.2 Perfect forwarding . . . . . . . . .. .. e e 757
22.5.3 The unpack operator . . . . . . .. . . . . . . ... ... 760
22.5.4 Non-type variadictemplates . . . . . ... ... .. ... ... ... . 761
22.5.5 Folding eXpressions . . . . . . . . . o ittt e e e e e e 762

22.6 Tuples . . . . . . . e e 763
22.6.1 Tuples and structured bindings . . . . .. ... ... ... ... ... ........ 765

22.7 Computing the return type of function objects . . . .. .. ... ... ... ......... 768
22.8 Instantiating class templates . . . . . . . . .. ... .. ... 770
22.9 Processing class templates and instantiations . . . . . ... ... ... ... .. L. 772
22.1MDeclaring friends . . . . . . . . L e e 772
22.10.1 Non-templates used as friends in templates . . . . . ... ... ... ... ..... 773
22.10.2 Templates instantiated for specific typesas friends . . . . . ... ... ... .... 775
22.10.3 Unbound templatesas friends . . . . ... ... ... ... .. ............ 778
22.10.4 Extended friend declarations . . . . . . ... ... L. Lo Lo oL 781
22.11Class template derivation . . . . . . . . . . . . . . ... 781
22.11.1 Deriving ordinary classes from class templates . . . .. ... ... ......... 783
22.11.2 Deriving class templates from class templates . . . . . . .. .. ... ... .. ... 784
22.11.3 Deriving class templates from ordinary classes . . . . ... ... .......... 786
22.18tatic Polymorphism . . . . . . . . ... e 791
22.12.1 An example of static polymorphism . . . . . . ... ... .. ... . ......... 792
22.12.2 Converting dynamic polymorphic classes to static polymorphic classes . . . . .. 795
22.12.3 Using static polymorphism to avoid reimplementations . . ... .. ... ... .. 800
22.13Class templates and nesting . . . . . . . . . . . . ... 801
22.14Constructing iterators . . . . . . . . .. e e e 803
22.14.1 Implementing a ‘RandomAccesslterator’ . . . . .. ... ... ... ... ...... 805
22.14.2 Implementing a ‘reverse_iterator’ . . . . . . .. ... ... L. 810

23 Advanced Template Use 815
23.1 Subtleties . . . . . .. L e e 815
23.1.1 Returning types nested under class templates . . . . . .. ... ... ........ 816

xvii



23.1.3 :template, .template and ->template . . . . . ... ... oL, 819

23.2 Template Meta Programming . . . . . . . . . . . . . . . . . . 822
23.2.1 Values according totemplates . . . .. ... .. ... .. ... ... .. ... ..., 822
23.2.2 Selecting alternatives using templates . . . . . ... ... ... ... ........ 824
23.2.3 Templates: Iterations by Recursion . . . . ... .. ... ... ............ 828

23.3 User-defined literals . . . . . . . . .. . . .. 829

23.4 Template template parameters . . . . . . . . . . . . . . ... 832
23.4.1 Policyclasses-1 . . . . . . . . .. 833
23.4.2 Policy classes - II: template template parameters . . . . ... ... ... ...... 835
23.4.3 Structure by Policy . . .. ... . ... ... 838

23.5 Alias Templates . . . . . . . . . . e e e e 839

23.6 Trait classes . . . . . . . . . e e 840
23.6.1 Distinguishing class from non-classtypes . .. ... ... ... ... ........ 843
23.6.2 Available typetraits . . . . . . . .. ... 845

23.7 Defining ‘ErrorCodeEnum’ and ’ErrorConditionEnum’ enumerations . . . . ... ... .. 849
23.7.1 Deriving classes from std::error_category . .. ... . ... ... ... ... .... 851

23.8 Using ‘noexcept’ when offering the ‘strong guarantee’ . . . . . ... ... ... ....... 854

23.9 More conversions to class types . . . . . . . . . ... 855
23.9.1 Typestotypes . . . . . . . . . e e e e e 855
23.9.2 Anemptytype . . . . . . . . e e e e e 857
23.9.3 Typeconvertibility . . . . . . . . . . . ... 857

23.10Template TypeList processing . . . . . . . . . . . . . i i i e e e e e e 860
23.10.1 The length of a TypeList . . . . . . . . .. . . . . . . . ... 861
23.10.2 Searching a TypeList . . . . . . . . . . .. . . . . e 862
23.10.3 Selecting froma TypeList. . . . . . . . .. . ... ... .. ... 863
23.10.4 Prefixing/Appendingtoa TypeList . . ... ... ... ... ... .......... 864
23.10.5 Erasing from a TypeList . . . . . . . . .. . . ... . . .. .. . e 864

23.11Using a TypeList . . . . . . . . . . . e e e 869
23.11.1 The Wrap and Multi class templates . . . ... ... .. ... ............ 869
23.11.2 The MultiBase class template . . . .. .. ... ... ... .. ... ......... 871
23.11.3 Support templates . . . . . . . ... 872
23.11.4 Using Multi . . . . . . .o e 874

23.1Kxpression Templates . . . . . . . . . . .. e 875
23.12.1 Designing an Expression Template . . . . .. ... ... ... ... ......... 876

xviil



23.12.3 The BasicType trait class and orderingclasses . ... ... ... .......... 878

23.1300ncCePtS . . . . . e e e e e 879
23.13.1 Defining concepts . . . . . . . . .. e e e e e e 881
23.13.2 Requirements. . . . . . . . . . . .. e e e e e e e 882
23.13.3 Predefined concepts . . . . . . . . . . . e e 889
23.13.4 Applying concepts to template parameter packs . . . . . .. ... ... .. ... .. 895
23.13.5 Implementing constrained class members . . . .. ... .. ... .. ........ 897

24 Concrete Examples 901

24.1 Using file descriptors with ‘streambuf’classes . . . .. .. ... ... ... .. ....... 901
24.1.1 Classes for output operations . . . . ... ... ... .. ... ... 901
24.1.2 Classes for input operations . . . . . . ... .. .. . .. ... 904
24.1.3 Fixed-sized field extraction from istream objects . . ... ... ... ... ..... 914

24.2 The “fork’ system call . . . . . . . . . . . . . . e 917
24.2.1 AbasicForkclass . . ... ... ... 918
24.2.2 Parentsand Children . . . . ... .. ... . ... .. 920
24.2.3 Redirection revisited . . . . ... .. ... 921
24.2.4 The ‘Daemon’ program . . . . . . . . . v v i i v i e e e e e e 922
24.2.5 Theclass ‘Pipe’ . . . . . . . . . . e e e 923
24.2.6 The class ‘ParentSlurp’ . . . . . . . . . . . . . . e 924
24.2.7 Communicating with multiple children . . . . . . . ... ... ... ... ...... 926

24.3 Adding binary operatorstoclasses . . ... ... .. .. ... ... ... 939
24.3.1 Merely using operators . . . . . . . . . . . . e e e e 940
24.3.2 The CRTP and defining operator function templates . . . . . ... ... ... ... 941
24.3.3 Insertion and extraction . .. .. ... ... ... ... .. 942

24.4 Distinguishing lvalues from rvalues with operator[1() . . . ... ... ... ... ...... 943

24.5 Implementing a ‘reverse_iterator’ . . . . . . . . . ... 945

24.6 Using ‘bisonc++ and ‘flexc++ . . . . . . . . . ... e 948
24.6.1 Using ‘flexc++ tocreateascanner. . . . . . . . . . . . . . it 949
24.6.2 Using ‘bisonc++ and “flexc++ . . . . . . . . .. ... 953

Index 963

Xix



XX



Chapter 1

Overview Of The Chapters

The chapters of the C++ Annotations cover the following topics:

¢ Chapter 1: This overview of the chapters.

¢ Chapter 2: A general introduction to C++.

* Chapter 3: A first impression: differences between C and C++.

* Chapter 4: Name Spaces: how to avoid name collisions.

¢ Chapter 5: The ‘string’ data type.

¢ Chapter 6: The C++ I/O library.

* Chapter 7: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of a class.
* Chapter 8: Static data and functions: members of a class not bound to objects.

® Chapter 9: Allocation and returning unused memory: new, delete, and the function
set_new_handler ().

¢ Chapter 10: Exceptions: handle errors where appropriate, rather than where they occur.
¢ Chapter 11: Give your own meaning to operators.

* Chapter 12: Abstract Containers to put stuff into.

¢ Chapter 13: Building classes upon classes: setting up class hierarchies.

¢ Chapter 14: Changing the behavior of member functions accessed through base class pointers.
* Chapter 15: Gaining access to private parts: friend functions and classes.

¢ Chapter 16: Classes having pointers to members: pointing to locations inside objects.

® Chapter 17: Constructing classes and enums within classes.

¢ Chapter 18: The Standard Template Library.

¢ Chapter 19: The STL generic algorithms.

¢ Chapter 20: Multi Threading.

¢ Chapter 21: Function templates: using molds for type independent functions.

¢ Chapter 22: Class templates: using molds for type independent classes.

* Chapter 23: Advanced Template Use: programming the compiler.

¢ Chapter 24: Several examples of programs written in C++.

1






Chapter 2

Introduction

This document offers an introduction to the C++ programming language. It is a guide for C/C++
programming courses, yearly presented by Frank at the University of Groningen. This document is
not a complete C/C++ handbook, as much of the C-background of C++ is not covered. Other sources
should be referred to for that (e.g., the on-1ine book! suggested to me by George Danchev (danchev
at spnet dot net)).

The reader should be forewarned that extensive knowledge of the C programming language is actually
assumed. The C++ Annotations continue where topics of the C programming language end, such as
pointers, basic flow control and the construction of functions.

Some elements of the language, like specific lexical tokens (like digraphs (e.g., <: for [, and >: for 1))
are not covered by the C++ Annotations, as these tokens occur extremely seldom in C++ source code.
In addition, trigraphs (using ??< for {, and ??> for }) have been removed from C++.

The working draft of the C++ standard is freely available, and can be cloned from the git-repository at
https://gitlab.com/cplusplus/draft.git

The version number of the C++ Annotations (currently 11.5.0) is updated when the content of the
document change. The first number is the major number, and is probably not going to change for some
time: it indicates a major rewriting. The middle number is increased when new information is added to
the document. The last number only indicates small changes; it is increased when, e.g., series of typos
are corrected.

This document is published by the Center of Information Technology, University of Groningen, the
Netherlands under the GNU General Public License?.

The C++ Annotations were typeset using the yodl1?® formatting system.

All correspondence concerning suggestions, additions, improvements or changes
to this document should be directed to the author:

Frank B. Brokken
University of Groningen,
PO Box 407,

9700 AK Groningen
The Netherlands
(email: f.b.brokken@rug.nl)

In this chapter an overview of C++’s defining features is presented. A few extensions to C are reviewed
and the concepts of object based and object oriented programming (OOP) are briefly introduced.

Thttp://publications.gbdirect.co.uk/c_book/
2http://www.gnu.org/licenses/
Shttps:/fbb-git.gitlab.io/yodl/



This section is modified when the first or second part of the version number changes (and occasionally
also for the third field of the version number). At a major version upgrade the entries of the previous
major version are kept, and entries referring to older releases are removed.

® Version 11.5.0 adds section 18.10 to chapter 18 showing how local variables can directly be asso-
ciated with structured data returned by functions.

* Version 11.4.0 contains a complete overhaul of section 23.13, covering the C++2a concepts.

® Version 11.3.0 covers the three-way comparison operator (cf. section 11.6.2) and various compari-
son classes (cf. section 18.7), added to C++ at the C++2a standard.

e Version 11.2.0 moves the (rewritten) coverage of the chrono and filesystem namespaces to
the Namespaces chapter, and contains a rewrite of the sections covering error_codes,
error_categories, and error_conditions (cf. sections 4.3.2, 10.9, and 23.7).

® Version 11.1.0 contains an almost complete rewrite of the sections covering concepts (section
23.13).

® Version 11.0.0 covers new elements and elements that were re-introduced at the C++2a standard.
Version 11.0.0 is made available at the time the C++2a standard has not yet formally been re-
leased, and compilers do not yet implement all its new elements. Therefore, modifications and
updates may be required once the C++2a standard has officially become the next standard. How-
ever, the elements of the new standard that are now covered by the C++ Annotations are (mostly)
supported by compilers.

— Modules (cf. section 7.12) simplify header processing. E.g., when using modules header
include guards are not required anymore.

— The section about unrestricted unions (9.9) received a major upgrade, and was moved to
chapter 9.

— The section about the syntax of lambda expressions (section 11.11) received a major upgrade.

— Section 4.3 covering the std: : filesystem namespace received a new subsection showing
which facilities of the std: : filesystem namespace are replacing traditional C functions.

- Transactional memory (covered in section 20.14) simplify access to shared data in multi-
threaded programs.

— Section 22.5.5 covers folding expressions can be used to associate binary operators with a
variadic number of arguments.

— Section 22.6 received a sub-section covering specializing std: : tuple elements in combina-
tion with structured binding declarations.

— Section 23.13 covers concepts (re-introduced into the language after having been considered
before), allowing template writers to define requirements for their templates that must be
satisfied before their templates can be used.

2.2 C++’s history

The first implementation of C++ was developed in the 1980s at the AT&T Bell Labs, where the Unix
operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, converting special constructions in
its source code to plain C. Back then this code was compiled by a standard C compiler. The ‘pre-code’,
which was read by the C++ pre-compiler, was usually located in a file with the extension .cc, .C or
. cpp. This file would then be converted to a C source file with the extension .c, which was thereupon
compiled and linked.



the preliminary work of a C++ pre-compiler 1s nowadays usually performed during the actual compila-
tion process. Often compilers determine the language used in a source file from its extension. This holds
true for Borland’s and Microsoft’s C++ compilers, which assume a C++ source for an extension .cpp.
The GNU compiler g++, which is available on many Unix platforms, assumes for C++ the extension
.cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is a superset
of C: C++ offers the full C grammar and supports all C-library functions, and adds to this features of
its own. This makes the transition from C to C++ quite easy. Programmers familiar with C may start
‘programming in C++’ by using source files having extensions . cc or . cpp instead of . c, and may then
comfortably slip into all the possibilities offered by C++. No abrupt change of habits is required.

2.2.1 History of the C++ Annotations

The original version of the C++ Annotations was written by Frank Brokken and Karel Kubat in Dutch
using LaTeX. After some time, Karel rewrote the text and converted the guide to a more suitable format
and (of course) to English in September 1994.

The first version of the guide appeared on the net in October 1994. By then it was converted to SGML.

Gradually new chapters were added, and the content was modified and further improved (thanks to
countless readers who sent us their comments).

In major version four Frank added new chapters and converted the document from SGML to yod14.

The C++ Annotations are freely distributable. Be sure to read the 1egal notes®.

Reading the annotations beyond this point implies that you are aware of these
notes and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to
Frank®.

2.2.2 Compiling a C program using a C++ compiler

Prospective C++ programmers should realize that C++ is not a perfect superset of C. There are some
differences you might encounter when you simply rename a file to a file having the extension .cc and
run it through a C++ compiler:

* InC, sizeof ("c’) equals sizeof (int), ' c’ being any ASCII character. The underlying phi-
losophy is probably that chars, when passed as arguments to functions, are passed as integers
anyway. Furthermore, the C compiler handles a character constant like ’ c’ as an integer con-
stant. Hence, in C, the function calls

putchar (10);
and
putchar ('\n"'");

are synonymous.

By contrast, in C++, sizeof (' c’) is always 1 (but see also section 3.4.2). An int is still an int,
though. As we shall see later (section 2.5.4), the two function calls

somefunc (10) ;

4https://fbb-git.gitlab.io/yodl/
5legal.shtml
6mailto:f.b.brokken@rug.nl



somefunc ('\n"'") ;

may be handled by different functions: C++ distinguishes functions not only by their names, but
also by their argument types, which are different in these two calls. The former using an int
argument, the latter a char.

e C++ requires very strict prototyping of external functions. E.g., in C a prototype like
void func();

means that a function func () exists, returning no value. The declaration doesn’t specify which
arguments (if any) are accepted by the function.

However, in C++ the above declaration means that the function func () does not accept any
arguments at all. Any arguments passed to it result in a compile-time error.

Note that the keyword extern is not required when declaring functions. A function definition
becomes a function declaration simply by replacing a function’s body by a semicolon. The keyword
extern is required, though, when declaring variables.

2.2.3 Compiling a C++ program

To compile a C++ program, a C++ compiler is required. Considering the free nature of this document,
it won’t come as a surprise that a free compiler is suggested here. The Free Software Foundation (FSF)
provides at http://www.gnu.org a free C++ compiler which is, among other places, also part of the
Debian (http://www.debian.org) distribution of Linux (http://www.linux.org).

Always use the latest C++ standard supported by your compiler. When the latest standard isn’t used by
default, but is already partially implemented it can usually be selected by specifying the appropriate
flag. E.g., to use the C++2a standard specify the flag ——std=c++2a. In the C++ Annotations it is
assumed that this flag is used when compiling the examples.

2.2.3.1 C++ under MS-Windows

For MS-Windows Cygwin (http://cygwin.com) or MinGW (http://mingw-wé64.org/doku.php)
provide the foundation for installing the Windows port of the GNU g++ compiler (see also
https://docs.microsoft.com/en-us/windows/wsl/about).

The GNU g++ compiler’s official home page is http://gcc.gnu.org, also containing information
about how to install the compiler in an MS-Windows system.

2.2.3.2 Compiling a C++ source text
Generally the following command can be used to compile a C++ source file ‘source.cc’
g++ source.cc

This produces a binary program (a.out or a.exe). If the default name is inappropriate, the name of
the executable can be specified using the —o flag (here producing the program source):

g++ -0 source source.cc
If a mere compilation is required, the compiled module can be produced using the —c flag:

g++ —Cc source.cc



C++ programs quickly become too complex to maintain ‘by hand’. With all serious programming
projects program maintenance tools are used. Usually the standard make program is used to main-
tain C++ programs, but good alternatives exist, like the icmake” or ccbuild® program maintenance
utilities.

It is strongly advised to start using maintenance utilities early in the study of C++.

2.3 C++: advantages and claims

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed advantages
of C++ are:

* New programs would be developed in less time because old code can be reused.

* Creating and using new data types would be easier than in C.

* The memory management under C++ would be easier and more transparent.

* Programs would be less bug-prone, as C++ uses a stricter syntax and type checking.

¢ ‘Data hiding’, the usage of data by one program part while other program parts cannot access the
data, would be easier to implement with C++.

Which of these allegations are true? Originally, our impression was that the C++ language was some-
what overrated; the same holding true for the entire object-oriented programming (OOP) approach. The
enthusiasm for the C++ language resembles the once uttered allegations about Artificial-Intelligence
(AI) languages like Lisp and Prolog: these languages were supposed to solve the most difficult AI-
problems ‘almost without effort’. New languages are often oversold: in the end, each problem can be
coded in any programming language (say BASIC or assembly language). The advantages and disadvan-
tages of a given programming language aren’t in ‘what you can do with them’, but rather in ‘which tools
the language offers to implement an efficient and understandable solution to a programming problem’.
Often these tools take the form of syntactic restrictions, enforcing or promoting certain constructions or
simply suggesting intentions by applying or ‘embracing’ such syntactic forms. Rather than a long list of
plain assembly instructions we now use flow control statements, functions, objects or even (with C++)
so-called templates to structure and organize code and to express oneself ‘eloquently’ in the language of
one’s choice.

Concerning the above allegations of C++, we support the following, however.

* The development of new programs while existing code is reused can also be implemented in C by,
e.g., using function libraries. Functions can be collected in a library and need not be re-invented
with each new program. C++, however, offers specific syntax possibilities for code reuse, apart
from function libraries (see chapters 13 and 21).

¢ Creating and using new data types is certainly possible in C; e.g., by using st ructs, typedefs
etc.. From these types other types can be derived, thus leading to st ructs containing structs
and so on. In C++ these facilities are augmented by defining data types which are completely
‘self supporting’, taking care of, e.g., their memory management automatically (without having to
resort to an independently operating memory management system as used in, e.g., Java).

¢ In C++ memory management can in principle be either as easy or as difficult as it is in C. Es-
pecially when dedicated C functions such as xmalloc and xrealloc are used (allocating the
memory or aborting the program when the memory pool is exhausted). However, with functions
like malloc it is easy to err. Frequently errors in C programs can be traced back to miscalcula-
tions when using malloc. Instead, C++ offers facilities to allocate memory in a somewhat safer
way, using its operator new.

Thttps:/fob-git.gitlab.io/icmake/
8https:/gitlab.com/bneijt/ccbuild/



ever, most modern C compilers implement ‘warning levels’; 1t 1s then the programmer’s choice
to disregard or get rid of the warnings. In C++ many of such warnings become fatal errors (the
compilation stops).

* As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or static
variables can be used and special data types such as structs can be manipulated by dedicated
functions. Using such techniques, data hiding can be implemented even in C; though it must be
admitted that C++ offers special syntactic constructions, making it far easier to implement ‘data
hiding’ (and more in general: ‘encapsulation’) in C++ than in C.

C++ in particular (and OOP in general) is of course not the solution to all programming problems.
However, the language does offer various new and elegant facilities which are worth investigating. At
the downside, the level of grammatical complexity of C++ has increased significantly as compared to
C. This may be considered a serious drawback of the language. Although we got used to this increased
level of complexity over time, the transition was neither fast nor painless.

With the C++ Annotations we hope to help the reader when transiting from C to C++ by focusing on
the additions of C++ as compared to C and by leaving out plain C. It is our hope that you like this
document and may benefit from it.

Enjoy and good luck on your journey into C++!

2.4 What is Object-Oriented Programming?

Object-oriented (and object-based) programming propagates a slightly different approach to program-
ming problems than the strategy usually used in C programs. In C programming problems are usually
solved using a ‘procedural approach’ a problem is decomposed into subproblems and this process is
repeated until the subtasks can be coded. Thus a conglomerate of functions is created, communicating
through arguments and variables, global or local (or static).

In contrast (or maybe better: in addition) to this, an object-based approach identifies the keywords
used in a problem statement. These keywords are then depicted in a diagram where arrows are drawn
between those keywords to depict an internal hierarchy. The keywords become the objects in the im-
plementation and the hierarchy defines the relationship between these objects. The term object is used
here to describe a limited, well-defined structure, containing all information about an entity: data types
and functions to manipulate the data. As an example of an object oriented approach, an illustration
follows:

The employees and owner of a car dealer and auto garage company are paid as follows. First,
mechanics who work in the garage are paid a certain sum each month. Second, the owner of
the company receives a fixed amount each month. Third, there are car salesmen who work
in the showroom and receive their salary each month plus a bonus per sold car. Finally, the
company employs second-hand car purchasers who travel around; these employees receive
their monthly salary, a bonus per bought car, and a restitution of their travel expenses.

When representing the above salary administration, the keywords could be mechanics, owner, salesmen
and purchasers. The properties of such units are: a monthly salary, sometimes a bonus per purchase
or sale, and sometimes restitution of travel expenses. When analyzing the problem in this manner we
arrive at the following representation:

* The owner and the mechanics can be represented by identical types, receiving a given salary per
month. The relevant information for such a type would be the monthly amount. In addition this
object could contain data as the name, address and social security number.

¢ Car salesmen who work in the showroom can be represented as the same type as above but with
some extra functionality: the number of transactions (sales) and the bonus per transaction.
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Figure 2.1: Hierarchy of objects in the salary administration.

In the hierarchy of objects we would define the dependency between the first two objects by letting
the car salesmen be ‘derived’ from the owner and mechanics.

¢ Finally, there are the second-hand car purchasers. These share the functionality of the salesmen
except for travel expenses. The additional functionality would therefore consist of the expenses
made and this type would be derived from the salesmen.

The hierarchy of the identified objects are further illustrated in Figure 2.1.

The overall process in the definition of a hierarchy such as the above starts with the description of the
most simple type. Traditionally (and still encountered with some popular object oriented languages)
more complex types are thereupon derived from the basic type, with each derived type adding some
new functionality. From these derived types, more complex types can again be derived ad infinitum,
until a representation of the entire problem can be made.

Over the years this approach has become less popular in C++ as it typically results in very tight cou-
pling among those types, which in turns reduces rather than enhances the understanding, maintain-
ability and testability of complex programs. The term coupling refers to the degree of independence
between software components: tight coupling means a strong dependency, which is frowned upon in
C++. In C++ object oriented programs more and more favor small, easy to understand hierarchies,
limited coupling and a developmental process where design patterns (cf. Gamma et al. (1995)) play a
central role.

In C++ classes are frequently used to define the characteristics of objects. Classes contain the necessary
functionality to do useful things. Classes generally do not offer all their functionality (and typically
none of their data) to objects of other classes. As we will see, classes tend to hide their properties in
such a way that they are not directly modifiable by the outside world. Instead, dedicated functions
are used to reach or modify the properties of objects. Thus class-type objects are able to uphold their
own integrity. The core concept here is encapsulation of which data hiding is just an example. These
concepts are further elaborated in chapter 7.

2.5 Differences between C and C++

In this section some examples of C++ code are shown. Some differences between C and C++ are high-
lighted.

2.5.1 The function ‘main’

In C++ there are only two variants of the function main: int main() and int main(int argc,
char *xxargv).



® The return type of main is int, and not void;
* The function main cannot be overloaded (for other than the abovementioned signatures);

¢ It is not required to use an explicit return statement at the end of main. If omitted main returns
0;

® The value of argv[argc] equals 0;

® The ‘third char *xenvp parameter’ is not defined by the C++ standard and should be avoided.
Instead, the global variable extern char s#xenviron should be declared providing access to the
program’s environment variables. Its final element has the value 0;

* A C++ program ends normally when the main function returns. Using a function try block (cf.
section 10.11) for main is also considered a normal end of a C++ program. When a C++ ends
normally, destructors (cf. section 9.2) of globally defined objects are activated. A function like
exit(3) does not normally end a C++ program and using such functions is therefore deprecated.

2.5.2 End-of-line comment

According to the ANSI/ISO definition, ‘end of line comment’ is implemented in the syntax of C++. This
comment starts with // and ends at the end-of-line marker. The standard C comment, delimited by /x
and x/ can still be used in C++:

int main ()

{
// this is end-of-line comment
// one comment per line

/ *
this is standard-C comment, covering
multiple lines

*/

Despite the example, it is advised not to use C type comment inside the body of C++ functions. Some-
times existing code must temporarily be suppressed, e.g., for testing purposes. In those cases it’s very
practical to be able to use standard C comment. If such suppressed code itself contains such comment,
it would result in nested comment-lines, resulting in compiler errors. Therefore, the rule of thumb is
not to use C type comment inside the body of C++ functions (alternatively, #if 0 until #endi f pair of
preprocessor directives could of course also be used).

2.5.3 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function before it is called, and
the call must match the prototype. The program

int main ()
{

printf ("Hello World\n");
}

often compiles under C, albeit with a warning that print £ () is an unknown function. But C++ compil-
ers (should) fail to produce code in such cases. The error is of course caused by the missing #include
<stdio.h> (which in C++ is more commonly included as #include <cstdio> directive).



possible to define int main () without explicitly defining a return statement, within main 1t 1S not
possible to use a return statement without an explicit int-expression. For example:

int main ()
{
return; // won't compile: expects int expression, e.g.
// return 1;

Implicit conversions from void * to non-void pointers are not allowed. E.g., the following isn’t accepted
in C++:

void *none ()

{

return 0;

}

int main ()
{
int xempty = none();

}

2.5.4 Function Overloading

In C++ it is possible to define functions having identical names but performing different actions. The
functions must differ in their parameter lists (and/or in their const attribute). An example is given
below:

#include <stdio.h>

void show (int wval)
{

printf ("Integer: %d\n", val);
}

void show (double wval)
{

printf ("Double: %1f\n", val);
}

void show(char const =*val)
{
printf ("String: %s\n", wval);

}

int main ()
{
show (12) ;
show (3.1415);
show ("Hello World!\n");

In the above program three functions show are defined, only differing in their parameter lists, expecting
an int, double and char x, respectively. The functions have identical names. Functions having
identical names but different parameter lists are called overloaded. The act of defining such functions
is called ‘function overloading’.



share their names (1n this example show), the compiler (and hence the linker) use quite different names.
The conversion of a name in the source file to an internally used name is called ‘name mangling’. E.g.,
the C++ compiler might convert the prototype void show (int) to the internal name VshowI, while
an analogous function having a char * argument might be called VshowCP. The actual names that are
used internally depend on the compiler and are not relevant for the programmer, except where these
names show up in e.g., a listing of the content of a library.

Some additional remarks with respect to function overloading:

* Do not use function overloading for functions doing conceptually different tasks. In the example
above, the functions show are still somewhat related (they print information to the screen).

However, it is also quite possible to define two functions 1ocokup, one of which would find a name
in a list while the other would determine the video mode. In this case the behavior of those two
functions have nothing in common. It would therefore be more practical to use names which
suggest their actions; say, findname and videoMode.

* C++ does not allow identically named functions to differ only in their return values, as it is always
the programmer’s choice to either use or ignore a function’s return value. E.g., the fragment

printf ("Hello World!\n");

provides no information about the return value of the function print f. Two functions printf
which only differ in their return types would therefore not be distinguishable to the compiler.

* In chapter 7 the notion of const member functions is introduced (cf. section 7.7). Here it is
merely mentioned that classes normally have so-called member functions associated with them
(see, e.g., chapter 5 for an informal introduction to the concept). Apart from overloading member
functions using different parameter lists, it is then also possible to overload member functions
by their const attributes. In those cases, classes may have pairs of identically named member
functions, having identical parameter lists. Then, these functions are overloaded by their const
attribute. In such cases only one of these functions must have the const attribute.

2.5.5 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments are
supplied by the compiler when they are not specified by the programmer. For example:

#include <stdio.h>
void showstring(char *str = "Hello World!\n");

int main ()

{

showstring ("Here's an explicit argument.\n");

showstring () ; // in fact this says:
// showstring ("Hello World!\n");

The possibility to omit arguments in situations where default arguments are defined is just a nice
touch: it is the compiler who supplies the lacking argument unless it is explicitly specified at the call.
The code of the program will neither be shorter nor more efficient when default arguments are used.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4);



int main ()

{

two_ints(); // arguments: 1, 4
two_ints (20); // arguments: 20, 4
two_ints (20, 5); // arguments: 20, 5

When the function two_int s is called, the compiler supplies one or two arguments whenever necessary.
A statement like two_ints (, 6) is, however, not allowed: when arguments are omitted they must be
on the right-hand side.

Default arguments must be known at compile-time since at that moment arguments are supplied to
functions. Therefore, the default arguments must be mentioned at the function’s declaration, rather
than at its implementation:

// sample header file
void two_ints(int a = 1, int b = 4);

// code of function in, say, two.cc
void two_ints (int a, int b)

{

}

It is an error to supply default arguments in both function definitions and function declarations. When
applicable default arguments should be provided in function declarations: when the function is used
by other sources the compiler commonly reads the header file rather than the function definition itself.
Consequently the compiler has no way to determine the values of default arguments if they are provided
in the function definition.

2.5.6 NULL-pointers vs. 0-pointers and nullptr

In C++ all zero values are coded as 0. In C NULL is often used in the context of pointers. This difference
is purely stylistic, though one that is widely adopted. In C++ NULL should be avoided (as it is a macro,
and macros can --and therefore should-- easily be avoided in C++, see also section 8.1.4). Instead 0 can
almost always be used.

Almost always, but not always. As C++ allows function overloading (cf. section 2.5.4) the programmer
might be confronted with an unexpected function selection in the situation shown in section 2.5.4:

#include <stdio.h>

void show(int wval)
{

printf ("Integer: %d\n", val);
}

void show (double wval)
{

printf ("Double: %1f\n", val);
}

void show(char const =*val)

{
printf ("String: %s\n", wval);

}



int main ()
{
show (12) ;
show (3.1415);
show ("Hello World!\n");

In this situation a programmer intending to call show (char const *) might call show (0). But this
doesn’t work, as 0 is interpreted as int and so show (int) is called. But calling show (NULL) doesn’t
work either, as C++ usually defines NULL as 0, rather than ( (void *)0). So, show (int) is called
once again. To solve these kinds of problems the new C++ standard introduces the keyword nullptr
representing the 0 pointer. In the current example the programmer should call show (nullptr) to
avoid the selection of the wrong function. The nullptr value can also be used to initialize pointer
variables. E.g.,

int *ip = nullptr; // OK
int value = nullptr; // error: value is no pointer

2.5.7 The ‘void’ parameter list
In C, a function prototype with an empty parameter list, such as
void func();

means that the argument list of the declared function is not prototyped: for functions using this pro-
totype the compiler does not warn against calling func with any set of arguments. In C the keyword
void is used when it is the explicit intent to declare a function with no arguments at all, as in:

void func (void) ;

As C++ enforces strict type checking, in C++ an empty parameter list indicates the total absence of
parameters. The keyword void is thus omitted.

2.5.8 The ‘#define __cplusplus’

Each C++ compiler which conforms to the ANSI/ISO standard defines the symbol __cplusplus: itis
as if each source file were prefixed with the preprocessor directive #define __cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.9 Using standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used in
C++ programs. Such functions, however, must be declared as C functions.

As an example, the following code fragment declares a function xmalloc as a C function:
extern "C" void *xmalloc (int size);

This declaration is analogous to a declaration in C, except that the prototype is prefixed with extern
n C n .



extern "C"
{
// C—declarations go in here

}

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C header
file myheader . h which declares C functions can be included in a C++ source file as follows:

extern "C"
{
#include <myheader.h>

}

Although these two approaches may be used, they are actually seldom encountered in C++ sources. A
more frequently used method to declare external C functions is encountered in the next section.

2.5.10 Header files for both C and C++

The combination of the predefined symbol _ cplusplus and the possibility to define extern "C"
functions offers the ability to create header files for both C and C++. Such a header file might, e.g.,
declare a group of functions which are to be used in both C and C++ programs.

The setup of such a header file is as follows:

#ifdef __ _cplusplus
extern "C"

{
#endif

/* declaration of C-data and functions are inserted here. E.g., =*/
volid xxmalloc (int size);

#ifdef _ cplusplus
}
#endif

Using this setup, a normal C header file is enclosed by extern "C" { which occurs near the top of the
file and by }, which occurs near the bottom of the file. The #ifdef directives test for the type of the
compilation: C or C++. The ‘standard’ C header files, such as stdio.h, are built in this manner and
are therefore usable for both C and C++.

In addition C++ headers should support include guards. In C++ it is usually undesirable to include
the same header file twice in the same source file. Such multiple inclusions can easily be avoided by
including an #i fndef directive in the header file. For example:

#ifndef MYHEADER_H_

#define MYHEADER_H_
// declarations of the header file is inserted here,
// using #ifdef __cplusplus etc. directives

#endif

When this file is initially scanned by the preprocessor, the symbol MYHEADER_H_ is not yet defined. The

#ifndef condition succeeds and all declarations are scanned. In addition, the symbol MYHEADER_H_
is defined.



deflned and consequently all information between the #ifndef and #endif directives 1s skipped Dby
the compiler.

In this context the symbol name MYHEADER_H_ serves only for recognition purposes. E.g., the name of
the header file can be used for this purpose, in capitals, with an underscore character instead of a dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give C++
header files no extension. For example, the standard iostreams cin, cout and cerr are available
after including the header file iostream, rather than iost ream.h. In the Annotations this convention
is used with the standard C++ header files, but not necessarily everywhere else.

There is more to be said about header files. Section 7.11 provides an in-depth discussion of the preferred
organization of C++ header files. In addition, starting with the c++2a standard modules are available
resulting in a somewhat more efficient way of handling declarations than offered by the traditional
header files. In the C++ Annotations modules are covered in chapter 7, section 7.12.

2.5.11 Defining local variables

Although already available in the C programming language, local variables should only be defined
once they’re needed. Although doing so requires a little getting used to, eventually it tends to produce
more readable, maintainable and often more efficient code than defining variables at the beginning of
compound statements. We suggest to apply the following rules of thumb when defining local variables:

® Local variables should be created at ‘intuitively right’ places, such as in the example below. This
does not only entail the for-statement, but also all situations where a variable is only needed,
say, half-way through the function.

* More in general, variables should be defined in such a way that their scope is as limited and
localized as possible. When avoidable local variables are not defined at the beginning of functions
but rather where they’re first used.

¢ It is considered good practice to avoid global variables. It is fairly easy to lose track of which
global variable is used for what purpose. In C++ global variables are seldom required, and by
localizing variables the risk of using the same variable for multiple purposes (thereby invalidating
the separate purposes of the variable), can easily be avoided.

If considered appropriate, nested blocks can be used to localize auxiliary variables. However, situations
exist where local variables are considered appropriate inside nested statements. The just mentioned
for statement is of course a case in point, but local variables can also be defined within the condition
clauses of i f-else statements, within selection clauses of switch statements and condition clauses
of while statements. Variables thus defined are available to the full statement, including its nested
statements. For example, consider the following switch statement:

#include <stdio.h>

int main ()

{

switch (int ¢ = getchar())
{

case 'a':

case 'e':

case 'i':

case 'o':

case 'u':

printf ("Saw vowel %c\n", c);
break;



printf ("Saw EOF\n");

break;
case '0' ... '9':
printf ("Saw number character %c\n", c);
break;
default:

printf ("Saw other character, hex value 0x%2x\n", c);

Note the location of the definition of the character ‘c’: it is defined in the expression part of the switch
statement. This implies that ‘c’ is available only to the switch statement itself, including its nested
(sub)statements, but not outside the scope of the switch.

The same approach can be used with if and while statements: a variable that is defined in the
condition clause of an i f and while statement is available in their nested statements. There are some
caveats, though:

e The variable that is defined in the condition clause must be a variable which is initialized to a
numeric or logical value;

* The variable definition cannot be nested (e.g., using parentheses) within a more complex expres-
sion.

The former point of attention should come as no big surprise: in order to be able to evaluate the log-
ical condition of an if or while statement, the value of the variable must be interpretable as either
zero (false) or non-zero (true). Usually this is no problem, but in C++ objects (like objects of the type
std::string (cf. chapter 5)) are often returned by functions. Such objects may or may not be in-
terpretable as numeric values. If not (as is the case with std: : st ring objects), then such variables
can not be defined at the condition or expression clauses of condition- or repetition statements. The
following example will therefore not compile:

if (std::string myString = getString()) // assume getString returns
{ // a std::string value
// process myString

}

The above example requires additional clarification. Often a variable can profitably be given local scope,
but an extra check is required immediately following its initialization. The initialization and the test
cannot both be combined in one expression. Instead two nested statements are required. Consequently,
the following example won’t compile either:

if ((int ¢ = getchar()) && strchr("aeiou", c))
printf ("Saw a vowel\n");

If such a situation occurs, either use two nested i f statements, or localize the definition of int c using
a nested compound statement:

if (int c = getchar()) // nested if-statements
if (strchr("aeiou", c))
printf ("Saw a vowel\n");

{ // nested compound statement
int ¢ = getchar();



printf ("Saw a vowel\n");

2.5.12 The keyword ‘typedef’

The keyword typedef is still used in C++, but is not required anymore when defining union, st ruct
or enum definitions. This is illustrated in the following example:

struct SomeStruct

{

int aj;
double d;
char string[80];

}i

When a struct, union or other compound type is defined, the tag of this type can be used as type
name (this is SomeStruct in the above example):

SomeStruct what;

what.d = 3.1415;

2.5.13 Functions as part of a struct

In C++ we may define functions as members of structs. Here we encounter the first concrete example
of an object: as previously described (see section 2.4), an object is a structure containing data while
specialized functions exist to manipulate those data.

A definition of a struct Point is provided by the code fragment below. In this structure, two int
data fields and one function draw are declared.

struct Point // definition of a screen-dot
{

int x; // coordinates

int y; /] x/y

void draw () ; // drawing function

}i

A similar structure could be part of a painting program and could, e.g., represent a pixel. With respect
to this st ruct it should be noted that:

e The function draw mentioned in the struct definition is a mere declaration. The actual code
of the function defining the actions performed by the function is found elsewhere (the concept of
functions inside st ructs is further discussed in section 3.2).

* The size of the struct Point is equal to the size of its two ints. A function declared inside the
structure does not affect its size. The compiler implements this behavior by allowing the function
draw to be available only in the context of a Point.

The Point structure could be used as follows:

Point a; // two points on
Point b; // the screen



a.x = 0; // define first dot

a.y = 10; // and draw it
a.draw () ;

b = aj; // copy a to b

b.y = 20; // redefine y-coord
b.draw () ; // and draw it

As shown in the above example a function that is part of the structure may be selected using the dot (.)
(the arrow (->) operator is used when pointers to objects are available). This is therefore identical to
the way data fields of structures are selected.

The idea behind this syntactic construction is that several types may contain functions having identical
names. E.g., a structure representing a circle might contain three int values: two values for the
coordinates of the center of the circle and one value for the radius. Analogously to the Point structure,
a Circle may now have a function draw to draw the circle.

2.5.14 Evaluation order of operands

Traditionally, the evaluation order of expressions of operands of binary operators is, except for the
boolean operators and and or, not defined. C++ changed this for postfix expressions, assignment ex-
pressions (including compound assignments), and shift operators:

¢ Expressions using postfix operators (like index operators and member selectors) are evaluated
from left to right (do not confuse this with postfix increment or decrement operators, which cannot
be concatenated (e.g., variable++++ does not compile)).

¢ Assignment expressions are evaluated from right to left;
* Operands of shift operators are evaluated from left to right.

In the following examples first is evaluated before second, before third, before fourth, whether
they are single variables, parenthesized expressions, or function calls:

first.second

fourth += third = second += first
first << second << third << fourth
first >> second >> third >> fourth

In addition, when overloading an operator, the function implementing the overloaded operator is eval-
uated like the built-in operator it overloads, and not in the way function calls are generally ordered.






Chapter 3

A First Impression Of C++

In this chapter C++ is further explored. The possibility to declare functions in st ructs is illustrated
in various examples; the concept of a class is introduced; casting is covered in detail; many new types
are introduced and several important notational extensions to C are discussed.

3.1 Notable differences with C

Before we continue with the ‘real’ object-approach to programming, we first introduce some notable
differences with the C programming language: not mere differences between C and C++, but important
syntactic constructs and keywords not found or differently used in C.

3.1.1 Using the keyword ‘const’

Even though the keyword const is part of the C grammar, its use is more important and much more
common and strictly used in C++ than it is in C.

The const keyword is a modifier stating that the value of a variable or of an argument may not be
modified. In the following example the intent is to change the value of a variable ival, which fails:

int main ()

{
int const ival = 3; // a constant int
// initialized to 3

ival = 4; // assignment produces
// an error message

This example shows how ival may be initialized to a given value in its definition; attempts to change
the value later (in an assignment) are not permitted.

Variables that are declared const can, in contrast to C, be used to specify the size of an array, as in the
following example:

int const size = 20;
char buf[sizel; // 20 chars big

Another use of the keyword const is seen in the declaration of pointers, e.g., in pointer-arguments. In
the declaration

21



buf is a pointer variable pointing to chars. Whatever is pointed to by buf may not be changed through
buf: the chars are declared as const. The pointer buf itself however may be changed. A statement
like xbuf = ’a’; is therefore not allowed, while ++buf is.

In the declaration
char xconst buf;
buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf may

be changed at will.

Finally, the declaration
char const xconst buf;

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: whatever occurs to the left
to the keyword may not be changed.

Although simple, this rule of thumb is often used. For example, Bjarne Stroustrup states (in
http://www.research.att.com/~bs/bs_fag2.html#constplacement):

Should I put "const” before or after the type?

I put it before, but that’s a matter of taste. "const T” and "T const” were always (both) allowed
and equivalent. For example:

const int a = 1; // OK
int const b = 2; // also OK

My guess is that using the first version will confuse fewer programmers (“is more idiomatic”).

But we've already seen an example where applying this simple ‘before’ placement rule for the keyword
const produces unexpected (i.e., unwanted) results as we will shortly see (below). Furthermore, the
‘idiomatic’ before-placement also conflicts with the notion of const functions, which we will encounter
in section 7.7. With const functions the keyword const is also placed behind rather than before the
name of the function.

The definition or declaration (either or not containing const) should always be read from the variable
or function identifier back to the type identifier:

“Buf'is a const pointer to const characters”

This rule of thumb is especially useful in cases where confusion may occur. In examples of C++ code
published in other places one often encounters the reverse: const preceding what should not be altered.
That this may result in sloppy code is indicated by our second example above:

char const xbuf;

What must remain constant here? According to the sloppy interpretation, the pointer cannot be altered
(as const precedes the pointer). In fact, the char values are the constant entities here, as becomes
clear when we try to compile the following program:

int main ()



char const *buf = "hello";

++buf; // accepted by the compiler

A}

*buf = 'u'; // rejected by the compiler

Compilation fails on the statement xbuf = ’u’; and not on the statement ++buf.

Marshall Cline’s c++ FAQ! gives the same rule (paragraph 18.5) , in a similar context:

[18.5] What’s the difference between "const Fredx p”, "Fredx* const p” and "const Fredx const
p'/?
You have to read pointer declarations right-to-left.

Marshall Cline’s advice can be improved, though. Here’s a recipe that will effortlessly dissect even the
most complex declaration:
1. start reading at the variable’s name

2. read as far as possible until you reach the end of the declaration or an (as yet unmatched) closing
parenthesis.

3. return to the point where you started reading, and read backwards until you reach the beginning
of the declaration or a matching opening parenthesis.

4. If you reached an opening parenthesis, continue at step 2 beyond the parenthesis where you
previously stopped.

Let’s apply this recipe to the following (by itself irrelevant) complex declaration. Little arrows indicate
how far we should read at each step and the direction of the arrow indicates the reading direction:

char const (% const (% (*xip) ()) []) []

ip Start at the variable's name:
'ip' is
ip) Hitting a closing paren: revert
——>
(*ip) Find the matching open paren:
<- 'a pointer to'
(xip) ()) The next unmatched closing par:
-——> 'a function (not expecting
arguments) '
(* (xip) ()) Find the matching open paren:
<- 'returning a pointer to'
(x (*x1ip) O)) [1) The next closing par:
-——> 'an array of'
(x const (x(*xip) ())I[]) Find the matching open paren:
< 'const pointers to'
(# const (x(xip) ())[1)[] Read until the end:

Lhttp://www.parashift.com/c++-faq-lite/const-correctness.html



char const x (* const (x(xip) ())[]1)[] Read backwards what's left:
D S 'pointers to const chars'

Collecting all the parts, we get for char const x(x const (x(xip) ()) [1) []: ip is a pointer to a
function (not expecting arguments), returning a pointer to an array of const pointers to an array of
pointers to const chars. This is what ip represents; the recipe can be used to parse any declaration you
ever encounter.

3.1.2 Namespaces

C++ introduces the notion of a namespace: all symbols are defined in a larger context, called a names-
pace. Namespaces are used to avoid name conflicts that could arise when a programmer would like to
define a function like sin operating on degrees, but does not want to lose the capability of using the
standard sin function, operating on radians.

Namespaces are covered extensively in chapter 4. For now it should be noted that most compilers
require the explicit declaration of a standard namespace: std. So, unless otherwise indicated, it is
stressed that all examples in the Annotations now implicitly use the

using namespace std;

declaration. So, if you actually intend to compile examples given in the C++ Annotations, make sure
that the sources start with the above using declaration.

3.1.3 The scope resolution operator ::

C++ introduces several new operators, among which the scope resolution operator (: :). This operator
can be used in situations where a global variable exists having the same name as a local variable:

#include <stdio.h>
double counter = 50; // global variable

int main ()

{

for (int counter = 1; // this refers to the
counter != 10; // local variable
++counter)

printf ("$d\n",

::counter // global variable
/ // divided by
counter) ; // local variable

In the above program the scope operator is used to address a global variable instead of the local variable
having the same name. In C++ the scope operator is used extensively, but it is seldom used to reach
a global variable shadowed by an identically named local variable. Its main purpose is encountered in
chapter 7.



Analogous to C, C++ defines standard input- and output streams which are available when a program
is executed. The streams are:

* cout, analogous to stdout,
® cin, analogous to stdin,

® cerr, analogous to stderr

Syntactically these streams are not used as functions: instead, data are written to streams or read
from them using the operators <<, called the insertion operator and >>, called the extraction operator.
This is illustrated in the next example:

#include <iostream>
using namespace std;

int main ()

{
int ival;
char sval[30];

cout << "Enter a number:\n";
cin >> ival;

cout << "And now a string:\n";
cin >> sval;

cout << "The number is: " << ival << "\n"
"And the string is: " << sval << '\n';

This program reads a number and a string from the cin stream (usually the keyboard) and prints these
data to cout. With respect to streams, please note:

* The standard streams are declared in the header file iostream. In the examples in the C++
Annotations this header file is often not mentioned explicitly. Nonetheless, it must be included
(either directly or indirectly) when these streams are used. Comparable to the use of the using
namespace std; clause, the reader is expected to #include <iostream> with all the exam-
ples in which the standard streams are used.

* The streams cout, cin and cerr are variables of so-called class-types. Such variables are com-
monly called objects. Classes are discussed in detail in chapter 7 and are used extensively in
C++.

* The stream cin extracts data from a stream and copies the extracted information to variables
(e.g., ival in the above example) using the extraction operator (two consecutive > characters:
>>). Later in the Annotations we will describe how operators in C++ can perform quite different
actions than what they are defined to do by the language, as is the case here. Function overloading
has already been mentioned. In C++ operators can also have multiple definitions, which is called
operator overloading.

¢ The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate variables
of different types. In the above example cout << ival results in the printing of an integer value,
whereas cout << "Enter a number" results in the printing of a string. The actions of the
operators therefore depend on the types of supplied variables.

¢ The extraction operator (>>) performs a so called type safe assignment to a variable by ‘extracting’
its value from a text stream. Normally, the extraction operator skips all whitespace characters
preceding the values to be extracted.



serting "\n" or ' \n’. but when 1nserting the endl symbol the line 1s terminated followed by
the flushing of the stream’s internal buffer. Thus, endl can usually be avoided in favor of * \n’
resulting in somewhat more efficient code.

The stream objects cin, cout and cerr are not part of the C++ grammar proper. The streams are part
of the definitions in the header file i ost ream. This is comparable to functions like print £ that are not
part of the C grammar, but were originally written by people who considered such functions important
and collected them in a run-time library.

A program may still use the old-style functions like printf and scanf rather than the new-style
streams. The two styles can even be mixed. But streams offer several clear advantages and in many
C++ programs have completely replaced the old-style C functions. Some advantages of using streams
are:

¢ Using insertion and extraction operators is type-safe. The format strings which are used with
printf and scanf can define wrong format specifiers for their arguments, for which the compiler
sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is performed by
the compiler. Consequently it isn’t possible to err by providing an int argument in places where,
according to the format string, a string argument should appear. With streams there are no
format strings.

® The functions print f and scanf (and other functions using format strings) in fact implement
a mini-language which is interpreted at run-time. In contrast, with streams the C++ compiler
knows exactly which in- or output action to perform given the arguments used. No mini-language
here.

* In addition the possibilities of the insertion and extraction operators may be extended allowing
objects of classes that didn’t exist when the streams were originally designed to be inserted into
or extracted from streams. Mini languages as used with print f cannot be extended.

* The usage of the left-shift and right-shift operators in the context of the streams illustrates yet
another capability of C++: operator overloading allowing us to redefine the actions an operator
performs in certain contexts. Coming from C operator overloading requires some getting used to,
but after a short little while these overloaded operators feel rather comfortable.

e Streams are independent of the media they operate upon. This (at this point somewhat abstract)
notion means that the same code can be used without any modification at all to interface your code
to any kind of device. The code using streams can be used when the device is a file on disk; an
Internet connection; a digital camera; a DVD device; a satellite link; and much more: you name
it. Streams allow your code to be decoupled (independent) of the devices your code is supposed to
operate on, which eases maintenance and allows reuse of the same code in new situations.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 6 iostreams are
covered in greater detail. Even though print f and friends can still be used in C++ programs, streams
have practically replaced the old-style C 1/0 functions like print f. If you think you still need to use
printf and related functions, think again: in that case you've probably not yet completely grasped the
possibilities of stream objects.

3.2 Functions as part of structs

Earlier we noted that functions can be part of st ructs (see section 2.5.13). Such functions are called
member functions. This section briefly discusses how to define such functions.

The code fragment below shows a struct having data fields for a person’s name and address. A
function print is included in the st ruct’s definition:

struct Person



char name[80];
char address[80];

void print () ;
bi

When defining the member function print the structure’s name (Person) and the scope resolution
operator (: :) are used:

void Person: :print ()
{
cout << "Name: " << name << "\n"
"Address: " << address << '\n';

The implementation of Person: :print shows how the fields of the struct can be accessed without
using the structure’s type name. Here the function Person: :print prints a variable name. Since
Person: :print is itself a part of struct person, the variable name implicitly refers to the same
type.

This struct Person could be used as follows:

Person person;

strcpy (person.name, "Karel");
strcpy (person.address, "Marskramerstraat 33");
person.print () ;

The advantage of member functions is that the called function automatically accesses the data fields
of the structure for which it was invoked. In the statement person.print () the object person is the
‘substrate’: the variables name and address that are used in the code of print refer to the data stored
in the person object.

3.2.1 Data hiding: public, private and class

As mentioned before (see section 2.3), C++ contains specialized syntactic possibilities to implement
data hiding. Data hiding is the capability of sections of a program to hide its data from other sections.
This results in very clean data definitions. It also allows these sections to enforce the integrity of their
data.

C++ has three keywords that are related to data hiding: private, protected and public. These
keywords can be used in the definition of st ructs. The keyword public allows all subsequent fields of
a structure to be accessed by all code; the keyword private only allows code that is part of the st ruct
itself to access subsequent fields. The keyword protectedis discussed in chapter 13, and is somewhat
outside of the scope of the current discussion.

In a struct all fields are public, unless explicitly stated otherwise. Using this knowledge we can
expand the struct Person

struct Person
{
private:
char d_name[80];
char d_address[80];
public:
void setName (char const =*n);
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Figure 3.1: Private data and public interface functions of the class Person.

void setAddress (char const =*a);
void print () ;
char const +*name () ;
char const xaddress();
bi

As the data fields d_name and d_address are in a private section they are only accessible to the
member functions which are defined in the struct: these are the functions setName, setAddress
etc.. As an illustration consider the following code:

Person fbb;

fbb.setName ("Frank") ; // OK, setName is public
strcpy (fbb.d_name, "Knarf"); // error, x.d_name 1is private

Data integrity is implemented as follows: the actual data of a struct Person are mentioned in the
structure definition. The data are accessed by the outside world using special functions that are also
part of the definition. These member functions control all traffic between the data fields and other
parts of the program and are therefore also called ‘interface’ functions. The thus implemented data
hiding is illustrated in Figure 3.1. The members setName and setAddress are declared with char
const x parameters. This indicates that the functions will not alter the strings which are supplied as
their arguments. Analogously, the members name and address return char const xs: the compiler
prevents callers of those members from modifying the information made accessible through the return
values of those members.

Two examples of member functions of the st ruct Person are shown below:

volid Person: :setName (char const =*n)
{
strncpy (d_name, n, 79);
d_name[79] = 0;
}

char const *Person::name ()
{
return d_name;

}

The power of member functions and of the concept of data hiding results from the abilities of member
functions to perform special tasks, e.g., checking the validity of the data. In the above example setName



overtlow.

Another illustration of the concept of data hiding is the following. As an alternative to member func-
tions that keep their data in memory a library could be developed featuring member functions storing
data on file. To convert a program storing Person structures in memory to one that stores the data
on disk no special modifications are required. After recompilation and linking the program to a new
library it is converted from storage in memory to storage on disk. This example illustrates a broader
concept than data hiding; it illustrates encapsulation. Data hiding is a kind of encapsulation. Encap-
sulation in general results in reduced coupling of different sections of a program. This in turn greatly
enhances reusability and maintainability of the resulting software. By having the structure encapsu-
late the actual storage medium the program using the structure becomes independent of the actual
storage medium that is used.

Though data hiding can be implemented using structs, more often (almost always) classes are used
instead. A class is a kind of struct, except that a class uses private access by default, whereas structs
use public access by default. The definition of a class Person is therefore identical to the one shown
above, except that the keyword class has replaced st ruct while the initial private: clause can be
omitted. Our typographic suggestion for class names (and other type names defined by the program-
mer) is to start with a capital character to be followed by the remainder of the type name using lower
case letters (e.g., Person).

3.2.2 Structs in C vs. structs in C++

In this section we’ll discuss an important difference between C and C++ structs and (member) func-
tions. In C it is common to define several functions to process a struct, which then require a pointer
to the st ruct as one of their arguments. An imaginary C header file showing this concept is:

/+ definition of a struct PERSON This is C */
typedef struct
{
char name[80];
char address[80];
} PERSON;

/+ some functions to manipulate PERSON structs =/

/x initialize fields with a name and address */
void initialize (PERSON xp, char const »nm,
char const =xadr);

/+ print information %/
void print (PERSON const xp);

/* etc.. */

In C++, the declarations of the involved functions are put inside the definition of the st ruct or class.
The argument denoting which st ruct is involved is no longer needed.

class Person

{
char d_name[80];
char d_address[80];

public:
void initialize (char const xnm, char const =*adr);
void print ();



bi
In C++ the struct parameter is not used. A C function call such as:

PERSON x;

initialize (&x, "some name", "some address");
becomes in C++:

Person x;

X.initialize ("some name", "some address");

3.3 Several additions to C’s grammar

3.3.1 References

In addition to the common ways to define variables (plain variables or pointers) C++ introduces refer-
ences defining synonyms for variables. A reference to a variable is like an alias; the variable and the
reference can both be used in statements involving the variable:

int int_value;
int &ref = int_value;

In the above example a variable int_value is defined. Subsequently a reference ref is defined, which
(due to its initialization) refers to the same memory location as int_value. In the definition of re f, the
reference operator & indicates that ref is not itself an int but a reference to one. The two statements

++int_value;
++ref;

have the same effect: they increment int_value’s value. Whether that location is called int_value
or ref does not matter.

References serve an important function in C++ as a means to pass modifiable arguments to functions.
E.g., in standard C, a function that increases the value of its argument by five and returning nothing
needs a pointer parameter:

void increase (int *valp) // expects a pointer

{ // to an int
*valp += 5;

int main ()
{

int x;

increase (&x); // pass x's address

This construction can also be used in C++ but the same effect is also achieved using a reference:

void increase (int &valr) // expects a reference



valr += 5;

}

int main ()
{

int x;

increase (x) ; // passed as reference

}

It is arguable whether code such as the above should be preferred over C’s method, though. The
statement increase (x) suggests that not x itself but a copy is passed. Yet the value of x changes
because of the way increase () is defined. However, references can also be used to pass objects that
are only inspected (without the need for a copy or a const x) or to pass objects whose modification is an
accepted side-effect of their use. In those cases using references are strongly preferred over existing
alternatives like copy by value or passing pointers.

Behind the scenes references are implemented using pointers. So, as far as the compiler is concerned
references in C++ are just const pointers. With references, however, the programmer does not need
to know or to bother about levels of indirection. An important distinction between plain pointers and
references is of course that with references no indirection takes place. For example:

extern int xip;
extern int &ir;

ip = 0; // reassigns ip, now a O-pointer
ir 0; // ir unchanged, the int variable it refers to
// 1is now O.

In order to prevent confusion, we suggest to adhere to the following:

¢ In those situations where a function does not alter its parameters of a built-in or pointer type,
value parameters can be used:

void some_func (int wval)

{
cout << val << '\n';

}

int main ()
{

int x;

some_func (x) ; // a copy is passed

}

* When a function explicitly must change the values of its arguments, a pointer parameter is pre-
ferred. These pointer parameters should preferably be the function’s initial parameters. This is
called return by argument.

void by_pointer (int =valp)
{

*valp += 5;
}

e When a function doesn’t change the value of its class- or struct-type arguments, or if the modi-
fication of the argument is a trivial side-effect (e.g., the argument is a stream) references can be
used. Const-references should be used if the function does not modify the argument:

void by_reference (string const &str)



cout << str; // no modification of str

int main ()

{
int x = 7;
by_pointer (&x); // a pointer is passed
// x might be changed
string str("hello");
by_reference (str); // str is not altered

}

References play an important role in cases where the argument is not changed by the function
but where it is undesirable to copy the argument to initialize the parameter. Such a situation
occurs when a large object is passed as argument, or is returned by the function. In these cases
the copying operation tends to become a significant factor, as the entire object must be copied. In
these cases references are preferred.

If the argument isn’t modified by the function, or if the caller shouldn’t modify the returned
information, the const keyword should be used. Consider the following example:

struct Person // some large structure

{

char name [80];
char address[90];
double salary;

}i

Person person[50]; //
//
//
//
void printperson (Person const
{

"Name: "
"Address: "

cout <<

//

<< subject.name <<
<< subject.address <<

database of persons

printperson expects a
reference to a structure
but won't change it
&subject)
'"\n' <<
l\nl;

get a person by index value

Person const &personldx (int index)

{

return person[index]; //

} //

int main ()

{

Person boss;

//
//
//
printperson (personIdx(5));
//
//

printperson (boss);

}

a reference is returned,
not a copy of person[index]

no pointer is passed,
so “boss' won't be
altered by the function

references, not copies
are passed here

¢ Furthermore, note that there is yet another reason for using references when passing objects as
function arguments. When passing a reference to an object, the activation of a so called copy
constructor is avoided. Copy constructors are covered in chapter 9.



the following example:

int &func()

{
static int value;
return value;

This allows the use of the following constructions:

func () = 20;
func () += func();

It is probably superfluous to note that such constructions should normally not be used. Nonetheless,
there are situations where it is useful to return a reference. We have actually already seen an example
of this phenomenon in our previous discussion of streams. In a statement like cout << "Hello" <<
"\n’; the insertion operator returns a reference to cout. So, in this statement first the "Hello" is
inserted into cout, producing a reference to cout. Through this reference the ’ \n’ is then inserted in
the cout object, again producing a reference to cout, which is then ignored.

Several differences between pointers and references are pointed out in the next list below:

A reference cannot exist by itself, i.e., without something to refer to. A declaration of a reference
like

int &ref;

is not allowed; what would ref refer to?
¢ References can be declared as external. These references were initialized elsewhere.
¢ References may exist as parameters of functions: they are initialized when the function is called.

¢ References may be used in the return types of functions. In those cases the function determines
what the return value refers to.

¢ References may be used as data members of classes. We return to this usage later.
* Pointers are variables by themselves. They point at something concrete or just “at nothing”.

¢ References are aliases for other variables and cannot be re-aliased to another variable. Once a
reference is defined, it refers to its particular variable.

¢ Pointers (except for const pointers) can be reassigned to point to different variables.

* When an address-of operator & is used with a reference, the expression yields the address of the
variable to which the reference applies. In contrast, ordinary pointers are variables themselves,
so the address of a pointer variable has nothing to do with the address of the variable pointed to.

3.3.2 Rvalue References

In C++, temporary (rvalue) values are indistinguishable from const & types. C++ introduces a new
reference type called an rvalue reference, which is defined as typename &s.

The name rvalue reference is derived from assignment statements, where the variable to the left of the
assignment operator is called an lvalue and the expression to the right of the assignment operator is
called an rvalue. Rvalues are often temporary, anonymous values, like values returned by functions.



typename &). I'hey can be contrasted to rvalue references (using the notation typename &&).

The key to understanding rvalue references is the concept of an anonymous variable. An anonymous
variable has no name and this is the distinguishing feature for the compiler to associate it automatically
with an rvalue reference if it has a choice. Before introducing some interesting constructions let’s first
have a look at some standard situations where lvalue references are used. The following function
returns a temporary (anonymous) value:

int intVval ()
{

return 5;

Although intval’s return value can be assigned to an int variable it requires copying, which might
become prohibitive when a function does not return an int but instead some large object. A reference or
pointer cannot be used either to collect the anonymous return value as the return value won’t survive
beyond that. So the following is illegal (as noted by the compiler):

int &ir = intVal(); // fails: refers to a temporary
int const &ic = intVal(); // OK: immutable temporary
int *ip = &intVal(); // fails: no lvalue available

Apparently it is not possible to modify the temporary returned by intval. But now consider these
functions:

void receive (int &value) // note: lvalue reference
{

cout << "int value parameter\n";
}

void receive (int &&value) // note: rvalue reference

{

cout << "int R-value parameter\n";

and let’s call this function from main:

int main ()

{
receive (18);
int value = 5;
receive (value);
receive (intval ());

This program produces the following output:

int R-value parameter
int value parameter
int R-value parameter

The program’s output shows the compiler selecting receive (int &&value) in all cases where it re-
ceives an anonymous int as its argument. Note that this includes receive (18): a value 18 has no
name and thus receive (int &&value) is called. Internally, it actually uses a temporary variable to
store the 18, as is shown by the following example which modifies receive:

void receive (int &&value)



++value;
cout << "int R-value parameter, now: " << value << '\n';
// displays 19 and 6, respectively.
}

Contrasting receive (int &value) with receive (int &s&value) has nothing to do with int
&value not being a const reference. If receive (int const &value) is used the same results are
obtained. Bottom line: the compiler selects the overloaded function using the rvalue reference if the
function is passed an anonymous value.

The compiler runs into problems if void receive (int s&value) isreplaced by void receive (int
value), though. When confronted with the choice between a value parameter and a reference param-
eter (either lvalue or rvalue) it cannot make a decision and reports an ambiguity. In practical contexts
this is not a problem. Rvalue references were added to the language in order to be able to distinguish
the two forms of references: named values (for which lvalue references are used) and anonymous values
(for which rvalue references are used).

It is this distinction that allows the implementation of move semantics and perfect forwarding. At
this point the concept of move semantics cannot yet fully be discussed (but see section 9.7 for a more
thorough discussion) but it is very well possible to illustrate the underlying ideas.

Consider the situation where a function returns a struct Data containing a pointer to a dynamically
allocated NTBS. We agree that Data objects are only used after initialization, for which two init
functions are available. As an aside: when Data objects are no longer required the memory pointed at
by text must again be returned to the operating system; assume that that task is properly performed.

struct Data

{

char *text;
void init (char const =*txt); // initialize text from txt

void init (Data const &other)

{
text = strdup (other.text);

}
}i

There’s also this interesting function:
Data dataFactory (char const x*text);

Its implementation is irrelevant, but it returns a (temporary) Data object initialized with text. Such
temporary objects cease to exist once the statement in which they are created end.

Now we’ll use Data:

int main ()
{

Data dil;

dl.init (dataFactory ("object"));
}

Here the init function duplicates the NTBS stored in the temporary object. Immediately thereafter
the temporary object ceases to exist. If you think about it, then you realize that that’s a bit over the
top:

* the dataFactory function uses init to initialize the text variable of its temporary Dat a object.
for that it uses st rdup;



¢ the statement ends, and the temporary object ceases to exist.

That’s two st rdup calls, but the temporary Data object thereafter is never used again.

To handle cases like these rvalue reference were introduced. We add the following function to the
struct Data:

void init (Data &&tmp)
{

text = tmp.text; // (1)
tmp.text = 0; /7 (2)
}
Now, when the compiler translates dl.init (dataFactory("object")) it notices that

dataFactory returns a (temporary) object, and because of that it uses the init (Data &&tmp)
function. As we know that the tmp object ceases to exist after executing the statement in which it
is used, the d1 object (at (1)) grabs the temporary object’s text value, and then (at (2)) assigns 0 to
other.text so that the temporary object’s free (text) action does no harm.

Thus, struct Data suddenly has become move-aware and implements move semantics, removing the
(extra copy) drawback of the previous approach, and instead of making an extra copy of the temporary
object’s NTBS the pointer value is simply transferred to its new owner.

3.3.3 Lvalues, rvalues and more

Although this section contains forward references to chapters 5, 7, and 16, its topic best fits the current
chapter. This section can be skipped without loss of continuity, and you might consider returning to it
once you're familiar with the content of these future chapters.

Historically, the C programming language distinguished between lvalues and rvalues. The terminology
was based on assignment expressions, where the expression to the left of the assignment operator
receives a value (e.g., it referred to a location in memory where a value could be written into, like a
variable), while the expression to the right of the assignment operator only had to represent a value (it
could be a temporary variable, a constant value or the value stored in a variable):

lvalue = rvalue;
C++ adds to this basic distinction several new ways of referring to expressions:
® lvalue: an [value in C++ has the same meaning as in C. It refers to a location where a value can

be stored, like a variable, a reference to a variable, or a dereferenced pointer.

* xvalue: an xvalue indicates an expiring value. An expiring value refers to an object (cf. chapter
7) just before its lifetime ends. Such objects normally have to make sure that resources they own
(like dynamically allocated memory) also cease to exist, but such resources may, just before the
object’s lifetime ends, be moved to another location, thus preventing their destruction.

* gvalue: agvalue is a generalized lvalue. A generalized lvalue refers to anything that may receive
a value. It is either an lvalue or an xvalue.

* prvalue: a prvalue is a pure rvalue: a literal value (like 1.2e3) or an immutable object (e.g., the
value returned from a function returning a constant std: : st ring (cf. chapter 5)).

An expression’s value is an xvalue if it is:

¢ the value returned by a function returning an rvalue reference to an object;



* an expression accessing a non-static class data member whose object is

- an xvalue, or

— a .x (pointer-to-member) expression (cf. chapter 16) in which the left-hand side operand is
an xvalue and the right-hand side operand is a pointer to a data member.

The effect of this rule is that named rvalue references are treated as lvalues and anonymous
rvalue references to objects are treated as xvalues.
Rvalue references to functions are treated as lvalues whether anonymous or not.

Here is a small example. Consider this simple struct:

struct Demo
{
int d_value;

}i
In addition we have these function declarations and definitions:

Demo &&operator+ (Demo const &lhs, Demo const &rhs);
Demo &&factory();

Demo demo;
Demo &&rref = static_cast<Demo &&> (demo) ;

Expressions like

factory();
factory () .d_value;
static_cast<Demo &&> (demo) ;
demo + demo

are xvalues. However, the expression
rref;

is an lvalue.

In many situations it’s not particularly important to know what kind of gvalue or what kind of rvalue
is actually used. In the C++ Annotations the term /s (left hand side) is frequently used to indicate an
operand that’s written to the left of a binary operator, while the term rhs (right hand side) is frequently
used to indicate an operand that’s written to the right of a binary operator. Lhs and rhs operands could
actually be gvalues (e.g., when representing ordinary variables), but they could also be prvalues (e.g.,
numeric values added together using the addition operator). Whether or not lhs and rhs operands are
gvalues or lvalues can always be determined from the context in which they are used.

3.3.4 Strongly typed enumerations

Enumeration values in C++ are in fact int values, thereby bypassing type safety. E.g., values of
different enumeration types may be compared for (in)equality, albeit through a (static) type cast.

Another problem with the current enum type is that their values are not restricted to the enum type
name itself, but to the scope where the enumeration is defined. As a consequence, two enumerations
having the same scope cannot have identical names.



example:

enum class SafeEnum

{

NOT_OK, // 0, by implication
OK = 10,
MAYBE_OK // 11, by implication

}i

Enum classes use int values by default, but the used value type can easily be changed using the :
type notation, as in:

enum class CharEnum: unsigned char

{
NOT_OK,
OK

bi

To use a value defined in an enum class its enumeration name must be provided as well. E.g., OK is not
defined, CharEnum: : OK is.

Using the data type specification (noting that it defaults to int) it is possible to use enum class forward
declarations. E.g.,

enum Enuml; // Illegal: no size available
enum Enum2: unsigned int; // Legal: explicitly declared type

enum class Enum3; // Legal: default int type is used
enum class Enumé4: char; // Legal: explicitly declared type

A sequence of symbols of a strongly typed enumeration can also be indicated in a switch using the
ellipsis syntax, as shown in the next example:

SafeEnum enumValue () ;

switch (enumValue())

{

case SafeEnum::NOT_OK ... SafeEnum: :0K:
cout << "Status 1is known\n";

break;

default:
cout << "Status unknown\n";

break;

3.3.5 Initializer lists

The C language defines the initializer list as a list of values enclosed by curly braces, possibly them-
selves containing initializer lists. In C these initializer lists are commonly used to initialize arrays and
structs.

C++ extends this concept by introducing the type initializer_1list<Type> where Type is replaced
by the type name of the values used in the initializer list. Initializer lists in C++ are, like their coun-
terparts in C, recursive, so they can also be used with multi-dimensional arrays, structs and classes.



Like in C, initializer lists consist of a list of values surrounded by curly braces. But unlike C, functions
can define initializer list parameters. E.g.,

void values (std::initializer_list<int> iniValues)
{
}

A function like values could be called as follows:
values ({2, 3, 5, 7, 11, 13});

The initializer list appears as an argument which is a list of values surrounded by curly braces. Due to
the recursive nature of initializer lists a two-dimensional series of values can also be passes, as shown
in the next example:

void values2 (std::initializer_list<std::initializer list<int>> iniValues)

{1

values2 ({{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13}});

Initializer lists are constant expressions and cannot be modified. However, their size and values may
be retrieved using their size, begin, and end members as follows:

void values (initializer_list<int> iniValues)

{

cout << "Initializer list having " << iniValues.size () << "values\n";
for
(

initializer_ list<int>::const_iterator begin = iniValues.begin();

begin != iniValues.end();
++begin

)

cout << "Value: " << xbegin << '\n';

Initializer lists can also be used to initialize objects of classes (cf. section 7.5).

Implicit conversions, also called narrowing conversions are not allowed when specifying values of ini-
tializer lists. Narrowing conversions are encountered when values are used of a type whose range is
larger than the type specified when defining the initializer list. For example

e specifying float or double values to define initializer lists of int values;
¢ specifying integral values exceeding the range of f1oat to define initializer lists of f1oat values;

* specifying values of integral types of a wider range than the integral type that is specified for the
initializer list, except if the specified values lie within the range of the initializer list’s integral

type
Some examples:

initializer_ list<int> ii{ 1.2 }; // 1.2 isn't an int value
initializer_list<unsigned> iu{ ~OQULL }; // unsigned long long doesn't fit



C++, like C, also supports designated initialization. However, as C++ requires that destruction of data
members occurs in the opposite order as their construction it is required that, when using designated
initialization, members are initialized in the order in which they are declared in their class or struct.
E.g.,

struct Data
{
int d_first;
double d_second;
std::string d_third;
bi

Data data{ .d_first = 1, .d_third = "hello" };

In this example, d_first and d_third are explicitly initialized, while d_second is implicitly initial-
ized to its default value (so: 0.0).

In C++ it is not allowed to reorder the initialization of members in a desginated initialization list. So,
Data data{ .d_third = "hello", .d_first = 1 } is an error,butData data{ .d_third =
"hello" } is OK, as there is no ordering conflict in the latter example (this also initializes d_first
and d_second to 0).

Likewise, a union can be initialized using designated initialization, as illustrated by the next example:

union Data
{

int d_first;

double d_second;

std::string xd_third;
}i

// initialize the union's d_third field:

Data data{ .d_third = new string{ "hello" } };

3.3.6 Initializers for bit-fields

Bit-fields are used to specify series of bits in an integral value type. For example, in networking soft-
ware processing IP4 packets, the first uint 32_t value of IP4 packets contain:

the version (4 bits);

the header length (4 bits);

the type of service (8 bits);
the total length (16 bits)

Rather than using complex bit and bit-shift operations, these fields inside integral values can be speci-
fied using bit-fields. E.g.,

struct FirstIP4word

{
uint32_t version: 4
uint32_t header: 4
uint32_t tos: 8;
uint32_t length: 16

bi



first object, simply do:
cout << first.version << '\n';
and to set its header length to 10 simply do
first.header = 10;

Bit fields are already available in C. The C++2a standard allows them to be initialized by default by
using initialization expressions in their definitions. E.g.,

struct FirstIP4word
{

uint32_t version: 4 = 1; // version now 1, by default

uint32_t header: 4 = 10; // TCP header length now 10, by default
uint32_t tos: 8;

uint32_t length: 16;

}i

The initialization expressions are evaluated when the object using the bit-fields is defined. Also, when
a variable is used to initialize a bit-field the variable must at least have been declared when the struct
containing bit-fields is defined. E.g.,

extern int value;

struct FirstIP4word
{

uint32_t length: 16 = value; // OK: value has been declared
}i

3.3.7 Type inference using ‘auto’

The keyword auto can be used to simplify type definitions of variables and return types of functions if
the compiler is able to determine the proper types of such variables or functions.

Using auto as a storage class specifier is no longer supported by C++: a variable definition like auto
int var results in a compilation error.

The keyword auto is used in situations where it is very hard to determine the variable’s type. These
situations are encountered, e.g., in the context of templates (cf. chapters 18 until 23). It is also used in
situations where a known type is a very long one but also automatically available to the compiler. In
such cases the programmer uses auto to avoid having to type long type definitions.

At this point in the Annotations only simple examples can be given. Refer to section 21.1.2 for addi-
tional information about auto (and the related decltype function).

When defining and initializing a variable int variable = 5 the type of the initializing expression
is well known: it’s an int, and unless the programmer’s intentions are different this could be used to
define variable’s type (a somewhat contrived example as in this case it reduces rather than improves
the clarity of the code):

auto variable = 5;

However, it is attractive to use auto. In chapter 5 the iterator concept is introduced (see also chapters
12 and 18). Iterators frequently have long type definitions, like



Functions may return objects having such types. Since the compiler knows about these types we may
exploit this knowledge by using auto. Assume that a function begin () is declared like this:

std::vector<std::string>::const_reverse_iterator begin();

Rather than writing a long variable definition (at // 1, below) a much shorter definition (at // 2) can
be used:

std::vector<std::string>::const_reverse_iterator iter = begin(); // 1
auto iter = begin(); // 2

It’s also easy to define and initialized additional variables of such types. When initializing such vari-
ables iter can be used to initialize those variables, and auto can be used, so the compiler deduces
their types:

auto start = iter;

When defining variables using auto the variable’s type is deduced from the variable’s initializing ex-
pression. Plain types and pointer types are used as-is, but when the initializing expression is a refer-
ence type, then the reference’s basic type (without the reference, omitting const or volatile specifi-
cations) is used.

If a reference type is required then auto & or auto && can be used. Likewise, const and/or pointer
specifications can be used in combination with the aut o keyword itself. Here are some examples:

int value;
auto another = value; // 'int another' is defined

string const &text();

auto str = text(); // text's plain type is string, so
// string str, NOT string const str
// 1is defined

str += "..."; // so, this is OK
int xip = &value;
auto ip2 = ip; // int *ip2 is defined.

int xconst &ptr ip;
auto ip3 = ptr; // int *ip3 is defined, omitting const &
auto const &ip4 ptr; // int *const &ip4 is defined.

In the next to last auto specification, the tokens (reading right to left) from the reference to the basic
type are omitted: here const & was appended to ptr’s basic type (int *). Hence, int xip2 is
defined.

In the last auto specification auto also produces int x*, but in the type definition const & is added
to the type produced by auto, so int *const &ip4 is defined.

The auto keyword can also be used to postpone the definition of a function’s return type. The declara-
tion of a function intArrPtr returning a pointer to arrays of 10 ints looks like this:

int (*intArrPtr()) [10];

Such a declaration is fairly complex. E.g., among other complexities it requires ‘protection of the
pointer’ using parentheses in combination with the function’s parameter list. In situations like these



fication ot the tunction’s return type aiter any other specification the function might receive (e.g., as a
const member (cf. section 7.7) or following its noexcept specification (cf. section 23.8)).

Using auto to declare the above function, the declaration becomes:
auto intArrPtr () —-> int (*) [107];

A return type specification using auto is called a late-specified return type.

Since the C++14 standard late return type specifications are no longer required for functions returning
auto. Such functions can now simply be declared like this:

auto autoReturnFunction () ;
In this case some restrictions apply, both to the function definitions and the function declarations:

¢ If multiple return statements are used in function definitions they all must return values of iden-
tical types;

¢ Functions merely returning auto cannot be used before the compiler has seen their definitions.
So they cannot be used after mere declarations;

¢ When functions returning auto are implemented as recursive function then at least one return
statement must have been seen before the recursive call. E.g.,

auto fibonacci (size_t n)
{
if (n <= 1)
return n;
return fibonacci(n - 1) + fibonacci(n - 2);

3.3.7.1 Structured binding declarations

Usually functions return single-valued results: doubles, ints, strings,etc. When functions need
to return multiple values a return by argument construction is often used, where addresses of variables
that live outside of the called function are passed to functions, allowing the functions to assign new
values to those variables.

When multiple values should be returned from a function a struct can be used, but pairs (cf. section
12.2) or tuples (cf. section 22.6) can also be used. Here’s a simple example, where a function fun returns
a struct having two data fields:

struct Return

{
int first;
double second;

}i

Return fun ()

{
return Return{ 1, 12.5 };

}

(Briefly forward referencing to sections 12.2 and 22.6: the st ruct definition can completely be omitted
if fun returns a pair or tuple. In those cases the following code remains valid.)



uses that variable’s fields to access first and second. 1f you don't like the typing, auto can also be
used:

int main ()

{
auto rl = fun();
cout << rl.first;

Instead of referring to the elements of the returned struct, pair or tuple structured binding dec-
larations can also be used. Here, auto is followed by a (square brackets surrounded) comma-separated
list of variables, where each variable is defined, and receives the value of the corresponding field or
element of the called function’s return value. So, the above main function can also be written like this:

int main ()
{
auto [one, two] = fun();
cout << one; // one and two: now defined

Merely specifying auto results in fun’ s return value being copied, and the structured bindings vari-
ables will refer to the copied value. But structured binding declarations can also be used in combination
with (Ivalue/rvalue) return values. The following ensures that rone and rtwo refer to the elements of
fun’ s anonymous return value:

int main ()
{
auto &&[rone, rtwo] = fun();

}

If the called function returns a value that survives the function call itself, then structured binding
declarations can use lvalue references. E.g.,

Return &fun2 ()

{
static Return ret{ 4, 5 };
return ret;

}

int main ()
{

auto &[lone, ltwo] = fun2(); // OK: referring to ret's fields
}

To use structured binding declarations it is not required to use function calls. The object providing the
data can also anonymously be defined:

int main ()

{

auto const &[lone, ltwo] = Return{ 4, 5 };
// or:
auto &&[lone, ltwo] = Return{ 4, 5 };

The object doesn’t even have to make its data members publicly available. In section TUPLES using
structured bindings not necessarily referring to data members is covered.



penefit from using locally aefined variables of various types. Such variables can easily be defined using
structured binding declarations that are initialized from anonymous structs, pairs or tuples. Here is
an example illustrating this:

// define a struct:
struct Three
{
size_t vyear;
double firstAmount;
double interest;
bi
// define an array of Three objects, and process each in turn:
Three array([10];

fill (array); // not implemented here
for (auto &[year, amount, interest]: array)
cout << "Year " << year << ": amount = " << amount << '\n';

When using structured bindings the structured binding declaration must specify all elements that are
available. So if a struct has four data members the structured binding declaration must define four
elements. To avoid warnings of unused variables at lease one of the variables of the structured binding
declaration must be used.

3.3.8 Defining types and ‘using’ declarations

In C++ typedef is commonly used to define shorthand notations for complex types. Assume we want to
define a shorthand for ‘a pointer to a function expecting a double and an int, and returning an unsigned
long long int’. Such a function could be:

unsigned long long int compute (double, int);
A pointer to such a function has the following form:
unsigned long long int (xpf) (double, int);

If this kind of pointer is frequently used, consider defining it using t ypedef: simply put typedef in
front of it and the pointer’s name is turned into the name of a type. It could be capitalized to let it stand
out more clearly as the name of a type:

typedef unsigned long long int (%xPF) (double, int);

After having defined this type, it can be used to declare or define such pointers:

PF pf = compute; // initialize the pointer to a function like
// 'compute'
void fun (PF pf); // fun expects a pointer to a function like

// 'compute'
However, including the pointer in the typedef might not be a very good idea, as it masks the fact that

pf is a pointer. After all, PF pf looks more like ‘int x’than ‘int *x’. To document that pf is in fact
a pointer, slightly change the typedef:

typedef unsigned long long int FUN (double, int);

FUN xpf = compute; // now pf clearly is a pointer.



header files which are then 1ncluded by multiple source files in which the typedeis shoula be used.

In addition to typedef C++ offers the using keyword to associate a type and an identifier. In prac-
tice typedef and using can be used interchangeably. The using keyword arguably result in more
readable type definitions. Consider the following three (equivalent) definitions:

* The traditional, C style definition of a type, embedding the type name in the definition (turning a
variable name into a type name):

typedef unsigned long long int FUN (double, int);

* Apply using to improve the visibility (for humans) of the type name, by moving the type name to
the front of the definition:

using FUN = unsigned long long int (double, int);
* An alternative construction, using a late-specified return type (cf. section 3.3.7):

using FUN = auto (double, int) -> unsigned long long int;

3.3.9 Range-based for-loops
The C++ for-statement is identical to C’s for-statement:

for (init; cond; inc)
statement

Often the initialization, condition, and increment parts are fairly obvious, as in situations where all
elements of an array or vector must be processed. Many languages offer the foreach statement for
that and C++ offers the std: : for_each generic algorithm (cf. section 19.1.18).

In addition to the traditional syntax C++ adds new syntax for the for-statement: the range-based for-
loop. This new syntax can be used to process all element of a range in turn. Three types of ranges are
distinguished:

Plain arrays (e.g., int array[10]);

Initializer lists;

Standard containers (or comparable) (cf. chapter 12);

Any other type offering begin () and end () functions returning so-called iterators (cf. section
18.2).

The following additional for-statement syntax is available:

// assume int array[30]
for (auto &element: array)
statement

The part to the left of the colon is called the for range declaration. The declared variable (element) is
a formal name; use any identifier you like. The variable is only available within the nested statement,
and it refers to (or is a copy of) each of the elements of the range, from the first element up to the last.

There’s no formal requirement to use auto, but using auto is extremely useful in many situations.
Not only in situations where the range refers to elements of some complex type, but also in situations



names. In the above example int could also have been used.

The reference symbol (&) is important in the following cases:

¢ if you want to modify the elements in the nested statements

¢ if the elements themselves are structs (or classes, cf. chapter 7)

When the reference symbol is omitted the variable will be a copy of each of the subsequent elements of
the range. Fine, probably, if you merely need to look at the variables when they are of primitive types,
but needlessly inefficient if you have an array of BigStruct elements:

struct BigStruct

{
double array[100];
int last;

}i

Inefficient, because you don’t need to make copies of the array’s elements. Instead, use references to
elements:

BigStruct data[100]; // assume properly initialized elsewhere

int countUsed()
{
int sum = 0O;
// const &: the elements aren't modified
for (auto const &element: data)
sum += element.last;
return sum;

Range-based for-loops can also benefit from structured bindings. If st ruct Element holdsa int key

and a double value, and all the values of positive keys should be added then the following code
snippet accomplishes that:

Element elems[100]; // somehow initialized
double sum = 0;
for (auto const &lkey, value]: elems)
{
if (key > 0)
sum += value;

The c++2a standard also supports an optional initialization section (like the ones already available
for if and switch statements) for range-based for-loops. Assume the elements of an array must be
inserted into cout, but before each element we want to display the element’s index. The index variable
is not used outside the for-statement, and the extension offered in the C++2a standard allows us to
localize the index variable. Here is an example:

// localize idx: only visible in the for-stmnt
for (size_t idx = 0; auto const &element: data)
cout << idx++ << ": " << element << '\n';



Standard series of ASCII characters (a.k.a. C strings) are delimited by double quotes, supporting escape
sequences like \n, \\ and \", and ending in 0-bytes. Such series of ASCII-characters are commonly
known as null-terminated byte strings (singular: NTBS, plural: NTBSs). C’s NTBS is the foundation
upon which an enormous amount of code has been built

In some cases it is attractive to be able to avoid having to use escape sequences (e.g., in the context of
XML). C++ allows this using raw string literals.

Raw string literals start with an R, followed by a double quote, optionally followed by a label (which
is an arbitrary sequence of non-blank characters, followed by (). The raw string ends at the closing
parenthesis ), followed by the label (if specified when starting the raw string literal), which is in turn
followed by a double quote. Here are some examples:

R" (A Raw \ "String")"
R"delimiter (Another \ Raw " (String))delimiter"

In the first case, everything between " ( and ) " is part of the string. Escape sequences aren’t sup-
ported so the text \ " within the first raw string literal defines three characters: a backslash, a blank
character and a double quote. The second example shows a raw string defined between the markers
"delimiter (and )delimiter".

Raw string literals come in very handy when long, complex ascii-character sequences (e.g., usage-info
or long html-sequences) are used. In the end they are just that: long NTBSs. Those long raw string
literals should be separated from the code that uses them, thus maintaining the readability of the using
code.

As an illustration: the bisonc++ parser generator supports an option +NOTRANS (—{}-{})prompt.
When specified, the code generated by bisonc++ inserts prompting code when debugging is requested.
Directly inserting the raw string literal into the function processing the prompting code results in code
that is very hard to read:

void prompt (ostream &out)
{
if (d_genDebug)
out << (d_options.prompt () ? R"(
if (d_debug_ )
{
s_out__ << "\n================\n"
"? " << dflush__;
std::string s;
getline(std::cin, s);

)" : R"(
if (d_debug_ )
s_out__ << '\n';
)"
)y << '\n"';

Readability is greatly enhanced by defining the raw string literals as named NTBSs, defined in the
source file’s anonymous namespace (cf. chapter 4):

namespace {

char const noPrompt[] =
R" (
if (d_debug_ )



)"

char const doPrompt[] =
R" (
if (d_debug_ )
{
s_out__ << "\n================\n"
"? " << dflush__;
std::string s;
getline(std::cin, s);

)"
} // anonymous namespace

void prompt (ostream &out)
{
if (d_genDebug)
out << (d_options.prompt () ? doPrompt : noPrompt) << '\n';

3.3.11 Binary constants

In addition to hexadecimal integral constants (starting with 0x), octal integral constants (starting with
0), and decimal integral constants (starting with one of the digits 1..9), binary integral constants can
be defined using the prefixes 0b or 0B. E.g., to represent the (decimal) value 5 the notation 0b101 can
also be used.

The binary constants come in handy in the context of, e.g., bit-flags, as it immediately shows which
bit-fields are set, while other notations are less informative.

3.3.12 Selection statements with initializers

The standard for repetition statements start with an optional initialization clause. The initialization
clause allows us to localize variables to the scope of the for statements. Initialization clauses van also
be used in selection statements.

Consider the situation where an action should be performed if the next line read from the standard
input stream equals go!. Traditionally, when used inside a function, intending to localize the string to
contain the content of the next line as much as possible, constructions like the following had to be used:

void function ()
{
// ... any set of statements
{
string line; // localize line
if (getline(cin, line))
action () ;

// ... any set of statements

Since init ; clauses can also be used for selection statements (i f and switch statements) (note that
with selection statements the semicolon is part of the initialization clause, which is different from the
optional init (no semicolon) clause in for statements), we can rephrase the above example as follows:



// ... any set of statements

if (string line; getline(cin, line))
action () ;

// ... any set of statements

Note that a variable may still also be defined in the actual condition clauses. This is true for both
the extended if and switch statement. However, before using the condition clauses an initialization
clause may be used to define additional variables (plural, as it may contain a comma-separated list of
variables, similar to the syntax that’s available for for-statements).

3.3.13 Attributes

Attributes are compiler directives that are inserted into source files to inform the compiler of some
peculiarity of the code (variable or function) that follows the specified attribute. Attributes are used to
inform the compiler about situations that are intentional, and thus prevent the compiler from issuing
warnings.

The following attributes are recognized:

® [[carries_dependency]]:
This attribute is currently not yet covered by the C++ Annotations. At this point in the C++
Annotations it can safely be ignored.

® [[deprecated]]:

This attribute (and its alternative form [ [deprecated("reason")]]) is available since the
C++14 standard. It indicates that the use of the name or entity declared with this attribute is
allowed, but discouraged for some reason. This attribute can be used for classes, typedef-names,
variables, non-static data members, functions, enumerations, and template specializations. An
existing non-deprecated entity may be redeclared deprecated, but once an entity has been declared
deprecated it cannot be redeclared as ‘undeprecated’. When encountering the [ [deprecated]]
attribute the compiler generates a warning, e.g.,

demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated
[-Wdeprecated-declarations] deprecatedFunction();

demo.cc:5:21: note: declared here
[[deprecated]] void deprecatedFunction ()

When using the alternative form (e.g., [ [deprecated("do not use")]] void fun()) the
compiler generates a warning showing the text between the double quotes, e.g.,

demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated:
do not use [-Wdeprecated-declarations]
deprecatedFunction () ;

demo.cc:5:38: note: declared here
[ [deprecated ("do not use")]] void deprecatedFunction ()

® [[fallthrough]]
When statements nested under case entries in switch statements continue into subsequent
case or default entries the compiler issues a ‘falling through’ warning. If falling through is

intentional the attribute [ [fallthrough] ], which then must be followed by a semicolon, should
be used. Here is an annotated example:

void function (int selector)



switch (selector)

{

case 1:

case 2: // no falling through, but merged entry points
cout << "cases 1 and 2\n";

[[fallthrough]]; // no warning: intentionally falling through

case 3:

cout << "case 3\n";

case 4: // a warning is issued: falling through not
// announced.
cout << "case 4\n";
[[fallthrough]]; // error: there's nothing beyond

®* [ [maybe_unused] ]

This attribute can be applied to a class, typedef-name, variable, parameter, non-static data mem-
ber, a function, an enumeration or an enumerator. When it is applied to an entity no warning is
generated when the entity is not used. Example:

void fun ([ [maybe_unused]] size_t argument)
{
// argument isn't used, but no warning
// telling you so is issued

}

® [[nodiscard]]

The attribute [ [nodiscard] ] may be specified when declaring a function, class or enumeration.
If a function is declared [ [nodiscard]] orif a function returns an entity previously declared us-
ing [ [nodiscard] ] then the return value of such a function may only be ignored when explicitly
cast to void. Otherwise, when the return value is not used a warning is issued. Example:

int [[nodiscard]] importantInt ();
struct [[nodiscard]] ImportantStruct { ... };

ImportantStruct factory();

int main ()

{

importantInt () ; // warning issued
factory () ; // warning issued
}
® [[noreturn]]:
[ [moreturn]] indicates that the function does not return. [ [moreturn]]’s behavior

is undefined if the function declared with this attribute actually returns. The follow-
ing standard functions have this attribute: std::_FExit, std::abort, std::exit,
std::quick_exit, std::unexpected, std::terminate, std::rethrow_exception,
std::throw_with_nested, std::nested_exception::rethrow_nested, Here is an
example of a function declaration and definition using the [ [noreturn]] attribute:

[ [noreturn]] void doesntReturn();

[ [noreturn]] void doesntReturn ()



exit (0);

3.3.14 Three-way comparison (<=>)

The C++2a standard added the three-way comparison operator <=>, also known as the spaceship op-
erator, to C++. In C++ operators can be defined for class-types, among which equality and comparison
operators (the familiar set of ==, !=, <, <=, > and >= operators). To provide classes with all
comparison operators merely the the equality and the spaceship operator need to be defined.

Its priority is less than the priorities of the bit-shift operators << and >> and larger than the priorities
of the ordering operators <, <=, >, and >=.

Section 11.6.2 covers the construction of the three-way comparison operator.

3.4 New language-defined data types

In C the following built-in data types are available: void, char, short, int, long, float and
double. C++ extends these built-in types with several additional built-in types: the types bool,
wchar_t, long long and long double (Cf. ANSI/ISO draft (1995), par. 27.6.2.4.1 for examples
of these very long types). The type 1ong long is merely a double-long 1ong datatype. The type 1ong
double is merely a double-long double datatype. These built-in types as well as pointer variables are
called primitive types in the C++ Annotations.

There is a subtle issue to be aware of when converting applications developed for 32-bit architectures to
64-bit architectures. When converting 32-bit programs to 64-bit programs, only 1ong types and pointer
types change in size from 32 bits to 64 bits; integers of type int remain at their size of 32 bits. This
may cause data truncation when assigning pointer or 1long types to int types. Also, problems with
sign extension can occur when assigning expressions using types shorter than the size of an int to an
unsigned long or to a pointer. More information about this issue can be found here?.

Except for these built-in types the class-type st ring is available for handling character strings. The
datatypes bool, and wchar_t are covered in the following sections, the datatype string is covered in
chapter 5. Note that recent versions of C may also have adopted some of these newer data types (no-
tably bool and wchar_t). Traditionally, however, C doesn’t support them, hence they are mentioned
here.

Now that these new types are introduced, let’s refresh your memory about letters that can be used in
literal constants of various types. They are:

* b or B: in addition to its use to indicate a hexadecimal value, it can also be used to define a binary
constant. E.g., 0b101 equals the decimal value 5. The 0b prefix can be used to specify binary
constants starting with the C++14 standard.

* & or e: the exponentiation character in floating point literal values. For example: 1.23E+3.
Here, E should be pronounced (and interpreted) as: times 10 to the power. Therefore, 1.23E+3
represents the value 1230.

e  can be used as postfix to a non-integral numeric constant to indicate a value of type float,
rather than double, which is the default. For example: 12.F (the dot transforms 12 into a
floating point value); 1.23E+3F (see the previous example. 1.23E+3 is a double value, whereas
1.23E+3F is a float value).

* 1, can be used as prefix to indicate a character string whose elements are wchar_ t-type characters.
For example: L"hello world".

2http://developers.sun.com/solaris/articles/ILP32toLP64Issues.html



int, which 1s the adefault. Note that there 1s no letter indicating a short type. IFor that a
static_cast<short> () must be used.

* p, to specify the power in hexadecimal floating point numbers. E.g. 0x10p4. The exponent itselfis
read as a decimal constant and can therefore not start with 0x. The exponent part is interpreted
as a power of 2. So 0x10p2 is (decimal) equal to 64: 16 * 272,

* U can be used as postfix to an integral value to indicate an unsigned value, rather than an int.
It may also be combined with the postfix L. to produce an unsigned long int value.

And, of course: the x and a until £ characters can be used to specify hexadecimal constants (optionally
using capital letters).

3.4.1 The data type ‘bool’

The type bool represents boolean (logical) values, for which the (now reserved) constants t rue and
false may be used. Except for these reserved values, integral values may also be assigned to vari-
ables of type bool, which are then implicitly converted to t rue and false according to the following
conversion rules (assume intValue is an int-variable, and boolValue is a bool-variable):

// from int to bool:
boolValue = intValue ? true : false;

// from bool to int:
intValue = boolValue ? 1 : 0;

Furthermore, when bool values are inserted into streams then true is represented by 1, and false
is represented by 0. Consider the following example:

cout << "A true value: " << true << "\n"
"A false value: " << false << '\n';

The bool data type is found in other programming languages as well. Pascal has its type Boolean;
Java has a boolean type. Different from these languages, C++’s type boo1 acts like a kind of int type.
It is primarily a documentation-improving type, having just two values true and false. Actually,
these values can be interpreted as enum values for 1 and 0. Doing so would ignore the philosophy
behind the bool data type, but nevertheless: assigning true to an int variable neither produces
warnings nor errors.

Using the bool-type is usually clearer than using int. Consider the following prototypes:

bool exists (char const xfileName); // (1)
int exists(char const xfileName); // (2)

With the first prototype, readers expect the function to return true if the given filename is the name
of an existing file. However, with the second prototype some ambiguity arises: intuitively the return
value 1 is appealing, as it allows constructions like

if (exists("myfile"))
cout << "myfile exists";

On the other hand, many system functions (like access, stat, and many other) return 0 to indicate a
successful operation, reserving other values to indicate various types of errors.

As a rule of thumb I suggest the following: if a function should inform its caller about the success or
failure of its task, let the function return a boo1l value. If the function should return success or various



constants. Only when the function returns a conceptually meaningiul integral value (like the sum of
two int values), let the function return an int value.

3.4.2 The data type ‘wchar_t’

The wchar_t type is an extension of the char built-in type, to accommodate wide character values (but
see also the next section). The g++ compiler reports sizeof (wchar_t) as 4, which easily accommo-
dates all 65,536 different Unicode character values.

Note that Java’s char data type is somewhat comparable to C++’s wchar_t type. Java’s char type is
2 bytes wide, though. On the other hand, Java’s byte data type is comparable to C++’s char type: one
byte. Confusing?

3.4.3 Unicode encoding
In C++ string literals can be defined as NTBSs. Prepending an NTBS by L (e.g., L"hello") defines a
wchar_t string literal.

C++ also supports 8, 16 and 32 bit Unicode encoded strings. Furthermore, two new data types are
introduced: char16_t and char32_t storing, respectively, a UTF-16 and a UTF-32 unicode value.

A char type value fits in a utf_8 unicode value. For character sets exceeding 256 different values
wider types (like char16_t or char32_t) should be used.

String literals for the various types of unicode encodings (and associated variables) can be defined as
follows:

char utf_8[] u8"This is UTF-8 encoded.";
charle_t utflo[] u"This is UTF-16 encoded.";
char32_t utf32[] = U"This is UTF-32 encoded.";

Alternatively, unicode constants may be defined using the \u escape sequence, followed by a hexadec-
imal value. Depending on the type of the unicode variable (or constant) a UTF-8, UTF-16 or UTF-32
value is used. E.g.,

char utf_8[] = u8"\u2018";
charlé6_t utfl6e[] = u"\u2018";
char32_t utf32[] = U"\u2018";

Unicode strings can be delimited by double quotes but raw string literals can also be used.

3.4.4 The data type ‘long long int’

C++ also supports the type long long int. On 32 bit systems it has at least 64 usable bits.

3.4.5 The data type ‘size_t’

The size_t type is not really a built-in primitive data type, but a data type that is promoted by POSIX
as a typename to be used for non-negative integral values answering questions like ‘how much’ and ‘how
many’, in which case it should be used instead of unsigned int. It is not a specific C++ type, but also
available in, e.g., C. Usually it is defined implicitly when a (any) system header file is included. The
header file ‘officially’ defining size_t in the context of C++ is cstddef.



moaified by a modifier. 1hus, 1t improves the seli-daocumenting value ot source code.

Sometimes functions explictly require unsigned int to be used. E.g., on amd-architectures the X-
windows function XQueryPointer explicitly requires a pointer to an unsigned int variable as one
of its arguments. In such situations a pointer to a size_t variable can’t be used, but the address of an
unsigned int must be provided. Such situations are exceptional, though.

Other useful bit-represented types also exists. E.g., uint32_t is guaranteed to hold 32-bits unsigned
values. Analogously, int32_t holds 32-bits signed values. Corresponding types exist for 8, 16 and 64
bits values. These types are defined in the header file cstdint and can be very useful when you need
to specify or use integral value types of fixed sizes.

3.4.6 std::byte

TO DO

3.4.7 Digit separators

To improve the readability of large numbers digit separators for integer and floating point literals can
be used. The digit separator is a single quote which may be inserted between digits of such literals
to enhance human readability. Multiple digit separators may be used, but only one separator can be
inserted between successive digits. E.g.,

1'000'000
3.141'592'653'589'793'238"'5

1123 // won't compile

1''23 // won't compile either

3.5 A new syntax for casts
Traditionally, C offers the following cast syntax:
(typename) expression

here t ypename is the name of a valid type, and expression is an expression.

C style casts are now deprecated. C++ programs should merely use the new style C++ casts as they
offer the compiler facilities to verify the sensibility of the cast. Facilities which are not offered by the
classic C-style cast.

A cast should not be confused with the often used constructor notation:
typename (expression)

the constructor notation is not a cast, but a request to the compiler to construct an (anonymous) variable
of type t ypename from expression.

If casts are really necessary one of several new-style casts should be used. These new-style casts are
introduced in the upcoming sections.



The static_cast<type> (expression) is used to convert ‘conceptually comparable or related types’
to each other. Here as well as in other C++ style casts t ype is the type to which the type of expression
should be cast.

Here are some examples of situations where the static_cast can (or should) be used:
¢ When converting an int to a double.

This happens, for example when the quotient of two int values must be computed without losing
the fraction part of the division. The sqrt function called in the following fragment returns 2:

int x = 19;
int vy 4,;
sqrt(x / vy);

whereas it returns 2.179 when a static_cast is used, as in:
sgrt (static_cast<double> (x) / y);

The important point to notice here is that a static_cast is allowed to change the representation
of its expression into the representation that’s used by the destination type.

Also note that the division is put outside of the cast expression. If the division is performed within
the cast’s expression (asin static_cast<double> (x / y)) an integer division has already
been performed before the cast has had a chance to convert the type of an operand to double.

* When converting enum values to int values (in any direction).

Here the two types use identical representations, but different semantics. Assigning an ordinary
enum value to an int doesn’t require a cast, but when the enum is a strongly typed enum a cast
is required. Conversely, a static_cast is required when assigning an int value to a variable of
some enum type. Here is an example:

enum class Enum
{

VALUE
bi

cout << static_cast<int> (Enum::VALUE) ; // show the numeric value

* When converting related pointers to each other.

The static_cast is used in the context of class inheritance (cf. chapter 13) to convert a pointer
to a so-called ‘derived class’ to a pointer to its ‘base class’. It cannot be used for casting unrelated
types to each other (e.g., a static_cast cannot be used to cast a pointer to a short to a pointer
toan int).

A~void xisagenericpointer. It is frequently used by functions in the C library (e.g., memcpy(3)).
Since it is the generic pointer it is related to any other pointer, and a static_cast should be used
to convert a void * to an intended destination pointer. This is a somewhat awkward left-over
from C, which should probably only be used in that context. Here is an example:

The gsort function from the C library expects a pointer to a (comparison) function having two
void const # parameters. In fact, these parameters point to data elements of the array to be
sorted, and so the comparison function must cast the void const * parameters to pointers to the
elements of the array to be sorted. So, if the array is an int array[] and the compare function’s
parameters are void const #pl and void const #p2 then the compare function obtains the
address of the int pointed to by p1 by using:

static_cast<int const x> (pl);



static_cast 1s allowed to change the expression's representation!).

Here is an example: the C function tolower requires an int representing the value of an
unsigned char. But char by default is a signed type. To call tolower using an available
char ch we should use:

tolower (static_cast<unsigned char>(ch))

3.5.2 The ‘const_cast’-operator

The const keyword has been given a special place in casting. Normally anything const is const for
a good reason. Nonetheless situations may be encountered where the const can be ignored. For these
special situations the const_cast should be used. Its syntax is:

const_cast<type> (expression)

A const_cast<type> (expression) expression is used to undo the const attribute of a (pointer)
type.

The need for a const_cast may occur in combination with functions from the standard C library which
traditionally weren’t always as const-aware as they should. A function strfun (char xs) might be
available, performing some operation on its char *s parameter without actually modifying the char-
acters pointed to by s. Passing char const hello[] = "hello"; to strfun produces the warning

passing “const char x' as argument 1 of “fun(char *)' discards const
A const_cast is the appropriate way to prevent the warning:

strfun (const_cast<char x> (hello));

3.5.3 The ‘reinterpret_cast’-operator

The third new-style cast is used to change the interpretation of information: the reinterpret_cast.
It is somewhat reminiscent of the static_cast, but reinterpret_cast should only be used when
it is known that the information as defined in fact is or can be interpreted as something completely
different. Its syntax is:

reinterpret_cast<pointer type> (pointer expression)

Think of the reinterpret_cast as a cast offering a poor-man’s union: the same memory location may
be interpreted in completely different ways.

The reinterpret_cast is used, for example, in combination with the write function that is available
for streams. In C++ streams are the preferred interface to, e.g., disk-files. The standard streams like
std::cin and std: :cout also are stream objects.

Streams intended for writing (‘output streams’ like cout) offer write members having the prototype
write (char const «buffer, int length)

To write the value stored within a double variable to a stream in its un-interpreted binary form the

stream’s write member is used. However, as a double * and a char = point to variables using differ-

ent and unrelated representations, a static_cast cannot be used. In this case a reinterpret_cast

is required. To write the raw bytes of a variable double value to cout we use:

cout.write (reinterpret_cast<char const x> (&value), sizeof (double));



Hifectively we tell the compiler: back oif, we know what were doing, so stop fuzzing. All bets are ofi,
and we’'d better do know what we’re doing in situations like these. As a case in point consider the
following code:

int value = 0x12345678; // assume a 32-bits int

cout << "Value's first byte has wvalue: " << hex <<
static_cast<int>(
*reinterpret_cast<unsigned char x> (&value)

)i

The above code produces different results on little and big endian computers. Little endian computers
show the value 78, big endian computers the value 12. Also note that the different representations used
by little and big endian computers renders the previous example (cout .write (...)) non-portable
over computers of different architectures.

As a rule of thumb: if circumstances arise in which casts have to be used, clearly document the reasons
for their use in your code, making double sure that the cast does not eventually cause a program to
misbehave. Also: avoid reinterpret_casts unless you have to use them.

3.5.4 The ‘dynamic_cast’-operator

Finally there is a new style cast that is used in combination with polymorphism (see chapter 14). Its
syntax is:

dynamic_cast<type> (expression)

Different from the static_cast, whose actions are completely determined compile-time, the
dynamic_cast’s actions are determined run-time to convert a pointer to an object of some class (e.g.,
Base) to a pointer to an object of another class (e.g., Derived) which is found further down its so-called
class hierarchy (this is also called downcasting).

At this point in the Annotations a dynamic_cast cannot yet be discussed extensively, but we return
to this topic in section 14.6.1.

3.5.5 Casting ’shared_ptr’ objects

This section can safely be skipped without loss of continuity.

In the context of the class shared_ptr, which is covered in section 18.4, several more new-style casts
are available. Actual coverage of these specialized casts is postponed until section 18.4.5.

These specialized casts are:

®* static_pointer_cast, returning a shared_ptr to the base-class section of a derived class
object;

® const_pointer_cast, returning a shared_ptr to a non-const object from a shared_ptr to a
constant object;

* dynamic_pointer_cast,returning a shared_ptr to a derived class object from a shared_ptr
to a base class object.



C++’s keywords are a superset of C’s keywords. Here is a list of all keywords of the language:

alignas charlé_t double long reinterpret_cast true
alignof char32_t dynamic_cast module requires try

and class else mutable return typedef
and_eq co_await enum namespace short typeid
asm co_return explicit new signed typename
atomic_cancel co_yield export noexcept sizeof union
atomic_commit compl extern not static unsigned
atomic_noexcept concept false not_eq static_assert using
auto const float nullptr static_cast virtual
bitand const_cast for operator struct void
bitor constexpr friend or switch volatile
bool continue goto or_eq synchronized wchar_t
break decltype if private template while
case default import protected this XOor
catch delete inline public thread_local X0or_eq
char do int register throw

Notes:

* Since the C++17 standard the keyword register is no longer used, but it remains a reserved

identifier. In other words, definitions like

register int index;

result in compilation errors. Also, register is no longer considered a storage class specifier

(storage class specifiers are extern, thread_local, mutable and static).

e the operator keywords: and, and_eq, bitand, bitor, compl, not, not_eq,
or_eq, xor and xor_eqg are symbolic alternatives for, respectively, ss, &=, &, |, ~,
=, || =, ~and "=.

4 4 4

e C++ also recognizes the special identifiers final, override, transaction_safe, and
transaction_safe_override. These identifiers are special in the sense that they acquire spe-
cial meanings when declaring classes or polymorphic functions. Section 14.4 provides further

details.

Keywords can only be used for their intended purpose and cannot be used as names for other entities
(e.g., variables, functions, class-names, etc.). In addition to keywords identifiers starting with an un-
derscore and living in the global namespace (i.e., not using any explicit namespace or using the mere
: : namespace specification) or living in the std namespace are reserved identifiers in the sense that

their use is a prerogative of the implementor.






Chapter 4

Namespaces

4.1 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program functions
like cos, sin, tan etc. are to be used accepting arguments in degrees rather than arguments in
radians. Unfortunately, the function name cos is already in use, and that function accepts radians as
its arguments, rather than degrees.

Problems like these are usually solved by defining another name, e.g., the function name cosDegrees
is defined. C++ offers an alternative solution through namespaces. Namespaces can be considered as
areas or regions in the code in which identifiers may be defined. Identifiers defined in a namespace
normally won’t conflict with names already defined elsewhere (i.e., outside of their namespaces). So,
a function cos (expecting angles in degrees) could be defined in a namespace Degrees. When calling
cos from within Degrees you would call the cos function expecting degrees, rather than the standard
cos function expecting radians.

4.1.1 Defining namespaces

Namespaces are defined according to the following syntax:

namespace identifier

{
// declared or defined entities
// (declarative region)

The identifier used when defining a namespace is a standard C++ identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,
classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined
within a function body. However, it is possible to define a namespace using multiple namespace decla-
rations. Namespaces are ‘open’ meaning that a namespace CppAnnotations could be defined in a file
filel.cc and also in a file file2.cc. Entities defined in the CppAnnotations namespace of files
filel.ccand file2.cc are then united in one CppAnnotations namespace region. For example:

// in filel.cc
namespace CppAnnotations

{

double cos (double argInDegrees)

{
61



// in file2.cc
namespace CppAnnotations

{

double sin(double argInDegrees)

{

Both sin and cos are now defined in the same CppAnnotations namespace.

Namespace entities can be defined outside of their namespaces. This topic is discussed in section
4.14.1.

4.1.1.1 Declaring entities in namespaces

Instead of defining entities in a namespace, entities may also be declared in a namespace. This allows
us to put all the declarations in a header file that can thereupon be included in sources using the
entities defined in the namespace. Such a header file could contain, e.g.,

namespace CppAnnotations

{
double cos (double degrees);
double sin(double degrees);

4.1.1.2 A closed namespace

Namespaces can be defined without a name. Such an anonymous namespace restricts the visibility of
the defined entities to the source file defining the anonymous namespace.

Entities defined in the anonymous namespace are comparable to C’s st at i c functions and variables. In
C++ the static keyword can still be used, but its preferred use is in class definitions (see chapter 7).
In situations where in C static variables or functions would have been used the anonymous namespace
should be used in C++.

The anonymous namespace is a closed namespace: it is not possible to add entities to the same anony-
mous namespace using different source files.

4.1.2 Referring to entities

Given a namespace and its entities, the scope resolution operator can be used to refer to its entities.
For example, the function cos () defined in the CppAnnotations namespace may be used as follows:

// assume CppAnnotations namespace is declared in the
// following header file:
#include <cppannotations>

int main ()

{

cout << "The cosine of 60 degrees is: " <<



This is a rather cumbersome way to refer to the cos () function in the CppAnnotations namespace,
especially so if the function is frequently used. In cases like these an abbreviated form can be used
after specifying a using declaration. Following

using CppAnnotations::cos; // note: no function prototype,
// just the name of the entity
// 1is required.

calling cos results in a call of the cos function defined in the CppAnnotations namespace. This
implies that the standard cos function, accepting radians, is not automatically called anymore. To call
that latter cos function the plain scope resolution operator should be used:

int main ()

{

using CppAnnotations::cos;

cout << cos (60) // calls CppAnnotations::cos/()

<< ::cos(1.5) // call the standard cos () function
<< '"\n';

A using declaration can have restricted scope. It can be used inside a block. The using declaration
prevents the definition of entities having the same name as the one used in the using declaration. It
is not possible to specify a using declaration for a variable value in some namespace, and to define
(or declare) an identically named object in a block also containing a using declaration. Example:

int main ()
{

using CppAnnotations::value;

cout << value << '\n'; // uses CppAnnotations::value
int value; // error: value already declared.

4.1.2.1 The ‘using’ directive
A generalized alternative to the using declaration is the using directive:
using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are used as if they
were declared by using declarations.

While the using directive is a quick way to import all the names of a namespace (assuming the names-
pace has previously been declared or defined), it is at the same time a somewhat dirty way to do so, as
it is less clear what entity is actually used in a particular block of code.

If, e.g., cos is defined in the CppAnnotations namespace, CopAnnotations: :cosis going to be used
when cos is called. However, if cos is not defined in the CppAnnotations namespace, the standard
cos function will be used. The using directive does not document as clearly as the using declaration
what entity will actually be used. Therefore use caution when applying the using directive.

Namespace declarations are context sensitive: when a using namespace declaration is specified in-
side a compound statement then the declaration is valid until the compound statement’s closing curly



Iying std: :string, but once the compound statement has enaed the scope of the using namespace
std declaration has also ended, and so std: : is required once again when defining second:

#include <string>
int main ()
{
{
using namespace std;
string first;
}

std::string second;

A using namespace directive cannot be used within the declaration block of a class- or enumeration-
type. E.g., the following example won’t compile:

struct Namespace

{

using namespace std; // won't compile
}i

4.1.2.2 ‘Koenig lookup’

If Koenig lookup were called the ‘Koenig principle’, it could have been the title of a new Ludlum novel.
However, it is not. Instead it refers to a C++ technicality.

‘Koenig lookup’ refers to the fact that if a function is called without specifying its namespace, then the
namespaces of its argument types are used to determine the function’s namespace. If the namespace
in which the argument types are defined contains such a function, then that function is used. This
procedure is called the ‘Koenig lookup’.

As an illustration consider the next example. The function FBB: : fun (FBB: :Value v) is defined in
the FBB namespace. It can be called without explicitly mentioning its namespace:

#include <iostream>

namespace FBB

{

enum Value // defines FBB::Value

{
FIRST

bi

void fun (Value x)

{

std::cout << "fun called for " << x << '\n';
}
}

int main ()

{
fun (FBB: :FIRST) ; // Koenig lookup: no namespace
// for fun() specified

generated output:



*/

The compiler is rather smart when handling namespaces. If value in the namespace FBB would have
been defined as typedef int Value then FBB: :Value would be recognized as int, thus causing the

Koenig lookup to fail.

As another example, consider the next program. Here two namespaces are involved, each defining their
own fun function. There is no ambiguity, since the argument defines the namespace and FBB: : fun is

called:

#include <iostream>

namespace FBB

{
enum Value // defines FBB::Value

{
FIRST

}i

void fun (Value x)

{

std::cout << "FBB::fun() called for " << x << '\n';

namespace ES

{
void fun (FBB::Value x)

{

std::cout << "ES::fun() called for " << x << '\n';

int main ()

{

fun (FBB: :FIRST) ; // No ambiguity: argument determines

// the namespace
}
/%
generated output:
FBB::fun () called for O
x/

Here is an example in which there is an ambiguity: fun has two arguments, one from each namespace.

The ambiguity must be resolved by the programmer:

#include <iostream>

namespace ES

{

enum Value // defines ES::Value

{
FIRST

}i

namespace FBB



enum Value

{
FIRST

}i

void fun (Value x,

{

ES::Value vy)

// defines FBB::Value

std::cout << "FBB::fun () called\n";
}
}
namespace ES
{
void fun (FBB::Value x, Value vy)
{
std::cout << "ES::fun () called\n";

int main ()

{

// fun(FBB::FIRST, ES::FIRST);
//
//
ES::fun (FBB::FIRST, ES::FIRST);
}
/%
generated output:
ES::fun() called
*/

An interesting subtlety with namespaces is that definitions in one namespace may break the code
defined in another namespace. It shows that namespaces may affect each other and that namespaces
may backfire if we’re not aware of their peculiarities. Consider the following example:

namespace FBB

{

struct Value

{};

void fun (int x);
void gun (Value x);

namespace ES
{
void fun (int x)
{
fun (x);
}
void gun (FBB::Value x)
{
gun (x) ;

Whatever happens, the programmer’d better not use any of the functions defined in the ES namespace,

ambiguity: resolved by
explicitly mentioning

the namespace



programmer won't even be given the opportunity to call ES: : fun since the compilation 1ails.

Compilation fails for gun but not for fun. But why is that so? Why is ES: : fun flawlessly compiling
while ES: :gun isn’t? In ES::fun fun (x) is called. As x’s type is not defined in a namespace the
Koenig lookup does not apply and fun calls itself with infinite recursion.

With ES: : gun the argument is defined in the FBB namespace. Consequently, the FBB: : gun function is
a possible candidate to be called. But ES: : gun itself also is possible as ES: : gun’s prototype perfectly
matches the call gun (x).

Now consider the situation where FBB: : gun has not yet been declared. Then there is of course no
ambiguity. The programmer responsible for the ES namespace is resting happily. Some time after
that the programmer who’s maintaining the FBB namespace decides it may be nice to add a function
gun (Value x) to the FBB namespace. Now suddenly the code in the namespace ES breaks because of
an addition in a completely other namespace (FBB). Namespaces clearly are not completely independent
of each other and we should be aware of subtleties like the above. Later in the C++ Annotations (chapter
11) we’ll return to this issue.

Koenig lookup is only used in the context of namespaces. If a function is defined outside of a namespace,
defining a parameter of a type that’s defined inside a namespace, and that namespace also defines a
function with an identical signature, then the compiler reports an ambiguity when that function is
called. Here is an example, assuming the abovementioned namespace FBB is also available:

void gun (FBB::Value x);

int main (int argc, char #**argv)
{
gun (FBB: :Value{}); // ambiguity: FBB::gun and ::gun can both
// be called.

4.1.3 The standard namespace

The std namespace is reserved by C++. The standard defines many entities that are part of the
runtime available software (e.g., cout, cin, cerr);the templates defined in the Standard Template
Library (cf. chapter 18); and the Generic Algorithms (cf. chapter 19) are defined in the std namespace.

Regarding the discussion in the previous section, using declarations may be used when referring to
entities in the std namespace. For example, to use the std: : cout stream, the code may declare this
object as follows:

#include <iostream>
using std::cout;

Often, however, the identifiers defined in the st d namespace can all be accepted without much thought.
Because of that, one frequently encounters a using directive, allowing the programmer to omit a
namespace prefix when referring to any of the entities defined in the namespace specified with the
using directive. Instead of specifying using declarations the following using directive is frequently
encountered: construction like

#include <iostream>
using namespace std;

Should a using directive, rather than using declarations be used? As a rule of thumb one might decide
to stick to using declarations, up to the point where the list becomes impractically long, at which point
a using directive could be considered.



* Programmers should not declare or define anything inside the namespace std. This is not com-
piler enforced but is imposed upon user code by the standard;

* Using declarations and directives should not be imposed upon code written by third parties. In
practice this means that using directives and declarations should be banned from header files
and should only be used in source files (cf. section 7.11.1).

4.1.4 Nesting namespaces and namespace aliasing

Namespaces can be nested. Here is an example:

namespace CppAnnotations
{

int value;

namespace Virtual

{

void xpointer;

The variable value is defined in the CppAnnotations namespace. Within the CppAnnotations
namespace another namespace (Virtual) is nested. Within that latter namespace the variable
pointer is defined. To refer to these variable the following options are available:

* The fully qualified names can be used. A fully qualified name of an entity is a list of all the
namespaces that are encountered until reaching the definition of the entity. The namespaces and
entity are glued together by the scope resolution operator:

int main ()

{
CppAnnotations::value = 0;
CppAnnotations::Virtual::pointer = 0;

}

® Ausing namespace CppAnnotations directive can be provided. Now value can be used with-
out any prefix, but pointer must be used with the virtual: : prefix:

using namespace CppAnnotations;

int main ()

{
value = 0;
Virtual::pointer = 0;

}

* A using namespace directive for the full namespace chain can be used. Now value needs its
CppAnnotations prefix again, but pointer doesn’t require a prefix anymore:

using namespace CppAnnotations::Virtual;

int main ()

{
CppAnnotations::value = 0;
pointer = 0;



quired anymore:

using namespace CppAnnotations;
using namespace Virtual;

int main ()

{
value = 0;
pointer = 0;

}

* The same can be accomplished (i.e., no namespace prefixes) for specific variables by providing
specific using declarations:

using CppAnnotations::value;
using CppAnnotations::Virtual::pointer;

int main ()

{
value = 0;
pointer = 0;

}

* A combination of using namespace directives and using declarations can also be used. E.g., a
using namespace directive can be used for the CppAnnotations: :Virtual namespace, and a
using declaration can be used for the CppAnnotations: :value variable:

using namespace CppAnnotations::Virtual;
using CppAnnotations::value;

int main ()
{

value = 0;
pointer = 0;

Following a using namespace directive all entities of that namespace can be used without any further
prefix. If a single using namespace directive is used to refer to a nested namespace, then all entities
of that nested namespace can be used without any further prefix. However, the entities defined in the
more shallow namespace(s) still need the shallow namespace’s name(s). Only after providing specific
using namespace directives or using declarations namespace qualifications can be omitted.

When fully qualified names are preferred but a long name like
CppAnnotations::Virtual::pointer

is considered too long, a namespace alias may be used:
namespace CV = CppAnnotations::Virtual;

This defines CV as an alias for the full name. The variable pointer may now be accessed using:
CV::pointer = 0;

A namespace alias can also be used in a using namespace directive or using declaration:

namespace CV = CppAnnotations::Virtual;
using namespace CV;



Starting with the C++17 standard, when nesting namespaces a nested namespace can directly be re-
ferred to using scope resolution operators. E.g.,

namespace Outer::Middle::Inner

{
// entities defined/declared here are defined/declared in the Inner
// namespace, which is defined in the Middle namespace, which is
// defined in the Outer namespace

4.1.4.1 Defining entities outside of their namespaces

It is not strictly necessary to define members of namespaces inside a namespace region. But before an
entity is defined outside of a namespace it must have been declared inside its namespace.

To define an entity outside of its namespace its name must be fully qualified by prefixing the member
by its namespaces. The definition may be provided at the global level or at intermediate levels in the
case of nested namespaces. This allows us to define an entity belonging to namespace A : : B within the
region of namespace A.

Assume the type int INTS8[8] is defined in the CppAnnotations: :Virtual namespace. Further-
more assume that it is our intent to define a function squares, inside the namespace
CppAnnotations: :Virtual returning a pointer to CppAnnotations::Virtual::INTS.

Having defined the prerequisites within the CppAnnotations::Virtual namespace, our function
could be defined as follows (cf. chapter 9 for coverage of the memory allocation operator new[]):

namespace CppAnnotations

{

namespace Virtual

{

void xpointer;
typedef int INT8[8];

INT8 =xsquares ()
{
INT8 xip = new INT8[1];

for (size_t idx = 0; 1dx != sizeof (INT8) / sizeof (int); ++idx)
(#ip) [idx] = (idx + 1) * (idx + 1);

return ip;

The function squares defines an array of one INT8 vector, and returns its address after initializing
the vector by the squares of the first eight natural numbers.

Now the function squares can be defined outside of the CppAnnotations: :Virtual namespace:

namespace CppAnnotations

{

namespace Virtual

{



typedef int INT8[8];
INT8 =xsquares();

}

CppAnnotations::Virtual::INT8 *xCppAnnotations::Virtual::squares ()
{
INT8 xip = new INT8[1];

for (size_t idx = 0; idx != sizeof (INT8) / sizeof (int); ++idx)
(#ip) [idx] = (idx + 1) * (idx + 1);

return ip;

}
In the above code fragment note the following:

* squares is declared inside of the CppAnnotations: :Virtual namespace.

* The definition outside of the namespace region requires us to use the fully qualified name of the
function and of its return type.

* [nside the body of the function squares we are within the CppAnnotations: :Virtual names-
pace, so inside the function fully qualified names (e.g., for INT8) are not required any more.

Finally, note that the function could also have been defined in the CppAnnotations region. In that
case the Vi rtual namespace would have been required when defining squares () and when specifying
its return type, while the internals of the function would remain the same:

namespace CppAnnotations
{

namespace Virtual

{

void xpointer;
typedef int INT8[8];

INT8 =xsquares|();
}

Virtual::INT8 *Virtual::squares|()
{
INT8 xip = new INT8[1];

for (size_t idx = 0; idx != sizeof (INT8) / sizeof (int); ++idx)
(#ip) [idx] = (idx + 1) * (idx + 1);

return ip;

4.2 'The std::chrono namespace (handling time)

The C programming language offers tools like sleep(3) and select(2) to suspend program execution for
a certain amount of time. And of course the family of time(3) functions for setting and displaying time



was unavaillable, their usefulness 1s limited when used 1n multi threaded programs. Multil threading
has become part of C++ (covered in detail in chapter 20), and additional time-related functions are
available in the std: : filesystem namespace, covered below in this chapter.

In multi threaded programs threads are frequently suspended, albeit usually for a very short time.
E.g., when a thread wants to access a variable, but the variable is currently being updated by another
thread, then the former thread should wait until the latter thread has completed the update. Updating
a variable usually doesn’t take much time, but if it takes an unexpectedly long time, then the former
thread may want to be informed about that, so it can do something else while the latter thread is busy
updating the variable. Interactions between threads like these cannot be realized with functions like
sleep and select.

The std: :chrono namespace bridges the gap between the traditionally available time-related func-
tions and the time-related requirements of multi-threading and of the std::filesystem name
space. All but the specific std: :filesystem related time functionality is available after includ-
ing the <chrono> header file. After including the <filesystem> header file the facilities of the
std::filesystem are available.

Time can be measured in various resolutions: in Olympic games time differences of hundreds of seconds
may make the distinction between a gold and silver medal, but when planning a vacation we might
talk about months before we go on vacation. Time resolutions are specified through objects of the class
std: :ratio, which (apart from including the <chrono> header file) is also available after including
the <ratio> header file.

Different events usually last for different amounts of time (given a specific time resolution). Amounts
of time are specified through objects of the class std: :chrono: :duration.

Events can also be characterized by their points in time: midnight, January 1, 1970 GMT is a point
in time, as is 19:00, December 5, 2010. Points in time are specified through objects of the class
std::chrono::time_point.

It’s not just that resolutions, durations of events, and points in time of events may differ, but the
devices (clocks) we use for specifying time also differ. In the old days hour glasses were used (and
sometimes they’re still used when boiling eggs), but on the other hand we may use atomic clocks when
measurements should be very precise. Four different types of clocks are available. The commonly used
clock is std: :chrono: :system_clock, but in the context of the file system there’s also an (implicitly
defined) filesystem::_ file_clock.

In the upcoming sections the details of the std: :chrono namespace are covered. First we look at
characteristics of time resolutions. How to handle amounts of time given their resolutions is covered
next. The next section describes facilities for defining and handling time-points. The relationships
between these types and the various clock-types are covered thereafter.

In this chapter the specification std: :chrono: : is often omitted (in practice using namespace std
followed by using namespace chrono is commonly used; [std::]chrono:: specifications are oc-
casionally used to avoid ambiguities). Also, every now and then you’ll encounter forward references to
later chapters, like the reference to the chapter about multi-threading. These are hard to avoid, but
studying those chapters at this point fortunately can be postponed without loss of continuity.

4.2.1 Time resolutions: std::ratio
Time resolutions (or units of time) are essential components of time specifications. Time resolutions are
defined through objects of the class std: :ratio.

Before the class ratio can be used, the <ratio> header file must be included. Instead the <chrono>
header file can be included.

The class ratio requires two template arguments. These are positive integral numbers surrounded
by pointed brackets defining, respectively, the numerator and denominator of a fraction (by default the



ratio<l> - representing one;
ratio<60> - representing 60
ratio<l, 1000> - representing 1/1000.

The class ratio defines two directly accessible static data members: num represents its numerator, den
its denominator. A ratio definition by itself simply defines a certain amount. E.g., when executing the
following program

#include <ratio>
#include <iostream>
using namespace std;

int main ()
{
cout << ratio<5, 1000>::num << ',"' << ratio<5, 1000>::den << '\n' <<
milli::num << ', "' << milli::den << '\n';

the text 1,200 is displayed, as that’s the ‘amount’ represented by ratio<5, 1000>: ratio simplifies
the fraction whenever possible.

A fairly large number of predefined ratio types exist. They are, like ratio itself, defined in the
standard namespace and can be used instead of the more cumbersome ratio<x> or ratio<x, y>
specification:

yocto 1024 zepto 102!

atto 10718 femto 1071° pico 10712

nano 107° micro 106 milli 1073
centi 1072 deci 10!

deca 10! hecto 102 kilo  10°
mega 106 giga  10° tera 10'2
peta  10%° exa 10'8

zetta 10%! yotta  10%*

(note: the definitions of the types yocto, zepto, zetta and yotta use integral constants exceeding
64 bits. Although these constants are defined in C++, they are not available on 64 bit or smaller
architectures.)

Time related ratios can very well be interpreted as fractions or multiple of seconds, with ratio<1,
1> representing a resolution of one second.

Here is an example showing how these abbreviations can be used:

cout << milli::num << ',' << milli::den << '\n' <<
kilo::num << ',' << kilo::den << '\n';

4.2.2 Amounts of time: std::chrono::duration

Amounts of time are specified through objects of the class std: :chrono: :duration.

Before using the class duration the <chrono> header file must be included.



mally used) defining the type holding the duration’s amount of time, and a time-resolution (called 1ts
resolution), usually specified through a std: : rat io-type (often using one of its chrono abbreviations).

Using the predefined std: :deca ratio, representing units of 10 seconds an interval of 30 minutes is
defined as follows:

duration<int64_t, std::deca> halfHr (180);

Here halfHr represents a time interval of 180 deca-seconds, so 1800 seconds. Comparable to the
predefined ratios predefined duration types are available:

nanoseconds duration<inté64_t, nano>
microseconds duration<int64_t, micro>
milliseconds duration<inté64_t, milli>
seconds duration<inté64_t>

minutes duration<int64_t, ratio<60>>
hours duration<inté64_t, ratio<3600>>

Using these types, a time amount of 30 minutes can now simply be defined as minutes
halfHour (30).

The two types that were specified when defining a duration<Type, Resolution> can be retrieved
as, respectively,

* rep, which is equivalent to the numeric type (like int64_t). E.g., seconds: : rep is equivalent
toint64d_t;

* period, which is equivalent to the ratio type (like kilo) and so duration<int,
kilo>::period: :numis equal to 1.

Duration objects can be constructed by specifying an argument of its numeric type:

® duration (Type const &value):
a specific duration of value time units. Type refers to the duration’s numeric type (e.g., int 64_t).
So, when defining

minutes halfHour (30);

the argument 30 is stored inside its int 64_t data member.

Duration supports copy- and move-constructors (cf. chapter 9) and its default constructor initializes its
int64_t data member to zero.

The amount of time stored in a duration object may be modified by adding or subtracting two duration
objects or by multiplying, dividing, or computing a modulo value of its data member. Numeric mul-
tiplication operands may be used as left-hand side or right-hand side operands; in combination with
the other multiplication operators the numeric operands must be used as right-hand side operands.
Compound assignment operators are also available. Some examples:

minutes fullHour = minutes{ 30 } + halfHour;
fullHour = 2 % halfHour;

halfHour = fullHour / 2;
fullHour = halfHour + halfHour;
halfHour

~
I
NN N
~.

~.

halfHour

*
Il



requiring a duration object). 1he other three are static members (cI. chapter &) which can be usead
without requiring objects (as shown at the zero code snippet):

®* Type count () const returns the value that is stored inside the duration object’s data mem-
ber. For hal fHour it returns 30, not 1800;

® duration<Type, Resolution>::zero():
this is an (immutable) duration object whose count member returns 0. E.g.:

seconds: :zero () .count () ; // equals int64_t O

® duration<Type, Resolution>::min():
an immutable duration object whose count member returns the lowest value of its Type (i.e.,
std::numeric_limits<Type>::min () (cf. section 21.11));

® duration<Type, Resolution>::max():
an immutable duration object whose count member returns the lowest value of its Type (i.e.,
std::numeric_limits<Type>::max()).

Duration objects using different resolutions may be combined as long as no precision is lost. When
duration objects using different resolutions are combined the resulting resolution is the finer of the
two. When compound binary operators are used the receiving object’s resolution must be the finer or
the compilation fails.

minutes halfHour{ 30 };
hours oneHour{ 1 };

cout << (oneHour + halfHour) .count(); // displays: 90
halfHour += oneHour; // OK
// oneHour += halfHours; // won't compile

The suffixes h, min, s, ms, us, ns can be used for integral values, creating the corresponding
duration time intervals. E.g., minutes min = 1h stores 60 in min.

4.2.3 Clocks measuring time

Clocks are used for measuring time. C++ offers several predefined clock types, and all
but one of them are defined in the std::chrono namespace. The exception is the clock
std::filesystem::_ file_clock (see section 4.3.1 for its details).

Before using the chrono clocks the <chrono> header file must be included.

We need clock types when defining points in time (see the next section). All predefined clock types
define the following types:

¢ the clock’s duration type: Clock::duration (predefined clock types use nanoseconds). E.g.,
system_clock::duration oneDay{ 24h };

¢ the clock’s resolution type: Clock: :period (predefined clock types use nano). E.g., cout <<
system_clock: :period::den << "\n’;

¢ the clock’s type that is used to store amounts of time: Clock: : rep (predefined clock types use
int64_t). E.g., system_clock::rep amount = O0;

e the clock’s type that is used to store time points (described in the next section):
Clock::time_point  (predefined clock types wuse time_point<system_clock,
nanoseconds>) K.g., system_clock::time_point start.



the current time (relative to the clock’'s epoch). 1t 1s a static member and can be used this way:
system_clock::time_point tp = system_clock::now().

There are three predefined clock types in the chrono namespace:

* system_clock is the ‘wall clock’, using the system’s real time clock;
* steady_clock is a clock whose time increases in parallel with the increase of real time;

® high_resolution_clock is the computer’s fastest clock (i.e., the clock having the shortest
timer-tick interval). In practice this is the same clock as system_clock.

The __file_clock is defined in the std: : filesystem namespace ( covered in section 4.3.1).

In addition to now the classes system_clock and high_resolution_clock (referred to as Clock
below) offer these two static members:

® std::time_t Clock::to_time_t (Clock::time_point const &tp)
a std::time_t value (the same type as returned by C’s time(2) function) representing the same
point in time as t imePoint.

® Clock::time_point Clock::from time_t (std::time_t seconds)
a time_point representing the same point in time as t ime_t.

The example illustrates how these functions can be called:

system_clock::from_time_t (
system_clock::to_time_t (
system_clock::from_time_t (
time (0);
)

)i

4.2.4 Points in time: std::chrono::time_point

Single moments in time can be specified through objects of the class std: :chrono: :time_point.
Before using the class time_point the <chrono> header file must be included.

Like duration the class time_point requires two template arguments: A clock type and a duration
type. Usually system_clock is used as the clock’s type using nanoseconds as the default duration
type (it may be omitted if nanoseconds is the intended duration type). Otherwise specify the dura-
tion type as the time_point’s second template argument. The following two time point definitions
therefore use identifcal time point types:

time_point<standard_clock, nanoseconds> tpl;
time_point<standard_clock> tp2;

The class t ime_point supports three constructors:

® time_point ():
the default constructor is initialized to the beginning of the clock’s epoch. For system_clock it
is January, 1, 1970, 00:00h, but notice that filesystem::__file_clock uses a different epoch
(see section 4.3.1 below);



the copy constructor (cif. chapter 9) initializes a time_point object using the time point adefinea
by other. If other’ s resolution uses a larger period than the period of the constructed object
then other’ s point in time is represented in the constructed object’s resolution (an illustration
is provided below, at the description of the member t ime_since_epoch);

® time_point (time_point<Clock, Duration> const &&tmp):
the move constructor (cf. chapter 9) acts comparably to the copy constructor, converting tmp’ s
resolution to the constructed object while moving tmp to the constructed object.

The following operators and members are available:

® time_point &operator+=(duration const &amount):
The amount of time represented by amount is added to the current time_point object. This
operator is also available as binary arithmetic operator using a time_point const & and a
duration const & operand (in any order). Example:

system_clock::now () + seconds{ 5 };

® time_point &operator-=(duration const &amount):
The amount of time represented by amount is subtracted from the current time_point object.
This operator is also available as binary arithmetic operator using a time_point const & and
aduration const & operand (in any order). Example:

time_point<system_clock> point = system_clock::now();
point —-= seconds{ 5 };
® duration time_since_epoch () const:

duration is the duration type used by the time point object for which this member is called. It
returns the amount of time since the epoch that’s represented by the object.

® time_point min() const:
a static member returning the time point’s duration: :min value. Example:

cout <<
time_point<system_clock>::min().time_since_epoch () .count () << '\n';
// shows —9223372036854775808

® time_point max () const:
a static member returning the time point’s duration: :max value.

All predefined clocks use nanoseconds as their time resolution. To express the time in a less precise
resolution take one unit of time of the less precise resolution (e.g., hours (1) ) and convert it to nanosec-
onds. Then divide the value returned by the time point’s time_since_epoch () . count () member by
count member of the less precise resolution converted to nanoseconds. Using this procedure the num-
ber of hours passed since the beginning of the epoch can be determined:

cout << system_clock::now() .time_since_epoch().count () /
nanoseconds (hours (1)) .count () <<
" hours since the epoch\n";

Time point objects based on the system clock or on the high resolution clock can be converted to
std::time_t (or the equivalent type time_t) values. Such time_t values are used when convert-
ing time to text. For such conversions the manipulator put_time (cf. section 6.3.2) is commonly used,
but put_time must be provided with the address of a std: : tm object, which in turn can be obtained
from a std: :time_t value. The whole process is fairly complex, and the core elements are visualized
in figure 4.1.

The essential step eventually leading to the insertion of a time point’s value into a std: : ost ream con-
sists of using system_clock::to_time_t (time_point<system_clock> const &tp) to convert
a time point to a time_t value (instead of using system_clock the high_resolution_clock can
also be used). How a time point can be inserted into a std: : ost reamis described in section 6.4.4.
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Computers commonly store information that must survice reboots in their file systems. Traditionally, to
manipulate the file system the C programming language offers functions performing the required sys-
tem calls. Such functions (like rename(2), t runcate(2), opendir(2), and realpath(3)) are of course
also available in C++, but their signatures and way of use are often less attractive as they usually ex-
pect char const x parameters and may use static buffers or memory allocation based on malloc(3)
and free(3).

Since 2003 the Boost library! offers wrappers around these functions, offering interfaces to those
system calls that are more C++-like.

Currently C++ directly supports these functions in the std: : filesystem namespace. These facilities
can be used after including the <filesystem> header file.

The filesystem namespace is extensive: it contains more than 10 different classes, and more than
30 free functions. To refer to the identifiers defined in the std: :filesystem namespace their fully
qualified names (e.g., std: :filesystem: :path can be used). Alternatively, after specifying ‘using
namespace std::filesystem;’ the identifiers can be used without further qualifications. Names-
pace specifications like ‘namespace fs = std::filesystem;’ are also encountered, allowing speci-
fications like fs: :path.

Functions in the filesystem namespace may fail. When functions cannot perform their assigned
tasks they may throw exceptions (cf. chapter 10) or they may assign values to error_code objects that
are passed as arguments to those functions (see section 4.3.2 below).

4.3.1 the’__file_clock’ type

In section 4.2.3 it was stated that various predefined clocks are available, of which the system_clock
refers to the clock used by the computer itself. The filesystem namespace uses a different clock: the
std::filesystem::___file_clock. Time points obtained using the _ file_clock differ from the
time points obtained using the system clock: time points using the __file_clock are based on an
epoch that (currently) lies well beyond the epoch Jan 1, 00:00:00 1970 that is used by the system clock:
Fri Dec 31 23:59:59 2173. The two epochs can be positioned on a time scale with the present somewhere
in between:

<o===== |- | == e | ===~ >
system_clock's ———————-— > present <-———————— __file_clock's
epoch starts positive negative epoch starts
count count

The _ file_clock has its own peculiarities: the static member now is available, as are the the non-
static members: additions and subtractions of durations and the member t ime_since_epoch can all
be used. The other members (to_time_t, from time_t, min and max) aren’t available.

Since to_time_t is not available for _ file clock how can we show the time or obtain the time’s
components of a time_point<__ file_clock> object?

Computing the difference between the epochs we find 6’437°663’999 seconds, which we can add to the
obtained time since the _ file_clock’ s epoch to obtain the time since the system_clock’ s epoch.
If timePt holds the duration since the _ file_clock epoch then

6'437'663'999 + system_clock::to_time_t (
time_point<system_clock>{ nanoseconds (timePt) })

equals the number of seconds since the system_clock’ s epoch.

Lhttp://www.boost.org/doc/libs/1_65_1/libs/filesystem/doc/index.htm



the begin of 1ts epoch might change. by using the now members of both clocks this drawback 1s avoided:

auto systemNow = system_clock::now () .time_since_epoch();

auto fileNow = __file_clock::now().time_since_epoch();
time_t diff = (systemNow - fileNow) / 1'000'000'000;
time_t seconds = diff + system_clock::to_time_t (

time_point<system_clock>{ nanoseconds (timePt) });

4.3.2 The class ’error_code’

Objects of the class std: :error_code encapsulate error values, and associated error categories (cf.
section 10.9). Traditionally error values are available as values assigned to the global int errno
variable. By convention, when errno’ s value equals zero there’s no error. This convention was adopted
by error_code.

Error codes can be defined for many conceptually different situations. Those situations are character-
ized by their own error categories.

Error categories are used to associate error_code objects with the errors that are defined by those
categories. Default available error categories may use values like EADDRINUSE (or the equivalent enum
class errc value address_in_use) but new types of error categories, tailored to other contexts,
can also be defined. Defining error categories is covered near the end of the C++ Annotations (section
23.7.1). At this point two error_category members are briefly introduced:

® std::string message (int err) returning a textual description of error err (like address
already in use when err equals address_in_use).

® char const *name () returning the name of the error category (like generic for the generic cat-
egory);

Error category classes are singleton classes: only one object exists of each error category. In the con-
text of the filesystem namespace the standard category system_category is used, and a reference to
the system_category object is returned by the free function std: :system_category, expecting no
arguments. The public interface of the class error_code declares these construtors and members:

Constructors:

® error_code () noexcept:
the object is initialized with error value 0 and the system_category error category. Value 0 is
not considered an error;

¢ Copy- and move-constructors are available;

® error_code(int ec, error_category const &cat) noexcept:
the object is initialized from error value ec (e.g., errno, set by a failing function), and a
const reference to the applicable error category (provided by, e.g., std: :system_category ()
or std: :generic_category ()). Here is an example defining an error_code object:

error_code ec{ 5, system_category() };

® error_code (ErrorCodeEnum value) noexcept:
this is a member template (cf. section 22.1.3), using template header template <class
ErrorCodeEnum>. It initializes the object with the return value of make_error_code (value)
(see below). In section 23.7 defining ErrorCodeEnums is covered. Note: ErrorCodeEnum as such
does not exist. It is a mere placeholder for existing ErrorCodeEnum enumerations;



* The overloaded assignment operator and an assignment operator accepting an ErrorCodeEnum
are available;

® void assign(int val, error_category const &cat):
assigns new values to the object’s error value and category. E.g, ec.assign (0,
generic_category());

® error_category const &category () const noexcept:
returns a reference to the object’s error category;

® void clear () noexcept:
sets the error_code’ s value to 0 and its error category to system_category;

® error_condition default_error_condition () const noexcept:
returns the current category’s default error condition initialized with the current object’s error
value and error category (see section 10.9.2 for details about the class error_condition);

® string message () const:
the message that is associated with the current object’s error value is returned (equivalent to
category () .message (ec.value()) );

® explicit operator bool () const noexcept:
returns true if the object’s error value is unequal O (i.e., it represents and error)

® int value () const noexcept:
returns the object’s error value.

Free functions:

* Two error_code objects can be compared for (in) equality and can be ordered (using
operator<).

Ordering error_codes associated with different error categories has no meaning. But when the
error categories are identical then they are compared by their error code values (cf. this SG14
discussion summaryz);

® error_code make_error_code (errc value) noexcept:
returns an error_code object initialized with static_cast<int> (value) and
generic_category (). This function converts an enum class errc value to an error_code.

Other error related enums may also be defined with which tailored make_error_code functions
can be associated (cf. section 23.7;)

® std::ostream &operator<< (std::ostream & os, error_code const &ec):
executes the following statement:

return os << ec.category () .name() << ':' << ec.value();
Several functions introduced below define an optional last error_code sec parameter. Those func-
tions have noexcept specifications. If those functions cannot complete their tasks, then ec is set to the

appropriate error code, calling ec.clear () if no error was encountered. If no ec argument is provided
then those functions throw a filesystem_error exception if they cannot complete their tasks.

4.3.3 Names of file system entries: path

Objects of the class filesysten: :path hold names of file system entries. The class path is a value
class: a default constructor (empty path) as well as standard copy/move construction/assignment facil-
ities are available. In addition, the following constructors can be used:

® path(string &&tmp);

2http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0824r1. html



any acceptable type that provides the characters of the path (e.g., source 1s a N1Ibd);

path (InputIter begin, InputlIter end):
the characters from begin to end define the path’ s name.

A thus constructed path doesn’t have to refer to an existing file system entry.

Path constructors expect character sequences (including NTBSs) that may consist of various (all op-
tional) elements:

a root-name, e.g., a disk-name (like E :) or device indicator (like //nfs);
a root-directory, present if it is the first character after the (optional) root-name;

filename characters (not containing directory separators). In addition the ‘single dot filename’
(.) represents the current directory and the ‘double dot filename’ (. .) represents the current
directory’s parent directory;

directory separators (by default the forward slash). Multiple consecutive separators are automat-
ically merged into one separator.

The constructors also define a last format ftmp = auto_format parameter, fir which in practice
almost never an argument has to be provided (for its details see cppreference?.)

Many functions expect path arguments which can usually be created from NTBSs or std: :string
objects as path allows promotions (cf. section 11.4). E.g., the filesystem function absolute expects a
const &path argument. It can be called like this: absolute ("tmp/filename").

4.3.3.1 Path modifiers

Objects of the class path can be handled in various ways:

path &append(Type const &arg) or path &operator/=(Type const &arg):

the arguments that can be passed to the constructors can also be passed to these members. The
arg argument is separated from the path’s current content by a directory separator (unless the
path is initially empty as in cout << path{}.append("entry")). See also concat, below;

void clear (): the path’s content is erased;

int compare (Type const &other):
returns the result of lexicographically comparing the current path’s content with other. Other
can be a path, a string-type or an NTBS;

path &concat (Type const &arg) or path &operator+=(Type const &arg):
similar to append, but no directory separator is used when adding arg to the current path;

path &remove_filename ():

removes the last component of the stored path. If only a root-directory is stored, then the root
directory is removed. Note that the last directory separator is kept, unless it is the only path
element;

path &replace_extension (path const &replacement = path{} ):

replaces the extension of the last component of the stored path (including the extension’s dot)
with replacement. The extension is removed if replacement is empty. If the path calling
replace_extension has no extension then replacement is added. The replacement may op-
tionally start with a dot. The path object’s extension receives only one dot;

3http://en.cppreference.com/w/cpp/experimental/fs/path



replaces the last component of the stored path with replacement, which 1tself may contain mul-
tiple path elements. If only a root-directory is stored, then it is replaced by replacement. The
member’s behavior is undefined if the current path object is empty;

Accessors (no arguments, const members) return the path’s content in various forms, depending on
the used accessor member: c_str returns an NTBS, string, wstring, u8string, uléstring,
u32string (possibly prefixed by generic_, like generic_string) returns a string-type of object.
Example:

path ulb{ "/usr/local/bin" };
cout << ulb.string() << '\n'; // shows: /usr/local/bin

Double quotes surround the displayed path name when inserting a path object into a stream. The
double quotes are omitted when accessing the path’s content as an NTBS or as a string, and also when
assigning (or casting) path objects to strings.

When extracting path objects from streams the path name that is extracted may optionally be sur-
rounded by double quotes. The extracted path contains one set of surrounding quotes.

All of the path’ s components are sequentially accessed using its begin and end iterators: each com-
ponent is returned as a path. If available root names and root directories are returned as initial compo-
nents, followed by the individual directories and finally filename components. The directory separators
themselves are not returned when iterating over a path’ s components.

Path components may also directly be obtained (if a component isn’t present then an empty path
component is returned). The following decomposers are available: root_name, root_directory,
root_path, relative_path, parent_path ( returning the current path-content from which the
last element has been removed), filename, stem (returning the filename without its dot-extension),
and extension. Example:

path ulb{ "/usr/local/bin" };
cout << ulb.relative_path() << '\n'; // shows: "usr/local/bin"
// (note the double quotes)

When prefixed by has_ the member returns a bool which is true if the component is present. Also
available: is_absolute, is_relative.

4.3.3.2 Path operators and free functions

In addition to the member functions various (free) operators are available:

Path objects can be compared (using the ==, !'=, <, <=, >, and >= operators); the / operator
returns the concatenated 1hs and rhs, separated by a directory separator.

Comparisons use lexicographical comparisons (as if by comparing the return values of their string
members).

In addition free functions are available. Some of these copy files. Those functions accept an optional
std::filesystem: :copy_options argument. The enum class copy_options defines symbolic
constants that can be used to fine-tune the behavior of these functions. The enumeration supports
bitwise operators (the symbols’ values are shown between parentheses). It defines these symbols:

* When copying files:

— none (0): report an error (default behavior);
- skip_existing (1): keep the existing file, without reporting an error;
- overwrite_existing (2): replace the existing file;



¢ When copying subdirectories:

- none (0): skip subdirectories (default behavior);

- recursive (8): recursively copy subdirectories and their content;
¢ When copying symlinks:

— none (0): follow symlinks (default behavior);
— copy_symlinks (16): copy symlinks as symlinks, not as the files they point to;
- skip_symlinks (32): ignore symlinks;

® To control copy’ s behavior itself:

— none (0): copy file content (default behavior);

— directories_only (64): copy the directory structure, but do not copy any non-directory
files;

- create_symlinks (128): instead of creating copies of files, create symlinks pointing to the
originals (the source path must be an absolute path unless the destination path is in the
current directory);

- create_hard_links (256): instead of creating copies of files, create hardlinks that resolve
to the same files as the originals.

The following functions expect path arguments:

® path absolute (path const &src, path consté& base):
a copy of src to which, unless already available in src, absolute (base)’ s root name and root
directory are prepended. It can be called like this: absolute ("tmp/filename"), returning
the (absolute) current working directory to which absolute’ s argument is appended as a final
element, separated by a directory separator. Relative path indicators (like . . /) are kept. The
returned path merely is an absolute path. If relative path indicators should be removed, then
use the next function;

® path canonical (path const &src [, error_code &ec]):
returns src’ s canonical path. The argument src must refer to an existing directory entry. Ex-
ample:

path man{ "/usr/local/bin/../../share/man" };
cout << canonical (man) << '\n'; // shows: "/usr/share/man"

® void copy (path const &src, path const &dest [, copy_options opts [,
error_code &ec]l]):
src must exist. Copies src to dest if the cp program would also succeed.

If src is a directory, and dest does not exist, dest is created. Directories are recursively copied
if copy options recursive or none were specified;

® bool copy_file(path const &src, path const &dest [, copy_options opts [,
error_code &ec]l]):
src must exist. Copies src to dest if the cp program would also succeed. Symbolic links are
followed. The value t rue is returned if copying succeeded,;

® void copy_symlink (path const &src, path const &dest [, error_code &ec]):
creates the symlink dest as a copy of the symlink src;

® bool create_directories(path const &dest [, error_code &ec]):
creates each component of dest, unless already existing. The value t rue is returned if dest was
actually created. If false is returned ec contains an error-code, which is zero (ec.value () ==
0) if dest already existed. See also create_directory below;



error_code &ec]):

dest’ s parent directory must exist. This function creates directory dest if it does not yet exist.
The value true is returned if dest was actually created. If false is returned ec contains an
error-code, which is zero (ec.value () == 0)if dest already existed. If existing is specified,
then dest receives the same attributes as existing;

bool create_directory_symlink (path const &dir, path const &link [,
error_code &ec]):

like create_symlink, but should be used to create a symbolic link to a directory. See also
create_symlink below;

bool create_hardlink (path const &dest, path const &link [, error_code
&ec]):
creates a hard link from 1ink to dest. Dest must exist;

bool create_symlink (path const &dest, path const &link [, error_code &ec]):
creates a symbolic (soft) link from 1ink to dest; dest does not have to exist;

path current_path([error_code &ec]), void current_path (path const &toPath
[, error_code &ec]):

the former function returns the current working directory (cwd), the latter changes the cwd to
toPath;

bool equivalent (path const &pathl, path const &path2 [, error_code &ec]):
true is returned if pathl and path2 refer to the same file or directory, and have identical sta-
tuses. Both paths must exist;

bool exists (path const &dest [, error_code &ecl]), exists(file_status
status):

true is returned if dest exists (actually: if status(dest[, ec]) (see below) returns
true). Note: when iterating over directories, the iterator usually provides the entries’ sta-
tuses. In those cases calling exists (iterator->status()) is more efficient than calling
exists (xiterator);

std::unintmax_t file_size(path const &dest [, error_code &ec]):
returns the size in bytes of a regular file (or symlink destination);

std::uintmax_t hard_link_count (path const &dest [, error_code &ec]):
returns the number of hard links associated with dest;

file_time_type last_write_time (path const &dest [, error_code &ec]), void
last_write_time (path const &dest, file_time_type newTime [, error_code
&ecl):

the former function returns dest’ s last modification time; the latter function changes dest’s
last modification time to newTime. The return type file_time_type is defined through a using
alias for chrono: :time_point (cf. section 4.2.4). The returned time_point is guaranteed
to cover all file time values that may be encountered in the current file system. Referring to
section 4.3.1: here is how the time returned by last_write_time can be represented using the
system_clock’ s epoch:

int main ()
{
// get “now' according to the system_clock and
// the __ _file_clock, compute their difference in
// nanoseconds and seconds:
auto systemNow = system_clock::now().time_since_epoch();
auto fileNow = _ file_clock::now() .time_since_epoch();
duration diffNano = systemNow - fileNow;
time_t diff = diffNano.count() / 1'000'000'000;

cout << "system_clock now: " << systemNow.count () << "\n"



"difference (nano): " << diffNano.count () << "\n"

"difference (secs): " << diff << '\n';
auto lwt = last_write_time("lastwritetime.cc").time_since_epoch();
time_t seconds = diff + system_clock::to_time_t (
time_point<system_clock>{ nanoseconds (lwt) } );
cout << "lastwritetime.cc's time: " <<
put_time (gmtime (&seconds), "%c") << '\n';
seconds =
system_clock::to_time_t (time_point<system_ clock>{ diffNano });
cout << "_ file_clock's epoch time expressed using the system_clock:\n"
" " << put_time (gmtime (&seconds), "%c") << "\n"
"same, merely using the difference in "now' clock-seconds:\n"
" " << put_time (gmtime (&diff), "%c") << '\n';

® path read_symlink (path const &src [, error_code é&ec]):
src must refer to a symbolic link or an error is generated. The link’s target is returned;

® bool remove (path const &dest [, error_code &ec]), std::uintmax_t
remove_all (path const &dest [, error_code &ec]):
remove removes the file, symlink, or empty directory dest, returning true if dest could be
removed; remove_all removes dest if it’s a file (or symlink); and recursively removes directory
dest, returning the number of removed entries;

® yvoid rename (path const &src, path const &dest [, error_code &ec]):
renames src to dest, as if using the standard mv(1) command (if dest exists it is overwritten);

® void resize_file(path const &src, std::uintmax_t size [, error_code &ec]):
src’ s size is changed to size as if using the standard truncate(1) command;

® space_info space(path const &src [, error_code é&ec]):
returns information about the file system in which src is located;

® path system_complete (path const &src|[, error_codeé& ec]):
returns the absolute path matching src, using current_path as its base;

® path temp_directory_path([error_code& ec]):
returns the path to a directory that can be used for temporary files. The directory is not cre-
ated, but its name is commonly available from the environment variables TMPDIR, TMP, TEMP,
or TEMPDIR. Otherwise, /tmp is returned.

4.3.4 Handling directories: directory_entry

The file system is a recursive data structure. Its top-level entry is a directory (the root directory) con-
taining plain directory entries (files, (soft) links, named sockets, etc.) and possibly also (sub)directory
entries referring to nested directories which in turn may contiain plain- and (sub)directory entries.

In the std::filesystem namespace the elements of directories are objects of the class
directory_entry, containing names and statuses of the entries of that directory.

The class directory_entry supports all standard constructors and assignment operators and in ad-
dition a constructor expecting a path:

directory_entry (path const &entry);

Objects of the class directory_entry can be constructed by name, without requiring that those ob-
jects refer to existing entries in the computer’s file system. The assignment operator is also available,



operator 1s not available.

‘directory_entry’ objects may be compared using the ==, !=, <, <=, >, and >= opera-
tors. These operators are then applied to their path objects: directory_entry("one") ==
directory_entry ("one") returns true.

In addition to these operators the class directory_entry also has these member functions:

® void assign (path const &dest):
the current path is replaced by dest (its action is identical to that of the overloaded assignment
operator);

® void replace_filename (path const &dest):
the last element of the current object’s path is replaced by dest. If that element is empty (like
when the object’s path ends in a directory separator) then dest is appended to the current object’s
path;

® path const &path() const, operator path const & () const:
the current object’s path name is returned;

® file system::file_status status([error_code &ec]):
returns type and attributes of the directory entry referred to by the current object. If the
current object refers to a symlink, and the symlink’s type and status are required, then use
symlink_status (see also section 4.3.5 below).

4.3.4.1 Visiting directory entries: (recursive_)directory_iterator

The filesystem namespace has two classes simplifying directory processing: objects of the class
directory_iterator are (input) iterators iterating over the entries of directories; and objects of
the class recursive_directory_iterator are (input) iterators recursively visiting all entries of
directories.

The classes (recursive_)directory_iterator provides default, copy, and move constructors. Ob-
jects of both classes may also be constructed from a path and an optional error_code. E.g.,

directory_iterator (path const &dest [, error_code &ecl);

All members of standard input iterators (cf. section 18.2) are supported. These iterators point to
directory_entry objects referring to entries in the computer’s file system. E.g.,

cout << xdirectory_iterator{ "/home" } << '\n'; // shows the first
// entry under /home

End-iterators matching these objects are available through the default constructed objects of the two
classes. In addition, range-based for loops can be used as shown by the next example:

for (auto &entry: directory_iterator ("/var/log"))
cout << entry << '\n';

For-statements explicitly defining iterators can also be used:

for (
auto iter = directory_iterator ("/var/log"),
end directory_iterator{};
iter != end;
++iter

cout << entry << '\n';



the first element of 1ts directory. OSuch 1terators can also explicitly be defined: auto &iter =
begin (base), auto iter = begin(base), auto &iter = base or auto iter = base. All
these iter objects refer to base’ s data, and incrementing them also advances base to its next el-
ement:

recursive_directory_iterator base{ "/var/log/" };

auto iter = base;
// final two elements show identical paths,
// different from the first element.

cout << *iter << ' ' << #++iter << ' ' << xbase << '\n';

The functions begin and end that are wused in the above examples are, like
(recursive_)directory_iterator, available in the filesystem namespace.

The recursive_directory_iterator also accepts a directory_options argument (see below),
by default specified as directory_options: :none

recursive_directory_iterator (path const &dest,
directory_options options [, error_code &ecl);

The enum class directory_options defines values that are used to fine-tune the behavior of
recursive_directory_iterator objects, supporting bitwise operators (the values of its symbols
are shown between parentheses):

* none (0): directory symlinks are skipped, denied permission to enter a subdirectory generates an
error;

® follow_directory_symlink (1): symlinks to subdirectories are followed,;

®* skip_permission_denied (2): directories that cannot be entered are silently skipped.
The class recursive_directory_iterator also has these members:

® int depth() const:
returns the current iteration depth. The depth of the initial directory, specified at construction-
time, equals 0;

® void disable_recursion_pending():
when called before incrementing the iterator the next directory entry is not recursively visited if it
is a sub-directory. Then, after incrementing the iterator recursion is again allowed. If a recursion
should end at a specific depth then this function must repeatedly be called before calling the
iterator’s increment operator once depth () returns that specific depth;

® recursive_directory_iterator &increment (error_code &ec):
acts identically to the iterator’s increment operator. However, when an error occurs operator++
throws a filesystem_error exception, while increment assigns the error to ec;

® directory_options options () const:
returns the option(s) specified at construction-time;

® void pop():
ends processing the current directory, and continues at the next entry in the current directory’s
parent. When (in a for-statement, see the example below) called from the initial directory that
directory’s processing ends;

® bool recursion_pending() const:
true is returned if recursive processing of sub-directories of the currently processed directory is
allowed. If so, and the directory entry the iterator points at is a sub-directory then processing
continues at that sub-directory at the iterator’s next increment;



directories.

int main ()
{

recursive_directory_iterator base{ "/var/log" };

for (auto entry = base, end = end(base); entry != end; ++entry)
{
cout << entry.depth() << ": " << xentry << '\n';
if (entry.depth() == 1)
entry.disable_recursion_pending () ;

The above program handles entries as they come. If other strategies are needed they have to be im-
plemented. E.g., a breadth-first strategy first visits all the non-directory entries and then visits the
sub-directories. In the next example this is realized by processing each of the directories stored in
level (initially it merely contains the starting directory). ‘Processing a directory’ means that its non-
directory entries are directly processed while the names of its sub-directories are stored in next. Once
all entries in level have been processed the names of the next level sub-directories are available in
next and by assigning next to level all directories at the next level are processed. When reaching
the most deeply nested sub-directories next remains empty and the while statement ends:

void breadth (path const &dir) // starting dir.
{ vector<path> level{ dir }; // currently processed level
while (not level.empty()) // process all its dirs.
{ vector<path> next; // dirs of the next level
for (auto const &dir: level) // visit all dirs at this level
{ cout << "At " << dir << '\n';

// at each dir: visit all entries
for (auto const &entry: directory_iterator{ dir })

{

if (entry.is_directory()) // store all dirs at the current
next.push_back (entry); // level
else // or process its non-dir entry
cout << " entry: " << entry << '\n';
}
}
level = next; // continue at the next level,
} // which eventually won't exist

4.3.5 Types (file_type) and permissions (perms) of file system elements:
file_status

File system entries (represented by path objects), have several attributes: permissions (e.g., the owner
may modifiy an entry, others may only read entries), and types (like plain files, directories, and soft-
links).

Types and permissions of file system entries are available through objects of the class file_status.



erators.

The constructor

explicit file_status(file_type type = file_type::none,
perms permissions = perms::unknown)

creates the file status for a specific type of file system entry having a specific set of permissions. It also
acts as default constructor.

The constructor’s first parameter is an enumeration specifying the type of a file system entry repre-
sented by a path object:

* not_found = -1 indicates that a file system entry whose status was requested was not found
(this is not considered an error);

* none indicates either that the file status has not yet been evaluated, or that an error occurred
when an entry’s status was evaluated,;

* regular: the entry is a regular file;

® directory: the entry is a directory;

* symlink: the entry is a symbolic link;

® block: the entry is a block device;

® character: the entry is a character device;

® fifo: the entry is a named pipe;

* socket: the entry is a socket file;

® unknown: the entry is an unknown file type

The constructor’s second parameter defines the enum class perms specifying the access permissions
of file system entries. The enumeration’s symbols were selected so that their meanings should be more
descriptive than the constants defined in the <sys/stat .h> header file, but other than that they have
identical values. All bitwise operators can be used by values of the enum class perms. Here is an
overview of the symbols defined by the enum class perms:



oympol lue Ssys/stat.n  heaning

none 0000 No permission bits were set

owner_read 0400 S_IRUSR File owner has read permission

owner_write 0200 S_IWUSR File owner has write permission

owner_exec 0100 S_IXUSR File owner has execute/search permissions

owner_all 0700 S_IRWXU File owner has read, write, and execute/search
permissions

group_read 0040 S_IRGRP The file’s group has read permission

group_write 0020 S_IWGRP The file’s group has write permission

group_exec 0010 S_IXGRP The file’s group has execute/search permis-
sions

group_all 0070 S_IRWXG The file’s group has read, write, and exe-
cute/search permissions

others_read 0004 S_IROTH Other users have read permission

others_write 0002 S_IWOTH Other users have write permission

others_exec 0001 S_IXOTH Other users have execute/search permissions

others_all 0007 S_IRWXO Other users have read, write, and exe-
cute/search permissions

all 0777 All users have read, write, and execute/search
permissions

set_uid 04000 S _ISUID Set user ID to file owner user ID on execution

set_gid 02000 S_ISGID Set group ID to file’s user group ID on execu-
tion

sticky_bit 01000 S_ISVTX  POSIX XSI specifies that when set on a direc-
tory only file owners may delete files even if
the directory is writeable by others (used, e.g.,
with /tmp)

mask 077717 All valid permission bits.

The class file_status provides these members:

® perms permissions()

perm_options opts]
the former member returns the permissions of the file system entry represented by the
file_status object, the latter can be used to modify those permissions.

[,

const

and

error_code &ec]):

perm_options has these values:

®* file _type typel()

replace: current options are replaced by newPerms;

add: newPerms are added to the current permissions;

remove: newPerms are removed from the current permissions;

nofollow: when path refers to a symbolic link the permissions of the symbolic link instead

of those of the file system entry the link refers to are updated.

const and void type (file_type type):
the former member returns the type of the file system entry represented by the file_status

object, the latter can be used to set the type.

4.3.5.1 Obtaining the status of file system entries

The filesystem functions status and symlink_status retrieve or change statuses of file system
entries. These functions may be called with a final (optional) error_code argument which is assigned
an appropriate error code if they cannot perform their tasks. If the argument is omitted the members

throw exceptions if they cannot perform their tasks:

® file_status status(path const &dest [,

returns type and attributes of dest;

error_code &ec]):

void permissions (perms newPerms

The enum class



when calling status of a path object that represents a symbolic link the status of the entry the

link refers to is obtained. To obtain the status information of the symbolic link itself this member
should be used;

® bool status_known (file_status const &status):
returns t rue if status refers to a determined status (status itself may indicate that the entity
referred to by status does not exist). One way of receiving false is by passing it a default status
Owedxstatus_known(file_status{}N

Once a file_status object is obtained the file type of the entry whose status it represents can be
interrogated using these functions (defined in the filesystem namespace, where WHATEVER is the
requested specification):

bool is_WHATEVER (file_status status)
bool is_WHATEVER (path const path &entry [, error_code &ec])

These functions return true if status or status matches the requested type. Here are the available
functions:

® is_block_file: the path refers to a block device;

® is_character_file: the path refers to a character device;

® is_directory: the path refers to a directory;

® is_empty: the path refers to an empty file or directory;

® is_fifo: the path refers to a named pipe;

® is_other: the path does not refer to a directory, regular file or symlink;
* is_regular_file: the path refers to a regular file;

® is_socket: the path refers to a named socket;

® is_symlink: the path refers to a symbolic link;

Alternatively, the file_status::type () member can be used in, e.g., a switch to select an entry
matching its file_type return value (see the previous section (4.3.5) for a description of the symbols
defined by the file_type enum).

Here is a little program showing how file statuses can be obtained and shown (for the map see section
12.4.7):

namespace
{
std::unordered_map<file_type, char const x> statusMap =
{
{ file_type::not_found, "an unknown file" },
{ file_type::none, "not yet or erroneously evaluated "

"file type" },
file_type::regular, "
file_type::directory, "
file_type::symlink, "
file_type::block, "
file_type::character, "
file_type::fifo, "a named pipe" },
file_type::socket, "a socket file" },
file_type::unknown, "an unknown file type" }

a regular file" 1},

a directory" 1},

a symbolic 1link" 1},

a block device" },

a character device" },
a
a

e T e T T e N N

}i



int main ()
{

cout << oct;

string line;
while (true)

{

cout << "enter the name of a file system entry: ";
if (not getline(cin, line) or line.empty())
break;

path entry{ line };

error_code ecj;
file_status stat = status(entry, ec);

if (not status_known (stat))

{

cout << "status of " << entry << " is unknown. "
"Ec = " << ec << '"\n';
continue;
}
cout << "status of " << entry << ": type = " <<
statusMap[stat.type ()] <<
", permissions: " <<
static_cast<size_t>(stat.permissions()) << '\n';

4.3.6 Information about the space of file systems: space_info

Every existing path lives in a file system, Sizes of file systems typically are quite large, but there is a
limit to their sizes.

The size of file systems, the number of bytes that is currently being used and the remaining number
of bytes is made available by the function space (path const sentry [, error_code &ecl),
returning the information about the file system containing entry in a POD struct space_info.

If the error_code argument is provided then it is cleared if no error occurs, and set to the operating
system’s error code if an error has occurred. If an error occurs and the error_code argument was not
provided then a filesystem_error exception is thrown, receiving path as its first argument and the
operating system’s error code as its error_code argument.

The returned space_info has three fields:

uintmax_t capacity; // total size in bytes
uintmax_t free; // number of free bytes on the file system
uintmax_t available; // free bytes for a non-privileged process

If a field cannot be determined it is set to -1 (i.e., the max. value of the type uintmax_t).

The function can be used this way:

int main ()

{



auto pod = space (tmp) ;

cout << "The filesystem containing /tmp has a capacity of " <<
pod.capacity << " bytes, \n"
"i.e., " << pod.capacity / (1024 % 1024) << " MB.\n"

"# free bytes: " << pod.free << "\n"
"# available: " << pod.available << "\n"
"free + available: " << pod.free + pod.available << '\n';

4.3.7 File system exceptions: filesystem_error

The std: : filesystemnamespace offers its own exception type filesystem_error (see also chapter
10). Its constructor has the following signature (the bracketed parameters are optional):

filesystem_error (string const &what,
[path const &pathl, [path const &path2,]]
error_code ec);

As filesystem facilities are closely related to standard system functions, errc error code enumera-
tion values can be used to obtain error_codes to pass to filesystem_error, as illustrated by the
following program:

int main ()
try
{
try
{
throw filesystem error{ "exception encountered", "pl", "p2",
make_error_code (errc::address_in_use) };
}
catch (filesystem_error const &fse)

{

cerr << "what: " << fse.what () << "\n"
"pathl: " << fse.pathl() << "\n"
"path2: " << fse.path2() << "\n"
"code: " << fse.code() << '\n';
throw;

}

catch (exception const &ec)

{

cerr << "\n"
"plain exception's what: " << ec.what () << "\n\n";



Chapter 5

The ‘string’ Data Type

C++ offers many solutions for common problems. Most of these facilities are part of the Standard
Template Library or they are implemented as generic algorithms (see chapter 19).

Among the facilities C++ programmers have developed over and over again are those manipulating
chunks of text, commonly called strings. The C programming language offers rudimentary string sup-
port.

To process text C++ offers a std: : string type. In C++ the traditional C library functions manipulat-
ing NTB strings are deprecated in favor of using st ring objects. Many problems in C programs are
caused by buffer overruns, boundary errors and allocation problems that can be traced back to improp-
erly using these traditional C string library functions. Many of these problems can be prevented using
C++ string objects.

Actually, string objects are class type variables, and in that sense they are comparable to stream
objects like cin and cout. In this section the use of string type objects is covered. The focus is on
their definition and their use. When using string objects the member function syntax is commonly
used:

stringVariable.operation (argumentList)
For example, if stringl and string?2 are variables of type std: : string, then
stringl.compare (string2)

can be used to compare both strings.

In addition to the common member functions the st ring class also offers a wide variety of operators,
like the assignment (=) and the comparison operator (==). Operators often result in code that is easy to
understand and their use is generally preferred over the use of member functions offering comparable
functionality. E.g., rather than writing

if (stringl.compare (string2) == 0)
the following is generally preferred:
if (stringl == string2)

To define and use string-type objects, sources must include the header file <string>. To merely
declare the string type the header iosfwd can be included.

In addition to std: : string, the header file st ring defines the following string types:

® std::wstring, a string type consisting of wchar_t characters;
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* std::u32string, a string type consisting of char32_t characters.

5.1 Operations on strings

Some of the operations that can be performed on strings return indices within the strings. Whenever
such an operation fails to find an appropriate index, the value string: :npos is returned. This value
is a symbolic value of type string: :size_type, which is (for all practical purposes) an (unsigned)
int.

All string member functions accepting string objects as arguments also accept NTBS arguments.
The same usually holds true for operators accepting st ring objects.

Some st ring-members use iterators. Iterators are formally introduced in section 18.2. Member func-
tions using iterators are listed in the next section (5.2), but the iterator concept itself is not further
covered by this chapter.

Strings support a large variety of members and operators. A short overview listing their capabilities is
provided in this section, with subsequent sections offering a detailed discussion. The bottom line: C++
strings are extremely versatile and there is hardly a reason for falling back on the C library to process
text. C++ strings handle all the required memory management and thus memory related problems,
which are the #1 source of problems in C programs, can be prevented when C++ strings are used.
Strings do come at a price, though. The class’s extensive capabilities have also turned it into a beast.
It’s hard to learn and master all its features and in the end you’ll find that not all that you expected
is actually there. For example, std: :string doesn’t offer case-insensitive comparisons. But in the
end it isn’t even as simple as that. It is there, but it is somewhat hidden and at this point in the C++
Annotations it’s too early to study into that hidden corner yet. Instead, realize that C’s standard library
does offer useful functions that can be used as long as we’re aware of their limitations and are able to
avoid their traps. So for now, to perform a traditional case-insensitive comparison of the content of two
std::string objects strl and str2 the following will do:

strcasecmp (strl.c_str (), str2.c_str());
Strings support the following functionality:

® initialization:
when string objects are defined they are always properly initialized. In other words, they are
always in a valid state. Strings may be initialized empty or already existing text can be used to
initialize strings.

® assignment:
strings may be given new values. New values may be assigned using member functions (like
assign) but a plain assignment operator (i.e., =)may also be used. Furthermore, assignment o a
character buffer is also supported.

® conversions:
the partial or complete content of string objects may be interpreted as C strings but the string’s
content may also be processed as a series of raw binary bytes, not necessarily terminating in a
0-valued character. Furthermore, in many situations plain characters and C strings may be used
where std: :strings are accepted as well.

® breakdown:
the individual characters stored in a string can be accessed using the familiar index operator ([])
allowing us to either access or modify information in the middle of a string.

® comparisons:
strings may be compared to other strings (NTBSs) using the familiar logical comparison operators
==, !=, <, <=, > and >=. There are also member functions available offering a more fine-
grained comparison.



the content of strings may be modified 1n many ways. Operators are available to add information
to string objects, to insert information in the middle of string objects, or to replace or erase (parts
of) a string’s content.

® swapping:
the string’s swapping capability allows us in principle to exchange the content of two string objects
without a byte-by-byte copying operation of the string’s content.

® searching:
the locations of characters, sets of characters, or series of characters may be searched for from any
position within the string object and either searching in a forward or backward direction.

® housekeeping:
several housekeeping facilities are offered: the string’s length, or its empty-state may be interro-
gated. But string objects may also be resized.

® stream I/0:
strings may be extracted from or inserted into streams. In addition to plain string extraction a
line of a text file may be read without running the risk of a buffer overrun. Since extraction and
insertion operations are stream based the I/0 facilities are device independent.

5.2 A std:string reference

In this section the string members and string-related operations are referenced. The subsections cover,
respectively the string’s initializers, iterators, operators, and member functions. The following termi-
nology is used throughout this section:

* object is always a st ring-object;

® argument isa string const & orachar const * unlessindicated otherwise. The content of
an argument never is modified by the operation processing the argument;

* opos refers to an offset into an object string;
® apos refers to an offset into an argument;
* on represents a number of characters in an object (starting at opos);

* an represents a number of characters in an argument (starting at apos).

Both opos and apos must refer to existing offsets, or an exception (cf. chapter 10) is generated. In
contrast, an and on may exceed the number of available characters, in which case only the available
characters are considered.

Many members declare default values for on, an and apos. Some members declare default values
for opos. Default offset values are 0, the default values of on and an is string: :npos, which can be
interpreted as ‘the required number of characters to reach the end of the string’.

With members starting their operations at the end of the string object’s content proceeding backwards,
the default value of opos is the index of the object’s last character, with on by default equal to opos +
1, representing the length of the substring ending at opos.

In the overview of member functions presented below it may be assumed that all these parameters
accept default values unless indicated otherwise. Of course, the default argument values cannot be
used if a function requires additional arguments beyond the ones otherwise accepting default values.

Some members have overloaded versions expecting an initial argument of type char const *. But
even if that is not the case the first argument can always be of type char const * where a parameter
of std: :stringis defined.



these may be 1gnorea at this point without loss ot continuity. Like apos and opos, 1terators must reter
to existing positions and/or to an existing range of characters within the string object’s content.

All string-member functions computing indices return the predefined constant string: :npos on
failure.

The s literal suffix to indicate that a std::string constant is intended when a string literal (like
"hello world") is used. It can be used after declaring using namespace std or, more specific,
after declaring using namespace std::literals::string_literals.

When string literals are used when explicitly defining or using std: :string objects the s-suffix is
hardly ever required, but it may come in handy when using the auto keyword. E.g., auto str =
"hello world"s defines std::string str, whereas it would have been a char const x if the
literal suffix had been omitted.

5.2.1 Initializers

After defining string objects they are guaranteed to be in a valid state. At definition time string objects
may be initialized in one of the following ways: The following st ring constructors are available:

® string object:
initializes object to an empty string. When defining a st ring this way no argument list may be
specified;

® string object (string::size_type count, char ch):
initializes object with count characters ch. Caveat: to initialize a string object using this con-
structor do not use the curly-braces variant, but use the constructor as shown, to avoid selecting
the initializer-list constructor (see below);

® string object (string const &argument):
initializes object with argument;

® string object (std::string const &argument, string::size_type apos,
string::size_type an):
initializes object with argument’s content starting at index position apos, using at most an of
argument’s characters;

® string object (InputlIterator begin, InputlIterator end):
initializes object with the characters in the range of characters defined by the two
InputIterators.

® string object(std::initializer_list<char> chars):
initializes object with the characters specified in the initializer list. The string may also directly
be initialized, using the curly braced initialization. Here is an example showing both forms:

string strl({'h', 'e', '1', '1', 'o'});
string str2{ 'h', 'e', '1', '1', 'o' };

5.2.2 Iterators

See section 18.2 for details about iterators. As a quick introduction to iterators: an iterator acts like a
pointer, and pointers can often be used in situations where iterators are requested. Iterators usually
come in pairs, defining a range of entities. The begin-iterator points to the first entity, the end-iterator
points just beyond the last entity of the range. Their difference is equal to the number of entities in the
iterator-range.

Iterators play an important role in the context of generic algorithms (cf. chapter 19). The class
std: : string defines the following iterator types:



these iterators are forward iterators. The const_iterator is returned by string
const objects, the plain iterator is returned by non-const string objects. Characters
referred to by iterators may be modified;

® string::reverse_iterator and string::reverse_const_iterator:

these iterators are also forward iterators but when incrementing the iterator the previ-
ous character in the string object is reached. Other than that they are comparable to,
respectively, string::iterator and string: :const_iterator.

5.2.3 Operators

String objects may be manipulated by member functions but also by operators. Using operators of-
ten results in more natural-looking code. In cases where operators are available having equivalent
functionality as member function the operator is practically always preferred.

The following operators are available for st ring objects (in the examples ‘object’ and ‘argument’ refer
to existing std: : string objects).
* plain assignment:

a character, C or C++ string may be assigned to a string object. The assignment
operator returns its left-hand side operand. Example:

object = argument;

object = "C string";

object = 'x';

object = 120; // same as object = 'x'
e addition:

the arithmetic additive assignment operator and the addition operator add text to a
string object. The compound assignment operator returns its left-hand side operand,
the addition operator returns its result in a temporary string object. When using the
addition operator either the left-hand side operand or the right-hand side operand must
be a std: :string object. The other operand may be a char, a C string or a C++ string.
Example:

object += argument;
object += "hello";

object += 'x'; // integral expressions are OK
argument + otherArgument; // two std::string objects
argument + "hello"; // using + at least one
"hello" + argument; // std::string is required
argument + 'a'; // integral expressions are OK

'a' + argument;
* index operator:

The index operator may be used to retrieve object’s individual characters, or to assign
new values to individual characters of a non-const string object. There is no range-
checking (use the at () member function for that). This operator returns a char & or
char const &. Example:

object[3] = argument[5];
¢ logical operators:

the logical comparison operators may be applied to two string objects or to a string object
and a C string to compare their content. These operators return a bool value. The ==,



1cographical comparison ot their content using the ASCILIL character collating sequence.

Example:

object == object; // true
object != (object + 'x'); // true
object <= (object + 'x'); // true

* stream related operators:

the insertion-operator (cf. section 3.1.4) may be used to insert a string object into
an ostream, the extraction-operator may be used to extract a string object from an
istream. The extraction operator by default first ignores all whitespace characters
and then extracts all consecutively non-blank characters from an istream. Instead
of a string a character array may be extracted as well, but the advantage of using a
string object should be clear: the destination string object is automatically resized to
the required number of characters. Example:

cin >> object;
cout << object;

5.2.4 Member functions

The std: : string class offers many member function as well as additional non-member functions that
should be considered part of the string class. All these functions are listed below in alphabetic order.

The symbolic value string: :npos is defined by the string class. It represents ‘index-not-found’
when returned by member functions returning string offset positions. Example: when calling
‘object.find (’ x’ )’ (see below) on a string object not containing the character ’ x’ , npos is returned,
as the requested position does not exist.

The final 0-byte used in C strings to indicate the end of an NTBS is not considered part of a C++ string,
and so the member function will return npos, rather than length () when looking for 0 in a string
object containing the characters of a C string.

Here are the standard functions that operate on objects of the class string. When a parameter of
size_t is mentioned it may be interpreted as a parameter of type string: : size_type, but without
defining a default argument value. The type size_type should be read as string::size_type.
With size_type the default argument values mentioned in section 5.2 apply. All quoted functions are
member functions of the class std: : st ring, except where indicated otherwise.

® char &at(size_t opos):
a reference to the character at the indicated position is returned. When called with string
const objectsa char const ¢ isreturned. The member function performs range-checking, rais-
ing an exception (that by default aborts the program) if an invalid index is passed.

® string &append(InputlIterator begin, Inputlterator end):
the characters in the range defined by begin and end are appended to the current string object.

® string &append(string const &argument, size_type apos, size_type an):
argument (or a substring) is appended to the current string object.

® string &append(char const *xargument, size_type an):
the first an characters of argument are appended to the string object.

® string &append(size_type n, char ch):
n characters ch are appended to the current string object.

® string &assign(string const &argument, size_type apos, size_type an):
argument (or a substring) is assigned to the string object. If argument is of type char const x
and one additional argument is provided the second argument is interpreted as a value initializing
an, using 0 to initialize apos.



n characters ch are assigned to the current string object.

char &back():
returns a reference to the last char stored inside the string object. The result is undefined for
empty strings.

string::iterator begin():
an iterator referring to the first character of the current string object is returned. With const
string objects a const_iterator is returned.

size_type capacity () const:
the number of characters that can currently be stored in the string object without needing to
resize it is returned.

string::const_iterator cbegin():
a const_iterator referring to the first character of the current string object is returned.

string::const_iterator cend():
a const_iterator referring to the end of the current string object is returned.

void clear():
the string’s content is erased.

int compare(string const &argument) const:

the text stored in the current string object and the text stored in argument is compared using a
lexicographical comparison using the ASCII character collating sequence. zero is returned if the
two strings have identical content, a negative value is returned if the text in the current object
should be ordered before the text in argument; a positive value is returned if the text in the
current object should be ordered beyond the text in argument.

int compare(size_t opos, size_t on, string const &argument) const:
a substring of the text stored in the current string object is compared to the text stored in
argument. At most on characters starting at offset opos are compared to the text in argument.

int compare(size_t opos, size_t on, string const &argument, size_type

apos, size_type an):

a substring of the text stored in the current string object is compared to a substring of the
text stored in argument. At most on characters of the current string object, starting at offset
opos, are compared to at most an characters of argument, starting at offset apos. In this case
argument must be a string object.

int compare(size_t opos, size_t on, char const *argument, size_t an):

a substring of the text stored in the current string object is compared to a substring of the text
stored in argument. At most on characters of the current string object starting at offset opos
are compared to at most an characters of argument. Argument must have at least an characters.
The characters may have arbitrary values: 0-valued characters have no special meanings.

size_t copy(char *xargument, size_t on, size_type opos) const:
the content of the current string object are (partially) copied into argument. The actual number
of characters copied is returned. The second argument, specifying the number of characters to
copy, from the current string object is required. No 0-valued character is appended to the copied
string but can be appended to the copied text using an idiom like the following:

argument [object.copy (argument, string::npos)] = 0;

Of course, the programmer should make sure that argument’s size is large enough to accommo-
date the additional O-byte.

string::const_reverse_iterator crbegin():
a const_reverse_iterator referring to the last character of the current string object is re-
turned.



a const_reverse_iterator reterring to the begin of the current string object 1s returnea.

char const *c_str() const:
the content of the current string object as an NTBS.

char const *xdata () const:

the raw content of the current string object are returned. Since this member does not return an
NTBS (as c_str does), it can be used to retrieve any kind of information stored inside the current
string object including, e.g., series of 0-bytes:

string s (2, 0);
cout << static_cast<int>(s.data()[1]) << '\n';

bool empty () const:
true is returned if the current string object contains no data.

string::iterator end():
an iterator referring to the position just beyond the last character of the current string object is
returned. With const string objects a const_iterator is returned.

string &erase(size_type opos, size_type on):
a (sub)string of the information stored in the current string object is erased.

string::iterator erase(string::iterator begin, string::iterator end):

the parameter end is optional. If omitted the value returned by the current object’s end member
is used. The characters defined by the begin and end iterators are erased. The iterator begin is
returned, which is then referring to the position immediately following the last erased character.

size_t find(string const &argument, size_type opos) const:
the first index in the current string object is returned where argument is found.

size_t find(char const *argument, size_type opos, size_type an) const:
the first index in the current string object is returned where argument is found. When all three
arguments are specified the first argument must be a char const .

size_t find(char ch, size_type opos) const:
the first index in the current string object is returned where ch is found.

size_t find_first_of (string const &argument, size_type opos) const:
the first index in the current string object is returned whose character matches any character
from argument.

size_type find_first_of (char const xargument, size_type opos, size_type

an) const:

the first index in the current string object is returned whose character matches any character
from argument. If opos is provided it refers to the first index in the current string object where
the search for argument should start. If omitted, the string object is completely scanned. If an
is provided it indicates the number of characters of the char const x argument that should be
used in the search. It defines a substring starting at the beginning of argument. If omitted, all
of argument’s characters are used.

size_type find_first_of (char ch, size_type opos):
the first index in the current string object is returned whose character is equal to ch.

size_t find_first_not_of(string const &argument, size_type opos) const:
the first index in the current string object is returned whose character does not match any char-
acter from argument.

size_type find_first_not_of (char const xargument, size_type opos,

size_type an) const:

the first index in the current string object is returned whose character does not match any
character from argument. The opos and an parameters are handled as with find_first_of



the first index 1n the current string object 1s returned whose character 1s unequal to ch.

size_t find_last_of (string const &argument, size_type opos) const:
the last index in the current string object is returned whose character matches any character from
argument.

size_type find_last_of (char const *argument, size_type opos, size_type an)
const:

the last index in the current string object is returned whose character matches any character
from argument. If opos is provided it refers to the last index in the current string object
where the search for argument should start (searching backward towards the beginning of the
current object). If omitted, the string object is scanned completely. If an is provided it indicates
the number of characters of the char const x argument that should be used in the search.
It defines a substring starting at the beginning of argument. If omitted, all of argument’s
characters are used.

size_type find_last_of (char ch, size_type opos):
the last index in the current string object is returned whose character is equal to ch.

size_t find_last_not_of (string const &argument, size_type opos) const:
the last index in the current string object is returned whose character does not match any char-
acter from argument.

size_type find_last_not_of (char const *xargument, size_type opos, size_type
an) const:

the last index in the current string object is returned whose character does not match any
character from argument. The opos and an parameters are handled as with find_last_of.

size_t find_last_not_of (char ch, size_type opos) const:
the last index in the current string object is returned whose character is unequal to ch.

char &front ():
returns a reference to the first char stored inside the string object. The result is undefined for
empty strings.

allocator_type get_allocator():
returns the allocator of the class std: :string

istream &std::getline(istream &istr, string &object, char delimiter =

’ \HI ) :

Note: this is not a member function of the class st ring.

A line of text is read from istr. All characters until delimiter (or the end of the stream,
whichever comes first) are read from istr and are stored in object. If the delimiter is encoun-
tered it is removed from the stream, but is not stored in object.

If the delimiter is not found, istr.eof returns true (see section 6.3.1). Since streams may be
interpreted as bool values (cf. section 6.3.1) a commonly encountered idiom to read all lines from
a stream successively into a string object 1ine looks like this:

while (getline(istr, line))
process (line);

The content of the last line, whether or not it was terminated by a delimiter, is eventually also
assigned to object.

string &insert (size_t opos, string const &argument, size_type apos,
size_type an):

a (sub)string of argument is inserted into the current string object at the current string object’s
index position opos. Arguments for apos and an must either both be provided or they must both
be omitted.

string &insert (size_t opos, char const *xargument, size_type an):
argument (of type char const x)is inserted at index opos into the current string object.



Count characters ch are inserted at index opos 1nto the current string object.

string::iterator insert (string::iterator begin, char ch):
the character ch is inserted at the current object’s position referred to by begin. Begin is re-
turned.

string::iterator insert (string::iterator begin, size_t count, char ch):
Count characters ch are inserted at the current object’s position referred to by begin. Begin is
returned.

string::iterator insert (string::iterator begin, Inputlterator abegin,
InputIterator aend):

the characters in the range defined by the InputIterators abegin and aend are inserted at
the current object’s position referred to by begin. Begin is returned.

size_t length() const:
the number of characters stored in the current string object is returned.

size_t max_size() const:
the maximum number of characters that can be stored in the current string object is returned.

void pop_back():
The string’s last character is removed from the string object.

void push_back (char ch):
The character ch is appended to the string object.

string::reverse_iterator rbegin():
a reverse iterator referring to the last character of the current string object is returned. With
const string objects a reverse_const_iterator is returned.

string::reverse_iterator rend():
a reverse iterator referring to the position just before the first character of the current string
object is returned. With const string objects a reverse_const_iterator is returned.

string &replace(size_t opos, size_t on, string const &argument, size_type
apos, size_type an):

a (sub)string of characters in object are replaced by the (subset of) characters of argument. If
on is specified as 0 argument is inserted into object at offset opos.

string &replace(size_t opos, size_t on, char const *argument, size_type
an):

a series of characters in object are replaced by the first an characters of char const x
argument.

string &replace(size_t opos, size_t on, size_type count, char ch):
on characters of the current string object, starting at index position opos, are replaced by count
characters ch.

string &replace(string::iterator begin, string::iterator end, string const
&argument):

the series of characters in the current string object defined by the iterators begin and end are
replaced by argument. If argument is a char const x, an additional argument an may be
used, specifying the number of characters of argument that are used in the replacement.

string &replace(string::iterator begin, string::iterator end, size_type
count, char ch):

the series of characters in the current string object defined by the iterators begin and end are
replaced by count characters having values ch.

string &replace(string::iterator begin, string::iterator end,

InputIterator abegin, InputlIterator aend):

the series of characters in the current string object defined by the iterators begin and end are
replaced by the characters in the range defined by the InputIterators abegin and aend.



the current string object’s capacity 1s changed to at least request. Atter calling this member,
capacity’s return value will be at least request. A request for a smaller size than the value re-
turned by capacity isignored. A std::length_error exception is thrown if request exceeds
the value returned by max_size (std::length_error is defined in the stdexcept header).
Calling reserve () has the effect of redefining a string’s capacity: when enlarging the capacity
extra memory is allocated, but not immediately available to the program. This is illustrated by
the exception thrown by the string’s at () member when trying to access an element exceeding
the string’s size but not the string’s capacity.

void resize(size_t size, char ch = 0):

the current string object is resized to size characters. If the string object is resized to a size
larger than its current size the additional characters will be initialized to ch. If it is reduced in
size the characters having the highest indices are chopped off.

size_t rfind(string const &argument, size_type opos) const:
the last index in the current string object where argument is found is returned. Searching pro-
ceeds from the current object’s offset opos back to its beginning.

size_t rfind(char const *xargument, size_type opos, size_type an) const:

the last index in the current string object where argument is found is returned. Searching pro-
ceeds from the current object’s offset opos back to its beginning. The parameter an specifies the
length of the substring of argument to look for, starting at argument’s beginning.

size_t rfind(char ch, size_type opos)const:
the last index in the current string object where ch is found is returned. Searching proceeds from
the current object’s offset opos back to its beginning.

void shrink_to_fit ():

optionally reduces the amount of memory allocated by a vector to its current size. The imple-
mentor is free to ignore or otherwise optimize this request. In order to guarantee a ‘shrink to fit’
operation the

string{ stringObject }.swap(stringObject)

idiom can be used.

size_t size() const:
the number of characters stored in the current string object is returned. This member is a syn-
onym of length ().

string substr(size_type opos, size_type on) const:
a substring of the current string object of at most on characters starting at index opos is returned.

void swap (string &argument):
the content of the current string object are swapped with the content of argument. For this
member argument must be a string object and cannot be a char const x.

5.2.5 Conversion functions

Several string conversion functions are available operating on or producing std: :string objects.
These functions are listed below in alphabetic order. They are not member functions, but class-less
(free) functions declared in the std namespace. The <string> header file must be included before
they can be used.

® float stof(std::string const &str, size_t xpos = 0):

Initial whitespace characters in st r are ignored. Then the following sequences of characters are
converted to a f1loat value, which is returned:

— A decimal floating point constant:
* An optional + or - character



* An optional e or E character, followed by an optional - or + character, followed by a series
of decimal digits

— A hexadecimal floating point constant:

* An optional + or - character
* 0x or 0X
* A series of hexadecimal digits, possibly containing one decimal point character

* An optional p or P character, followed by an optional - or + character, followed by a series
of decimal digits

— An infinity expression:

* An optional + or - character
* The words inf or infinity (case insensitive words)

- A ‘not a number’ expression:

* An optional + or - character

# The words nan or nan (alphanumeric character sequence) (nan is a case insensi-
tive word), resulting in a NaN floating point value

Ifpos != 0 theindex of the first character in st r which was not converted is returned in *pos. A
std::invalid_argument exception is thrown if the characters in st r could not be converted to
a float,a std::out_of_range exception is thrown if the converted value would have exceeded
the range of f1oat values.

double stod(std::string const &str, size_t *xpos = 0):
A conversion as described with stof is performed, but now to a value of type double.

double stold(std::string const &str, size_t *pos = 0):
A conversion as described with stof is performed, but now to a value of type 1ong double.

int stoi(std::string const &str, size_t *pos = 0, int base = 10):

Initial whitespace characters in str are ignored. Then all characters representing numeric con-
stants of the number system whose base is specified are converted to an int value, which is
returned. An optional + or - character may prefix the numeric characters. Values starting with 0
are automatically interpreted as octal values, values starting with 0x or 0X as hexadecimal char-
acters. The value base must be between 2 and 36. If pos != 0 the index of the first character
in str which was not converted is returned in *xpos. A std::invalid_argument exception is
thrown if the characters in str could not be converted to an int, a std: :out_of_range excep-
tion is thrown if the converted value would have exceeded the range of int values.

Here is an example of its use:

int value = stoi("™ -123"s); // assigns value -123
value = stoi(" 123"s, 0, 5); // assigns value 38
long stol(std::string const &str, size_t *pos = 0, int base = 10):

A conversion as described with stoi is performed, but now to a value of type 1ong.

long long stoll (std::string const &str, size_t *pos = 0, int base = 10):
A conversion as described with stoi is performed, but now to a value of type 1ong long.

unsigned long stoul (std::string const &str, size_t *pos = 0, int base =
10):
A conversion as described with stoi is performed, but now to a value of type unsigned long.

unsigned long long stoull (std::string const &str, size_t *pos = 0, int
base = 10):

A conversion as described with stoul is performed, but now to a value of type unsigned long
long.



I'ype can be ot the types int, long, long long,

unsigned, unsigned long, unsigned
long long,

float, double, or long double. The value of the argument is converted to a
textual representation, which is returned as a std: : string value.
® std::wstring to_wstring (Type value):

The conversion as described at to_string is performed, returning a std: :wstring.






Chapter 6

The 10-stream Library

Extending the standard stream (FILE) approach, well known from the C programming language, C++
offers an input /output (I/0) library based on class concepts.

All C++ I/0O facilities are defined in the namespace std. The std: : prefix is omitted below, except for
situations where this would result in ambiguities.

Earlier (in chapter 3) we've seen several examples of the use of the C++ I/O library, in particular
showing insertion operator (<<) and the extraction operator (>>). In this chapter we’ll cover I/O in
more detail.

The discussion of input and output facilities provided by the C++ programming language heavily uses
the class concept and the notion of member functions. Although class construction has not yet been
covered (for that see chapter 7) and although inheritance is not covered formally before chapter 13, it
is quite possible to discuss I/O facilities long before the technical background of class construction has
been covered.

Most C++ I/O classes have names starting with basic_ (like basic_ios). However, these basic_
names are not regularly found in C++ programs, as most classes are also defined using typedef defi-
nitions like:

typedef basic_ios<char> ios;

Since C++ supports various kinds of character types (e.g., char, wchar_t), I/O facilities were developed
using the template mechanism allowing for easy conversions to character types other than the tradi-
tional char type. As elaborated in chapter 21, this also allows the construction of generic software,
that could thereupon be used for any particular type representing characters. So, analogously to the
above typedef there exists a

typedef basic_ios<wchar_t> wios;

This type definition can be used for the wchar_t type. Because of the existence of these type defini-
tions, the basic_ prefix was omitted from the C++ Annotations without loss of continuity. The C++
Annotations primarily focus on the standard 8-bits char type.

Tostream objects cannot be declared using standard forward declarations, like:
class std::ostream; // now erroneous
Instead, to declare iostream classes the <iosfwd> header file should be included:

#include <iosfwd> // correct way to declare iostream classes
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into streams. Compare this to the situation commonly encountered in U where the fprintf function
is used to indicate by a format string what kind of value to expect where. Compared to this latter
situation C++’s iostream approach immediately uses the objects where their values should appear, as
in

cout << "There were " << nMaidens << " virgins present\n";

The compiler notices the type of the nMaidens variable, inserting its proper value at the appropriate
place in the sentence inserted into the cout iostream.

Compare this to the situation encountered in C. Although C compilers are getting smarter and smarter,
and although a well-designed C compiler may warn you for a mismatch between a format specifier
and the type of a variable encountered in the corresponding position of the argument list of a print £
statement, it can’t do much more than warn you. The type safety seen in C++ prevents you from making
type mismatches, as there are no types to match.

Apart from this, iostreams offer more or less the same set of possibilities as the standard FILE-based I/O
used in C: files can be opened, closed, positioned, read, written, etc.. In C++ the basic FILE structure,
as used in C, is still available. But C++ adds to this I/O based on classes, resulting in type safety,
extensibility, and a clean design.

In the ANSI/ISO standard the intent was to create architecture independent I/O. Previous implemen-
tations of the iostreams library did not always comply with the standard, resulting in many extensions
to the standard. The I/O sections of previously developed software may have to be partially rewritten.
This is tough for those who are now forced to modify old software, but every feature and extension
that was once available can be rebuilt easily using ANSI/ISO standard conforming I/O. Not all of these
reimplementations can be covered in this chapter, as many reimplementations rely on inheritance and
polymorphism, which topics are formally covered by chapters 13 and 14. Selected reimplementations
are provided in chapter 24, and in this chapter references to particular sections in other chapters are
given where appropriate. This chapter is organized as follows (see also Figure 6.1):

* The class ios_base is the foundation upon which the iostreams I/O library was built. It defines
the core of all I/O operations and offers, among other things, facilities for inspecting the state of
I/O streams and for output formatting.

* The class ios was directly derived from ios_base. Every class of the I/O library doing input or
output is itself derived from this ios class, and so inherits its (and, by implication, ios_base’s)
capabilities. The reader is urged to keep this in mind while reading this chapter. The concept of
inheritance is not discussed here, but rather in chapter 13.

The class ios is important in that it implements the communication with a buffer that is used
by streams. This buffer is a st reambuf object which is responsible for the actual I/O to/from the
underlying device. Consequently i ost ream objects do not perform I/O operations themselves, but
leave these to the (stream)buffer objects with which they are associated.

¢ Next, basic C++ output facilities are discussed. The basic class used for output operations is
ostream, defining the insertion operator as well as other facilities writing information to streams.
Apart from inserting information into files it is possible to insert information into memory buffers,
for which the ostringstream class is available. Formatting output is to a great extent possible
using the facilities defined in the ios class, but it is also possible to insert formatting commands
directly into streams using manipulators. This aspect of C++ output is discussed as well.

¢ Basic C++ input facilities are implemented by the i st ream class. This class defines the extraction
operator and related input facilities. Comparably to inserting information into memory buffers
(using ostringstream)a class i stringstreamis available to extract information from memory

buffers.

¢ Finally, several advanced I/O-related topics are discussed. E.g., reading and writing from the
same stream and mixing C and C++ I/O using filebuf objects. Other I/O related topics are
covered elsewhere in the C++ Annotations, e.g., in chapter 24.
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objects to be input or output and, on the other hand, the st reambuf, which 1s responsible for the actual
input and output to the device accessed by a st reambuf object.

This approach allows us to construct a new kind of st reambuf for a new kind of device, and use that
streambuf in combination with the ‘good old’ i st ream- and ost ream-class facilities. It is important to
understand the distinction between the formatting roles of iostream objects and the buffering interface
to an external device as implemented in a st reambuf object. Interfacing to new devices (like sockets
or file descriptors) requires the construction of a new kind of st reambuf, rather than a new kind of
istream or ostream object. A wrapper class may be constructed around the istream or ostream
classes, though, to ease the access to a special device. This is how the stringstream classes were
constructed.

6.1 Special header files

Several iostream related header files are available. Depending on the situation at hand, the following
header files should be used:

® iosfwd: sources should include this header file if only a declaration of the stream classes is re-
quired. For example, if a function defines a reference parameter to an ost ream then the compiler
does not need to know exactly what an ost ream is. When declaring such a function the ost ream
class merely needs to be be declared. One cannot use

class std::ostream; // erroneous declaration

void someFunction (std::ostream &str);
but, instead, one should use:

#include <iosfwd> // correctly declares class ostream

void someFunction (std::ostream &str);

® <ios>: sources should include this header file when using types and facilites (like
ios::0ff_type, see below) defined in the ios class.

* <streambuf>: sources should include this header file when using streambuf or filebuf
classes. See sections 14.8 and 14.8.2.

® <istream>: sources should include this preprocessor directive when using the class i st ream or
when using classes that do both input and output. See section 6.5.1.

* <ostream>: sources should include this header file when using the class ostream class or when
using classes that do both input and output. See section 6.4.1.

* <iostream>: sources should include this header file when using the global stream objects (like
cin and cout).

* <fstream>: sources should include this header file when using the file stream classes. See
sections 6.4.2, 6.5.2, and 6.6.3.

* <sstream>: sources should include this header file when using the string stream classes. See
sections 6.4.3 and 6.5.3.

* <iomanip>: sources should include this header file when using parameterized manipulators.
See section 6.3.2.



The class std: : ios_base forms the foundation of all I/O operations, and defines, among other things,
facilities for inspecting the state of I/O streams and most output formatting facilities. Every stream
class of the I/O library is, through the class ios, derived from this class, and inherits its capabilities.
As ios_base is the foundation on which all C++ I/O was built, we introduce it here as the first class of
the C++ I/O library.

Note that, as in C, I/O in C++ is not part of the language (although it is part of the ANSI/ISO standard
on C++). Although it is technically possible to ignore all predefined I/O facilities, nobody does so, and
the I/O library therefore represents a de facto I/0 standard for C++. Also note that, as mentioned
before, the iostream classes themselves are not responsible for the eventual I/0, but delegate this to an
auxiliary class: the class st reambuf or its derivatives.

It is neither possible nor required to construct an ios_base object directly. Its construction is always
a side-effect of constructing an object further down the class hierarchy, like std: : ios. Tos is the next
class down the iostream hierarchy (see Figure 6.1). Since all stream classes in turn inherit from ios,
and thus also from ios_base, the distinction between ios_base and ios is in practice not important.
Therefore, facilities actually provided by ios_base will be discussed as facilities provided by ios. The
reader who is interested in the true class in which a particular facility is defined should consult the
relevant header files (e.g., ios_base.h and basic_ios.h).

6.3 Interfacing ‘streambuf’ objects: the class ‘ios’

The std: :ios class is derived directly from ios_base, and it defines de facto the foundation for all
stream classes of the C++ I/O library.

Although it is possible to construct an ios object directly, this is seldom done. The purpose of the class
ios is to provide the facilities of the class basic_ios, and to add several new facilites, all related to
the st reambuf object which is managed by objects of the class ios.

All other stream classes are either directly or indirectly derived from ios. This implies, as explained
in chapter 13, that all facilities of the classes ios and ios_base are also available to other stream
classes. Before discussing these additional stream classes, the features offered by the class ios (and
by implication: by ios_base) are now introduced.

In some cases it may be required to include ios explicitly. An example is the situations where the
formatting flags themselves (cf. section 6.3.2.2) are referred to in source code.

The class ios offers several member functions, most of which are related to formatting. Other fre-
quently used member functions are:

® std::streambuf *ios::rdbuf():
A pointer to the streambuf object forming the interface between the ios object and the device
with which the ios object communicates is returned. See sections 14.8 and 24.1.2 for more infor-
mation about the class streambuf.

® std::streambuf *xios::rdbuf (std::streambuf *xnew):

The current ios object is associated with another st reambuf object. A pointer to the
ios object’s original streambuf object is returned. The object to which this pointer
points is not destroyed when the st ream object goes out of scope, but is owned by the
caller of rdbuf.

® std::ostream *xios::tie():
A pointer to the ost ream object that is currently tied to the ios object is returned (see the next
member). The return value 0 indicates that currently no ost ream object is tied to the ios object.
See section 6.5.5 for details.



The ostream object is tied to current ios object. This means that the ostream object
is flushed every time before an input or output action is performed by the current ios
object. A pointer to the ios object’s original ostream object is returned. To break the
tie, pass the argument 0. See section 6.5.5 for an example.

6.3.1 Condition states

Operations on streams may fail for various reasons. Whenever an operation fails, further operations on
the stream are suspended. It is possible to inspect, set and possibly clear the condition state of streams,
allowing a program to repair the problem rather than having to abort. The members that are available
for interrogating or manipulating the stream’s state are described in the current section.

Conditions are represented by the following condition flags:

® ios::badbit:
if this flag has been raised an illegal operation has been requested at the level of the st reambuf
object to which the stream interfaces. See the member functions below for some examples.

® ios::eofbit:
if this flag has been raised, the ios object has sensed end of file.

® ios::failbit:
if this flag has been raised, an operation performed by the stream object has failed (like an attempt
to extract an int when no numeric characters are available on input). In this case the stream
itself could not perform the operation that was requested of it.

® jos::goodbit:
this flag is raised when none of the other three condition flags were raised.

Several condition member functions are available to manipulate or determine the states of ios objects.
Originally they returned int values, but their current return type is bool:

® bool ios::bad():

the value true is returned when the stream’s badbit has been set and false other-
wise. If t rue is returned it indicates that an illegal operation has been requested at the
level of the st reambuf object to which the stream interfaces. What does this mean? It
indicates that the st reambuf itself is behaving unexpectedly. Consider the following
example:

std::ostream error (0);

Here an ostream object is constructed without providing it with a working st reambuf
object. Since this ‘st reambuf’ will never operate properly, its badbit flag is raised from
the very beginning: error.bad () returns true.

® bool ios::eof():

the value t rue is returned when end of file (EOF) has been sensed (i.e., the eofbit flag
has been set) and false otherwise. Assume we'’re reading lines line-by-line from cin,
but the last line is not terminated by a final \n character. In that case std::getline
attempting to read the \n delimiter hits end-of-file first. This raises the eofbit flag and
cin.eof () returns true. For example, assume std: :string strandmain executing
the statements:

getline(cin, str);
cout << cin.eof();

Then

echo "hello world" | program



echo —n "hello world"

program

the value 1 (EOF sensed) is printed.

® bool ios::fail():

® ios

the value t rue is returned when bad returns true or when the failbit flag was set.
The value false is returned otherwise. In the above example, cin.fail () returns
false, whether we terminate the final line with a delimiter or not (as we've read a
line). However, executing another get1ine results in raising the failbit flag, causing
cin::fail() to return true. In general: fail returns true if the requested stream
operation failed. A simple example showing this consists of an attempt to extract an
int when the input stream contains the text hello world. The value not fail () is
returned by the bool interpretation of a stream object (see below).

::good():

the value of the goodbit flag is returned. It equals t rue when none of the other condi-
tion flags (badbit, eofbit, failbit) was raised. Consider the following little pro-

gram:
#include <iostream>
#include <string>

using namespace std;

void state ()

{

cout << "\n"

"Bad: " << cin.bad()
"Fail: " << cin.fail()
"Eof: " << cin.eof ()
"Good: " << cin.good()

int main ()

{
string line;
int x;

cin >> x;
state () ;

cin.clear();
getline (cin, line);
state () ;

getline(cin, line);
state () ;
}

When this program processes a file having two lines, containing, respectively, hello
and world, while the second line is not terminated by a \n character the following is

shown:
Bad: 0 Fail: 1 Eof:
Bad: 0 Fail: 0 Eof:
Bad: 0 Fail: 0 Eof:

0 Good:

0 Good:

1 Good:

0

1

0



the first line 1s successfiully read (good returning true). Finally the second line 1s read
(incompletely): good returning false, and eof returning t rue.

* Interpreting streams as bool values:

streams may be used in expressions expecting logical values. Some examples are:

if (cin) // cin itself interpreted as bool
if (cin >> x) // cin interpreted as bool after an extraction
if (getline(cin, str)) // getline returning cin

When interpreting a stream as a logical value, it is actually ‘not fail ()’ that is inter-
preted. The above examples may therefore be rewritten as:

if (not cin.fail())
if (not (cin >> x).fail())
if (not getline(cin, str).fail())

The former incantation, however, is used almost exclusively.
The following members are available to manage error states:

® void ios::clear():

When an error condition has occurred, and the condition can be repaired, then clear
can be used to clear the error state of the file. An overloaded version exists accepting
state flags, that are set after first clearing the current set of flags: clear (int state).
Its return type is void

® jos::iostate ios::rdstate():
The current set of flags that are set for an ios object are returned (as an int). To test
for a particular flag, use the bitwise and operator:

if (! (iosObject.rdstate() & ios::failbit))
{

// last operation didn't fail
}

Note that this test cannot be performed for the goodbit flag as its value equals zero.
To test for ‘good’ use a construction like:

if (iosObject.rdstate() == ios::goodbit)
{

// state is “good'
}

® yvoid ios::setstate(ios::iostate state):

A stream may be assigned a certain set of states using setstate. Its return type is
void. E.g.,

cin.setstate (ios::failbit); // set state to “fail'
To set multiple flags in one setstate () call use the bitor operator:
cin.setstate(ios::failbit | ios::eofbit)

The member clear is a shortcut to clear all error flags. Of course, clearing the flags doesn’t
automatically mean the error condition has been cleared too. The strategy should be:

— An error condition is detected,
— The error is repaired
— The member clear is called.

C++ supports an exception mechanism to handle exceptional situations. According to the ANSI/ISO
standard, exceptions can be used with stream objects. Exceptions are covered in chapter 10. Using
exceptions with stream objects is covered in section 10.7.



The way information is written to streams (or, occasionally, read from streams) is controlled by format-
ting flags.

Formatting is used when it is necessary to, e.g., set the width of an output field or input buffer and
to determine the form (e.g., the radix) in which values are displayed. Most formatting features belong
to the realm of the ios class. Formatting is controlled by flags, defined by the ios class. These flags
may be manipulated in two ways: using specialized member functions or using manipulators, which
are directly inserted into or extracted from streams. There is no special reason for using either method,;
usually both methods are possible. In the following overview the various member functions are first
introduced. Following this the flags and manipulators themselves are covered. Examples are provided
showing how the flags can be manipulated and what their effects are.

Many manipulators are parameterless and are available once a stream header file (e.g., iostream) has
been included. Some manipulators require arguments. To use the latter manipulators the header file
iomanip must be included.

6.3.2.1 Format modifying member functions

Several member functions are available manipulating the I/O formatting flags. Instead of using the
members listed below manipulators are often available that may directly be inserted into or extracted
from streams. The available members are listed in alphabetical order, but the most important ones in
practice are setf, unsetf and width.

® ios &ios::copyfmt (ios &obj):
all format flags of obj are copied to the current ios object. The current ios object is returned.

® ios::fill() const:
the current padding character is returned. By default, this is the blank space.

® jos::fill (char padding):

the padding character is redefined, the padding character that was used before the re-
definition is returned. Instead of using this member function the set £i11 manipulator
may be inserted directly into an ost ream. Example:

cout.fill('0"); // use '0' as padding char
cout << setfill('+'"); // use '+' as padding char
® ios::fmtflags ios::flags () const:

the current set of flags controlling the format state of the stream for which the member function
is called is returned. To inspect whether a particular flag was set, use the bit_and operator.
Example:

if (cout.flags () & ios::hex)
cout << "Integral values are printed as hex numbers\n"

® ios::fmtflags ios::flags(ios::fmtflags flagset):

the previous set of flags are returned and the new set of flags are defined by flagset.
Multiple flags are specified using the bitor operator. Example:

// change the representation to hexadecimal
cout.flags(ios::hex | cout.flags() & ~ios::dec);

® int ios::precision() const:
the number of significant digits used when outputting floating point values is returned (default:
6).



the number of significant digits to use when outputting real values is set to signif.
The previously used number of significant digits is returned. If the number of required
digits exceeds signif then the number is displayed in ‘scientific’ notation (cf. section
6.3.2.2). Manipulator: setprecision. Example:

cout.precision(3); // 3 digits precision
cout << setprecision(3); // same, using the manipulator
cout << 1.23 << " " << 12.3 << "M << 123,12 << " " << 1234.3 << "\n';

// displays: 1.23 12.3 123 1.23e+03
® ios::fmtflags ios::setf(ios::fmtflags flags):

sets one or more formatting flags (use the bitor operator to combine multiple flags).
Already set flags are not affected. The previous set of flags is returned. Instead of
using this member function the manipulator setiosflags may be used. Examples are
provided in the next section (6.3.2.2).

® jos::fmtflags ios::setf(ios::fmtflags flags, ios::fmtflags mask):

clears all flags mentioned in mask and sets the flags specified in f1ags. The previous
set of flags is returned. Some examples are (but see the next section (6.3.2.2) for a more
thorough discussion):

// left-adjust information in wide fields:
cout.setf (ios::1left, ios::adjustfield);

// display integral values as hexadecimal numbers:
cout.setf (ios::hex, ios::basefield);

// display floating point values in scientific notation:
cout.setf(ios::scientific, ios::floatfield);

® jos::fmtflags ios::unsetf (fmtflags flags):

the specified formatting flags are cleared (leaving the remaining flags unaltered) and
returns the previous set of flags. A request to unset an active default flag (e.g.,
cout.unsetf (ios::dec)) is ignored. Instead of this member function the manipu-
lator resetiosflags may also be used. Example:

cout << 12.24; // displays 12.24

cout.setf (ios::fixed);

cout << 12.24; // displays 12.240000

cout.unsetf (ios::fixed); // undo a previous ios::fixed setting.
cout << 12.24; // displays 12.24

cout << resetiosflags (ios::fixed); // using manipulator rather
// than unsetf

® int ios::width() const:

the currently active output field width to use on the next insertion is returned. The
default value is 0, meaning ‘as many characters as needed to write the value’.

® int ios::width(int nchars):

the field width of the next insertion operation is set to nchars, returning the previously
used field width. This setting is not persistent. It is reset to 0 after every insertion
operation. Manipulator: std: : setw (int). Example:

cout.width (5);
cout << 12; // using 5 chars field width
cout << setw(l2) << "hello"; // using 12 chars field width



Most formatting flags are related to outputting information. Information can be written to output
streams in basically two ways: using binary output information is written directly to an output stream,
without converting it first to some human-readable format and using formatted output by which values
stored in the computer’s memory are converted to human-readable text first. Formatting flags are
used to define the way this conversion takes place. In this section all formatting flags are covered.
Formatting flags may be (un)set using member functions, but often manipulators having the same
effect may also be used. For each of the flags it is shown how they can be controlled by a member
function or -if available- a manipulator.

To display information in wide fields:

® ios::internal

to add fill characters (blanks by default) between the minus sign of negative numbers
and the value itself. Other values and data types are right-adjusted. Manipulator:
std::internal. Example:

cout.setf(ios::internal, ios::adjustfield);
cout << internal; // same, using the manipulator

cout << '"\'' << setw(5) << -5 << "'\n"; // displays '- 5'

® ios::left:
to left-adjust values in fields that are wider than needed to display the values. Manipulator:
std::left. Example:

cout.setf (ios::left, ios::adjustfield);
cout << left; // same, using the manipulator

cout << '"\'' << setw(5) << "hi" << "'\n"; // displays 'hi !

® jios::right:
to right-adjust values in fields that are wider than needed to display the values. Manipulator:
std: :right. This is the default. Example:

cout.setf (ios::right, ios::adjustfield);
cout << right; // same, using the manipulator

cout << '"\'' << setw(5) << "hi" << "'\n"; // displays ' hi'

Using various number representations:

® ios::dec
to display integral values as decimal numbers. Manipulator: std::dec. This is the default.
Example:

cout.setf (ios::dec, ios::basefield);
cout << dec; // same, using the manipulator
cout << 0x10; // displays 16

® ios::hex
to display integral values as hexadecimal numbers. Manipulator: std: :hex. Example:

cout.setf (ios::hex, ios::basefield);
cout << hex; // same, using the manipulator
cout << 16; // displays 10



to display integral values as octal numbers. Manipulator: std: :oct. Lxample:

cout.setf (ios::o0ct, ios::basefield);
cout << oct; // same, using the manipulator
cout << 16; // displays 20

® std::setbase(int radix):
This is a manipulator that can be used to change the number representation to decimal, hexadec-
imal or octal. Example:

cout << setbase(8); // octal numbers, use 10 for
// decimal, 16 for hexadecimal
cout << 16; // displays 20

Fine-tuning displaying values:

® jos::boolalpha:
logical values may be displayed as text using the text ‘c rue’ for the t rue logical value, and ‘false’
for the false logical value using boolalpha. By default this flag is not set. Complementary flag:
ios::noboolalpha. Manipulators: std: :boolalpha and std: :noboolalpha. Example

cout.setf (ios::boolalpha);
cout << boolalpha; // same, using the manipulator
cout << (1 == 1); // displays true

® ios::showbase:
to display the numeric base of integral values. With hexadecimal values the 0x prefix is used,
with octal values the prefix 0. For the (default) decimal value no particular prefix is used. Com-
plementary flag: ios::noshowbase. Manipulators: std: :showbase and std: :noshowbase.
Example:

cout.setf (ios::showbase);
cout << showbase; // same, using the manipulator
cout << hex << 16; // displays 0x10

® jos::showpos:
to display the + sign with positive decimal (only) values. Complementary flag:

ios::noshowpos. Manipulators: std: : showpos and std: :noshowpos. Example:

cout.setf (ios::showpos);

cout << showpos; // same, using the manipulator
cout << 16; // displays +16
cout.unsetf (ios::showpos); // Undo showpos
cout << 16; // displays 16

® ios::uppercase:
to display letters in hexadecimal values using capital letters. Complementary flag:
ios::nouppercase. Manipulators: std::uppercase and std::nouppercase. By default
lower case letters are used. Example:

cout.setf (ios::uppercase);

cout << uppercase; // same, using the manipulator
cout << hex << showbase <<
3735928559; // displays OXDEADBEEF

Displaying floating point numbers



to display real values using a fixed decimal point (e.g., 12.25 rather than 1.225e+01), the
fixed formatting flag is used. It can be used to set a fixed number of digits behind the
decimal point. Manipulator: fixed. Example:

cout.setf (ios::fixed, ios::floatfield);
cout.precision(3); // 3 digits behind the

// Alternatively:
cout << setiosflags(ios::fixed) << setprecision(3);

cout << 3.0 << " " << 3,01 << " " << 3.001 << '"\n"';
<< 3.0004 << "™ "™ << 3.0005 << "™ " << 3.0006 << "\n'
// Results in:
// 3.000 3.010 3.001
// 3.000 3.001 3.001

The example shows that 3.0005 is rounded away from zero, becoming 3.001 (likewise
-3.0005 becomes -3.001). First setting precision and then fixed has the same effect.

® ios::scientific:
to display real values in scientific notation (e.g., 1.24e+03). Manipulator: std::scientific.
Example:

cout.setf (ios::scientific, ios::floatfield);
cout << scientific; // same, using the manipulator
cout << 12.25; // displays 1.22500e+01

® ios::showpoint:
to display a trailing decimal point and trailing decimal zeros when real numbers are
displayed. Complementary flag: ios::noshowpoint. Manipulators: std::showpoint,
std: :noshowpoint. Example:

cout << fixed << setprecision(3); // 3 digits behind
cout.setf (ios::showpoint); // set the flag

cout << showpoint; // same, using the manipulator
cout << 16.0 << ", " << 16.1 << ", " << 16;

// displays: 16.000, 16.100, 16

Note that the final 16 is an integral rather than a floating point number, so it has no decimal
point. So showpoint has no effect. If ios: : showpoint is not active trailing zeros are discarded.
If the fraction is zero the decimal point is discarded as well. Example:

cout.unsetf (ios::fixed, ios::showpoint); // unset the flags

cout << 16.0 << ", " << 16.1;
// displays: 16, 16.1

Handling whitespace and flushing streams

® std::endl:
manipulator inserting a newline character and flushing the stream. Often flushing the stream is
not required and doing so would needlessly slow down I/O processing. Consequently, using end1l
should be avoided (in favor of inserting ’ \n’) unless flushing the stream is explicitly intended.
Note that streams are automatically flushed when the program terminates or when a stream is
‘tied’ to another stream (cf. tie in section 6.3). Example:

cout << "hello" << endl; // prefer: << '\n';



manipulator inserting a 0O-byte into a stream. 1t 1s usually used 1n combination with memory-
streams (cf. section 6.4.3).

std::flush:

a stream may be flushed using this member. Often flushing the stream is not required and doing
so would needlessly slow down I/O processing. Consequently, using flush should be avoided
unless it is explicitly required to do so. Note that streams are automatically flushed when the
program terminates or when a stream is ‘tied’ to another stream (cf. tie in section 6.3). Example:

cout << "hello" << flush; // avoid if possible.

ios::skipws:

leading whitespace characters (blanks, tabs, newlines, etc.) are skipped when a value is extracted
from a stream. This is the default. If the flag is not set, leading whitespace characters are not
skipped. Manipulator: std: : skipws. Example:

cin.setf (ios::skipws); // to unset, use
// cin.unsetf (ios::skipws)

cin >> skipws; // same, using the manipulator
int value;
cin >> value; // skips initial blanks

ios::unitbuf:

the stream for which this flag is set flushes its buffer after every output operation Often flushing
a stream is not required and doing so would needlessly slow down I/O processing. Consequently,
setting unitbuf should be avoided unless flushing the stream is explicitly intended. Note that
streams are automatically flushed when the program terminates or when a stream is ‘tied’ to
another stream (cf. tie in section 6.3). Complementary flag: ios: :nounitbuf. Manipulators:
std::unitbuf, std: :nounitbuf. Example:

cout.setf (ios::unitbuf);

cout << unitbuf; // same, using the manipulator
cout.write ("xyz", 3); // flush follows write.
std::ws:

manipulator removing all whitespace characters (blanks, tabs, newlines, etc.) at the current file
position. White space characters are removed if present even if the flag i os: : noskipws has been
set. Example (assume the input contains 4 blank characters followed by the character x):

cin >> ws; // skip whitespace
cin.get (); // returns 'X'
6.4 Output

In C++ output is primarily based on the std::ostream class. The ostream class defines the basic
operators and members inserting information into streams: the insertion operator (<<), and special
members like write writing unformatted information to streams.

The class ostream acts as base class for several other classes, all offering the functionality of the
ostrean class, but adding their own specialties. In the upcoming sections the following classes are
discussed:

* The class ost ream, offering the basic output facilities;

* The class of st ream, allowing us to write files (comparable to C’s fopen (filename, "w"));

® The class ostringstream, allowing us to write information to memory (comparable to C’s
sprintf function).



The class ostream defines basic output facilities. The cout, clog and cerr objects are all ostream
objects. All facilities related to output as defined by the ios class are also available in the ostream
class.

We may define ost ream objects using the following ostream constructor:

® std::ostream object (std::streambuf *sb):

this constructor creates an ostream object which is a wrapper around an existing
std::streambuf object. It isn’t possible to define a plain ostream object (e.g., us-
ing std::ostream out;) that can thereupon be used for insertions. When cout or its
friends are used, we are actually using a predefined ostream object that has already
been defined for us and interfaces to the standard output stream using a (also prede-
fined) st reambuf object handling the actual interfacing.

It is, however, possible to define an ost ream object passing it a 0-pointer. Such an object
cannot be used for insertions (i.e., it raises its i os : : bad flag when something is inserted
into it), but it may be given a st reambuf later. Thus it may be preliminary constructed,

suspending its use until an appropriate st reambuf becomes available (see also section
14.8.3).

To define the ostream class in C++ sources, the <ostream> header file must be included. To use
the predefined ost ream objects (std: :cerr, std::cout etc.) the <iostream> header file must be
included.

6.4.1.1 Writing to ‘ostream’ objects

The class ost ream supports both formatted and binary output.

The insertion operator (<<) is used to insert values in a type safe way into ost ream objects. This is
called formatted output, as binary values which are stored in the computer’s memory are converted to
human-readable ASCII characters according to certain formatting rules.

The insertion operator points to the ost ream object to receive the information. The normal associativ-
ity of << remains unaltered, so when a statement like

cout << "hello " << "world";

is encountered, the leftmost two operands are evaluated first (cout << "hello "), and an ostream
& object, which is actually the same cout object, is returned. Now, the statement is reduced to

cout << "world";

and the second string is inserted into cout.

The << operator has a lot of (overloaded) variants, so many types of variables can be inserted into
ostream objects. There is an overloaded <<-operator expecting an int, a double, a pointer, etc. etc..
Each operator returns the ost ream object into which the information so far has been inserted, and can
thus immediately be followed by the next insertion.

Streams lack facilities for formatted output like C’s print f and vprint f functions. Although it is not
difficult to implement these facilities in the world of streams, print f-like functionality is hardly ever
required in C++ programs. Furthermore, as it is potentially type-unsafe, it might be better to avoid
this functionality completely.

When binary files must be written, normally no text-formatting is used or required: an int value
should be written as a series of raw bytes, not as a series of ASCII numeric characters 0 to 9. The
following member functions of ost ream objects may be used to write ‘binary files’



to write a single character to the output stream. Since a character 1s a byte, this member function
could also be used for writing a single character to a text-file.

® ostream& write(char const *buffer, int length):
to write at most 1ength bytes, stored in the char const *buffer to the ost ream object. Bytes
are written as they are stored in the buffer, no formatting is done whatsoever. Note that the first
argument is a char const x: a type cast is required to write any other type. For example, to
write an int as an unformatted series of byte-values use:

int x;
out.write (reinterpret_cast<char const *>(&x), sizeof (int));

The bytes written by the above write call are written to the ostream in an order depending
on the endian-ness of the underlying hardware. Big-endian computers write the most significant
byte(s) of multi-byte values first, little-endian computers first write the least significant byte(s).

6.4.1.2 ‘ostream’ positioning

Although not every ostream object supports repositioning, they usually do. This means that it is
possible to rewrite a section of the stream which was written earlier. Repositioning is frequently used
in database applications where it must be possible to access the information in the database at random.

The current position can be obtained and modified using the following members:

® jos::pos_type tellp():
the current (absolute) position in the file where the next write-operation to the stream will take
place is returned.

® ostream &seekp(ios::o0ff_type step, ios::seekdir org):
modifies a stream’s actual position. The function expects an of f_type step representing the
number of bytes the current stream position is moved with respect to org. The step value may
be negative, zero or positive.

The origin of the step, org is a value in the ios: : seekdir enumeration. Its values are:
- ios::beg:
the stepsize is computed relative to the beginning of the stream. This value is used by default.
- ilos::cur:
the stepsize is computed relative to the current position of the stream (as returned by tel1p).
— ilos::end:
the stepsize is interpreted relative to the current end position of the stream.
It is OK to seek or write beyond the last file position. Writing bytes to a location beyond EOF will

pad the intermediate bytes with 0-valued bytes: null-bytes. Seeking before ios: :beg raises the
ios::fail flag.

6.4.1.3 ‘ostream’ flushing

Unless the ios::unitbuf flag has been set, information written to an ostream object is not imme-
diately written to the physical stream. Rather, an internal buffer is filled during the write-operations,
and when full it is flushed.

The stream’s internal buffer can be flushed under program control:
® ostream& flush():

any buffered information stored internally by the ost ream object is flushed to the device to which
the ost ream object interfaces. A stream is flushed automatically when:

- the object ceases to exist;



— a stream supporting the close-operation is explicitly closed (e.g., a std: : of st ream object,
cf. section 6.4.2).

6.4.2 Output to files: the class ‘ofstream’

The std::ofstream class is derived from the ostream class: it has the same capabilities as the
ostream class, but can be used to access files or create files for writing.

In order to use the ofstream class in C++ sources, the <fstream> header file must be included.
Including fstream does not automatically make available the standard streams cin, cout and cerr.
Include iostream to declare these standard streams.

The following constructors are available for of st ream objects:

® ofstream object:

this is the basic constructor. It defines an ofstream object which may be associated
with an actual file later, using its open () member (see below).

® ofstream object (char const *xname, ios::openmode mode = ios::out):

this constructor defines an ofst ream object and associates it immediately with the file
named name using output mode mode. Section 6.4.2.1 provides an overview of available
output modes. Example:

ofstream out ("/tmp/scratch");

It is not possible to open an ofstream using a file descriptor. The reason for this is (apparently)
that file descriptors are not universally available over different operating systems. Fortunately, file
descriptors can be used (indirectly) with a std: :streambuf object (and in some implementations:
with a std:: filebuf object, which is also a st reambuf). Streambuf objects are discussed in section
14.8, filebuf objects are discussed in section 14.8.2.

Instead of directly associating an ofstream object with a file, the object can be constructed first, and
opened later.

® void open(char const xname, ios::openmode mode = ios::out):
associates an ofstream object with an actual file. If the ios::fail flag was set before call-
ing open and opening succeeds the flag is cleared. Opening an already open stream fails. To
reassociate a stream with another file it must first be closed:

ofstream out ("/tmp/out");

out << "hello\n";

out.close(); // flushes and closes out
out.open ("/tmp/out2") ;

out << "world\n";

® void close():
closes the of st ream object. The function sets the ios::fail flag of the closed object. Closing
the file flushes any buffered information to the associated file. A file is automatically closed when
the associated ofstream object ceases to exist.

® bool is_open () const:
assume a stream was properly constructed, but it has not yet been attached to a file. E.g., the
statement ofstream ostr was executed. When we now check its status through good (), a non-
zero (i.e., OK) value is returned. The ‘good’ status here indicates that the stream object has been
constructed properly. It doesn’t mean the file is also open. To test whether a stream is actually
open, is_open should be called. If it returns t rue, the stream is open. Example:

#include <fstream>



using namespace std;

int main ()

{

ofstream of;

cout << "of's open state: " << boolalpha << of.is_open() << '\n';
of.open ("/dev/null"); // on Unix systems
cout << "of's open state: " << of.is_open() << '\n';

}
/ *

Generated output:
of's open state: false
of's open state: true

*/

6.4.2.1 Modes for opening stream objects

The following file modes or file flags are available when constructing or opening of st ream (or i st ream,
see section 6.5.2) objects. The values are of type ios: :openmode. Flags may be combined using the
bitor operator.

ios: :app:
reposition the stream to its end before every output command (see also ios: : ate below). The file
is created if it doesn’t yet exist. When opening a stream in this mode any existing content of the
file is kept.

ios::ate:

start initially at the end of the file. Note that any existing content is only kept if some other
flag tells the object to do so. For example ofstream out ("gone", ios::ate) rewrites the file
gone, because the implied ios: :out causes the rewriting. If rewriting of an existing file should
be prevented, the ios::in mode should be specified too. However, when ios: :in is specified
the file must already exist. The ate mode only initially positions the file at the end of file position.
After that information may be written in the middle of the file using seekp. When the app mode
is used information is only written at end of file (effectively ignoring seekp operations).

ios::binary:

open a file in binary mode (used on systems distinguishing text- and binary files, like MS-
Windows).

ios::in:

open the file for reading. The file must exist.

ios::out:

open the file for writing. Create it if it doesn’t yet exist. If it exists, the file is rewritten.

ios::trunc:
start initially with an empty file. Any existing content of the file is lost.

The following combinations of file flags have special meanings:

in

in

out: The stream may be read and written. However, the
file must exist.
out | trunc: The stream may be read and written. It is

(re)created empty first.



have a second parameter of type ios: :openmode. In contrast to this, the bitor operator returns an
int when applied to two enum-values. The question why the bitor operator may nevertheless be used
here is answered in a later chapter (cf. section 11.12).

6.4.3 Output to memory: the class ‘ostringstream’

To write information to memory using st ream facilities, std: : ost ringst ream objects should be used.
As the class ostringstreamis derived from the class ost ream all ost ream’s facilities are available to
ostringstreamobjects as well. To use and define ost ringstreamobjects the header file <sstream>
must be included. In addition the class ost ringstream offers the following constructors and members:

® ostringstream ostr(string const &init, ios::openmode mode = ios::out):
when specifying openmode as ios: :ate, the ostringstream object is initialized by the string
init and remaining insertions are appended to the content of the ost ringstream object.

® ostringstream ostr (ios::openmode mode = ios::out):
this constructor can also be used as default constructor. Alternatively it allows, e.g., forced addi-
tions at the end of the information stored in the object so far (using ios: : app). Example:

std::ostringstream out;

® std::string str () const:
a copy of the string that is stored inside the ostringstream object is returned.

® void str(std::string const &str):
the current object is reinitialized with new initial content.

The following example illustrates the use of the ostringstream class: several values are inserted
into the object. Then, the text contained by the ostringstream object is stored in a std: :string,
whose length and content are thereupon printed. Such ostringstream objects are most often used for
doing ‘type to string’ conversions, like converting int values to text. Formatting flags can be used with
ostringstreams as well, as they are part of the ostream class.

Here is an example showing an ost ringstream object being used:

#include <iostream>
#include <sstream>

using namespace std;

int main ()

{
ostringstream ostr ("hello ", ios::ate);
cout << ostr.str() << '\n';
ostr.setf (ios::showbase);
ostr.setf(ios::hex, ios::basefield);
ostr << 12345;
cout << ostr.str() << '\n';
ostr << n — ";
ostr.unsetf (ios::hex);

ostr << 12;

cout << ostr.str() << '\n';



ostr.str ("new text");
cout << ostr.str() << '\n';

ostr.seekp (4, ios::beq);
ostr << "world";
cout << ostr.str() << '\n';

}
/
Output from this program:
hello
hello 0x3039
hello 0x3039 -- 12

new text
new world

*/

6.4.4 The ‘put_time’ manipulator

The manipulator std: :put_time (std::tm const xspecs, char const *fmt) can be used to in-
sert time specifications into std: : ost ream objects.

Time specifications are provided in std: :tm objects, and the way the time should be displayed is
defined by the format string fmt.

Starting with a chrono: :time_point the following steps must be performed to insert the time point’s
time into a std: :ostream:

® Obtain a time_point (e.g.: system_clock{}.now());

* Pass the time point to the clock’s to_time_t function, saving the returned t ime_t value:
time_t secs = system _clock::to_time_t ( system_clock{}.now() );

¢ Pass sec’s address to either std::localtime or std::gmtime. These functions return
std: :tm structs containing the required time components expressed in, respectively, the com-
puter’s local time or GMT;

* Pass the return value of either 1localtime or gmtime together with a format string (e.g., "%c")
to put_time, inserting it into an std: :ostream:

// displays, e.g., Mon Nov 4 21:34:59 2019

time_t secs = system _clock::to_time_t ( system_clock{}.now() );
std::cout << std::put_time (std::localtime (&secs), "%c") << '\n';

A simple function returning put_time’ s return value and expecting a t ime_point and format string
can be defined which handles the above two statements. E.g., (omitting the std: : and std: :chrono::
specifications for brevity):

auto localTime (time_point<system_clock> const &tp, char const =fmt)
{

time_t secs = system_clock::to_time_t( tp );

return put_time (localtime (&secs), fmt);

// used as:
cout << localTime (system_clock{}.now(), "%c") << '\n';



character as part of the format string write 1t twice: $%. In addition to the standard escape sequences,
%n can be used instead of \n, and %t can be used instead of \t.

Year specifiers

Specifier Meaning std::tm field(s)
%Y year as a 4 digit decimal number tm_year
%EY year in an alternative representation tm_year
Yoy last 2 digits of year as a decimal number tm_year
(range [00,99])
%0y last 2 digits of year using an alternative nu- tm_year
meric system
%Ey year as offset from locale’s alternative calen- tm_year
dar period %EC (locale-dependent)
%C first 2 digits of year as a decimal number tm_year
(range [00,99])
%EC name of the base year (period) in the locale’s tm_year
alternative representation
%G ISO 8601 week-based year, i.e. the year that tm_year,
contains the specified week tm_wday,
tm_yday
%g last 2 digits of ISO 8601 week-based year tm_year,
(range [00,99]) tm_wday,
tm_yday
Month specifiers
Specifier Meaning std::tm field(s)
%b abbreviated month name, e.g. Oct tm_mon
%om month as a decimal number (range [01,12]) tm_mon
%0m month using an alternative numeric system tm_mon
Week specifiers
Specifier Meaning std::tm field(s)
%U week of the year as a decimal number (Sunday tm_year,
is the first day of the week) (range [00,53]) tm_wday,
tm_yday
%0U week of the year, as by %U, using an alterna- tm_year,
tive numeric system tm_wday,
tm_yday
%W week of the year as a decimal number (Monday tm_year,
is the first day of the week) (range [00,53]) tm_wday,
tm_yday
%0OW week of the year, as by %W, using an alterna- tm_year,
tive numeric system tm_wday,
tm_yday
9%V ISO 8601 week of the year (range [01,53]) tm_year,
tm_wday,
tm_yday
%0V week of the year, as by %V, using an alterna- tm_year,
tive numeric system tm_wday,

tm_yday




opeciner Meaning std:tm 1nelals)

%j day of the year as a decimal number (range tm_yday
[001,366])

%d day of the month as a decimal number (range tm_mday
[01,31])

%0d zero-based day of the month using an alterna- tm_mday
tive numeric system

%oe day of the month as a decimal number (range tm_mday
[1,31])

%0e one-based day of the month using an alterna- tm_mday
tive numeric system

Day of the week specifiers

Specifier Meaning std::tm field(s)

%a abbreviated weekday name, e.g. Fri tm_wday

Y%A full weekday name, e.g. Friday tm_wday

Yow weekday as a decimal number, where Sunday tm_wday
is 0 (range [0-6])

9% 0w weekday, where Sunday is 0, using an alterna- tm_wday
tive numeric system

%ou weekday as a decimal number, where Monday tm_wday
is 1 (ISO 8601 format) (range [1-7])

%0u weekday, where Monday is 1, using an alter- tm_wday
native numeric system

Hour, minute, second specifiers

Specifier Meaning std::tm field(s)

%H hour as a decimal number, 24 hour clock tm_hour
(range [00-23])

%0OH hour from 24-hour clock using an alternative tm_hour
numeric system

%1 hour as a decimal number, 12 hour clock tm_hour
(range [01,12])

%01 hour from 12-hour clock using the alternative tm_hour
numeric system

%M minute as a decimal number (range [00,59]) tm_min

%0M minute using an alternative numeric system tm_min

%S second as a decimal number (range [00,60]) tm_sec

%0S second using an alternative numeric system tm_sec




opeciier vieaning std:itm 11eldl(s)

%oc standard date and time string, e.g. Sun Oct 17 all
04:41:13 2010
%Ec alternative date and time string all
%ox localized date representation all
%Ex alternative date representation all
%X localized time representation all
%EX alternative time representation all
%D equivalent to "$m/%d/%y" tm_mon,
tm_mday,
tm_year
%F equivalent to "$Y-%m-%d" (the ISO 8601 date tm_mon,
format) tm_mday,
tm_year
Yor localized 12-hour clock time tm_hour,
tm_min,
tm_sec
%R equivalent to "$H: $M" tm_hour,
tm_min
%T equivalent to "$H:%M:$s" (the ISO 8601 time tm_hour,
format) tm_min,
tm_sec
%p localized a.m. or p.m. tm_hour
%z offset from UTC in the ISO 8601 format (e.g. tm_isdst
-0430;
no characters if time zone information is not
available)
%7 time zone name or abbreviation tm_isdst
(no characters if time zone information is not
available)

6.5 Input

In C++ input is primarily based on the std::istream class. The istream class defines the basic
operators and members extracting information from streams: the extraction operator (>>), and special
members like i st ream: : read reading unformatted information from streams.

The class istream acts as base class for several other classes, all offering the functionality of the
istream class, but adding their own specialties. In the upcoming sections the following classes are
discussed:

* The class istream, offering the basic facilities for doing input;

* The class i fstream, allowing us to read files (comparable to C’s fopen (filename, "r"));

® The class istringstream, allowing us to extract information from memory rather than from file
(comparable to C’s sscanf function).

6.5.1 Basic input: the class ‘istream’

The class istream defines basic input facilities. The cin object, is an istream object. All facilities
related to input as defined by the ios class are also available in the i st ream class.

We may define i st ream objects using the following istream constructor:

® istream object (streambuf *sb):



std::streambuf object. Similarly to ostream objects, istream objects may be de-
fined by passing it initially a 0-pointer. See section 6.4.1 for a discussion, see also section
14.8.3, and see chapter 24 for examples.

To define the istream class in C++ sources, the <istream> header file must be included. To use the
predefined istream object cin, the <iostream> header file must be included.

6.5.1.1 Reading from ‘istream’ objects

The class istream supports both formatted and unformatted (binary) input. The extraction operator
(operator>>)is used to extract values in a type safe way from i st ream objects. This is called format-
ted input, whereby human-readable ASCII characters are converted, according to certain formatting
rules, to binary values.

The extraction operator points to the objects or variables to receive new values. The normal associativ-
ity of >> remains unaltered, so when a statement like

cin >> x >> y;

is encountered, the leftmost two operands are evaluated first (cin >> x), and an istream & object,
which is actually the same cin object, is returned. Now, the statement is reduced to

cin >> y

and the y variable is extracted from cin.

The >> operator has many (overloaded) variants and thus many types of variables can be extracted
from istream objects. There is an overloaded >> available for the extraction of an int, of a double,
of a string, of an array of characters, possibly to the location pointed at by a pointer, etc., etc.. String or
character array extraction by default first skips all whitespace characters, and then extracts all consec-
utive non-whitespace characters. Once an extraction operator has been processed the istream object
from which the information was extracted is returned and it can immediately be used for additional
istream operations that appear in the same expression.

Streams do not support facilities for formatted input as offered by C’s scanf and vscanf functions.
Although it is not difficult to add such facilities to the world of streams, scanf-like functionality is in
practice never needed in C++ programs. Furthermore, as it is potentially type-unsafe, it is better to
avoid using C-type formatted input.

When binary files must be read, the information should normally not be formatted: an int value should
be read as a series of unaltered bytes, not as a series of ASCII numeric characters 0 to 9. The following
member functions for reading information from istream objects are available:

® int gcount () const:
the number of characters read from the input stream by the last unformatted input operation is
returned.

® int get():

the next available single character is returned as an unsigned char value using an int return
type. EOF is returned if no more character are available.

® istream &get (char &ch):
the next single character read from the input stream is stored in ch. The member function returns
the stream itself which may be inspected to determine whether a character was obtained or not.

® istream &get (char xbuffer, int len, char delim = ’'\n’):
At most 1en - 1 characters are read from the input stream into the array starting at buffer,



tered. However, the aelimiter 1tself 1s not removed from the input stream.

Having stored the characters into buffer, a 0-valued character is written beyond the last char-
acter stored into the buffer. The functions eof and fail (see section 6.3.1) return 0 (false) if
the delimiter was encountered before reading 1en — 1 characters or if the delimiter was not en-
countered after reading 1en - 1 characters. It is OK to specifiy a 0-valued character delimiter:
this way NTBSs may be read from a (binary) file.

® istream &getline (char xbuffer, int len, char delim = "\n’):
this member function operates analogously to the get member function, but get1ine removes
delim from the stream if it is actually encountered. The delimiter itself, if encountered, is not
stored in the buffer. If delim was not found (before reading 1len - 1 characters) the fail
member function, and possibly also eof returns true. Realize that the std: :string class also
offers a function std: : get 1ine which is generally preferred over this get 1ine member function
that is described here (see section 5.2.4).

® istream &ignore():
one character is skipped from the input stream.

® istream &ignore (int n):
n characters are skipped from the input stream.

® istream &ignore (int n, int delim):
at most n characters are skipped but skipping characters stops after having removed delim from
the input stream.

® int peek():
this function returns the next available input character, but does not actually remove the charac-
ter from the input stream. EOF is returned if no more characters are available.

® istream &putback (char ch):
The character ch is ‘pushed back’ into the input stream, to be read again as the next available
character. EOF is returned if this is not allowed. Normally, it is OK to put back one character.
Example:

string value;
cin >> value;
cin.putback ('X");
// displays: X
cout << static_cast<char>(cin.get());

® istream &read(char xbuffer, int len):
At most len bytes are read from the input stream into the buffer. If EOF is encountered first,
fewer bytes are read, with the member function eof returning true. This function is commonly
used when reading binary files. Section 6.5.2 contains an example in which this member function
is used. The member function gcount () may be used to determine the number of characters that
were retrieved by read.

® istream &readsome (char xbuffer, int len):
at most 1en bytes are read from the input stream into the buffer. All available characters are read
into the buffer, but if EOF is encountered, fewer bytes are read, without setting the ios: :eofbit
orios::failbit.

® istream &unget ():
the last character that was read from the stream is put back.

6.5.1.2 ‘istream’ positioning

Although not every istream object supports repositioning, some do. This means that it is possible to
read the same section of a stream repeatedly. Repositioning is frequently used in database applications
where it must be possible to access the information in the database randomly.



® ios::pos_type tellg():
the stream’s current (absolute) position where the stream’s next read-operation will take place is
returned.

® istream &seekg(ios::o0ff_type step, ios::seekdir orgqg):
modifies a stream’s actual position. The function expects an of f_type step representing the
number of bytes the current stream position is moved with respect to org. The step value may
be negative, zero or positive.

The origin of the step, org is a value in the ios: : seekdir enumeration. Its values are:

- i1os::beg:

the stepsize is computed relative to the beginning of the stream. This value is used by default.
- los::cur:

the stepsize is computed relative to the current position of the stream (as returned by tel1p).
- los::end:

the stepsize is interpreted relative to the current end position of the stream.

It is OK to seek beyond the last file position. Seeking before ios: :begraises the ios::failbit
flag.

6.5.2 Input from files: the class ‘ifstream’

The std::ifstream class is derived from the istream class: it has the same capabilities as the
istreamn class, but can be used to access files for reading.

In order to use the ifstream class in C++ sources, the <fstream> header file must be included.
Including fstream does not automatically make available the standard streams cin, cout and cerr.
Include iostream to declare these standard streams.

The following constructors are available for i fst ream objects:

® jfstream object:

this is the basic constructor. It defines an ifstream object which may be associated
with an actual file later, using its open () member (see below).

® jfstream object (char const *name, ios::openmode mode = ios::in):

this constructor can be used to define an i fstream object and associate it immediately
with the file named name using input mode mode. Section 6.4.2.1 provides an overview
of available input modes. Example:

ifstream in("/tmp/input");

Instead of directly associating an i fstream object with a file, the object can be constructed first, and
opened later.

® void open (char const xname, ios::openmode mode = ios::in):
associates an ifstream object with an actual file. If the ios::fail flag was set before call-
ing open and opening succeeds the flag is cleared. Opening an already open stream fails. To
reassociate a stream with another file it must first be closed:

ifstream in ("/tmp/in");

in >> variable;

in.close(); // closes in
in.open("/tmp/in2");

in >> anotherVariable;



closes the 1 fstream object. 1he function sets the ios::fail flag of the closed object. Closing
the file flushes any buffered information to the associated file. A file is automatically closed when
the associated ifstream object ceases to exist.

® bool is_open() const:

assume a stream was properly constructed, but it has not yet been attached to a file. E.g., the
statement i fstream ostr was executed. When we now check its status through good (), a non-
zero (i.e., OK) value is returned. The ‘good’ status here indicates that the stream object has been
constructed properly. It doesn’t mean the file is also open. To test whether a stream is actually
open, is_open should be called. If it returns true, the stream is open. Also see the example
in section 6.4.2. The following example illustrates reading from a binary file (see also section
6.5.1.1):

#include <fstream>
using namespace std;

int main(int argc, char *xargv)
{
ifstream in(argv([1l]);
double value;

// reads double in raw, binary form from file.
in.read(reinterpret_cast<char x> (&value), sizeof (double));

6.5.3 Input from memory: the class ‘istringstream’

To read information from memory using st ream facilities, std: :istringstream objects should be
used. As the class istringstream is derived from the class istream all istream’s facilities are
available to ist ringstream objects as well. To use and define i st ringstream objects the header file
<sstream> must be included. In addition the class istringstream offers the following constructors
and members:

® istringstream istr(string const &init, ios::openmode mode = ios::in):
the object is initialized with init’s content

® istringstream istr (ios::openmode mode = ios::in):
this constructor is usually used as the default constructor. Example:

std::istringstream in;

® void str(std::string const &str):
the current object is reinitialized with new initial content.

The following example illustrates the use of the istringstream class: several values are extracted
from the object. Such istringstream objects are most often used for doing ‘string to type’ conver-
sions, like converting text to int values (cf. C’s atoi function). Formatting flags can be used with
istringstreams as well, as they are part of the i stream class. In the example note especially the
use of the member seekg:

#include <iostream>
#include <sstream>
using namespace std;

int main ()
{

istringstream istr ("123 345"); // store some text.



istr.seekg(2); // skip "12"

istr >> x; // extract int
cout << x << '\n'; // write it out
istr.seekg(0); // retry from the beginning
istr >> x; // extract int
cout << x << '\n'; // write it out
istr.str("666"); // store another text
istr >> x; // extract it
cout << x << '"\n'; // write it out

}

/%
output of this program:

3

123

666

*/

6.5.4 Copying streams

Usually, files are copied either by reading a source file character by character or line by line. The basic
mold to process streams is as follows:

¢ Continuous loop:

1. read from the stream
2. if reading did not succeed (i.e., fail returns true), break from the loop

3. process the information that was read

Note that reading must precede testing, as it is only possible to know after actually attempting to read
from a file whether the reading succeeded or not. Of course, variations are possible: getline (istream
&, string &) (see section 6.5.1.1) returns an istream &, so here reading and testing may be con-
tracted using one expression. Nevertheless, the above mold represents the general case. So, the follow-
ing program may be used to copy cin to cout:

#include <iostream>
using namespace: :std;

int main ()

{

while (true)

{

char c;

cin.get (c);

if (cin.fail())
break;

cout << cj;

Contraction is possible here by combining get with the i f-statement, resulting in:

if (!cin.get (c))
break;



Simply copying a file isn’t required very often. More often a situation is encountered where a file is
processed up to a certain point, followed by plain copying the file’s remaining information. The next
program illustrates this. Using ignore to skip the first line (for the sake of the example it is assumed
that the first line is at most 80 characters long), the second statement uses yet another overloaded
version of the <<-operator, in which a streambuf pointer is inserted into a stream. As the member
rdbuf returns a stream’s streambuf *, we have a simple means of inserting a stream’s content into
an ostream:

#include <iostream>
using namespace std;

int main ()
{
cin.ignore (80, '\n'); // skip the first line and...
cout << cin.rdbuf (); // copy the rest through the streambuf =*

This way of copying streams only assumes the existence of a st reambuf object. Consequently it can be
used with all specializations of the st reambuf class.

6.5.5 Coupling streams

Ostream objects can be coupled to ios objects using the t ie member function. Tying results in flushing
the ostream’s buffer whenever an input or output operation is performed on the ios object to which
the ostream object is tied. By default cout is tied to cin (using cin.tie (cout)). This tie means that
whenever an operation on cin is requested, cout is flushed first. To break the tie, ios::tie (0) can
be called. In the example: cin.tie (0).

Another useful coupling of streams is shown by the tie between cerr and cout. Because of the tie
standard output and error messages written to the screen are shown in sync with the time at which
they were generated:

#include <iostream>
using namespace std;

int main ()

{
cerr.tie (0); // untie
cout << "first (buffered) line to cout ";
cerr << "first (unbuffered) line to cerr\n";
cout << "\n";

cerr.tie(&cout); // tie cout to cerr

cout << "second (buffered) line to cout ";
cerr << "second (unbuffered) line to cerr\n";
cout << "\n";

}
/%

Generated output:

first (unbuffered) line to cerr

first (buffered) line to cout

second (buffered) line to cout second (unbuffered) line to cerr
*/

An alternative way to couple streams is to make streams use a common st reambuf object. This can



use, e.g. their own formatting, one stream can be usea 1or input, the other for output, ana redirection
using the stream library rather than operating system calls can be implemented. See the next sections
for examples.

6.6 Advanced topics

6.6.1 Moving streams

Stream classes (e.g.,, all stream classes covered in this chapter) are movable and can be swapped. This
implies that factory functions can be designed for stream classes. Here is an example:

ofstream out (string const &name)

{

ofstream ret (name) ; // construct ofstream
return ret; // return value optimization, but
} // OK as moving is supported

int main ()

ofstream mine (out ("out")); // return value optimizations, but
// OK as moving is supported

ofstream base ("base");
ofstream other;

base.swap (other) ; // swapping streams is OK
other = std::move (base); // moving streams is OK
// other = base; // this would fail: copy assignment

// is not available for streams

6.6.2 Redirecting streams

Using ios: : rdbuf streams can be forced to share their st reambuf objects. Thus information written
to one stream is actually written to another stream; a phenomenon normally called redirection. Redi-
rection is commonly implemented at the operating system level, and sometimes that is still necessary
(see section 24.2.3).

A common situation where redirection is useful is when error messages should be written to file rather
than to the standard error stream, usually indicated by its file descriptor number 2. In the Unix
operating system using the bash shell, this can be realized as follows:

program 2>/tmp/error.log

Following this command any error messages written by program are written to /tmp/error.log,
instead of appearing on the screen.

Here is an example showing how this can be implemented using st reambuf objects. Assume program
expects an argument defining the name of the file to write the error messages to. It could be called as
follows:

program /tmp/error.log



#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char xxargv)

{

ofstream errlog; // 1
streambuf xcerr_buffer = 0; // 2
if (argc == 2)
{

errlog.open(argv[1l]); // 3

cerr_buffer = cerr.rdbuf (errlog.rdbuf()); // 4
}
else
{

cerr << "Missing log filename\n";

return 1;
}
cerr << "Several messages to stderr, msg 1\n";
cerr << "Several messages to stderr, msg 2\n";
cout << "Now inspect the contents of " <<

argv([l] << "... [Enter] ";

cin.get (); // 5
cerr << "Several messages to stderr, msg 3\n";
cerr.rdbuf (cerr_buffer); // 6
cerr << "Done\n"; // 7

Generated output on file argv([1l]
at cin.get () :

Several messages to stderr, msg 1
Several messages to stderr, msg 2

at the end of the program:

Several messages to stderr, msg 1
Several messages to stderr, msg
Several messages to stderr, msg 3

*/

[\

At lines 1-2 local variables are defined: errlog is the ofstream to write the error messages to,
and cerr_buffer is a pointer to a streambuf, to point to the original cerr buffer.

At line 3 the alternate error stream is opened.

At line 4 redirection takes place: cerr now writes to the st reambuf defined by errlog. It is
important that the original buffer used by cerr is saved, as explained below.

At line 5 we pause. At this point, two lines were written to the alternate error file. We get a
chance to take a look at its content: there were indeed two lines written to the file.



at the end of main. If cerr’s builfer would not have been restored, then at that point cerr would
refer to a non-existing streambuf object, which might produce unexpected results. It is the
responsibility of the programmer to make sure that an original streambuf is saved before redi-
rection, and is restored when the redirection ends.

¢ Finally, at line 7, Done is again written to the screen, as the redirection has been terminated.

6.6.3 Reading AND Writing streams

Streams can be read and written using std::fstream objects. As with ifstream and ofstream
objects, its constructor expects the name of the file to be opened:

fstream inout ("iofile", ios::in | ios::out);

Note the use of the constants ios::in and ios::out, indicating that the file must be opened for
both reading and writing. Multiple mode indicators may be used, concatenated by the bitor operator.
Alternatively, instead of ios: :out, ios: :app could have been used and mere writing would become
appending (at the end of the file).

Reading and writing to the same file is always a bit awkward: what to do when the file may not yet
exist, but if it already exists it should not be rewritten? Having fought with this problem for some time
I now use the following approach:

#include <fstream>
#include <iostream>
#include <string>

using namespace std;

int main ()

{

fstream rw("fname", ios::out | ios::in);

if (!rw) // file didn't exist yet

{
rw.clear () ; // try again, creating it using ios::trunc
rw.open ("fname", ios::out | ios::trunc | ios::in);

}

if (!'rw) // can't even create it: bail out

cerr << "Opening “fname' failed miserably" << '\n';
return 1;
cerr << "We're at: " << rw.tellp() << '\n';

// write something
rw << "Hello world" << '\n';

rw.seekg (0) ; // go back and read what's written

string s;
getline (rw, s);

cout << "Read: " << s << '\n';



can be attemptea using the ios::trunc tlag. 1f the file already existed, the construction would have
succeeded. By specifying ios::ate when defining rw, the initial read/write action would by default
have taken place at EOF.

Under DOS-like operating systems that use the multiple character sequence \r\n to separate lines in
text files the flag ios: :binary is required to process binary files ensuring that \ r\n combinations are
processed as two characters. In general, ios: :binary should be specified when binary (non-text) files
are to be processed. By default files are opened as text files. Unix operating systems do not distinguish
text files from binary files.

With fstream objects, combinations of file flags are used to make sure that a stream is or is not
(re)created empty when opened. See section 6.4.2.1 for details.

Once a file has been opened in read and write mode, the << operator can be used to insert information
into the file, while the >> operator may be used to extract information from the file. These operations
may be performed in any order, but a seekg or seekp operation is required when switching between
insertions and extractions. The seek operation is used to activate the stream’s data used for reading
or those used for writing (and vice versa). The istream and ostream parts of £st ream objects share
the stream’s data buffer and by performing the seek operation the stream either activates its istream
or its ostream part. If the seek is omitted, reading after writing and writing after reading simply
fails. The example shows a whitespace-delimited word being read from a file, writing another string to
the file, just beyond the point where the just read word terminated. Finally yet another string is read
which is found just beyond the location where the just written strings ended:

fstream f("filename", ios::in | ios::out);
string str;

f >> str; // read the first word

// write a well known text
f.seekg (0, ios::cur);
f << "hello world";

f.seekp (0, ios::cur);
f >> str; // and read again

Since a seek or clear operation is required when alternating between read and write (extraction and
insertion) operations on the same file it is not possible to execute a series of << and >> operations in
one expression statement.

Of course, random insertions and extractions are hardly ever used. Generally, insertions and extrac-
tions occur at well-known locations in a file. In those cases, the position where insertions or extractions
are required can be controlled and monitored by the seekg, seekp, tellgand tellp members (see
sections 6.4.1.2 and 6.5.1.2).

Error conditions (see section 6.3.1) occurring due to, e.g., reading beyond end of file, reaching end of
file, or positioning before begin of file, can be cleared by the clear member function. Following clear
processing may continue. E.g.,

fstream f("filename", ios::in | ios::out);
string str;

f.seekg(-10); // this fails, but...
f.clear(); // processing f continues

f >> str; // read the first word

A situation where files are both read and written is seen in database applications, using files consisting
of records having fixed sizes, and where locations and sizes of pieces of information are known. For



retrieve a particular line, given 1ts order-number 1n the file. A otnary file index allows for the quick
retrieval of the location of lines.

#include <iostream>
#include <fstream>
#include <string>
#include <climits>
using namespace std;

void err (char const »*msqg)

{

cout << msg << '\n';

void err (char const »*msg, long value)

{

cout << msg << value << '\n';

void read(fstream &index, fstream &strings)
{

int idx;

if (! (cin >> idx)) // read index

{
cin.clear(); // allow reading again
cin.ignore (INT_MAX, '\n'); // skip the line

return err ("line number expected");

index.seekg(idx * sizeof (long)); // go to index-offset

long offset;

if
(
lindex.read // read the line-offset
(
reinterpret_cast<char *>(&offset),
sizeof (long)
)
)
return err ("no offset for line", idx);
if (!strings.seekg(offset)) // go to the line's offset

return err("can't get string offset ", offset);
string line;

if (!getline(strings, line)) // read the line
return err("no line at ", offset);

cout << "Got line: " << line << '\n'; // show the line
void write (fstream &index, fstream &strings)

{

string line;



if (!getline(cin, line)) // read the line
return err("line missing");

strings.seekp (0, ios::end); // to strings
index.seekp (0, ios::end); // to index

long offset = strings.tellp();

if
(
lindex.write // write the offset to index
(
reinterpret_cast<char x> (&offset),
sizeof (long)
)
)
return err ("Writing failed to index: ", offset);
if (! (strings << line << '\n')) // write the line itself
return err ("Writing to “strings' failed");
// confirm writing the line
cout << "Write at offset " << offset << " line: " << line << '\n';

int main ()

{

fstream index ("index", ios::trunc | ios::in ios::out);
fstream strings ("strings", ios::trunc | ios::in | ios::out);
cout << "enter “r <number>' to read line <number> or "

"w <line>' to write a line\n"
"or enter “g' to quit.\n";

while (true)

{

cout << "r <nr>, w <line>, g ? "; // show prompt

index.clear () ;
strings.clear();

string cmd;
cin >> cmd; // read cmd

if (cmd == "g") // process the cmd.
return 0;

if (cmd == "r")
read (index, strings);
else if (cmd == "w")

write (index, strings);
else 1if (cin.eof())
{
cout << "\n"
"Unexpected end-of-file\n";
return 1;
}
else
cout << "Unknown command: " << cmd << '\n';



Another example showing reading and writing of files is provided by the next program. It also illus-

trates the processing of NTBSs:

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

fstream f ("hello",
f.write ("hello", 6);
f.write ("hello", 6);

ios:

// r/w the file

:in | ios::out | ios::trunc);

// write 2 NTB strings

f.seekg (0, ios::beqg); // reset to begin of file
char buffer[100]; // or: char xbuffer = new char[100]
char c;
// read the first “hello'
cout << f.get (buffer, sizeof (buffer), 0).tellg() << '\n';
f >> c; // read the NTB delim
// and read the second “hello'
cout << f.get (buffer + 6, sizeof (buffer) - 6, 0).tellg() << '\n';
buffer[5] = ' '; // change asciiz to ' '
cout << buffer << '\n'; // show 2 times “hello'
}
/%
Generated output:
5
11
hello hello
*/

A completely different way to read and write streams may be implemented using st reambuf members.
All considerations mentioned so far remain valid (e.g., before a read operation following a write opera-
tion seekg must be used). When st reambuf objects are used, either an i st reamis associated with the
streambuf object of another ostream object, or an ost ream object is associated with the st reambuf
object of another istream object. Here is the previous program again, now using associated streams:

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

void err (char const =xmsqg);
void err (char const =msg,

void read(istream &index,

{
index.clear () ;
strings.clear();

// insert the body of

// see earlier example
long value);

istream &strings)

the read() function of the earlier example



void write (ostream &index, ostream &strings)

{
index.clear();
strings.clear();

// insert the body of the write() function of the earlier example

int main ()

{

ifstream index_in ("index", ios::trunc | ios::in | ios::out);
ifstream strings_in("strings", ios::trunc | ios::in | ios::out);
ostream index_out (index_in.rdbuf ());

ostream strings_out (strings_in.rdbuf());

cout << "enter “r <number>' to read line <number> or "
"w <line>' to write a line\n"
"or enter “g' to quit.\n";

while (true)

{
cout << "r <nr>, w <line>, g ? "; // show prompt
string cmd;

cin >> cmd; // read cmd

if (cmd == "g") // process the cmd.
return 0O;

if (cmd == "r")
read(index_in, strings_in);
else 1f (cmd == "w")
write (index_out, strings_out);
else
cout << "Unknown command: " << cmd << '\n';

In this example

* the streams associated with the streambuf objects of existing streams are not ifstream or
ofstream objects but basic i st ream and ost ream objects.

* The streambuf object is not defined by an i fstream or ofstream object. Instead it is defined
outside of the streams, using a filebuf (cf. section 14.8.2) and constructions like:

filebuf fb("index", ios::in | ios::out | ios::trunc);
istream index_in (&fb);
ostream index_out (&fb) ;

* An ifstream object can be constructed using stream modes normally used with ofstream ob-
jects. Conversely, an ofstream objects can be constructed using stream modes normally used
with i fstream objects.

* [f istreamand ostreams share a streambuf, then their read and write pointers (should) point
to the shared buffer: they are tightly coupled.



(of course) that 1t opens the possibility of using st ream objects with specialized streambuf ob-
jects. These st reambuf objects may specifically be constructed to control and interface particular
devices. Elaborating this (see also section 14.8) is left as an exercise to the reader.



Chapter 7

Classes

The C programming language offers two methods for structuring data of different types. The C struct
holds data members of various types, and the C union also defines data members of various types.
However, a union’s data members all occupy the same location in memory and the programmer may
decide on which one to use.

In this chapter classes are introduced. A class is a kind of struct, but its content is by default
inaccessible to the outside world, whereas the content of a C++ st ruct is by default accessible to the
outside world. In C++ structs find little use: they are mainly used to aggregate data within the
context of classes or to define elaborate return values. Often a C++ st ruct merely contains plain old
data (POD, cf. section 9.10). In C++ the class is the main data structuring device, by default enforcing
two core concepts of current-day software engineering: data hiding and encapsulation (cf. sections 3.2.1
and 7.1.1).

The union is another data structuring device the language offers. The traditional C union is still
available, but C++ also offers unrestricted unions. Unrestricted unions are unions whose data fields
may be of class types. The C++ Annotations covers these unrestricted unions in section 9.9, after having
introduced several other new concepts of C++,

C++ extends the C struct and union concepts by allowing the definition of member functions (in-
troduced in this chapter) within these data types. Member functions are functions that can only be
used with objects of these data types or within the scope of these data types. Some of these member
functions are special in that they are always, usually automatically, called when an object starts its life
(the so-called constructor) or ends its life (the so-called destructor). These and other types of member
functions, as well as the design and construction of, and philosophy behind, classes are introduced in
this chapter.

We step-by-step construct a class Person, which could be used in a database application to store a
person’s name, address and phone number.

Let’s start by creating a class Person right away. From the onset, it is important to make the
distinction between the class interface and its implementation. A class may loosely be defined as ‘a set
of data and all the functions operating on those data’. This definition is later refined but for now it is
sufficient to get us started.

A class interface is a definition, defining the organization of objects of that class. Normally a definition
results in memory reservation. E.g., when defining int variable the compiler ensures that some
memory is reserved in the final program storing variable’s values. Although it is a definition no
memory is set aside by the compiler once it has processed the class definition. But a class definition
follows the one definition rule: in C++ entities may be defined only once. As a class definition does not
imply that memory is being reserved the term class interface is preferred instead.

Class interfaces are normally contained in a class header file, e.g., person.h. We'll start our class
Person interface here (cf section 7.7 for an explanation of the const keywords behind some of the
class’s member functions):
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class Person

{

std::string d_name; // name of person
std::string d_address; // address field
std::string d_phone; // telephone number
size t d_mass; // the mass in kg.
public: // member functions

void setName (std::string const &name);

void setAddress (std::string const &address);
void setPhone (std::string const &phone);
voilid setMass (size_t mass);

std::string const &name () const;
std::string const &address () const;
std::string const &phone () const;
size_t mass () const;

}i

The member functions that are declared in the interface must still be implemented. The implementa-
tion of these members is properly called their definition.

In addition to member functions classes also commonly define the data that are manipulated by
those member functions. These data are called the data members. In Person they are d_name,
d_address, d_phone and d_mass. Data members should be given private access rights. Since the

class uses private access rights by default they are usually simply listed at the top of the class interface.

All communication between the outer world and the class data is routed through the class’s member
functions. Data members may receive new values (e.g., using setName) or they may be retrieved for
inspection (e.g., using name). Functions merely returning values stored inside the object, not allowing
the caller to modify these internally stored values, are called accessors.

Syntactically there is only a marginal difference between a class and a struct. Classes by default define
private members, structs define public members. Conceptually, though, there are differences. In C++
structs are used in the way they are used in C: to aggregate data, which are all freely accessible.
Classes, on the other hand, hide their data from access by the outside world (which is aptly called
data hiding) and offer member functions to define the communication between the outer world and the
class’s data members.

Following Lakos (Lakos, J., 2001) Large-Scale C++ Software Design (Addison-Wesley) I suggest the
following setup of class interfaces:

¢ All data members have private access rights, and are placed at the top of the interface.

¢ All data members start with d_, followed by a name suggesting their meaning (in chapter 8 we’ll
also encounter data members starting with s_).

¢ Non-private data members do exist, but one should be hesitant to define non-private access rights
for data members (see also chapter 13).

* Two broad categories of member functions are manipulators and accessors. Manipulators allow
the users of objects to modify the internal data of the objects. By convention, manipulators start
with set. E.g., setName.

e With accessors, a get-prefix is still frequently encountered, e.g., get Name. However, following the
conventions promoted by the Qt (see http://www.trolltech.com) Graphical User Interface
Toolkit, the get-prefix is now deprecated. So, rather than defining the member getAddress, it
should simply be named address.



following the class’s data members. lhey are the important elements of the interface as they
define the features the class is offering to its users. It’s a matter of convention to list them high
up in the interface. The keyword private is needed beyond the public members to switch back
from public members to private access rights which nicely separates the members that may be
used ‘by the general public’ from the class’s own support members.

Style conventions usually take a long time to develop. There is nothing obligatory about them, though.
I suggest that readers who have compelling reasons not to follow the above style conventions use their
own. All others are strongly advised to adopt the above style conventions.

Finally, referring back to section 3.1.2 that
using namespace std;

must be used in most (if not all) examples of source code. As explained in sections 7.11 and 7.11.1 the
using directive should follow the preprocessor directive(s) including the header files, using a setup like
the following:

#include <iostream>
#include "person.h"

using namespace std;

int main ()

{

}

7.1 The constructor

C++ classes usually contain two special categories of member functions which are essential to the
proper working of classes. These categories are the constructors and the destructor. The destructor’s
primary task is to return memory allocated by an object to the common pool when an object goes ‘out
of scope’. Allocation of memory is discussed in chapter 9, and an in-depth coverage of destructors is
therefore postponed until we reach that chapter. In the current chapter the emphasis is on the class’s
internal organization and on its constructors.

Constructors are recognized by their names which are equal to their class names. Constructors
do not specify return values, not even void. E.g., the class Person may define a constructor
Person: :Person (). The C++ run-time system ensures that the constructor of a class is called when
a variable of the class is defined. It is possible to define a class lacking any constructor. In that case
the compiler defines a default constructor that is called when an object of that class is defined. What
actually happens in that case depends on the data members that are defined by that class (cf. section
7.3.1).

Objects may be defined locally or globally. However, in C++ most objects are defined locally. Globally
defined objects are hardly ever required and are somewhat deprecated.

When a function defines a local object, that object’s constructor is called every time the function is
called. The object’s constructor is activated at the point where the object is defined (a subtlety is that
an object may be defined implicitly as, e.g., a temporary variable in an expression).

When an object is defined as a static object it is constructed when the program starts. In this case its
constructor is called even before the function main starts. Example:

#include <iostream>



class Demo
{
public:
Demo () ;
bi

Demo: :Demo ()
{
cout << "Demo constructor called\n";

}
Demo d;

int main ()

{1

/%

Generated output:
Demo constructor called
*/

The program contains one global object of the class Demo with main having an empty body. Nonetheless,
the program produces some output generated by the constructor of the globally defined Demo object.

Constructors have a very important and well-defined role. They must ensure that all the class’s data
members have sensible or at least well-defined values once the object has been constructed. We'll get
back to this important task shortly. The default constructor has no argument. It is defined by the
compiler unless another constructor is defined and unless its definition is suppressed (cf. section 7.6).
If a default constructor is required in addition to another constructor then the default constructor must
explicitly be defined as well. C++ provides special syntax to realize that without much effort, which is
also covered by section 7.6.

7.1.1 A first application

Our example class Person has three string data members and a size_t d_mass data member. Access
to these data members is controlled by interface functions.

Whenever an object is defined the class’s constructor(s) ensure that its data members are given ‘sen-
sible’ values. Thus, objects never suffer from uninitialized values. Data members may be given new
values, but that should never be directly allowed. It is a core principle (called data hiding) of good
class design that its data members are private. The modification of data members is therefore fully
controlled by member functions and thus, indirectly, by the class-designer. The class encapsulates all
actions performed on its data members and due to this encapsulation the class object may assume
the ‘responsibility’ for its own data-integrity. Here is a minimal definition of Person’s manipulating
members:

#include "person.h" // given earlier
using namespace std;

void Person::setName (string const &name)
{

d_name = name;
}

void Person::setAddress (string const &address)

{

d_address = address;



void Person::setPhone(string const &phone)
{
d_phone = phone;
}
void Person::setMass (size_t mass)

{

d_mass = mass;

It’s a minimal definition in that no checks are performed. But it should be clear that checks are easy to
implement. E.g., to ensure that a phone number only contains digits one could define:

void Person::setPhone(string const &phone)
{
if (phone.empty())

d_phone = " - not available -";

else if (phone.find_first_not_of("0123456789") == string::npos)
d_phone = phone;

else

cout << "A phone number may only contain digits\n";

Note the double negation in this implementation. Double negations are very hard to read, and an
encapsulating member bool hasOnly handles the test, and improves setPhone’ s readability:

bool Person::hasOnly (char const xcharacters, string const &object)
{
// object only contains 'characters'
return object.find_first_not_of (characters) == string::npos;

and setPhone becomes:

void Person::setPhone(string const &phone)
{
if (phone.empty())
d_phone = " - not available -";
else if (hasOnly("0123456789", phone))
d_phone = phone;
else
cout << "A phone number may only contain digits\n";

Since hasOnly is an encapsulated member function we can ensure that it’s only used with non-empty
string objects, so hasOnly itself doesn’t have to check for that.

Access to the data members is controlled by accessor members. Accessors ensure that data members
cannot suffer from uncontrolled modifications. Since accessors conceptually do not modify the object’s
data (but only retrieve the data) these member functions are given the predicate const. They are called
const member functions, which, as they are guaranteed not to modify their object’s data, are available
to both modifiable and constant objects (cf. section 7.7).

To prevent backdoors we must also make sure that the data member is not modifiable through an
accessor’s return value. For values of built-in primitive types that’s easy, as they are usually returned
by value, which are copies of the values found in variables. But since objects may be fairly large making
copies is usually prevented by returning objects by reference. A backdoor is created by returning a



definition:

string &Person::name () const

{

return d_name;

Person somebody;
somebody.setName ("Nemo") ;

somebody.name () = "Eve"; // Oops, backdoor changing the name

To prevent the backdoor objects are returned as const references from accessors. Here are the imple-
mentations of Person’s accessors:

#include "person.h" // given earlier
using namespace std;

string const &Person::name () const
{
return d_name;

}
string const &Person::address () const
{

return d_address;
}
string const &Person::phone () const
{

return d_phone;
}
size_t Person::mass () const
{

return d_mass;

The Person class interface remains the starting point for the class design: its member functions define
what can be asked of a Person object. In the end the implementation of its members merely is a
technicality allowing Person objects to do their jobs.

The next example shows how the class Person may be used. An object is initialized and passed to a
function printperson (), printing the person’s data. Note the reference operator in the parameter list
of the function printperson. Only a reference to an existing Person object is passed to the function,
rather than a complete object. The fact that printperson does not modify its argument is evident
from the fact that the parameter is declared const.

#include <iostream>
#include "person.h" // given earlier
using namespace std;

void printperson (Person const &p)

{

cout << "Name : " << p.name () << "\n"
"Address : " << p.address() << "\n"
"DPhone T B P p.phone() << "\n"

"Mass : " << p.mass|() << '"\n"';



Person p;

p.setName ("Linus Torvalds");

p.setAddress ("E-mail: Torvalds@cs.helsinki.fi");
p.setPhone("");

p.setMass (75); // kg.

printperson (p);

/ %
Produced output:
Name : Linus Torvalds
Address : E-mail: Torvalds@cs.helsinki.fi
Phone : - not available -
Mass : 75
*/

7.1.2 Constructors: with and without arguments

The class Person’s constructor so far has not received any parameters. C++ allows constructors to be
defined with or without parameter lists. The arguments are supplied when an object is defined.

For the class Person a constructor expecting three strings and a size_t might be useful. Repre-
senting, respectively, the person’s name, address, phone number and mass. This constructor can be
implemented like this (but see also section 7.3.1):

Person: :Person(string const &name, string const &address,
string const &phone, size_t mass)

d_name = name;
d_address = address;
setPhone (phone) ;
d_mass = mass;

It must of course also be declared in the class interface:

class Person

{

// data members (not altered)

public:
Person (std::string const &name, std::string const &address,
std::string const &phone, size_t mass);

// rest of the class interface (not altered)
}i

Now that this constructor has been declared, the default constructor must explicitly be declared as
well if we still want to be able to construct a plain Person object without any specific initial values for
its data members. The class Person would thus support two constructors, and the part declaring the
constructors now becomes:

class Person



// data members
public:
Person() ;
Person(std::string const &name, std::string const &address,
std::string const &phone, size_t mass);

// additional members

}i

In this case, the default constructor doesn’t have to do very much, as it doesn’t have to initialize the
string data members of the Person object. As these data members are objects themselves, they are
initialized to empty strings by their own default constructor. However, there is also a size_t data
member. That member is a variable of a built-in type and such variabes do not have constructors and
so are not initialized automatically. Therefore, unless the value of the d_mass data member is explicitly
initialized its value is:

* arandom value for local Person objects;

¢ 0 for global and static Person objects.

The 0-value might not be too bad, but normally we don’t want a random value for our data members.
So, even the default constructor has a job to do: initializing the data members which are not initialized
to sensible values automatically. Its implementation can be:

Person: :Person ()
{
d_mass = 0;

}

Using constructors with and without arguments is illustrated next. The object karel is initialized by
the constructor defining a non-empty parameter list while the default constructor is used for the anon
object. When constructing objects using constructors requiring arguments you are advised to surround
the arguments by curly braces. Parentheses can often also be used, and sometimes even have to be
used (cf. section 12.4.2), but mindlessly using parentheses instead of curly braces may easily result in
unexpected problems (cf. section 7.2). Hence the advice to prefer curly braces rather than parentheses.
Here’s the example showing two constructor-calls:

int main ()

{
Person karel{ "Karel", "Rietveldlaan 37", "542 6044", 70 };
Person anon;

The two Person objects are defined when main starts as they are local objects, living only for as long
as main is active.

If Person objects must be definable using other arguments, corresponding constructors must be added
to Person’s interface. Apart from overloading class constructors it is also possible to provide construc-
tors with default argument values. These default arguments must be specified with the constructor
declarations in the class interface, like so:

class Person
{
public:
Person(std::string const &name,
std::string const &address = "--unknown--",



size_t mass = 0);

}i

Often, constructors use highly similar implementions. This results from the fact that the construc-
tor’s parameters are often defined for convenience: a constructor not requiring a phone number but
requiring a mass cannot be defined using default arguments, since phone is not the constructor’s last
parameter. Consequently a special constructor is required not having phone in its parameter list. How-
ever, this doesn’t necessarily mean that constructors must duplicate their code, as constructors may call
each other (called constructor delegation). Constructor delegation is illustrated in section 7.4.1 below.

7.1.2.1 The order of construction

The possibility to pass arguments to constructors allows us to monitor the construction order of objects
during program execution. This is illustrated by the next program using a class Test. The program
defines a global Test object and two local Test objects. The order of construction is as expected: first
global, then main’s first local object, then func’s local object, and then, finally, main’s second local
object:

#include <iostream>
#include <string>
using namespace std;

class Test
{
public:
Test (string const &name); // constructor with an argument
bi

Test::Test (string const &name)

{

cout << "Test object " << name << " created" << '\n';

Test globaltest ("global");

void func ()

{

Test functest ("func");

int main ()

{
Test first{ "main first" };
func () ;
Test second{ "main second" };

/ *
Generated output:
Test object global created
Test object main first created
Test object func created
Test object main second created

*/



Calling constructors using parentheses may result in unexpected surprises. Assume the following class
interface is available:

class Data
{
public:
Data () ;
Data (int one);
Data (int one, int two);

void display();
bi

The intention is to define two objects of the class Data, using, respectively, the first and second con-
structors, while using parentheses in the object definitions. Your code looks like this (and compiles
correctly):

#include "data.h"
int main ()

{
Data dl();
Data d2 (argc);

Now it’s time to make some good use of the Data objects. Let’s add two statements to main:

dl.display();
d2.display () ;

But, surprise, the compiler complains about the first of these two:
error: request for member ‘display’in ‘d1’, which is of non-class type ’Data()’

What’s going on here? First of all, notice the data type the compiler refers to: Data (), rather than
Data. What are those () doing there?

Before answering that question, let’s broaden our story somewhat. We know that somewhere in a
library a factory function dataFactory exists. A factory function creates and returns an object of
a certain type. This dataFactory function returns a Data object, constructed using Data’s default
constructor. Hence, dataFactory needs no arguments. We want to use dataFactory in our program,
but must declare the function. So we add the declaration to main, as that’s the only location where
dataFactory will be used. It’s a function, not requiring arguments, returning a Dat a object:

Data dataFactory();
This, however, looks remarkably similar to our d1 object definition:
Data dl();

We found the source of our problem: Data dil () apparently is not the definition of a d1 object, but the
declaration of a function, returning a Dat a object. So, what’s happening here and how should we define
a Data object using Data’s default constructor?

First: what’s happening here is that the compiler, when confronted with Data di (), actually had a
choice. It could either define a Data object, or declare a function. It declares a function.



language's standard, by always letting a declaration prevail over a definition. We'll encounter more
situations where this ambiguity occurs later on in this section.

Second: there are several ways we can solve this ambiguity the way we want it to be solved. To define
an object using its default constructor:

* merely mention it (like int x): Data di;
¢ use the curly-brace initialization: Data di1{};

e use the assignment operator and an anonymous default constructed Data object: Data dl =
Dataf{}, or possibly Data dl1 = Data ().

7.2.1 Types ‘Data’ vs. ‘Data()’

Data () in the above context defines a default constructed anonymous Data object. This takes us back
to the compiler error. According to the compiler, our original d1 apparently was not of type Data, but
of type Data (). So what’s that?

Let’s first have a look at our second constructor. It expects an int. We would like to define another
Data object, using the second constructor, but want to pass the default int value to the constructor,
using int (). We know this defines a default int value, as cout << int () << ’\n’ nicely displays
0,and int x = int () also initialized x to 0. So we define ‘Data di (int ())’ inmain.

Not good: again the compiler complains when we try to use di. After ‘di.display ()’ the compiler
tells us:

error: request for member ‘display’in ‘di’, which is of non-class type ’Data(int (x)())’

Oops, again not as expected.... Didn’t we pass 0? Why the sudden pointer? It’s that same ‘use a dec-
laration when possible’ strategy again. The notation Type () not only represents the default value of
type Type, but it’s also a shorthand notation for an anonymous pointer to a function, not expecting ar-
guments, and returning a Type value, which you can verify by defining *int (xip) () = nullptr’,
and passing ip as argument to di: di (ip) compiles fine.

So why doesn’t the error occur when inserting int () or assigning int () to int x? In these latter
cases nothing is declared. Rather, ‘cout’ and ‘int x =’require expressions determining values, which
is provided by int ()’s ‘natural’ interpretation. But with ‘Data di (int () )’ the compiler again has
a choice, and (by design) it chooses a declaration because the declaration takes priority. Now int ()’s
interpretation as an anonymous pointer is available and therefore used.

Likewise, if int x has been defined, ‘Data bl (int (x))’ declares bl as a function, expecting an
int (as int (x) represents a type), while ‘Data b2 ( (int)x)’ defines b2 as a Data object, using the
constructor expecting a single int value.

Again, to use default entities, values or objects, prefer {} over (): Data di{ int{} } defines di of
type Data, calling the Data (int x) constructor and uses int’ s default value 0.

7.2.2 Superfluous parentheses

Let’s play some more. At some point in our program we defined int b. Then, in a compound statement
we need to construct an anonymous Data object, initialized using b, followed by displaying b:

int b = 18;

{
Data (b) ;
cout << bj;



error: cannot bind ‘std::ostream & << Data const &’

Here we didn’t insert int b butData b. Had we omitted the compound statement, the compiler would
have complained about a doubly defined b entity, as Data (b) simply means Data b, a Data object
constructed by default. The compiler may omit superfluous parentheses when parsing a definition or
declaration.

Of course, the question now becomes how a temporary object Data, initialized with int b can be
defined. Remember that the compiler may remove superfluous parentheses. So, what we need to do is
to pass an int to the anonymous Data object, without using the int’s name.

e We can use a cast: Data (static_cast<int> (b));

e We can use a curly-brace initialization: Data{ b }.
Values and types make big differences. Consider the following definitions:

Data (xd4) (int); // 1
Data (*d5) (3); // 2

Definition 1 should cause no problems: it’s a pointer to a function, expecting an int, returning a Data
object. Hence, d4 is a pointer variable.

Definition 2 is slightly more complex. Yes, it’s a pointer. But it has nothing to do with a function. So
what’s that argument list containing 3 doing there? Well, it’s not an argument list. It’s an initialization
that looks like an argument list. Remember that variables can be initialized using the assignment
statement, by parentheses or by curly parentheses. So instead of * (3)’ we could have written ‘= 3’
or ‘{3}’. Let’s pick the first alternative, resulting in:

Data (*xd5) = 3;
Now we get to ‘play compiler’ again. Removing some superfluous parentheses we get:
Data =d5 = 3;

It’s a pointer to a Data object, initialized to 3. This is semantically incorrect, but that’s only clear after
the syntactical analysis. If I had initially written

Data (*d5) (&dl); // 2

the fun resulting from contrasting int and 3 would most likely have been spoiled.

7.2.3 Existing types

Once a type name has been defined it also prevails over identifiers representing variables, if the com-
piler is given a choice. This, too, can result in interesting constructions.

Assume a function process expecting an int exists in a library. We want to use this function to process

some int data values. So in main process is declared and called:

int process (int Data);
process (argc) ;



supertluous parentheses, like so:

int process (int (Data));
process (argc) ;

Now we'’re in trouble. The compiler now generates an error, caused by its rule to let declarations
prevail over definitions. Data now becomes the name of the class Data, and analogous to int (x)
the parameter int (Data) is parsed as int (%) (Data): a pointer to a function, expecting a Data
object, returning an int.

Here is another example. When, instead of declaring
int process(int Data[10]);
we declare, e.g., to emphasize the fact that an array is passed to process:
int process(int (Data[l10]));
the process function does not expect a pointer to int values, but a pointer to a function expecting a

pointer to Data elements, returning an int.

To summarize the findings in the ‘Ambiguity Resolution’ section:

* The compiler will try to remove superfluous parentheses;
e But if the parenthesized construction represents a type, it will try to use the type;

* More in general: when possible the compiler will interpret a syntactic construction as a declara-
tion, rather than as a definition (of an object or variable).

* Most problems that result from the compiler interpreting constructions as declarations are caused
by us using parentheses. As a rule of thumb: use curly braces, rather than parentheses when
constructing objects (or values).

7.3 Objects inside objects: composition

In the class Person objects are used as data members. This construction technique is called composi-
tion.

Composition is neither extraordinary nor C++ specific: in C a st ruct or union field is commonly used
in other compound types. In C++ it requires some special thought as their initialization sometimes is
subject to restrictions, as discussed in the next few sections.

7.3.1 Composition and (const) objects: (const) member initializers

Unless specified otherwise object data members of classes are initialized by their default constructors.
Using the default constructor might not always be the optimal way to intialize an object and it might
not even be possible: a class might simply not define a default constructor.

Earlier we’ve encountered the following constructor of the Person:
Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

{



d_address = address;
d_phone = phone;
d_mass = mass;

Think briefly about what is going on in this constructor. In the constructor’s body we encounter as-
signments to string objects. Since assignments are used in the constructor’s body their left-hand side
objects must exist. But when objects are coming into existence constructors must have been called. The
initialization of those objects is thereupon immediately undone by the body of Person’s constructor.
That is not only inefficient but sometimes downright impossible. Assume that the class interface men-
tions a string const data member: a data member whose value is not supposed to change at all (like
a birthday, which usually doesn’t change very much and is therefore a good candidate for a string
const data member). Constructing a birthday object and providing it with an initial value is OK, but
changing the initial value isn’t.

The body of a constructor allows assignments to data members. The initialization of data members
happens before that. C++ defines the member initializer syntax allowing us to specify the way data
members are initialized at construction time. Member initializers are specified as a list of constructor
specifications between a colon following a constructor’s parameter list and the opening curly brace of a
constructor’s body, as follows:

Person: :Person(string const &name, string const &address,
string const &phone, size_t mass)

d_name (name) ,
d_address (address),
d_phone (phone) ,
d_mass (mass)

{1

In this example the member initialization used parentheses surrounding the intialization expression.
Instead of parentheses curly braces may also be used. E.g., d_name could also be initialized this way:

d_name{ name },

Member initialization always occurs when objects are composed in classes: if no constructors are men-
tioned in the member initializer list the default constructors of the objects are called. Note that this
only holds true for objects. Data members of primitive data types are not initialized automatically.

Member initialization can, however, also be used for primitive data members, like int and double. The
above example shows the initialization of the data member d_mass from the parameter mass. When
member initializers are used the data member could even have the same name as the constructor’s
parameter (although this is deprecated) as there is no ambiguity and the first (left) identifier used
in a member initializer is always a data member that is initialized whereas the identifier between
parentheses is interpreted as the parameter.

The order in which class type data members are initialized is defined by the order in which those
members are defined in the composing class interface. If the order of the initialization in the constructor
differs from the order in the class interface, the compiler complains, and reorders the initialization so
as to match the order of the class interface.

Member initializers should be used as often as possible. As shown it may be required to use them (e.g.,
to initialize const data members, or to initialize objects of classes lacking default constructors) but no¢
using member initializers also results in inefficient code as the default constructor of a data member
is always automatically called unless an explicit member initializer is specified. Reassignment in the
constructor’s body following default construction is then clearly inefficient. Of course, sometimes it is
fine to use the default constructor, but in those cases the explicit member initializer can be omitted.



that assignment 1n favor of using a membper 1nitializer.

7.3.2 Composition and reference objects: reference member initializers

Apart from using member initializers to initialize composed objects (be they const objects or not), there
is another situation where member initializers must be used. Consider the following situation.

A program uses an object of the class Configfile, defined in main to access the information in a
configuration file. The configuration file contains parameters of the program which may be set by
changing the values in the configuration file, rather than by supplying command line arguments.

Assume another object used in main is an object of the class Process, doing ‘all the work’. What
possibilities do we have to tell the object of the class Process that an object of the class Configfile
exists?

* The objects could have been declared as global objects. This is a possibility, but not a very good
one, since all the advantages of local objects are lost.

* The Configfile object may be passed to the Process object at construction time. Bluntly pass-
ing an object (i.e., by value) might not be a very good idea, since the object must be copied into
the Configfile parameter, and then a data member of the Process class can be used to make
the Configfile object accessible throughout the Process class. This might involve yet another
object-copying task, as in the following situation:

Process: :Process (Configfile conf) // a copy from the caller
{
d_conf = conf; // copying to d_conf member

}
* The copy-instructions can be avoided if pointers to the Configfile objects are used, as in:

Process: :Process (Configfile xconf) // pointer to external object
{
d_conf = conf; // d_conf is a Configfile =

}

This construction as such is OK, but forces us to use the ‘->’ field selector operator, rather than the
‘.” operator, which is (disputably) awkward. Conceptually one tends to think of the Configfile
object as an object, and not as a pointer to an object. In C this would probably have been the
preferred method, but in C++ we can do better.

e Rather than using value or pointer parameters, the Configfile parameter could be defined as a
reference parameter of Process’s constructor. Next, use a Config reference data member in the
class Process.

But a reference variable cannot be initialized using an assignment, and so the following is incorrect:

Process::Process (Configfile &conf)
{
d_conf = conf; // wrong: no assignment

}

The statement d_conf = conf fails, because it is not an initialization, but an assignment of one
Configfile object (i.e., conf), to another (d_conf). An assignment to a reference variable is actually
an assignment to the variable the reference variable refers to. But which variable does d_conf refer to?
To no variable at all, since we haven’t initialized d_conf. After all, the whole purpose of the statement
d_conf = conf was to initialize d_conf....



itialize d_conf:

Process::Process (Configfile &conf)

d_conf (conf) // initializing reference member

{1

The above syntax must be used in all cases where reference data members are used. E.g., if d_ir would
have been an int reference data member, a construction like

Process::Process (int &ir)

d ir(ir)

{1

would have been required.

7.4 Data member initializers

Non-static data members of classes are usually initialized by the class’s constructors. Frequently (but
not always) the same initializations are used by different constructors, resulting in multiple points
where the initializations are performed, which in turn complicates class maintenance.

Consider a class defining several data members: a pointer to data, a data member storing the number
of data elements the pointer points at, a data member storing the sequence number of the object. The
class also offer a basic set of constructors, as shown in the following class interface:

class Container

{
Data *d_data;
size_t d_size;
size_t d_nr;

static size_t s_nObjects;

public:
Container () ;
Container (Container const &other);
Container (Data xdata, size_t size);
(

Container (Container &&tmp);

}i

The initial values of the data members are easy to describe, but somewhat hard to implement. Consider
the initial situation and assume the default constructor is used: all data members should be set to 0,
except for d_nr which must be given the value ++s_nObjects. Since these are non-default actions, we
can’t declare the default constructor using = default, but we must provide an actual implementation:

Container ()

d_data(0),

d_size(0),

d_nr (++s_nObjects)
{1}



type would have been a (move aware) class type, we would still have to provide implementations for all
of the above constructors.

C++, however, also supports data member initializers, simplifying the initialization of non-static data
members. Data member initializers allow us to assign initial values to data members. The compiler
must be able to compute these initial values from initialization expressions, but the initial values do
not have to be constant expressions. So ++s_nObjects can be an initial value.

Using data member initializers for the class Container we get:

class Container

{
Data *d_data = 0;
size_t d_size = 0;
size_t d_nr = ++s_nObjects;

static size_t s_nObjects;

public:
Container () = default;
Container (Container const &other);
Container (Data xdata, size_t size);
(

Container (Container &&tmp);

}i

Note that the data member initializations are recognized by the compiler, and are applied to its imple-
mentation of the default constructor. In fact, all constructors will apply the data member initializations,
unless explicitly initialized otherwise. E.g., the move-constructor may now be implemented like this:

Container (Container &&tmp)

d_data (tmp.d_data),
d_size(tmp.d_size)

tmp.d_data = 0;

Although d_nr’s intialization is left out of the implementation it is initialized due to the data member
initialization provided in the class’s interface.

An aggregate is an array or a class (usually a struct with no user-defined constructors, no private
or protected non-static data members, no base classes (cf. chapter 13), and no virtual functions (cf.
chapter 14)). E.g.,

struct POD // defining aggregate POD
{

int first = 5;

double second = 1.28;

std::string hello{ "hello" };
bi

To initialize such aggregates braced initializer lists can be used. In fact, their use is preferred over
using the older form (using parentheses), as using braces avoids confusion with function declarations.
E.g,

POD pod{ 4, 13.5, "hi there" };



stop at any data member, 1n which case the detault (or explicitly aefined initialization values) of the
remaining data members are used. E.g.,

POD pod{ 4 }; // uses second: 1.28, hello: "hello"

7.4.1 Delegating constructors

Often constructors are specializations of each other, allowing objects to be constructed specifying only
subsets of arguments for all of its data members, using default argument values for the remaining data
members.

Before the C++11 standard common practice was to define a member like init performing all initial-
izations common to constructors. Such an init function, however, cannot be used to initialize const
or reference data members, nor can it be used to perform so-called base class initializations (cf. chapter
13).

Here is an example where such an init function might have been used. A class Stat is designed as a
wrapper class around C’s stat(2) function. The class might define three constructors: one expecting no
arguments and initializing all data members to appropriate values; a second one doing the same, but
it calls stat for the filename provided to the constructor; and a third one expecting a filename and a
search path for the provided file name. Instead of repeating the initialization code in each constructor,
the common code can be factorized into a member init which is called by the constructors.

C++ offers an alternative by allowing constructors to call each other. This is called delegating construc-
tors which is illustrated by the next example:

class Stat

{
public:
Stat ()

Stat ("", "M // no filename/searchpath

{}
Stat (std::string const &fileName)

Stat (fileName, "") // only a filename

{}
Stat (std::string const &fileName, std::string const &searchPath)

d_filename (fileName),
d_searchPath (searchPath)

// remaining actions to be performed by the constructor
}i

C++ allows static const integral data members to be initialized within the class interfaces (cf. chapter
8). The C++11 standard adds to this the facility to define default initializations for plain data members
in class interfaces (these data members may or may not be const or of integral types, but (of course)
they cannot be reference data members).

These default initializations may be overruled by constructors. E.g., if the class Stat uses a data
member bool d_hasPath which is false by default but the third constructor (see above) should
initialize it to t rue then the following approach is possible:

class Stat
{



public:
Stat (std::string const &fileName, std::string const &searchPath)

d_hasPath (true) // overrule the interface-specified
{} // value
bi

Here d_hasPath receives its value only once: it’s always initialized to false except when the shown
constructor is used in which case it is initialized to t rue.

7.5 Uniform initialization

When defining variables and objects they may immediately be given initial values. Class type objects
are always initialized using one of their available constructors. C already supports the array and struct
initializer list consisting of a list of constant expressions surrounded by a pair of curly braces.

C++ supports a comparable initialization, called uniform initialization. It uses the following syntax:
Type object{ value list };

When defining objects using a list of objects each individual object may use its own uniform initializa-
tion.

The advantage of uniform initialization over using constructors is that using constructor arguments
may sometimes result in an ambiguity as constructing an object may sometimes be confused with
using the object’s overloaded function call operator (cf. section 11.10). As initializer lists can only be
used with plain old data (POD) types (cf. section 9.10) and with classes that are ‘initializer list aware’
(like std: :vector) the ambiguity does not arise when initializer lists are used.

Uniform initialization can be used to initialize an object or variable, but also to initialize data members
in a constructor or implicitly in the return statement of functions. Examples:

class Person
{
// data members
public:
Person (std::string const &name, size_t mass)

d_name {name},
d_mass {mass}

{}

Person copy () const
{
return {d_name, d_mass};
}
bi

Object definitions may be encountered in unexpected places, easily resulting in (human) confusion.
Consider a function ‘func’ and a very simple class Fun (struct is used, as data hiding is not an issue
here; in-class implementations are used for brevity):

void func () ;



Fun (void (*£f) ())
{

std::cout << "Constructor\n";
}i

void process ()

{

std::cout << "process\n";
}
bi

Assume that in main a Fun object is defined as follows:
Fun fun (func);

Running this program displays Constructor, confirming that the object fun is constructed.

Next we change this line of code, intending to call process from an anonymous Fun object:
Fun (func) .process() ;

As expected, Constructor appears, followed by the text process.

What about just defining an anonymous Fun object? We do:
Fun (func) ;

Now we're in for a surprise. The compiler complains that Fun’s default constructor is missing. Why’s
that? Insert some blanks immediately after Fun and you get Fun (func). Parentheses around an
identifier are OK, and are stripped off once the parenthesized expression has been parsed. In this
case: (func) equals func, and so we have Fun func: the definition of a Fun func object, using Fun’s
default constructor (which isn’t provided).

So why does Fun (func) .process () compile? In this case we have a member selector operator, whose
left-hand operand must be an class-type object. The object must exist, and Fun (func) represents that
object. It’s not the name of an existing object, but a constructor expecting a function like func exists.
The compiler now creates an anonymous Fun, passing it func as its argument.

Clearly, in this example, parentheses cannot be used to create an anonymous Fun object. However, the
uniform initialization can be used. To define the anonymous Fun object use this syntax:

Fun{ func };

(which can also be used to immediately call one of its members. E.g., Fun{func} .process ()).

Although the uniform intialization syntax is slightly different from the syntax of an initializer list (the
latter using the assignment operator) the compiler nevertheless uses the initializer list if a constructor
supporting an initializer list is available. As an example consider:

class Vector
{
public:
Vector (size_t size);
Vector (std::initializer_list<int> const &values);

}i

Vector vi = {4};



expecting a size_t argument. If the latter constructor 1s required the definition using the standarad
constructor syntax must be used. L.e., Vector vi (4).

Initializer lists are themselves objects that may be constructed using another initializer list. However,
values stored in an initializer list are immutable. Once the initializer list has been defined their values
remain as-is.

Before using initializer lists the initializer_1ist header file must be included.
Initializer lists support a basic set of member functions and constructors:
® initializer_list<Type> object:
defines object as an empty initializer list

® initializer_list<Type> object { list of Type values }:
defines object as an initializer list containing Type values

® initializer_list<Type> object (other):
initializes object using the values stored in other

® size_t size() const:
returns the number of elements in the initializer list

® Type const xbegin() const:
returns a pointer to the first element of the initializer list

® Type const xend() const:
returns a pointer just beyond the location of the last element of the initializer list

7.6 Defaulted and deleted class members

In everyday class design two situations are frequently encountered:

* A class offering constructors explicitly has to define a default constructor;

¢ A class (e.g., a class implementing a stream) cannot initialize objects by copying the values from
an existing object of that class (called copy construction) and cannot assign objects to each other.

Once a class defines at least one constructor its default constructor is not automatically defined by the
compiler. C++ relaxes that restriction somewhat by offering the ‘= default’ syntax. A class specify-
ing ‘= default’ with its default constructor declaration indicates that the trivial default constructor
should be provided by the compiler. A trivial default constructor performs the following actions:

¢ Its data members of built-in or primitive types are not initialized;
¢ Its composed (class type) data members are initialized by their default constructors.
¢ If the class is derived from a base class (cf. chapter 13) the base class is initialized by its default

constructor.

Trivial implementations can also be provided for the copy constructor, the overloaded assignment oper-
ator, and the destructor. Those members are introduced in chapter 9.

Conversely, situations exist where some (otherwise automatically provided) members should not be
made available. This is realized by specifying ‘= delete’. Using = default and = delete is il-
lustrated by the following example. The default constructor receives its trivial implementation, copy-
construction is prevented:

class Strings



public:
Strings () = default;
Strings (std::string const *xsp, size_t size);

Strings (Strings const &other) = delete;
}i

7.7 Const member functions and const objects

The keyword const is often used behind the parameter list of member functions. This keyword indi-
cates that a member function does not alter the data members of its object. Such member functions are
called const member functions. In the class Person, we see that the accessor functions were declared
const:

class Person

{

public:
std::string const &name () const;
std::string const &address () const;
std::string const &phone () const;
size_t mass () const;

}i

The rule of thumb given in section 3.1.1 applies here too: whichever appears to the left of the keyword
const, is not altered. With member functions this should be interpreted as ‘doesn’t alter its own data’.

When implementing a const member function the const attribute must be repeated:

string const &Person::name () const

{

return d_name;

}

The compiler prevents the data members of a class from being modified by one of its const member
functions. Therefore a statement like

d_name[0] = toupper (static_cast<unsigned char>(d_name[0]));

results in a compiler error when added to the above function’s definition.

Const member functions are used to prevent inadvertent data modification. Except for constructors
and the destructor (cf. chapter 9) only const member functions can be used with (plain, references or
pointers to) const objects.

Const objects are frequently encountered as const & parameters of functions. Inside such functions
only the object’s const members may be used. Here is an example:

void displayMass (ostream &out, Person const &person)

{

out << person.name () << " weighs " << person.mass () << " kg.\n";

}

Since person is defined as a Person const & the function displayMass cannot call, e.g.,
person.setMass (75).



overloaded by their const attribute the compiler uses the member function matching most closely the
const-qualification of the object:

* When the object is a const object, only const member functions can be used.

¢ When the object is not a const object, non-const member functions are used, unless only a const
member function is available. In that case, the const member function is used.

The next example illustrates how (non) const member functions are selected:

#include <iostream>
using namespace std;

class Members
{
public:
Members () ;
void member () ;
void member () const;

}i

Members: :Members ()

{1

void Members: :member ()

{

cout << "non const member\n";

}

volid Members: :member () const

{

cout << "const member\n";

int main ()

{
Members const constObject;
Members nonConstObject;

constObject .member () ;
nonConstObject .member () ;

/%
Generated output:
const member
non const member
x/

As a general principle of design: member functions should always be given the const attribute, unless
they actually modify the object’s data.

7.7.1 Anonymous objects

Sometimes objects are used because they offer a certain functionality. The objects only exist because of
their functionality, and nothing in the objects themselves is ever changed. The following class Print
offers a facility to print a string, using a configurable prefix and suffix. A partial class interface could
be:



public:
Print (ostream &out);
void print (std::string const &prefix, std::string const &text,
std::string const &suffix) const;

}i
An interface like this would allow us to do things like:

Print print{ cout };
for (int idx = 0; idx !'= argc; ++idx)
print.print ("arg: ", argv[idx], "\n");

This works fine, but it could greatly be improved if we could pass print’s invariant arguments to
Print’s constructor. This would simplify print’s prototype (only one argument would need to be
passed rather than three) and we could wrap the above code in a function expecting a Print object:

void allArgs (Print const &print, int argc, char xxargv)
{

for (int idx = 0; idx != argc; ++idx)
print.print (argv[idx]);

The above is a fairly generic piece of code, at least it is with respect to Print. Since prefix and
suffix don’t change they can be passed to the constructor which could be given the prototype:

Print (ostream &out, string const &prefix = "", string const &suffix = "");

Now allArgs may be used as follows:

Print pl{ cout, "arg: ", "\n" }; // prints to cout
Print p2{ cerr, "err: --", "——\n" };// prints to cerr
allArgs (pl, argc, argv); // prints to cout
allArgs (p2, argc, argv); // prints to cerr

But now we note that p1 and p2 are only used inside the al1Args function. Furthermore, as we can
see from print’s prototype, print doesn’t modify the internal data of the Print object it is using.

In such situations it is actually not necessary to define objects before they are used. Instead anonymous
objects may be used. Anonymous objects can be used:

* to initialize a function parameter which is a const reference to an object;

¢ if the object is only used inside the function call.

When passing anonymous objects as arguments of const & parameters of functions they are consid-
ered constant as they merely exist for passing the information of (class type) objects to those functions.
This way, they cannot be modified, nor may their non-const member functions be used. Of course, a
const_cast could be used to cast away the const reference’s constness, but that’s considered bad prac-
tice on behalf of the function receiving the anonymous objects. Also, any modification to the anonymous
object is lost once the function returns as the anonymous object ceases to exist after calling the func-
tion. These anonymous objects used to initialize const references should not be confused with passing
anonymous objects to parameters defined as rvalue references (section 3.3.2) which have a completely
different purpose in life. Rvalue references primarily exist to be ‘swallowed’ by functions receiving



which are also anonymous.

Anonymous objects are defined when a constructor is used without providing a name for the constructed
object. Here is the corresponding example:

allArgs (Print{ cout, "arg: ", "\n" }, argc, argv); // prints to cout

allArgs (Print{ cerr, "err: --", "--\n" }, argc, argv);// prints to cerr

In this situation the Print objects are constructed and immediately passed as first arguments to the
allArgs functions, where they are accessible as the function’s print parameter. While the al1Args
function is executing they can be used, but once the function has completed, the anonymous Print
objects are no longer accessible.

7.7.1.1 Subtleties with anonymous objects

Anonymous objects can be used to initialize function parameters that are const references to objects.
These objects are created just before such a function is called, and are destroyed once the function has
terminated. C++’s grammar allows us to use anonymous objects in other situations as well. Consider
the following snippet of code:

int main ()
{
// initial statements
Print{ "hello", "world" }; // assume a matching constructor
// is available
// later statements

In this example an anonymous Print object is constructed, and it is immediately destroyed thereafter.
So, following the ‘initial statements’ our Print object is constructed. Then it is destroyed again followed
by the execution of the ‘later statements’.

The example illustrates that the standard lifetime rules do not apply to anonymous objects. Their
lifetimes are limited to the statements, rather than to the end of the block in which they are defined.

Plain anonymous object are at least useful in one situation. Assume we want to put markers in our code
producing some output when the program’s execution reaches a certain point. An object’s constructor
could be implemented so as to provide that marker-functionality allowing us to put markers in our code
by defining anonymous, rather than named objects.

C++’s grammar contains another remarkable characteristic illustrated by the next example:

int main(int argc, char xxargv)
{
// assume a matching constructor is available:
Print p{ cout, "", "" }; // 1
allArgs (Print{ p }, argc, argv); // 2

In this example a non-anonymous object p is constructed in statement 1, which is then used in state-
ment 2 to initialize an anonymous object. The anonymous object, in turn, is then used to initialize
allArgs’s const reference parameter. This use of an existing object to initialize another object is com-
mon practice, and is based on the existence of a so-called copy constructor. A copy constructor creates
an object (as it is a constructor) using an existing object’s characteristics to initialize the data of the
object that’s created. Copy constructors are discussed in depth in chapter 9, but presently only the
concept of a copy constructor is used.



object was then used to 1nitialize a parameter of a function. However, when we try to apply the same
trick (i.e., using an existing object to initialize an anonymous object) to a plain statement, the compiler
generates an error: the object p can’t be redefined (in statement 3, below):

int main(int argc, char xargvl|[])

{

Print p{ nn, nn },. // 1
allArgs (Print (p), argc, argv); // 2
Print (p); // 3 error!

Does this mean that using an existing object to initialize an anonymous object that is used as function
argument is OK, while an existing object can’t be used to initialize an anonymous object in a plain
statement?

The compiler actually provides us with the answer to this apparent contradiction. About statement 3
the compiler reports something like:

error: redeclaration of 'Print p'
which solves the problem when realizing that within a compound statement objects and variables may
be defined. Inside a compound statement, a type name followed by a variable name is the gram-
matical form of a variable definition. Parentheses can be used to break priorities, but if there are no
priorities to break, they have no effect, and are simply ignored by the compiler. In statement 3 the

parentheses allowed us to get rid of the blank that’s required between a type name and the variable
name, but to the compiler we wrote

Print (p);
which is, since the parentheses are superfluous, equal to
Print p;

thus producing p’s redeclaration.

As a further example: when we define a variable using a built-in type (e.g., double) using superfluous
parentheses the compiler quietly removes these parentheses for us:

double ((((a)))); // weird, but OK.
To summarize our findings about anonymous variables:

* Anonymous objects are great for initializing const reference parameters.

¢ The same syntax, however, can also be used in stand-alone statements, in which they are inter-
preted as variable definitions if our intention actually was to initialize an anonymous object using
an existing object.

* Since this may cause confusion, it’s probably best to restrict the use of anonymous objects to the
first (and main) form: initializing function parameters.

7.8 The keyword ‘inline’

Let us take another look at the implementation of the function Person: :name () :

std::string const &Person::name () const



return d_name;

This function is used to retrieve the name field of an object of the class Person. Example:

void showName (Person const &person)
{
cout << person.name () ;

}
To insert person’s name the following actions are performed:

e The function Person: :name () is called
* This function returns person’s d_name as a reference.

¢ The referenced name is inserted into cout.

Especially the first part of these actions causes some time loss, since an extra function call is necessary
to retrieve the value of the name field. Sometimes a faster procedure immediately making the d_name
data member available is preferred without ever actually calling a function name. This can be realized
using inline functions. An inline function is a request to the compiler to insert the function’s code
at the location of the function’s call. This may speed up execution by avoiding a function call, which
typically comes with some (stack handling and parameter passing) overhead. Note that inline is a
request to the compiler: the compiler may decide to ignore it, and will probably ignore it when the
function’s body contains much code. Good programming discipline suggests to be aware of this, and to
avoid inline unless the function’s body is fairly small. More on this in section 7.8.2.

7.8.1 Defining members inline

Inline functions may be implemented in the class interface itself. For the class Person this results in
the following implementation of name:

class Person
{
public:
std::string const &name () const
{
return d_name;

}

bi

Note that the inline code of the function name now literally occurs inline in the interface of the class
Person. The keyword const is again added to the function’s header.

Although members can be defined in-class (i.e., inside the class interface itself), it is considered bad
practice for the following reasons:

* Defining members inside the interface contaminates the interface with implementations. The in-
terface’s purpose is to document what functionality the class offers. Mixing member declarations
and implementation details complicates understanding the interface. Readers need to skip im-
plementation details which takes time and makes it hard to grab the ‘broad picture’, and thus to
understand at a glance what functionality the class’s objects are offering.

¢ In-class implementations of private member functions may usually be avoided altogether (as they
are private members). They should be moved to the internal header file (unless inline public
members use such inline private members).



where such inline members migrate firom an inline to a non-inline definition. In-class inline
definitions still need editing (sometimes considerable editing) before they can be compiled. This
additional editing is undesirable.

Because of the above considerations inline members should not be defined in-class. Rather, they should
be defined following the class interface. The Person: : name member is therefore preferably defined as
follows:

class Person

{

public:
std::string const &name () const;
}i
inline std::string const &Person::name () const

{

return d_name;

}

If it is ever necessary to cancel Person: :name’s inline implementation, then this becomes its non-
inline implementation:

#include "person.ih"

std::string const &Person::name () const
{
return d_name;

}

Only the inline keyword needs to be removed to obtain the correct non-inline implementation.

Defining members inline has the following effect: whenever an inline-defined function is called, the
compiler may insert the function’s body at the location of the function call. It may be that the function
itself is never actually called.

This construction, where the function code itself is inserted rather than a call to the function, is called
an inline function. Note that using inline functions may result in multiple occurrences of the code of
those functions in a program: one copy for each invocation of the inline function. This is probably OK if
the function is a small one, and needs to be executed fast. It’s not so desirable if the code of the function
is extensive. The compiler knows this too, and handles the use of inline functions as a request rather
than a command. If the compiler considers the function too long, it will not grant the request. Instead
it will treat the function as a normal function.

7.8.2 When to use inline functions

When should inline functions be used, and when not? There are some rules of thumb which may be
followed:

* In general inline functions should not be used. Voila; that’s simple, isn’t it?

* Consider defining a function inline once a fully developed and tested program runs too slowly
and shows ‘bottlenecks’ in certain functions, and the bottleneck is removed by defining inline
members. A profiler, which runs a program and determines where most of the time is spent, is
necessary to perform such optimizations.

* Defining inline functions may be considered when they consist of one very simple statement (such
as the return statement in the function Person: : name).



1s used. As a consequence, when the implemenitation of the inline function changes, all sources
using the inline function must be recompiled. In practice that means that all functions must
be recompiled that include (either directly or indirectly) the header file of the class in which the
inline function is defined. Not a very attractive prospect.

¢ Itis only useful to implement an inline function when the time spent during a function call is long
compared to the time spent by the function’s body. An example of an inline function which hardly
affects the program’s speed is:

inline void Person::printname () const
{
cout << d_name << '\n';

}

This function contains only one statement. However, the statement takes a relatively long time to
execute. In general, functions which perform input and output take lots of time. The effect of the
conversion of this function printname () to inline would therefore lead to an insignificant gain
in execution time.

All inline functions have one disadvantage: the actual code is inserted by the compiler and must there-
fore be known at compile-time. Therefore, as mentioned earlier, an inline function can never be located
in a run-time library. Practically this means that an inline function is found near the interface of a
class, usually in the same header file. The result is a header file which not only shows the declaration
of a class, but also part of its implementation, thus always blurring the distinction between interface
and implementation.

7.8.2.1 A prelude: when NOT to use inline functions

As a prelude to chapter 14 (Polymorphism), there is one situation in which inline functions should
definitely be avoided. At this point in the C++ Annotations it’s a bit too early to expose the full details,
but since the keyword inline is the topic of this section this is considered the appropriate location for
the advice.

There are situations where the compiler is confronted with so-called vague linkage

(ef. http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Vague-Linkage.html). These situa-
tions occur when the compiler does not have a clear indication in what object file to put its compiled
code. This happens, e.g., with inline functions, which are usually encountered in multiple source files.
Since the compiler may insert the code of ordinary inline functions in places where these functions are
called, vague linking is usually no problem with these ordinary functions.

However, as explained in chapter 14, when using polymorphism the compiler must ignore the inline
keyword and define so-called virtual memabers as true (out-of-line) functions. In this situation the vague
linkage may cause problems, as the compiler must decide in what object s to put their code. Usually
that’s not a big problem as long as the function is at least called once. But virtual functions are special
in the sense that they may very well never be explicitly called. On some architectures (e.g., armel)
the compiler may fail to compile such inline virtual functions. This may result in missing symbols in
programs using them. To make matters slightly more complex: the problem may emerge when shared
libraries are used, but not when static libraries are used.

To avoid all of these problems virtual functions should never be defined inline, but they should always
be defined out-of-line. 1.e., they should be defined in source files.

7.8.3 Inline variables

In addition to inline functions, inline variables can be defined (and identically initialized) in multiple
translation units. E.g., a header file could contain



class Demo

{

// static int s_value = 15; // ERROR
static int constexpr s_value = 15; // OK
static int s_inline; // OK: see below: the inline
// definition follows the
// class declaration
bi
inline int Demo::s_inline = 20; // OK

7.9 Local classes: classes inside functions

Classes are usually defined at the global or namespace level. However, it is entirely possible to define
a local class, i.e., inside a function. Such classes are called local classes.

Local classes can be very useful in advanced applications involving inheritance or templates (cf. section
13.8). At this point in the C++ Annotations they have limited use, although their main features can be
described. At the end of this section an example is provided.

* Local classes may use almost all characteristics of normal classes. They may have constructors,
destructors, data members, and member functions;

¢ Local classes cannot define static data members. Static member functions, however, can be de-
fined.

¢ Since a local class may define static member functions, it is possible to define nested functions in
C++ somewhat comparable to the way programming languages like Pascal allow nested functions
to be defined.

e If alocal class needs access to a constant integral value, a local enum can be used. The enum may
be anonymous, exposing only the enum values.

* Local classes cannot directly access the non-static variables of their surrounding context. For
example, in the example shown below the class Local cannot directly access main’s argc param-
eter.

* Local classes may directly access global data and static variables defined by their surrounding
function. This includes variables defined in the anonymous namespace of the source file contain-
ing the local class.

* Local class objects can be defined inside the function body, but they cannot leave the function as
objects of their own type. L.e., a local class name cannot be used for either the return type or for
the parameter types of its surrounding function.

* As a prelude to inheritance (chapter 13): a local class may be derived from an existing class allow-
ing the surrounding function to return a dynamically allocated locally constructed class object,
pointer or reference via a base class pointer or reference.

#include <iostream>
#include <string>

using namespace std;
int main(int argc, char *xargv)

{

static size_t staticValue = 0;



class Local

{

int d_argc;

public:
enum

{

VALUE

}i

Local (int argc)

d_argc (argc)

cout << "Local

// non-static data members OK

// enums OK

// constructors and member functions OK
// in-class implementation required

// global data: accessible
constructor\n";
// static function variables: accessible

staticValue += 5;

}

static void hello ()

{

// static member functions: OK

cout << "hello world\n";

}
}i
Local::hello();

Local loc{ argc };

// call Local static member
// define object of a local class.

7.10 The keyword ‘mutable’

Earlier, in section 7.7, the concepts of const member functions and const objects were introduced.

C++ also allows the declaration of data members which may be modified, even by const member func-

tion. Declarations of such data members start with the keyword mutable.

Mutable should be used for those data members that may be modified without logically changing the

object, which might therefore still be considered a constant object.

An example of a situation where mutable is appropriately used is found in the implementation of a
string class. Consider the std: :string’s c_str and data members. The actual data returned by the
two members are identical, but c_str must ensure that the returned string is terminated by an 0-byte.
As a string object has both a length and a capacity an easy way to implement c_str is to ensure that
the string’s capacity exceeds its length by at least one character. This invariant allows c_str to be

implemented as follows:

char const =xstring::c_str()

{

d_datal[d_length] =
return d_data;

mutable char xd_data;

0;

const

This implementation logically does not modify the object’s data as the bytes beyond the object’s initial
(length) characters have undefined values. But in order to use this implementation d_data must be
declared mutable:



1mplementing reference counting for strings. 1'he object aoing the reference counting might be a const
object, but the class may define a copy constructor. Since const objects can’t be modified, how would the
copy constructor be able to increment the reference count? Here the mutable keyword may profitably
be used, as it can be incremented and decremented, even though its object is a const object.

The keyword mutable should sparingly be used. Data modified by const member functions should
never logically modify the object, and it should be easy to demonstrate this. As a rule of thumb: do not
use mutable unless there is a very clear reason (the object is logically not altered) for violating this
rule.

7.11 Header file organization

In section 2.5.10 the requirements for header files when a C++ program also uses C functions were
discussed. Header files containing class interfaces have additional requirements.

First, source files. With the exception of the occasional classless function, source files contain the code
of member functions of classes. Basically, there are two approaches:

¢ All required header files for a member function are included in each individual source file.

¢ All required header files (for all member functions of a class) are included in a header file that is
included by each of the source files defining class members.

The first alternative has the advantage of economy for the compiler: it only needs to read the header
files that are necessary for a particular source file. It has the disadvantage that the program devel-
oper must include multiple header files again and again in source files: it both takes time to type the
include-directives and to think about the header files which are needed in a particular source file.

The second alternative has the advantage of economy for the program developer: the header file of
the class accumulates header files, so it tends to become more and more generally useful. It has the
disadvantage that the compiler frequently has to process many header files which aren’t actually used
by the function to compile.

With computers running faster and faster (and compilers getting smarter and smarter) I think the
second alternative is to be preferred over the first alternative. So, as a starting point source files of a
particular class MyClass could be organized according to the following example:

#include <myclass.h>

int MyClass::aMemberFunction ()

{1

There is only one include-directive. Note that the directive refers to a header file in a directory men-
tioned in the INCLUDE-file environment variable. Local header files (using #include "myclass.h")
could be used too, but that tends to complicate the organization of the class header file itself somewhat.

The organization of the header file itself requires some attention. Consider the following example, in
which two classes File and String are used.

Assume the File class has a member gets (String &destination), while the class String has a
member function getLine (File &file). The (partial) header file for the class Stringis then:

#ifndef STRING_H_
#define STRING_H_

#include <project/file.h> // to know about a File



public:
void getLine(File &file);
bi
#endif

Unfortunately a similar setup is required for the class File:

#ifndef FILE_H_
#define FILE_H_

#include <project/string.h> // to know about a String

class File
{
public:
void gets (String &string);
}i
#endif

Now we have created a problem. The compiler, trying to compile the source file of the function
File: :gets proceeds as follows:

* The header file project/file.h is opened to be read;

* FILE_H_ is defined

* The header file project/string.h is opened to be read

® STRING_H_ is defined

* The header file project/file.his (again) opened to be read

e Apparently, FILE_H_ is already defined, so the remainder of project/file.h is skipped.

* The interface of the class St ring is now parsed.

¢ In the class interface a reference to a File object is encountered.

* As the class File hasn’t been parsed yet, a File is still an undefined type, and the compiler

quits with an error.

The solution to this problem is to use a forward class reference before the class interface, and to include
the corresponding class header file beyond the class interface. So we get:

#ifndef STRING_H_
#define STRING_H_

class File; // forward reference
class String
{
public:
void getLine(File &file);
}i
#include <project/file.h> // to know about a File

#endif



#ifndef FILE_H_
#define FILE_H_

class String; // forward reference

class File
{
public:
void gets (String &string);
bi

#include <project/string.h> // to know about a String

#endif

This works well in all situations where either references or pointers to other classes are involved and
with (non-inline) member functions having class-type return values or parameters.

This setup doesn’t work with composition, nor with in-class inline member functions. Assume the
class File has a composed data member of the class String. In that case, the class interface of the
class File must include the header file of the class String before the class interface itself, because
otherwise the compiler can’t tell how big a File object is. A File object contains a String member,
but the compiler can’t determine the size of that St ring data member and thus, by implication, it can’t
determine the size of a File object.

In cases where classes contain composed objects (or are derived from other classes, see chapter 13) the
header files of the classes of the composed objects must have been read before the class interface itself.
In such a case the class File might be defined as follows:

#ifndef FILE_H_
#define FILE_H_

#include <project/string.h> // to know about a String

class File

{

String d_line; // composition !

public:
void gets (String &string);
bi
#endif

The class String can’t declare a File object as a composed member: such a situation would again
result in an undefined class while compiling the sources of these classes.

All remaining header files (appearing below the class interface itself) are required only because they
are used by the class’s source files.

This approach allows us to introduce yet another refinement:
e Header files defining a class interface should declare what can be declared before defining the

class interface itself. So, classes that are mentioned in a class interface should be specified using
forward declarations unless

— They are a base class of the current class (see chapter 13);
— They are the class types of composed data members;



In particular: additional actual header files are not required for:

- class-type return values of functions;

- class-type value parameters of functions.

Class header files of objects that are either composed or inherited or that are used in inline func-
tions, must be known to the compiler before the interface of the current class starts. The informa-
tion in the header file itself is protected by the #ifndef ... #endif construction introduced
in section 2.5.10.

Program sources in which the class is used only need to include this header file. Lakos, (2001)
refines this process even further. See his book Large-Scale C++ Software Design for further
details. This header file should be made available in a well-known location, such as a directory or
subdirectory of the standard INCLUDE path.

To implement member functions the class’s header file is required and usually additional header
files (like the st ring header file) as well. The class header file itself as well as these additional
header files should be included in a separate internal header file (for which the extension .ih
(‘internal header’) is suggested).

The . ih file should be defined in the same directory as the source files of the class. It has the
following characteristics:
— There is no need for a protective #ifndef .. #endif shield, as the header file is never
included by other header files.
— The standard .h header file defining the class interface is included.

— The header files of all classes used as forward references in the standard .h header file are
included.

— Finally, all other header files that are required in the source files of the class are included.
An example of such a header file organization is:

- First part, e.g., /usr/local/include/myheaders/file.h:

#ifndef FILE_H_
#define FILE_H_

#include <fstream> // for composed 'ifstream'
class Buffer; // forward reference
class File // class interface

{

std::ifstream d_instream;

public:
void gets (Buffer &buffer);
}i
#endif

- Second part, e.g., ~/myproject/file/file.ih, where all sources of the class File are
stored:

#include <myheaders/file.h> // make the class File known

#include <buffer.h> // make Buffer known to File
#include <string> // used by members of the class
#include <sys/stat.h> // File.



When entities from namespaces are used in header files, no using directive should be specified in
those header files if they are to be used as general header files declaring classes or other entities from
a library. When the using directive is used in a header file then users of such a header file are forced
to accept and use the declarations in all code that includes the particular header file.

For example, if in a namespace special an object Inserter cout is declared, then special: :cout
is of course a different object than std::cout. Now, if a class Flaw is constructed, in which the

constructor expects a reference to a special::Inserter, then the class should be constructed as
follows:

class special::Inserter;

class Flaw

{
public:
Flaw (special::Inserter &ins);

}i

Now the person designing the class F1aw may be in a lazy mood, and might get bored by continuously

having to prefix special: : before every entity from that namespace. So, the following construction is
used:

using namespace special;

class Inserter;
class Flaw
{
public:
Flaw(Inserter &ins);

}i

This works fine, up to the point where somebody wants to include f1aw.h in other source files: because
of the using directive, this latter person is now by implication also using namespace special,
which could produce unwanted or unexpected effects:

#include <flaw.h>
#include <iostream>

using std::cout;

int main ()
{

cout << "starting\n"; // won't compile

The compiler is confronted with two interpretations for cout: first, because of the using directive in
the f1law.h header file, it considers cout a special: :Inserter, then, because of the using directive
in the user program, it considers cout a std: : ost ream. Consequently, the compiler reports an error.

As a rule of thumb, header files intended for general use should not contain using declarations. This
rule does not hold true for header files which are only included by the sources of a class: here the

programmer is free to apply as many using declarations as desired, as these directives never reach
other sources.



Since the introduction of header files in the C language header files have been the main tool for declar-
ing elements that are not defined but are used in source files. E.g., when using printf in main the
preprocessor directive #include <stdio.h> had to be specified.

This method still works in C++, but gradually proved to be inefficient. One reason being that header
files have to be processed again for every source file of a set of source files each including that header
file. The drawback of this approach quickly becomes apparent once classes are used, as the compiler will
repeatedly have to process the class’s header file for each source file using that class. Usually it’s not
just that one header file, but header files tend to include other header files, resulting in an avalanche
of header files that must be processed by the compiler again and again for every single source file that
the compiler must compile. If a typical source file includes 2 header files, and s source files must be
compiled, then that results in a significant compilation load, as the compiler must process s * A header
files.

Precompiled headers offered an initial attempt to reduce this excessive workload. But precompiled
headers have problems of their own: they’re enormously big (a precompiled header file of less than 100
bytes can easily result in a precompiled header of 25 MB or more), and they’re kind of fragile: simply
recompiling a header if it’s younger than its precompiled form may quickly result in much overhead,
e.g., if merely some comment is added to the header.

Another common defense mechanism encountered in traditional headers is the use of include guards,
ensuring that a header file is processed once if it is included by multiple other header files. Such
include guards are macros, and were extensively discussed in section 7.11. Include guards work, but
completely depend on the uniqueness of the guard-identifier, which is usually a long name, written in
capitals using several underscores to increase the probability of their uniqueness.

By offering modules the C++2a standard provides solutions to the problems mentioned above. At the
time of this writing the Gnu g++ compiler doesn’t yet support modules, but the clang++ compiler (cf.
http://clang.llvm.org)does. The current section therefore heavily depends on clang’s documenta-
tion of modules provided in http://clang.llvm.org/docs/Modules.html and is subject to future
changes once the modules definition and implementation of the C++2a standard reaches its final stage.
In this section it is assumed that a fairly recent clang compiler is available.

7.12.1 An minimal demo example

In this section modules are introduced using a simple demo example. More extensive coverage of the
module-definition language is provided in subsequent sections.

To create a module from an existing header file the directory (or its parent directory) must contain a file
module.modulemap. It contains the specifications for creating a module from one or more available
header files.

Assume a directory module contains the following file header file:

® module.h:

struct Data

{

int data;
}i

int fun();
int gun();



fact 1s irrelevant: 1t could actually be completely empty).

To create a module from this header file define the following minimal module.modulemap and
main.cc files:

1: module minimal

2:

3 header "module/module.h"
4

}

main.cc:

#include "module/module.h"

int main ()
{
}

Here the function main is defined, because that’s a requirement for creating a program, but any other
source including a header that’s mentioned in module.modulemap would also be OK. The above mini-
mal main function’s source file does exactly that: it includes module/module.h.

The file module.modulemap itself has a simple organization:

* Line 1 specifies that a module should be constructed, named ‘minimal’;
¢ Line 3 specifies that the header file module/module.h defines the module’s content.

* The module’s content specification follows the module’s header (line 1), and is surrounded by a
pair of curly brackets (lines 2 and 4).

To create the module the source file must be compiled using the following command:
clang++-7 —-fmodules —--std=ct++2a -02 —-c main.cc

All options are required:

—fmodules is required to inform the compiler that modules should be used,;
® ——std=c++2a is required because modules aren’t available before the C++2a standard;

* 02 (or at least —01) is required because using modules implies some form of optimization, and
without any optimization request the compiler won’t create the module;

® —cisn’t really required, but suffices to create the module.
Following this command main.o and the module are created. By default the module is created in a
system-defined cache location (but see also section 7.12.2). In my system this system-defined cache
location is /tmp/org.llvm.clang. frank/ModuleCache/, containing

® modules.timestamp

¢ the module information itself in the subdirectory 2TA26R6BHQ19F /. It contains:

- minimal-20RZEBLI9H540%.pcm (17,992 bytes)
- modules.idx (552 bytes).



recompiled. 1he moaule 1s rebuilt 1 one of 1ts headers have changed.

Compare these sizes to the size of the precompiled header module.h.gch (created using clang++ -x
ct++-header module.h). On my system the compiled header (module.h.gch) is a file of some 195
KB large.

Note that the file module.h doesn’t contain include guards. As modules handle the administration
of which header has already been included, it’s OK if module.h is included multiple times (e.g., add
another #include "module/module.h" line in main.cc) and recompile: compilation succeeds.

7.12.2 Compiler options
Clang offers several options for handling modules. The most important ones are:

® —fmodules enables the use of modules;

® —fmodules—cache-path=directory specifies the location where the modules are stored. When
modules are created they are by default stored (cached) in a system-selected default direc-
tory, e.g., a location in the /tmp directory. This might not be what you want (e.g., maybe the
/tmp directory is cleaned at boot-time) in which case a specific directory can be specified. (e.g.,
~/.cache/C++modules or /usr/local/C++modules—cache);

® —fmodules-prune—interval=seconds defines the minimum delay in seconds between at-
tempts to prune old, unused module files from the module-cache. The default interval is one
week (to turn off pruning use —fmodules-prune-interval=0). What an ‘old unused module
file’ is is defined by the next option;

® —fmodules-prune-after=seconds defines the minimum interval in seconds before it is re-
moved from the cache by a pruning action if that module has not been used during that interval.
The default interval is about a month (31 days);

® —module-file-info module-path writes information about the module module-path (which
is an absolute or relative path to an existing module). Modules have extension .pcm, and the
option writes a local file having the module-path’s base name.

7.12.3 The file ‘module.modulemap’

The module.modulemap file defines the organization of one or more modules. It relates header files
to defined module(s). The name module.modulemap is a predefined name, and module specifications
must use this name. Module.modulemap files may contain comment: standard C and/or end-of-line
comment.

A module specification defines a name and possibly options for a module. The elements of a module
specification are specified inside a curly-braced section (note that when using [xxx] the square brackets
are not optional).

The following description does not cover the full syntax of module.map, as some specifications
apply only to some operating systems. For the full description the reader is referred to the
http://clang.llvm.org/docs/Modules.html document.

The generic layout of a module.modulemap file starts with the module header, defining the
name of the module. This name is used as the first part of the compiled module file (e.g.,
minimal-20RZEBL9H540%.pcm for a module called minimal). Different programs may use identi-
cal module names, as modules receives unique ‘last names’ (in the example: 20RZEBLIH5402).

Inside a module definition headers commonly are included in module specifications of their own. So the
generic syntax looks like this (in the syntax specifications the following conventions are used: blank
lines separate syntax definitions; syntax elements followed by a * may be omitted or may be used once



pbe used, without the quotes; ' ident’ must be replaced by a standard C++ 1dentifier; double quoted
strings are NTBSs, (their meanings are provided inside the double quoted strings); syntax elements
preceded by opt_ (e.g., 'opt_[extern_c]’) are optional (such elements are either omitted or are
used without the opt_ prefix: " opt_[extern_c]’ means: [extern_c])):

module-declarations:
module_declaration=

module_declaration:
header
l{l
module_memberx*

'}'

'extern' 'module' 'ident' " TO DO "
header:
'module' 'ident' 'opt_[extern_c]' // [extern_c]: the module holds

// C code that can be used from
// within C++
module_member:
cf_modules_html // refer to clang's Modules.html document
| // for these member declarations
export_declaration
header_declaration
link_declaration
module_declarations // nested declarations are commonly used
requires_declaration
umbrella_dir_declaration
cf_modules_html:
config_macros_declaration
conflict_declaration
export_as_declaration
submodule_declaration
use_declaration

export_declaration: // see below
'export' module_id

feature_list: // see below
feature_list ',' 'ident'
'ident'

header_declaration:



link_declaration: // add '—llibraryName' to the linker
'link' "libraryName" // when using the module

requires_declaration
'requires' 'opt_!' feature_list

umbrella_dir_declaration
'umbrella' "directory-specification" // e.g., ".", see below

In this overview,

® export_declaration specifies amodule_id which is the name of the module that will be visible
from the defined modules. These names refer to headers (without the .h extension) that are made
visible from the current module. Usually everything is made available, for which export x* is
commonly used. Refer to the Modules.html document for additional info about using export.

* feature_list is used to specify languages or architectures for which the module is avail-
able. For C++ the relevant features are cplusplus, cplusplusll, cplusplusi4, cplusplusl?, tls.
A cplusplsus2a feature is not (yet?) available. The t1s feature means: thread local storage
must be available.

Example: requires cplusplus.

®* umbrella_dir_declaration is used to indicate that all headers in and below the specified
directory must be added to the module. Directory specification "." refers to all headers in and
below the current directory.

Usually when defining a a module its module.modulemap defines the module’s name, and then uses
the headers of its (sub)directories to define submodules for each directory, exporting all their symbols.
E.g., the program ssh-cron (cf. https://fbb-git.gitlab.io/ssh-cron/) defines eight classes,
each in its own subdirectory. To create the module ssh_cron the following module.modulemap can be
used:

module ssh_cron
{
module main {
header "main.ih"
export =

module cron {
header "cron/cron.ih"
export =

module crondata {
header "crondata/crondata.ih"
export =

module cronentry {
header "cronentry/cronentry.ih"
export =

module daemon {
header "daemon/daemon.ih"
export =



module ipcfunction {
header "ipcfunction/ipcfunction.ih"
export =

module options {
header "options/options.ih"
export =

module parser {
header "parser/parser.ih"
export =

module parserpre {
header "parser/parserpre.ih"
export =

module scanner {
header "scanner/scanner.ih"
export =

resulting in the module ssh_cron-2D64GMOXFPOU2 . pcm which is about 11MB large.

7.12.4 Evaluation

As mentioned in the introductory section, modules reduce the compiler’s workload by performing A
+ s instead of & * s header compilations when s sources each including h header files are compiled.
Furthermore, using modules no longer requires the use of include guards or other defensive measures
to avoid repeated inclusion of headers, which is particularly unwelcome in C++ as C++ header files
typically not only declare functions and variables, but also define class interfaces and templates (cf.
chapter 21 and beyond).

So what’s the gain? In this final section about modules we compare the compilation times of a relatively
large program (bisonc++, c¢f. http://fbb-git.gitlab.io/bisoncpp/), consisting of almost 30
classes.

Compilation is performed by clang++-7, using three variants:
¢ Plain compilation, using the compiler options
—-—-std=c++2a -Wall -02 -pthread
¢ Compilation using a module. The module bisoncpp was first created using the compiler options
—fmodules —--std=c++2a -Wall -02 -pthread

and merely compiling main.cc. The generated module was bisoncpp—-2VBAIMWQCR12B.pcm,
whose size was 13 MB. Following the module’s construction the main. o file was removed and the
program was built using the above options (so including —fmodules).



compiled headers were created as part of the compilation process. 1he total size of all precompilea
headers was MB, which is fairly large, but as the precompiled headers are only used for the com-
pilation they can be removed once the program has been compiled.

Compilating bisonc++ using the plain source files (no module, no precompiled headers) required
slightly more than 7 minutes. The time(1) program reported:

442.894u 25.751s 7:57.73 98.0% 0+0k 6416+14560i0 31pf+0w
It took Gnu’s g++ compiler a comparable amount of time to compile the sources:
467.053u 32.818s 8:20.39 99.8% 0+0k 1064+26264i0 10pf+0w

This comparison is important, as we’ll see below.

Next, after first constructing the program’s module, and then timing the full program’s construction
time reported:

420.305u 23.804s 7:29.43 98.8% 0+0k 0+39672io Opf+0w

A somewhat unexpected (and disappointing) result. There is a minimal gain in compilation time, but
it’s marginal. In fact at a second attempt a compilation time of 458 seconds was reported. Some
variation is to be expected, but the compilation times of both methods clearly don’t notably differ.

Finally using precompiled headers. For this test Gnu’s g++ compiler was used, as clang doesn’t au-
tomatically use available precompiled headers (cf. clang’s users manuall). At the start of the
compilation process the headers used by bisonc++’ s almost 500 source files were first precompiled
(the time it took to precompile the headers is included in the time reported below). Now time reported:

138.040u 18.447s 2:38.57 98.6% 0+0k 32+2245104io0 Opf+0w

The total size of the precompiled headers is definitely exceeding the size of the module
bisoncpp—-2VBAIMWQCR12B.pcm: 1.1 GB. But then, the compilation time is reduced to about 1/3rd
of the other two compilation methods.

Considering the above results the added benefit of using modules isn’t immediately clear. Using mod-
ules doesn’t result in an observable gain in compilation time, and so the main advantage appears to
be that include guards are no longer required. Personally, I've never experienced problems with using
include guards. Using of long, capitalized preprocessor identifiers has never been a problem, and has
never resulted in colliding identifiers.

On the other hand, modules are a new element of C++ and the clang documentation explicitly states
that the compiler’s implementation and module definition language is subject to future changes. In
that respect, modules are definitely an interesting addition to C++ that is absolutely worth monitoring.

7.13 Sizeof applied to class data members

In C++ the well-known sizeof operator can be applied to data members of classes without the need to
specify an object as well. Consider:

class Data

{
Lhttps:/clang.llvm.org/docs/UsersManual. html#using-a-pch-file




}i
To obtain the size of Data’s d_name member the following expression can be used:
sizeof (Data::d_name);

However, note that the compiler observes data protection here as well. Sizeof (Data::d_name) can
only be used where d_name may be visible as well, i.e., by Data’s member functions and friends.



Chapter 8

Static Data And Functions

In the previous chapters we provided examples of classes where each object had its own set of data
members data. Each of the class’s member functions could access any member of any object of its class.

In some situations it may be desirable to define common data fields, that may be accessed by all objects
of the class. For example, the name of the startup directory, used by a program that recursively scans
the directory tree of a disk. A second example is a variable that indicates whether some specific initial-
ization has occurred. In that case the object that was constructed first would perform the initialization
and would set the flag to ‘done’.

Such situations are also encountered in C, where several functions need to access the same variable.
A common solution in C is to define all these functions in one source file and to define the variable
static: the variable name is invisible outside the scope of the source file. This approach is quite valid,
but violates our philosophy of using only one function per source file. Another C-solution is to give the
variable in question an unusual name, e.g., _6uldv8, hoping that other program parts won’t use this
name by accident. Neither the first, nor the second legacy C solution is elegant.

C++ solves the problem by defining static members: data and functions, common to all objects of a
class and (when defined in the private section) inaccessible outside of the class. These static members
are this chapter’s topic.

Static members cannot be defined as virtual functions. A virtual member function is an ordinary
member in that it has a this pointer. As static member functions have no this pointer, they cannot
be declared virtual.

8.1 Static data

Any data member of a class can be declared static; be it in the public or private section of the
class interface. Such a data member is created and initialized only once, in contrast to non-static data
members which are created again and again for each object of the class.

Static data members are created as soon as the program starts. Even though they’re created at the
very beginning of a program’s execution cycle they are nevertheless true members of their classes.

It is suggested to prefix the names of static member with s_ so they may easily be distinguished (in
class member functions) from the class’s data members (which should preferably start with d_).

Public static data members are global variables. They may be accessed by all of the program’s code,
simply by using their class names, the scope resolution operator and their member names. Example:

class Test

{

static int s_private_int;
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public:
static int s_public_int;

}i

int main ()
{
Test::s_public_int = 145; // OK
Test::s_private_int = 12; // wrong, don't touch
// the private parts

The example does not present an executable program. It merely illustrates the interface, and not the
implementation of static data members, which is discussed next.

8.1.1 Private static data

To illustrate the use of a static data member which is a private variable in a class, consider the follow-
ing:

class Directory

{

static char s_pathl[];

public:
// constructors, destructors, etc.

}i

The data member s_path[] is a private static data member. During the program’s execution only
one Directory: :s_path[] exists, even though multiple objects of the class Directory may exist.
This data member could be inspected or altered by the constructor, destructor or by any other member
function of the class Directory.

Since constructors are called for each new object of a class, static data members are not initialized by
constructors. At most they are modified. The reason for this is that static data members exist before
any constructor of the class has been called. Static data members are initialized when they are defined,
outside of any member function, exactly like the initialization of ordinary (non-class) global variables.

The definition and initialization of a static data member usually occurs in one of the source files of
the class functions, preferably in a source file dedicated to the definition of static data members, called
data.cc.

The data member s_path[], used above, could thus be defined and initialized as follows in a file
data.cc:

#include "directory.ih"

char Directory::s_path[200] = "/usr/local";

In the class interface the static member is actually only declared. In its implementation (definition) its
type and class name are explicitly mentioned. Note also that the size specification can be left out of
the interface, as shown above. However, its size is (either explicitly or implicitly) required when it is
defined.

Note that any source file could contain the definition of the static data members of a class. A separate
data.cc source file is advised, but the source file containing, e.g., main () could be used as well. Of
course, any source file defining static data of a class must also include the header file of that class, in
order for the static data member to be known to the compiler.



defines the communication of a program with a graphics-capable device (e.g., a VGA screen). lhe
initialization of the device, which in this case would be to switch from text mode to graphics mode,
is an action of the constructor and depends on a static flag variable s_nobjects. The variable
s_nobjects simply counts the number of Graphics objects which are present at one time. Similarly,
the destructor of the class may switch back from graphics mode to text mode when the last Graphics
object ceases to exist. The class interface for this Graphics class might be:

class Graphics

{

static int s_nobjects; // counts # of objects
public:

Graphics () ;

~Graphics () ; // other members not shown.
private:

void setgraphicsmode () ; // switch to graphics mode

void settextmode () ; // switch to text-mode

The purpose of the variable s_nobjects is to count the number of objects existing at a particular
moment in time. When the first object is created, the graphics device is initialized. At the destruction
of the last Graphics object, the switch from graphics mode to text mode is made:

int Graphics::s_nobjects = 0; // the static data member

Graphics: :Graphics ()
{
if (!s_nobjects++)
setgraphicsmode () ;

}

Graphics::~Graphics ()
{
if (!--s_nobjects)
settextmode () ;

Obviously, when the class Graphics would define more than one constructor, each constructor would
need to increase the variable s_nobjects and would possibly have to initialize the graphics mode.

8.1.2 Public static data

Data members could also be declared in the public section of a class. This, however, is deprecated (as
it violates the principle of data hiding). The static data member s_path[] (cf. section 8.1) could be
declared in the public section of the class definition. This would allow all the program’s code to access
this variable directly:

int main ()

{
getcwd (Directory::s_path, 199);

}

A declaration is not a definition. Consequently the variable s_path still has to be defined. This implies
that some source file still needs to contain s_path[] array’s definition.



Static const data members should be initialized like any other static data member: in source files
defining these data members.

Usually, if these data members are of integral or built-in primitive data types the compiler accepts
in-class initializations of such data members. However, there is no formal rule requiring the compiler
to do so. Compilations may or may not succeed depending on the optimizations used by the compiler
(e.g., using —02 may result in a successful compilation, but —00 (no-optimizations) may fail to compile,
but then maybe only when shared libraries are used...).

In-class initializations of integer constant values (e.g., of types char, int, long, etc, maybe
unsigned) is nevertheless possible using (e.g., anonymous) enums. The following example illustrates
how this can be done:

class X
{
public:
enum { s_x = 34 };
enum: size_t { s_maxWidth = 100 };

}i

To avoid confusion caused by different compiler options static data members should always explicitly
be defined and initialized in a source file, whether or not const.

8.1.4 Generalized constant expressions (constexpr)

In C macros are often used to let the preprocessor perform simple calculations. These macro functions
may have arguments, as illustrated in the next example:

#define xabs(x) ((x) < 0 ? —(x) : (x))

The disadvantages of macros are well-known. The main reason for avoiding macros is that they are not
parsed by the compiler, but are processed by the preprocessor resulting in mere text replacements and
thus avoid type-safety or syntactic checks of the macro definition by itself. Furthermore, since macros
are processed by the preprocessor their use is unconditional, without acknowledging the context in
which they are applied. NULL is an infamous example. Ever tried to define an enum symbol NULL? or
EOF? Chances are that, if you did, the compiler threw strange error messages at you.

Generalized const expressions can be used as an alternative.

Generalized const expressions are recognized by the modifier constexpr (a keyword), that is applied
to the expression’s type.

There is a small syntactic difference between the use of the const modifier and the use of the
constexpr modifier. While the const modifier can be applied to definitions and declarations alike,
the constexpr modifier can only be applied to definitions:

extern int const externlInt; // OK: declaration of const int
extern int constexpr error; // ERROR: not a definition

Variables defined with the constexpr modifier have constant (immutable) values. But generalized
const expressions are not just used to define constant variables; they have other applications as well.
The constexpr keyword is usually applied to functions, turning the function into a constant-expression
function.

A constant-expression function should not be confused with a function returning a const value (al-
though a constant-expression function does return a (const) value). A constant expression function has
the following characteristics:



® its return type is given the constexpr modifier;

¢ its body consists of one single return statement (but see also the notes at end of this section)

Such functions are also called named constant expressions with parameters.

These constant expression functions may or may not be called with arguments that have been evaluated
at compile-time (not just ‘const arguments’, as a const parameter value is not evaluated at compile-
time). If they are called with compile-time evaluated arguments then the returned value is considered
a const value as well.

This allows us to encapsulate expressions that can be evaluated at compile-time in functions, and it
allows us to use these functions in situations where previously the expressions themselves had to be
used. The encapsulation reduces the number of occurrences of the expressions to one, simplifying
maintenance and reduces the probability of errors.

If arguments that could not be compile-time evaluated are passed to constant-expression functions,
then these functions act like any other function, in that their return values are no longer considered
constant expressions.

Assume some two-dimensional arrays must be converted to one-dimensional arrays. The one-
dimensional array must have nrows * ncols + nrows + ncols + 1 elements, to store row, col-
umn, and total marginals, as well as the elements of the source array itself. Furthermore assume that
nrows and ncols have been defined as globally available size_t const values (they could be a class’s
static data). The one-dimensional arrays are data members of a class or struct, or they are also defined
as global arrays.

Now that constant-expression functions are available the expression returning the number of the re-
quired elements can be encapsulated in such a function:

size_t const nRows 45;
size_t const nCols = 10;

size_t constexpr nElements(size_t rows, size_t cols)

{

return rows * cols + rows + cols + 1;

int intLinear[ nElements (nRows, nCols) 1;

struct Linear

{

double d_linear|[ nElements (nRows, nCols) 1];
}i

If another part of the program needs to use a linear array for an array of different sizes then the
constant-expression function can also be used. E.g.,

string stringLinear|[ nElements (10, 4) 1;

Constant-expression functions can be used in other constant expression functions as well. The following
constant-expression function returns half the value, rounded upwards, that is returned by nElements:

size_t constexpr halfNElements (size_t rows, size_t cols)

{

return (nElements (rows, cols) + 1) >> 1;



classes and external software. but i1f a class defilnes a static const size_t data member then that
member’s value could very well be used to define entities living outside of the class’s scope, like the
number of elements of an array or to define the value of some enum. In situations like these constant-
expression functions are the perfect tool to maintain proper data hiding:

class Data

{

static size_t const s_size = 7;

public:
static size_t constexpr size();
size_t constexpr mSize();

}i

size_t constexpr Data::size()

{

return s_size;

size_t constexpr Data::mSize ()

{

return size();

double data| Data::size() 1; // OK: 7 elements
short data2[ Data() .mSize() 1; // also OK: see below

Please note the following:

Constant-expression functions are implicitly declared inline;

Non-static constant-expression member functions are implicitly const, and a const member
modifier for them is optional,;

Constant values (e.g., static constant data members) used by constant-expression functions must
be known by the time the compiler encounters the functions’ definitions. That’s why s_size was
initialized in Data’s class interface.

Since the C++14 standard the requirements of constexpr functions have been relaxed. Starting at
this standard, constexpr functions may

define any kind of variable except for static or thread_local variables;
define variables without initializers;

use conditional statements (i f and switch);

use repetition statements, including the range-based for statement;

use expressions changing the values of objects that are local to the constexpr function;

In addition, C++14 allows constexpr member functions to be non-const. But note that non-const
constexpr member functions can only modify data members of objects that were defined local to the
constexpr function calling the non-const constexpr member function.



As we've seen, (member) functions and variables of primitive data types can be defined using the
constexpr modifier. What about class-type objects?

Objects of classes are values of class type, and like values of primitive types they can be defined with
the constexpr specifier. Constant expression class-type objects must be initialized with constant ex-
pression arguments; the constructor that is actually used must itself have been declared with the
constexpr modifier. Note again that the constexpr constructor’s definition must have been seen by
the compiler before the constexpr object can be constructed:

class ConstExpr
{
public:
constexpr ConstExpr (int x);
}i

ConstExpr ok{ 7 }; // OK: not declared as constexpr
constexpr ConstExpr err{ 7 }; // ERROR: constructor's definition
// not yet seen

constexpr ConstExpr::ConstExpr (int x)

{1

constexpr ConstExpr ok{ 7 }; // OK: definition seen
constexpr ConstExpr okToo = ConstExpr{ 7 }; // also OK

A constant-expression constructor has the following characteristics:

¢ it is declared with the constexpr modifier;
* its member initializers only use constant expressions;

¢ its body is empty.

An object constructed with a constant-expression constructor is called a user-defined literal. Destructors
and copy constructors of user-defined literals must be trivial.

The constexpr characteristic of user-defined literals may or may not be maintained by its class’s
members. If a member is not declared with a constexpr return value, then using that member does
not result in a constant-expression. If a member does declare a constexpr return value then that
member’s return value is considered a constexpr if it is by itself a constant expression function. To
maintain its constexpr characteristics it can refer to its classes’ data members only if its object has
been defined with the constexpr modifier, as illustrated by the example:

class Data

{

int d_x;

public:
constexpr Data (int x)

d_x(x)
{1}

int constexpr cMember ()

{

return d_x;



int member () const

{
return d_x;
bi
Data dl1{ 0 }; // OK, but not a constant expression
enum el {
ERR = dl.cMember () // ERROR: cMember (): no constant
bi // expression anymore

constexpr Data d2{ 0 }; // OK, constant expression

enum e2 {

OK = d2.cMember (), // OK: cMember (): now a constant
// expression
ERR = d2.member (), // ERR: member(): not a constant
bi // expression

8.2 Static member functions

In addition to static data members, C++ allows us to define static member functions. Similar to static
data that are shared by all objects of the class, static member functions also exist without any associ-
ated object of their class.

Static member functions can access all static members of their class, but also the members (private
or public) of objects of their class if they are informed about the existence of these objects (as in the
upcoming example). As static member functions are not associated with any object of their class they do
not have a this pointer. In fact, a static member function is completely comparable to a global function,
not associated with any class (i.e., in practice they are. See the next section (8.2.1) for a subtle note).
Since static member functions do not require an associated object, static member functions declared
in the public section of a class interface may be called without specifying an object of its class. The
following example illustrates this characteristic of static member functions:

class Directory

{

string d_currentPath;
static char s_pathl[];

public:
static void setpath (char const *newpath);
static void preset (Directory &dir, char const xnewpath);
}i
inline void Directory::preset (Directory &dir, char const xnewpath)

{
// see the text below

dir.d_currentPath = newpath; // 1
char Directory::s_path[200] = "/usr/local"; // 2
void Directory::setpath(char const *newpath)

{
if (strlen(newpath) >= 200)



strcpy (s_path, newpath); // 3
}

int main ()

{

Directory dir;

Directory::setpath("/etc"); // 4
dir.setpath("/etc"); // 5

Directory: :preset (dir, "/usr/local/bin"); // 6
dir.preset (dir, "/usr/local/bin"); // 7

* at 1 a static member function modifies a private data member of an object. However, the object
whose member must be modified is given to the member function as a reference parameter.

Note that static member functions can be defined as inline functions.

* at 2 a relatively long array is defined to be able to accommodate long paths. Alternatively, a
string or a pointer to dynamic memory could be used.

* at 3 a (possibly longer, but not too long) new pathname is stored in the static data member
s_path[]. Note that only static members are used.

* at 4, setpath() is called. It is a static member, so no object is required. But the compiler must
know to which class the function belongs, so the class is mentioned using the scope resolution
operator.

* at 5, the same is implemented as in 4. Here dir is used to tell the compiler that we're talking
about a function in the Directory class. Static member functions can be called as normal mem-
ber functions, but this does not imply that the static member function receives the object’s address
as a this pointer. Here the member-call syntax is used as an alternative for the classname plus
scope resolution operator syntax.

® at 6, currentPath is altered. As in 4, the class and the scope resolution operator are used.

* at 7, the same is implemented as in 6. But here dir is used to tell the compiler that we’re
talking about a function in the Directory class. Here in particular note that this is not using
preset () as an ordinary member function of dir: the function still has no this-pointer, so dir
must be passed as argument to inform the static member function preset about the object whose
currentPath member it should modify.

In the example only public static member functions were used. C++ also allows the definition of private
static member functions. Such functions can only be called by member functions of their class.

8.2.1 Calling conventions

As noted in the previous section, static (public) member functions are comparable to classless functions.
However, formally this statement is not true, as the C++ standard does not prescribe the same calling
conventions for static member functions as for classless global functions.

In practice the calling conventions are identical, implying that the address of a static member function
could be used as an argument of functions having parameters that are pointers to (global) functions.

If unpleasant surprises must be avoided at all cost, it is suggested to create global classless wrapper
functions around static member functions that must be used as call back functions for other functions.



C++ using template algorithms (ci. chapter 19), let's assume that we have a class Person having data
members representing the person’s name, address, phone and mass. Furthermore, assume we want to
sort an array of pointers to Person objects, by comparing the Person objects these pointers point to.
Keeping things simple, we assume that the following public static member exists:

int Person::compare (Person const xconst xpl, Person const *const *p2);

A useful characteristic of this member is that it may directly inspect the required data members of the
two Person objects passed to the member function using pointers to pointers (double pointers).

Most compilers allow us to pass this function’s address as the address of the comparison function for
the standard C gsort () function. E.g.,

gsort
(
personArray, nPersons, sizeof (Person =),
reinterpret_cast<int (%) (void const *, void const =*)>(Person::compare)

)i

However, if the compiler uses different calling conventions for static members and for classless func-
tions, this might not work. In such a case, a classless wrapper function like the following may be used
profitably:

int compareWrapper (void const xpl, void const xp2)
{
return
Person: :compare

(
static_cast<Person const xconst x> (pl),
static_cast<Person const xconst *>(p2)

)i

resulting in the following call of the gsort () function:

gsort (personArray, nPersons, sizeof (Person %), compareWrapper);
Note:
e The wrapper function takes care of any mismatch in the calling conventions of static member
functions and classless functions;

* The wrapper function handles the required type casts;

* The wrapper function might perform small additional services (like dereferencing pointers if the
static member function expects references to Person objects rather than double pointers);

* As an aside: in C++ programs functions like gsort (), requiring the specification of call back
functions are seldom used. Instead using existing generic template algorithms is preferred (cf.
chapter 19).



Chapter 9

Classes And Memory Allocation

In contrast to the set of functions that handle memory allocation in C (i.e., malloc etc.), memory
allocation in C++ is handled by the operators new and delete. Important differences between malloc
and new are:

* The function malloc doesn’t ‘know’ what the allocated memory will be used for. E.g., when mem-
ory for ints is allocated, the programmer must supply the correct expression using a multiplica-
tion by sizeof (int). In contrast, new requires a type to be specified; the sizeof expression is
implicitly handled by the compiler. Using new is therefore ¢ype safe.

* Memory allocated by malloc is initialized by calloc, initializing the allocated characters to a
configurable initial value. This is not very useful when objects are available. As operator new
knows about the type of the allocated entity it may (and will) call the constructor of an allocated
class type object. This constructor may be also supplied with arguments.

e All C-allocation functions must be inspected for NULL-returns. This is not required anymore
when new is used. In fact, new’s behavior when confronted with failing memory allocation is
configurable through the use of a new_handler (cf. section 9.2.2).

A comparable relationship exists between free and delete: delete makes sure that when an object
is deallocated, its destructor is automatically called.

The automatic calling of constructors and destructors when objects are created and destroyed has con-
sequences which we shall discuss in this chapter. Many problems encountered during C program de-
velopment are caused by incorrect memory allocation or memory leaks: memory is not allocated, not
freed, not initialized, boundaries are overwritten, etc.. C++ does not ‘magically’ solve these problems,
but it does provide us with tools to prevent these kinds of problems.

As a consequence of malloc and friends becoming deprecated the very frequently used str... func-
tions, like st rdup, that are all malloc based, should be avoided in C++ programs. Instead, the facili-
ties of the st ring class and operators new and delete should be used.

Memory allocation procedures influence the way classes dynamically allocating their own memory
should be designed. Therefore, in this chapter these topics are discussed in addition to discussions
about operators new and delete. We'll first cover the peculiarities of operators new and delete,
followed by a discussion about:

¢ the destructor: the member function that’s called when an object ceases to exist;

¢ the assignment operator, allowing us to assign an object to another object of its own class;

¢ the this pointer, allowing explicit references to the object for which a member function was called;

¢ the copy constructor: the constructor creating a copy of an object;

* the move constructor: a constructor creating an object from an anonymous temporary object.
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C++ defines two operators to allocate memory and to return it to the ‘common pool’. These operators
are, respectively, new and delete.

Here is a simple example illustrating their use. An int pointer variable points to memory allocated by
operator new. This memory is later released by operator delete.

int xip = new int;
delete ip;

Here are some characteristics of operators new and delete:

* new and delete are operators and therefore do not require parentheses, as required for functions
like malloc and free;

* new returns a pointer to the kind of memory that’s asked for by its operand (e.g., it returns a
pointer to an int);

* new uses a type as its operand, which has the important benefit that the correct amount of memory,
given the type of the object to be allocated, is made available;

* as a consequence, new is a type safe operator as it always returns a pointer to the type that was
mentioned as its operand. In addition, the type of the receiving pointer must match the type
specified with operator new;

* new may fail, but this is normally of no concern to the programmer. In particular, the program
does not have to test the success of the memory allocation, as is required for malloc and friends.
Section 9.2.2 delves into this aspect of new;

® delete returns void;
¢ for each call to new a matching delete should eventually be executed, lest a memory leak occurs;
* delete can safely operate on a 0-pointer (doing nothing);

* otherwise delete must only be used to return memory allocated by new. It should not be used to
return memory allocated by malloc and friends.

¢ in C++ malloc and friends are deprecated and should be avoided.
Operator new can be used to allocate primitive types but also to allocate objects. When a primitive

type or a struct type without a constructor is allocated the allocated memory is not guaranteed to be
initialized to 0, but an initialization expression may be provided:

int *vl = new int; // not guaranteed to be initialized to O
int *v1 = new int(); // initialized to 0
int *v2 = new int (3); // initialized to 3
int xv3 = new int (3 % *v2); // initialized to 9

When a class-type object is allocated, the arguments of its constructor (if any) are specified immediately
following the type specification in the new expression and the object is initialized by to the thus specified
constructor. For example, to allocate st ring objects the following statements could be used:

string *sl = new string; // uses the default constructor
string *s2 new stringf{}; // same
string x*s3 = new string(4, ' '); // initializes to 4 blanks.



tion) there also exists a variant allocating raw memory: operator new(sizelInBytes). haw memory
is returned as a void *. Here new allocates a block of memory for unspecified purpose. Although raw
memory may consist of multiple characters it should not be interpreted as an array of characters. Since
raw memory returned by new is returned as a void x its return value can be assigned to a void =
variable. More often it is assigned to a char x* variable, using a cast. Here is an example:

char *chPtr = static_cast<char x> (operator new (numberOfBytes));

The use of raw memory is frequently encountered in combination with the placement new operator,
discussed in section 9.1.5.

9.1.1 Allocating arrays

Operator new [] is used to allocate arrays. The generic notation new[] is used in the C++ Annotations.
Actually, the number of elements to be allocated must be specified between the square brackets and it
must, in turn, be prefixed by the type of the entities that must be allocated. Example:

int *intarr = new int[20]; // allocates 20 ints
string xstringarr = new string[10]; // allocates 10 strings.

Operator new is a different operator than operator new[]. A consequence of this difference is discussed
in the next section (9.1.2).

Arrays allocated by operator new [ ] are called dynamic arrays. They are constructed during the execu-
tion of a program, and their lifetime may exceed the lifetime of the function in which they were created.
Dynamically allocated arrays may last for as long as the program runs.

When new [ ] is used to allocate an array of primitive values or an array of objects, new [ ] must be spec-
ified with a type and an (unsigned) expression between its square brackets. The type and expression
together are used by the compiler to determine the required size of the block of memory to make avail-
able. When new[] is used the array’s elements are stored consecutively in memory. An array index
expression may thereafter be used to access the array’s individual elements: intarr [0] represents the
first int value, immediately followed by intarr[1], and so on until the last element (intarr[19]).

With non-class types (primitive types, POD types without constructors) the block of memory returned
by operator new[] is not guaranteed to be initialized to 0. Alternatively, adding () to the new expres-
sion will initialize the block of memory to zeroes. E.g.,

struct POD
{
int ival;
double dval;
}i
new PODI[5] (); // returns a pointer to 5 0O-initialized PODs
new double[9] (); // returns a pointer to 9 O-initialized doubles

If there are members of the st ruct POD that are explicitly initialized in the struct’s interface (e.g., int
ival = 12), or if the struct uses composition, and the composed data member’s type defines a default
constructor, then initializations in the struct’s interface and initializations performed by the composed
data member’s constructor takes precedence over the O-initialization. Here is an example:

struct Data

{

int value = 100;
bi



int ival = 12;
double dval;
Data data;

bi

POD xpp = new POD[5] ();

Here, pp points to five POD objects, each having their ival data members initialized to 12, their dval
data members initialized to 0, and their data.value members initialized to 100.

When operator new [ ] is used to allocate arrays of objects of class types defining default constructors
these constructors are automatically used. Consequently new string[20] results in a block of 20
initialized string objects. A non-default constructor cannot be called, but often it is possible to work
around that (as discussed in section 13.8).

The expression between brackets of operator new [ ] represents the number of elements of the array to
allocate. The C++ standard allows allocation of 0-sized arrays. The statement new int [0] is correct
C++. However, it is also pointless and confusing and should be avoided. It is pointless as it doesn’t
refer to any element at all, it is confusing as the returned pointer has a useless non-0 value. A pointer
intending to point to an array of values should be initialized (like any pointer that isn’t yet pointing to
memory) to 0, allowing for expressions like 1 £ (ptr)

Without using operator new [ ], arrays of variable sizes can also be constructed as local arrays. Such
arrays are not dynamic arrays and their lifetimes are restricted to the lifetime of the block in which
they were defined.

Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++ has
no operator ‘renew’. Section 9.1.3 illustrates how to enlarge arrays.

9.1.2 Deleting arrays

Dynamically allocated arrays are deleted using operator delete[]. It expects a pointer to a block of
memory, previously allocated by operator new[].

When operator delete []’s operand is a pointer to an array of objects two actions are performed:

* First, the class’s destructor is called for each of the objects in the array. The destructor, as ex-
plained later in this chapter, performs all kinds of cleanup operations that are required by the
time the object ceases to exist.

* Second, the memory pointed at by the pointer is returned to the common pool.
Here is an example showing how to allocate and delete an array of 10 string objects:

std::string xsp = new std::string[10];
delete[] sp;

No special action is performed if a dynamically allocated array of primitive typed values is deleted.
Following int *it = new int [10] the statement delete[] it simply returnsthe memory pointed
at by it. Realize that, as a pointer is a primitive type, deleting a dynamically allocated array of pointers
to objects does not result in the proper destruction of the objects the array’s elements point at. So, the
following example results in a memory leak:

string *xsp = new string *[5];
for (size_t idx = 0; idx != 5; ++idx)
spl[idx] = new string;

delete[] sp; // MEMORY LEAK !



strings to the common pool.

Here’s how the destruction in such cases should be performed:

® Call delete for each of the array’s elements;

* Delete the array itself

Example:
for (size_t idx = 0; idx != 5; ++idx)
delete spl[idx];
delete[] sp;

One of the consequences is of course that by the time the memory is going to be returned not only the
pointer must be available but also the number of elements it contains. This can easily be accomplished
by storing pointer and number of elements in a simple class and then using an object of that class.

Operator delete[] is a different operator than operator delete. The rule of thumb is: if new[] was

used, also use delete[].

9.1.3 Enlarging arrays

Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++ has
no renew operator. The basic steps to take when enlarging an array are the following:

Allocate a new block of memory of larger size;

Copy the old array content to the new array;

Delete the old array;

Let the pointer to the array point to the newly allocated array.

Static and local arrays cannot be resized. Resizing is only possible for dynamically allocated arrays.

Example:

#include <string>
using namespace std;

string xenlarge(string =old,

{

string *tmp = new string[newsize];

for (size_t idx = 0; 1idx != oldsize;
tmp[idx] = old[idx];

delete[] old;

return tmp;

}

int main ()
{
string xarr =
arr =

new string[4];
enlarge (arr, 4, 6);

size_t oldsize,

//

size_t newsize)

allocate larger array

++1dx)

//

//
//

//
//

copy old to tmp

delete the old array
return new array

initially: array of 4 strings
enlarge arr to 6 elements.



* The new array requires newsize constructors to be called;

e Having initialized the strings in the new array, oldsize of them are immediately reassigned to
the corresponding values in the original array;

e All the objects in the old arrays are destroyed.

Depending on the context various solutions exist to improve the efficiency of this rather inefficient
procedure. An array of pointers could be used (requiring only the pointers to be copied, no destruction,
no superfluous initialization) or raw memory in combination with the placement new operator could be
used (an array of objects remains available, no destruction, no superfluous construction).

9.1.4 Managing ‘raw’ memory

As we’ve seen operator new allocates the memory for an object and subsequently initializes that object
by calling one of its constructors. Likewise, operator delete calls an object’s destructor and subse-
quently returns the memory allocated by operator new to the common pool.

In the next section we’ll encounter another use of new, allowing us to initialize objects in so-called raw
memory: memory merely consisting of bytes that have been made available by either static or dynamic
allocation.

Raw memory is made available by operator new(sizeInBytes) and also by operator
new[] (sizeInBytes). The returned memory should not be interpreted as an array of any kind but
just a series of memory locations that were dynamically made available. No initialization whatsoever
is performed by these variants of new.

Both variants return void x*s so (static) casts are required to use the return values as memory of some
type.

Here are two examples:

// room for 5 ints:

int xip = static_cast<int x> (operator new (5 % sizeof (int)));
// same as the previous example:
int xip2 = static_cast<int *>(operator new[] (5 » sizeof (int)));
// room for 5 strings:
string *sp = static_cast<string x> (operator new(5 x sizeof (string)));

As operator new has no concept of data types the size of the intended data type must be specified
when allocating raw memory for a certain number of objects of an intended type. The use of operator
new therefore somewhat resembles the use of malloc.

The counterpart of operator new is operator delete. Operator delete (or, equivalently,
operator delete[]), expects a void x (so a pointer to any type can be passed to it). The pointer
is interpreted as a pointer to raw memory which is returned to the common pool without any further
action. In particular, no destructors are called by operator delete. The use of operator delete
therefore resembles the use of free. To return the memory pointed at by the abovementioned variables
ip and sp operator delete should be used:

// delete raw memory allocated by operator new
operator delete (ip);
operator delete[] (ip2);
operator delete(sp);



A remarkable form of operator new is called the placement new operator. Before using placement new
the <memory> header file must be included.

Placement new is passed an existing block of memory into which new initializes an object or value. The
block of memory should be large enough to contain the object, but apart from that there are no further
requirements. It is easy to determine how much memory is used by en entity (object or variable) of type
Type: the sizeof operator returns the number of bytes used by an Type entity.

Entities may of course dynamically allocate memory for their own use. Dynamically allocated memory,
however, is not part of the entity’s memory ‘footprint’ but it is always made available externally to the
entity itself. This is why sizeof returns the same value when applied to different st ring objects that
return different length and capacity values.

The placement new operator uses the following syntax (using Type to indicate the used data type):
Type #*new(void smemory) Type{ arguments };

Here, memory is a block of memory of at least sizeof (Type) bytes and Type (arguments) is any
constructor of the class Type.

The placement new operator is useful in situations where classes set aside memory to be used later.
This is used, e.g., by std::string to change its capacity. Calling string::reserve may enlarge
that capacity without making memory beyond the string’s length immediately available to the string
object’s users. But the object itself may use its additional memory. E.g, when information is added to
a string object it can draw memory from its capacity rather than performing a reallocation for each
single character that is added to its content.

Let’s apply that philosophy to a class Strings storing std: :string objects. The class defines a
string xd_memory accessing the memory holding its d_si ze string objects as well as d_capacity -
d_size reserved memory. Assuming that a default constructor initializes d_capacity to 1, doubling
d_capacity whenever an additional string must be stored, the class must support the following
essential operations:

¢ doubling its capacity when all its spare memory (e.g., made available by reserve) has been con-
sumed,;

¢ adding another string object

¢ properly deleting the installed strings and memory when a St rings object ceases to exist.

The private member void Strings::reserve is called when the current capacity must be enlarged
to d_capacity. It operates as follows: First new, raw, memory is allocated (line 1). This memory is in
no way initialized with strings. Then the available strings in the old memory are copied into the newly
allocated raw memory using placement new (line 2). Next, the old memory is deleted (line 3).

void Strings::reserve ()

{

using std::string;

string *newMemory = static_cast<string x> ( // 1
operator new(d_capacity * sizeof (string)));
for (size_t idx = 0; idx != d_size; ++idx) // 2
new (newMemory + idx) string{ d_memory[idx] };

destroy () ; // 3
d_memory = newMemory;



reserve (request) (enlarging d_capacity 1f necessary and 1f enlarged calling reserve () ) ensures
that the string object’s capacity is sufficient. Then placement new is used to install the latest string
into the raw memory’s appropriate location:

void Strings::append(std::string const &next)

{
reserve (d_size + 1);
new (d_memory + d_size) std::string{ next };
++d_size;

At the end of the st ring object’s lifetime, and during enlarging operations all currently used dynam-
ically allocated memory must be returned. This is made the responsibility of the member destroy,
which is called by the class’s destructor and by reserve (). More about the destructor itself in the
next section, but the implementation of the support member destroy is discussed below.

With placement new an interesting situation is encountered. Objects, possibly themselves allocating
memory, are installed in memory that may or may not have been allocated dynamically, but that is
usually not completely filled with such objects. So a simple delete[] can’t be used. On the other
hand, a delete for each of the objects that are available can’t be used either, since those delete
operations would also try to delete the memory of the objects themselves, which wasn’t dynamically
allocated.

This peculiar situation is solved in a peculiar way, only encountered in cases where placement new is
used: memory allocated by objects initialized using placement new is returned by explicitly calling the
object’s destructor. The destructor is declared as a member having as its name the class name preceded
by a tilde, not using any arguments. So, std: :string’s destructor is named ~string. An object’s
destructor only returns memory allocated by the object itself and, despite of its name, does not destroy
its object. Any memory allocated by the strings stored in our class Strings is therefore properly
destroyed by explicitly calling their destructors. Following this d_memory is back to its initial status:
it again points to raw memory. This raw memory is then returned to the common pool by operator
delete:

void Strings::destroy ()
{
for (std::string *sp = d_memory + d_size; sp-—- != d_memory; )
sp—>~string () ;

operator delete (d_memory);

So far, so good. All is well as long as we’re using only one object. What about allocating an array of
objects? Initialization is performed as usual. But as with delete, delete [] cannot be called when the
buffer was allocated statically. Instead, when multiple objects were initialized using placement new in
combination with a statically allocated buffer all the objects’ destructors must be called explicitly, as in
the following example:

using std::string;

char buffer[3 % sizeof (string)];
string *sp = new (buffer) string [3];

for (size_t idx = 0; idx < 3; ++idx)
splidx].~string();



Comparable to the constructor, classes may define a destructor. This function is the constructor’s coun-
terpart in the sense that it is invoked when an object ceases to exist. A destructor is usually called
automatically, but that’s not always true. The destructors of dynamically allocated objects are not au-
tomatically activated, but in addition to that: when a program is interrupted by an exit call, only
the destructors of already initialized global objects are called. In that situation destructors of objects
defined locally by functions are also not called. This is one (good) reason for avoiding exit in C++
programs.

Destructors obey the following syntactical requirements:

* a destructor’s name is equal to its class name prefixed by a tilde;
* a destructor has no arguments;

* a destructor has no return value.
Destructors are declared in their class interfaces. Example:

class Strings
{
public:
Strings () ;
~Strings () ; // the destructor
bi

By convention the constructors are declared first. The destructor is declared next, to be followed by
other member functions.

A destructor’s main task is to ensure that memory allocated by an object is properly returned when the
object ceases to exist. Consider the following interface of the class Strings:

class Strings

{
std::string xd_string;
size_t d_size;

public:
Strings () ;
Strings (char const xconst xcStrings, size_t n);
~Strings () ;

std::string const &at (size_t idx) const;
size_t size () const;

}i

The constructor’s task is to initialize the data fields of the object. E.g, its constructors are defined as
follows:

Strings::Strings()
d_string(0),
d_size (0)

{}

Strings::Strings (char const xconst xcStrings, size_t size)



d_size(size)

for (size_t idx = 0; idx != size; ++idx)
d_string[idx] = cStrings[idx];

As objects of the class Strings allocate memory a destructor is clearly required. Destructors may or
may not be called automatically, but note that destructors are only called (or, in the case of dynamically
allocated objects: should only be called) for fully constructed objects.

C++ considers objects ‘fully constructed’ once at least one of its constructors could normally complete.
It used to be the constructor, but as C++ supports constructor delegation, multiple constructors can
be activated for a single object; hence ‘at least one constructor’. The remaining rules apply to fully
constructed objects;

¢ Destructors of local non-static objects are called automatically when the execution flow leaves the
block in which they were defined; the destructors of objects defined somewhere in the outer block
of a function are called just before the function terminates.

¢ Destructors of static or global objects are called when the program itself terminates.

® The destructor of a dynamically allocated object is called by delete using the object’s address as
its operand,

® The destructors of a dynamically allocated array of objects are called by delete[] using the
address of the array’s first element as its operand;

* The destructor of an object initialized by placement new is activated by explicitly calling the
object’s destructor.

The destructor’s task is to ensure that all memory that is dynamically allocated and controlled only
by the object itself is returned. The task of the Strings’s destructor would therefore be to delete the
memory to which d_st ring points. Its implementation is:

Strings::~Strings ()
{

delete[] d_string;
}

The next example shows Strings at work. In process a Strings store is created, and its data
are displayed. It returns a dynamically allocated Strings object to main. A Strings x receives the
address of the allocated object and deletes the object again. Another St rings object is then created in a
block of memory made available locally in main, and an explicit call to ~Strings is required to return
the memory allocated by that object. In the example only once a Strings object is automatically
destroyed: the local Strings object defined by process. The other two Strings objects require
explicit actions to prevent memory leaks.

#include "strings.h"
#include <iostream>

using namespace std;;

void display(Strings const &store)
{
for (size_t idx = 0; idx != store.size(); ++idx)
cout << store.at (idx) << '\n';



Strings store{ argv, argc };
display (store);
return new Strings{ argv, argc };

}

int main(int argc, char xargvl[])

{
Strings *sp = process (argv, argc);
delete sp;

char buffer([sizeof (Strings)];
sp = new (buffer) Strings{ argv, static_cast<size_t>(argc) };
sp—->~Strings () ;

9.2.1 Object pointers revisited

Operators new and delete are used when an object or variable is allocated. One of the advantages of
the operators new and delete over functions like malloc and free is that new and delete call the
corresponding object constructors and destructors.

The allocation of an object by operator new is a two-step process. First the memory for the object itself
is allocated. Then its constructor is called, initializing the object. Analogously to the construction of an
object, the destruction is also a two-step process: first, the destructor of the class is called deleting the
memory controlled by the object. Then the memory used by the object itself is freed.

Dynamically allocated arrays of objects can also be handled by new and delete. When allocating an
array of objects using operator new the default constructor is called for each object in the array. In cases
like this operator delete [ ] must be used to ensure that the destructor is called for each of the objects
in array.

However, the addresses returned by new Type and new Type[size] are of identical types, in both
cases a Type *. Consequently it cannot be determined by the type of the pointer whether a pointer to
dynamically allocated memory points to a single entity or to an array of entities.

What happens if delete rather than delete[] is used? Consider the following situation, in which
the destructor ~Strings is modified so that it tells us that it is called. In a main function an array
of two Strings objects is allocated using new, to be deleted by delete[]. Next, the same actions are
repeated, albeit that the delete operator is called without []:

#include <iostream>
#include "strings.h"
using namespace std;

Strings::~Strings ()
{
cout << "Strings destructor called" << '\n';

}

int main ()

{

Strings *a = new Strings[2];
cout << "Destruction with []'s" << '\n';
delete[] aj;

a = new Strings|[2];



cout << "Destruction without []'s" << '"\n';
delete aj;
}
/ *
Generated output:
Destruction with []'s
Strings destructor called
Strings destructor called

Destruction without []'s
Strings destructor called
*/

From the generated output, we see that the destructors of the individual Strings objects are called
when delete[] is used, while only the first object’s destructor is called if the [] is omitted.

Conversely, if delete[] is called in a situation where delete should have been called the results are
unpredictable, and the program will most likely crash. This problematic behavior is caused by the way
the run-time system stores information about the size of the allocated array (usually right before the
array’s first element). If a single object is allocated the array-specific information is not available, but
it is nevertheless assumed present by delete[]. Thus this latter operator encounters bogus values
in the memory locations just before the array’s first element. It then dutifully interprets the value it
encounters there as size information, usually causing the program to fail.

If no destructor is defined, a trivial destructor is defined by the compiler. The trivial destructor ensures
that the destructors of composed objects (as well as the destructors of base classes if a class is a derived
class, cf. chapter 13) are called. This has serious implications: objects allocating memory create memory
leaks unless precautionary measures are taken (by defining an appropriate destructor). Consider the
following program:

#include <iostream>
#include "strings.h"
using namespace std;

Strings::~Strings ()
{
cout << "Strings destructor called" << '\n';
}
int main ()

Strings xxptr = new Stringsx [2];

ptr[0] = new Strings([2];
ptrll] new Strings([2];

delete[] ptr;

This program produces no output at all. Why is this? The variable ptr is defined as a pointer to a
pointer. The dynamically allocated array therefore consists of pointer variables and pointers are of a
primitive type. No destructors exist for primitive typed variables. Consequently only the array itself is
returned, and no Strings destructor is called.

Of course, we don’t want this, but require the St rings objects pointed to by the elements of pt r to be
deleted too. In this case we have two options:

* In a for-statement visit all the elements of the pt r array, calling delete for each of the array’s
elements. This procedure was demonstrated in the previous section.



hather than using a pointer to a pointer to Strings objects a pointer to an array of wrapper-
class objects is used. As a result delete[] ptr calls the destructor of each of the wrapper class
objects, in turn calling the St rings destructor for their d_st rings members. Example:

#include <iostream>
using namespace std;

class Strings // partially implemented
{

public:
~Strings();
}i
inline Strings::~Strings ()

{

cout << "destructor called\n";

class Wrapper

{

Strings *d_strings;

public:
Wrapper () ;
~Wrapper () ;
bi

inline Wrapper: :Wrapper ()

d_strings(new Strings{})
{1

inline Wrapper: :~Wrapper ()

{
delete d_strings;

int main ()

{

auto ptr = new Strings *[4];

// ... code assigning “new Strings' to ptr's elements

delete[] ptr; // memory leak: ~Strings () not called
cout << "===========\n";

delete[] new Wrapper[4]; // OK: 4 x destructor called

Generated output:

destructor called
destructor called
destructor called
destructor called

*/



The C++ run-time system ensures that when memory allocation fails an error function is activated.
By default this function throws a bad_alloc exception (see section 10.8), terminating the program.
Therefore it is not necessary to check the return value of operator new. Operator new’s default behavior
may be modified in various ways. One way to modify its behavior is to redefine the function that’s called
when memory allocation fails. Such a function must comply with the following requirements:

¢ it has no parameters;

® its return type is void.

A redefined error function might, e.g., print a message and terminate the program. The user-written
error function becomes part of the allocation system through the function set_new_handler.

Such an error function is illustrated below!:

#include <iostream>
#include <string>

using namespace std;

void outOfMemory ()

{
cout << "Memory exhausted. Program terminates." << '\n';
exit (1) ;

int main ()
long allocated = 0;
set_new_handler (outOfMemory) ; // install error function

while (true) // eat up all memory
{

new int [1000007] () ;

allocated += 100000 * sizeof (int);

cout << "Allocated " << allocated << " bytes\n";

Once the new error function has been installed it is automatically invoked when memory allocation
fails, and the program is terminated. Memory allocation may fail in indirectly called code as well, e.g.,
when constructing or using streams or when strings are duplicated by low-level functions.

So far for the theory. On some systems the ‘out of memory’ condition may actually never be reached,
as the operating system may interfere before the run-time support system gets a chance to stop the
program.

The traditional memory allocation functions (like st rdup, malloc, realloc etc.) do not trigger the
new handler when memory allocation fails and should be avoided in C++ programs.

1This implementation applies to the GNU C/C++ requirements. Actually using the program given in the next example is not
advised, as it probably enormously slows down your computer due to the resulting use of the operating system’s swap area.



In C++ struct and class type objects can be directly assigned new values in the same way as this is
possible in C. The default action of such an assignment for non-class type data members is a straight
byte-by-byte copy from one data member to another. For now we’ll use the following simple class
Person:

class Person

{
char *d_name;
char *d_address;
char «d_phone;

public:
Person();
Person (char const xname, char const xaddr, char const xphone);
~Person () ;
private:
char xstrdupnew (char const =*src); // returns a copy of src.
bi

// strdupnew is easily implemented, here is its inline implementation:
inline char xPerson::strdupnew (char const *src)

{

return strcpy(new char [strlen(src) + 1], src);

Person’s data members are initialized to zeroes or to copies of the NTBSs passed to Person’s con-
structor, using some variant of strdup. The allocated memory is eventually returned by Person’s
destructor.

Now consider the consequences of using Person objects in the following example:

void tmpPerson (Person const &person)

{
Person tmp;
tmp = person;

Here’s what happens when tmpPerson is called:

* it expects a reference to a Person as its parameter person.
¢ it defines a local object tmp, whose data members are initialized to zeroes.

* the object referenced by person is copied to tmp: sizeof (Person) number of bytes are copied
from person to tmp.

Now a potentially dangerous situation has been created. The actual values in person are pointers,
pointing to allocated memory. After the assignment this memory is addressed by two objects: person
and tmp

¢ The potentially dangerous situation develops into an acutely dangerous situation once the func-
tion tmpPerson terminates: tmp is destroyed. The destructor of the class Person releases the
memory pointed to by the fields d_name, d_address and d_phone: unfortunately, this memory
is also pointed at by person....
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Figure 9.1: Private data and public interface functions of the class Person, using byte-by-byte assign-
ment

This problematic assignment is illustrated in Figure 9.1.

Having executed tmpPerson, the object referenced by person now contains pointers to deleted mem-
ory.

This is undoubtedly not a desired effect of using a function like tmpPerson. The deleted memory is
likely to be reused by subsequent allocations. The pointer members of person have effectively become
wild pointers, as they don’t point to allocated memory anymore. In general it can be concluded that

every class containing pointer data members is a potential candidate for trouble.

Fortunately, it is possible to prevent these troubles, as discussed next.

9.3.1 Overloading the assignment operator

Obviously, the right way to assign one Person object to another, is not to copy the content of the
object bytewise. A better way is to make an equivalent object. One having its own allocated memory
containing copies of the original strings.

The way to assign a Person object to another is illustrated in Figure 9.2. There are several ways to
assign a Person object to another. One way would be to define a special member function to handle the
assignment. The purpose of this member function would be to create a copy of an object having its own
name, address and phone strings. Such a member function could be:

void Person::assign (Person const &other)
{
// delete our own previously used memory
delete[] d_name;
delete[] d_address;
delete[] d_phone;

// copy the other Person's data
d_name = strdupnew (other.d_name);
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Figure 9.2: Private data and public interface functions of the class Person, using the ‘correct’ assign-
ment.

d_address = strdupnew (other.d_address);
d_phone strdupnew (other.d_phone) ;

Using assign we could rewrite the offending function tmpPerson:

void tmpPerson (Person const &person)

{

Person tmp;

// tmp (having its own memory) holds a copy of person
tmp.assign (person);

// now it doesn't matter that tmp is destroyed..

This solution is valid, although it only tackles a symptom. It requires the programmer to use a specific
member function instead of the assignment operator. The original problem (assignment produces wild
pointers) is still not solved. Since it is hard to ‘strictly adhere to a rule’ a way to solve the original
problem is of course preferred.

Fortunately a solution exists using operator overloading: the possibility C++ offers to redefine the
actions of an operator in a given context. Operator overloading was briefly mentioned earlier, when the
operators << and >> were redefined to be used with streams (like cin, cout and cerr), see section
3.1.4.

Overloading the assignment operator is probably the most common form of operator overloading in
C++. A word of warning is appropriate, though. The fact that C++ allows operator overloading does
not mean that this feature should indiscriminately be used. Here’s what you should keep in mind:

* operator overloading should be used in situations where an operator has a defined action, but
this default action has undesired side effects in a given context. A clear example is the above
assignment operator in the context of the class Person.

* operator overloading can be used in situations where the operator is commonly applied and no



ately used 1s found 1n the class std: : string: assigning one string object to another provides the
destination string with a copy of the content of the source string. No surprises here.

¢ in all other cases a member function should be defined instead of redefining an operator.

An operator should simply do what it is designed to do. The phrase that’s often encountered in the
context of operator overloading is do as the ints do. The way operators behave when applied to ints
is what is expected, all other implementations probably cause surprises and confusion. Therefore,
overloading the insertion (<<) and extraction (>>) operators in the context of streams is probably
ill-chosen: the stream operations have nothing in common with bitwise shift operations.

9.3.1.1 The member ’operator=()’

To add operator overloading to a class, the class interface is simply provided with a (usually public)
member function naming the particular operator. That member function is thereupon implemented.

To overload the assignment operator =, a member operator=(Class const &rhs) is added to the
class interface. Note that the function name consists of two parts: the keyword operator, followed
by the operator itself. When we augment a class interface with a member function operator=, then
that operator is redefined for the class, which prevents the default operator from being used. In the
previous section the function assign was provided to solve the problems resulting from using the
default assignment operator. Rather than using an ordinary member function C++ commonly uses a
dedicated operator generalizing the operator’s default behavior to the class in which it is defined.

The assign member mentioned before may be redefined as follows (the member operator= presented
below is a first, rather unsophisticated, version of the overloaded assignment operator. It will shortly
be improved):

class Person
{
public: // extension of the class Person
// earlier members are assumed.
void operator=(Person const &other);
}i

Its implementation could be

void Person::operator=(Person const &other)

{
delete[] d_name; // delete old data
delete[] d_address;
delete[] d_phone;

d_name = strdupnew (other.d_name); // duplicate other's data
d_address = strdupnew (other.d_address);
d_phone = strdupnew (other.d_phone);

This member’s actions are similar to those of the previously mentioned member assign, but this mem-
ber is automatically called when the assignment operator = is used. Actually there are two ways to call
overloaded operators as shown in the next example:

void tmpPerson (Person const &person)

{

Person tmp;



tmp.operator=(person); // the same thing

Overloaded operators are seldom called explicitly, but explicit calls must be used (rather than using
the plain operator syntax) when you explicitly want to call the overloaded operator from a pointer to
an object (it is also possible to dereference the pointer first and then use the plain operator syntax, see
the next example):

void tmpPerson (Person const &person)
{

Person xtmp = new Person;

tmp->operator=(person) ;
*tmp = person; // yes, also possible...

delete tmp;

9.4 The ‘this’ pointer

A member function of a given class is always called in combination with an object of its class. There
is always an implicit ‘substrate’ for the function to act on. C++ defines a keyword, this, to reach this
substrate.

The this keyword is a pointer variable that always contains the address of the object for which the
member function was called. The this pointer is implicitly declared by each member function (whether
public, protected,orprivate). The this pointer is a constant pointer to an object of the member
function’s class. For example, the members of the class Person implicitly declare:

extern Person *xconst this;

A member function like Person: : name could be implemented in two ways: with or without using the
this pointer:

char const *Person::name () const // implicitly using “this'
{
return d_name;

}

char const xPerson::name () const // explicitly using “this'
{
return this->d_name;

}

The this pointer is seldom explicitly used, but situations do exist where the this pointer is actually
required (cf. chapter 16).

9.4.1 Sequential assignments and this

C++’s syntax allows for sequential assignments, with the assignment operator associating from right
to left. In statements like:



The implementation of the overloaded assignment operator we’ve encountered thus far does not permit
such constructions, as it returns void.

This imperfection can easily be remedied using the this pointer. The overloaded assignment operator
expects a reference to an object of its class. It can also return a reference to an object of its class. This
reference can then be used as an argument in sequential assignments.

The overloaded assignment operator commonly returns a reference to the current object (i.e., xthis).
The next version of the overloaded assignment operator for the class Person thus becomes:

Person &Person::operator=(Person const &other)
{

delete[] d_address;

delete[] d_name;

delete[] d_phone;

d_address = strdupnew (other.d_address);
d_name = strdupnew (other.d_name);
d_phone = strdupnew (other.d_phone);

// return current object as a reference
return *this;

Overloaded operators may themselves be overloaded. Consider the string class, having overloaded
assignment operators operator=(std::string const &rhs), operator=(char const xrhs),
and several more overloaded versions. These additional overloaded versions are there to handle differ-
ent situations which are, as usual, recognized by their argument types. These overloaded versions all
follow the same mold: when necessary dynamically allocated memory controlled by the object is deleted;
new values are assigned using the overloaded operator’s parameter values and *this is returned.

9.5 The copy constructor: initialization vs. assignment

Consider the class Strings, introduced in section 9.2, once again. As it contains several primitive type
data members as well as a pointer to dynamically allocated memory it needs a constructor, a destructor,
and an overloaded assignment operator. In fact the class offers two constructors: in addition to the
default constructor it offers a constructor expecting a char const *const xanda size_t.

Now consider the following code fragment. The statement references are discussed following the exam-

ple:

int main(int argc, char xxargv)

{

Strings sl (argv, argc); // (1)
Strings s2; /7 (2)
Strings s3(sl); /7 (3)
s2 = sl; // (4)

e At 1 we see an initialization. The object s1 is initialized using main’s parameters: Strings’s
second constructor is used.

* At 2 strings’s default constructor is used, initializing an empty St rings object.



object. 1'his form of 1nitializations has not yet been discussed. It 1s called a copy construction and
the constructor performing the initialization is called the copy constructor. Copy constructions
are also encountered in the following form:

Strings s3 = sl;

This is a construction and therefore an initialization. It is not an assignment as an assignment
needs a left-hand operand that has already been defined. C++ allows the assignment syntax to be
used for constructors having only one parameter. It is somewhat deprecated, though.

* At 4 we see a plain assignment.

In the above example three objects were defined, each using a different constructor. The actually used
constructor was deduced from the constructor’s argument list.

The copy constructor encountered here is new. It does not result in a compilation error even though it
hasn’t been declared in the class interface. This takes us to the following rule:

A copy constructor is (almost) always available, even if it isn’t declared in the class’s inter-
face.

The reason for the ‘(almost)’ is given in section 9.7.1.

The copy constructor made available by the compiler is also called the trivial copy constructor. Its use
can easily be suppressed (using the = delete idiom). The trivial copy constructor performs a byte-wise
copy operation of the existing object’s primitive data to the newly created object, calls copy constructors
to intialize the object’s class data members from their counterparts in the existing object and, when
inheritance is used, calls the copy constructors of the base class(es) to initialize the new object’s base
classes.

Consequently, in the above example the trivial copy constructor is used. As it performs a byte-by-byte
copy operation of the object’s primitive type data members that is exactly what happens at statement
3. By the time s3 ceases to exist its destructor deletes its array of strings. Unfortunately d_string
is of a primitive data type and so it also deletes s1’s data. Once again we encounter wild pointers as a
result of an object going out of scope.

The remedy is easy: instead of using the trivial copy constructor a copy constructor must explicitly be
added to the class’s interface and its definition must prevent the wild pointers, comparably to the way
this was realized in the overloaded assignment operator. An object’s dynamically allocated memory
is duplicated, so that it contains its own allocated data. But note that if a class also reserves extra
(raw) memory, i.e., if it supports extra memory capacity, then that unused extra capacity is not made
available in the copy-constructed object.

Copy construction can therefore be used to shed excess capacity. The copy constructor is simpler than
the overloaded assignment operator in that it doesn’t have to delete previously allocated memory. Since
the object is going to be created no memory has already been allocated.

Strings’s copy constructor can be implemented as follows:

Strings::Strings (Strings const &other)

d_string(new string[other.d_sizel]),
d_size(other.d_size)

for (size_t idx = 0; idx != d_size; ++idx)
d_string[idx] = other.d_string[idx];



Apart Irom the plain copy construction that we encountered thus far, here are other situations where
the copy constructor is used:

* it is used when a function defines a class type value parameter rather than a pointer or a ref-
erence. The function’s argument initializes the function’s parameter using the copy constructor.
Example:

void process (Strings store) // no pointer, no reference

{
store.at (3) = "modified"; // doesn't modify outer'

}

int main(int argc, char xxargv)
{
Strings outer (argv, argc);
process (outer) ;

}
¢ it is used when a function defines a class type value return type. Example:

Strings copy (Strings const &store)
{

return store;

}

Here store is used to initialize copy’s return value. The returned Strings object is a temporary,
anonymous object that may be immediately used by code calling copy but no assumptions can be made
about its lifetime thereafter.

9.6 Revising the assignment operator

The overloaded assignment operator has characteristics also encountered with the copy constructor
and the destructor:

* The copying of (private) data occurs (1) in the copy constructor and (2) in the overloaded assign-
ment function.
¢ Allocated memory is deleted (1) in the overloaded assignment function and (2) in the destructor.
The copy constructor and the destructor clearly are required. If the overloaded assignment operator

also needs to return allocated memory and to assign new values to its data members couldn’t the
destructor and copy constructor be used for that?

As we've seen in our discussion of the destructor (section 9.2) the destructor can explicitly be called,
but that doesn’t hold true for the (copy) constructor. But let’s briefly summarize what an overloaded
assignment operator is supposed to do:

¢ It should delete the dynamically allocated memory controlled by the current object;

¢ It should reassign the current object’s data members using a provided existing object of its class.
The second part surely looks a lot like copy construction. Copy construction becomes even more at-
tractive after realizing that the copy constructor also initializes any reference data members the class

might have. Realizing the copy construction part is easy: just define a local object and initialize it using
the assignment operator’s const reference parameter, like this:

Strings &operator=(Strings const &other)



Strings tmp (other);
// more to follow
return *this;

You may think the optimization operator=(Strings tmp) is attractive, but let’s postpone that for a
little while (at least until section 9.7).

Now that we’ve done the copying part, what about the deleting part? And isn’t there another slight
problem as well? After all we copied all right, but not into our intended (current, *this) object.

At this point it’s time to introduce swapping. Swapping two variables means that the two variables
exchange their values. We’ll discuss swapping in detail in the next section, but let’s for now assume
that we’ve added a member swap (Strings &other) to our class Strings. This allows us to complete
String’s operator=implementation:

Strings &operator=(Strings const &other)
{

Strings tmp (other);

swap (tmp) ;

return *this;

This implementation of operator=is generic: it can be applied to every class whose objects are swap-
pable. How does it work?

¢ The information in the other object is used to initialize a local tmp object. This takes care of the
copying part of the assignment operator;

e Calling swap ensures that the current object receives its new values (with tmp receiving the
current object’s original values);

¢ When operator= terminates its local tmp object ceases to exist and its destructor is called. As
it by now contains the data previously owned by the current object, the current object’s original
data are now destroyed, effectively completing the destruction part of the assignment operation.

Nice?

9.6.1 Swapping

Many classes (e.g., std: : string) offer swap members allowing us to swap two of their objects. The
Standard Template Library (STL, cf. chapter 18) offers various functions related to swapping. There is
even a swap generic algorithm (cf. section 19.1.61), which is commonly implemented using the assign-
ment operator. When implementing a swap member for our class Strings it could be used, provided
that all of St ring’s data members can be swapped. As this is true (why this is true is discussed shortly)
we can augment class Strings with a swap member:

void Strings::swap(Strings &other)
{
swap (d_string, other.d_string);
swap (d_size, other.d_size);

Having added this member to Strings the copy-and-swap implementation of String: :operator=
can now be used.
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Figure 9.3: Swapping a linked list

When two variables (e.g., double one and double two) are swapped, each one holds the other one’s
value after the swap. So, if one == 12.50 and two == -3.14 then after swap (one, two) one ==
-3.14 and two == 12.50.

Variables of primitive data types (pointers and the built-in types) can be swapped, class-type objects
can be swapped if their classes offer a swap member.

So should we provide our classes with a swap member, and if so, how should it be implemented?

The above example (Strings: :swap) shows the standard way to implement a swap member: each
of its data members are swapped in turn. But there are situations where a class cannot implement a
swap member this way, even if the class only defines data members of primitive data types. Consider
the situation depicted in figure 9.3.

In this figure there are four objects, each object has a pointer pointing to the next object. The basic
organization of such a class looks like this:

class List

{

List *d_next;
bi

Initially four objects have their d_next pointer set to the next object: 1 to 2, 2 to 3, 3 to 4. This is
shown in the upper half of the figure. At the bottom half it is shown what happens if objects 2 and 3
are swapped: 3’s d_next point is now at object 2, which still points to 4; 2’s d_next pointer points to
3’s address, but 2’s d_next is now at object 3, which is therefore pointing to itself. Bad news!

Another situation where swapping of objects goes wrong happens with classes having data members
pointing or referring to data members of the same object. Such a situation is shown in figure 9.4.

Here, objects have two data members, as in the following class setup:

class SelfRef

{
size_t *d_ownPtr; // initialized to &d_data
size_t d_data;

bi

The top-half of figure 9.4 shows two objects; their upper data members pointing to their lower data
members. But if these objects are swapped then the situation shown in the figure’s bottom half is
encountered. Here the values at addresses a and ¢ are swapped, and so, rather than pointing to their
bottom data members they suddenly point to other object’s data members. Again: bad news.
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Figure 9.4: Swapping objects with self-referential data

The common cause of these failing swapping operations is easily recognized: simple swapping opera-
tions must be avoided when data members point or refer to data that is involved in the swapping. If, in
figure 9.4 the a and ¢ data members would point to information outside of the two objects (e.g., if they
would point to dynamically allocated memory) then the simple swapping would succeed.

However, the difficulty encountered with swapping Sel fRef objects does not imply that two SelfRef
objects cannot be swapped; it only means that we must be careful when designing swap members. Here
is an implementation of Sel fRef: : swap:

void SelfRef::swap(SelfRef &other)
{

swap (d_data, other.d_data);
}

In this implementation swapping leaves the self-referential data member as-is, and merely swaps the
remaining data. A similar swap member could be designed for the linked list shown in figure 9.3.

9.6.1.1 Fast swapping

As we've seen with placement new objects can be constructed in blocks of memory of sizeof (Class)
bytes large. And so, two objects of the same class each occupy sizeof (Class) bytes.

If objects of our class can be swapped, and if our class’s data members do not refer to data actually
involved in the swapping operation then a very fast swapping method that is based on the fact that we
know how large our objects are can be implemented.

In this fast-swap method we merely swap the content of the sizeof (Class) bytes. This procedure may
be applied to classes whose objects may be swapped using a member-by-member swapping operation
and can (in practice, although this probably overstretches the allowed operations as described by the
C++ ANSI/ISO standard) also be used in classes having reference data members. It simply defines a
buffer of sizeof (Class) bytes and performs a circular memcpy operation. Here is its implementation
for a hypothetical class Class. It results in very fast swapping:

#include <cstring>

void Class::swap (Class &other)



The static_cast for memcpy’ s destination address is used to prevent a compiler complaint: since
Class is a class-type, the compiler (rightly) warns against bluntly copying bytes. But using memcpy is

char buffer([sizeof (Class)];

memcpy (buffer,
memcpy (static_cast<void %> (&other),

&other,

memcpy (static_cast<void *>(this),

sizeof (Class));

this,

buffer,

fine if you're Class’ s developer and know what you’re doing.

Here is a simple example of a class defining a reference data member and offering a swap member
implemented like the one above. The reference data members are initialized to external streams. After
running the program one contains two hello to I lines, two contains two hello to 2 lines (for brevity all

members of Reference are defined inline):

#include <fstream>
#include <cstring>

class Reference

{

}i

std::ostream &d_out;

public:

Reference (std::ostream &out)

{1

void swap (Reference &other)

{

std:

int main ()

{

std::ofstream one{
std::ofstream two{

d_out (out)

char buffer[sizeof (Reference)];

memcpy (buffer,

this,

memcpy (static_cast<void *>(this),

memcpy (static_cast<void %> (&other),

:ostream &out ()

return d_out;

"one "
"tWO "

Reference refl{ one };
Reference ref2{ two };

refl.out () << "hello to
ref2.out () << "hello to
refl.swap(ref2);

ref2.out () << "hello to
refl.out () << "hello to

i
i

l\l’l";
2\1’1";

l\l’l";
2\1’1";

//
//

//

//

sizeof (Class));

sizeof (Class));

sizeof (Reference));
&other,
buffer,
sizeof (Reference));

refl/ref2 hold references to
the streams

generate some output

more output

sizeof (Reference));



does not corrupt 1ts objects, when swapped.

9.7 Moving data

Traditionally, C++ offered two ways to assign the information pointed to by a data member of a tem-
porary object to an lvalue object. Either a copy constructor or reference counting had to be used. In
addition to these two methods C++ now also supports move semantics, allowing transfer of the data
pointed to by a temporary object to its destination.

Moving information is based on the concept of anonymous (temporary) data. Temporary values are
returned by functions like operator- () and operator+ (Type const &lhs, Type const &rhs),
and in general by functions returning their results ‘by value’ instead of returning references or pointers.

Anonymous values are always short-lived. When the returned values are primitive types (int,
double, etc.) nothing special happens, but if a class-type object is returned by value then its de-
structor can be called immediately following the function call that produced the value. In any case, the
value itself becomes inaccessible immediately after the call. Of course, a temporary return value may
be bound to a reference (Ivalue or rvalue), but as far as the compiler is concerned the value now has a
name, which by itself ends its status as a temporary value.

In this section we concentrate on anonymous temporary values and show how they can be used to im-
prove the efficiency of object construction and assignment. These special construction and assignment
methods are known as move construction and move assignment. Classes supporting move operations
are called move-aware.

Classes allocating their own memory usually benefit from becoming move-aware. But a class does not
have to use dynamic memory allocation before it can benefit from move operations. Most classes using
composition (or inheritance where the base class uses composition) can benefit from move operations
as well.

Movable parameters for class Class take the form Class sstmp. The parameter is an rvalue reference,
and a rvalue reference only binds to an anonymous temporary value. The compiler is required to call
functions offering movable parameters whenever possible. This happens when the class defines func-
tions supporting Class && parameters and an anonymous temporary value is passed to such functions.
Once a temporary value has a name (which already happens inside functions defining Class const
& or Class &&tmp parameters as within such functions the names of these parameters are available)
it is no longer an anonymous temporary value, and within such functions the compiler no longer calls
functions expecting anonymous temporary values when the parameters are used as arguments.

The next example (using inline member implementations for brevity) illustrates what happens if a
non-const object, a temporary object and a const object are passed to functions fun for which these
kinds of parameters were defined. Each of these functions call a function gun for which these kinds of
parameters were also defined. The first time fun is called it (as expected) calls gun (Class &). Then
fun (Class &&) iscalled as its argument is an anonymous (temporary) object. However, inside fun the
anonymous value has received a name, and so it isn’t anonymous anymore. Consequently, gun (Class
&) is called once again. Finally fun (Class const &) is called, and (as expected) gun (Class const
&) 1s now called.

#include <iostream>
using namespace std;

class Class
{
public:
Class ()
{};
void fun(Class const &other)



cout << "fun: Class const &\n";
gun (other) ;
}
void fun(Class &other)
{
cout << "fun: Class &\n";
gun (other) ;
}
void fun(Class &&tmp)
{
cout << "fun: Class &&\n";
gun (tmp) ;
}
void gun(Class const &other)
{
cout << "gun: Class const &\n";
}
void gun(Class &other)
{
cout << "gun: Class &\n";
}
void gun(Class &&tmp)
{

cout << "gun: Class &&\n";
i
int main ()
Class cl;

cl.fun(cl);
cl.fun(Class());

Class const c0;
cl.fun(cO0);

Generally it is pointless to define a function having an rvalue reference return type. The compiler
decides whether or not to use an overloaded member expecting an rvalue reference on the basis of
the provided argument. If it is an anonymous temporary it calls the function defining the rvalue
reference parameter, if such a function is available. An rvalue reference return type is used, e.g.,
with the std: :move call, to keep the rvalue reference nature of its argument, which is known to be a
temporary anonymous object. Such a situation can be exploited also in a situation where a temporary
object is passed to (and returned from) a function which must be able to modify the temporary object.
The alternative, passing a const ¢, is less attractive as it requires a const_cast before the object
can be modified. Here is an example:

std::string &&doubleString(std::string &&tmp)

{
tmp += tmp;
return std::move (tmp) ;

This allows us to do something like

std::cout << doubleString("hello "s);



The compiler, when selecting a function to call applies a fairly simple algorithm, and also considers
copy elision. This is covered shortly (section 9.8).

9.7.1 The move constructor (dynamic data)

Our class Strings has, among other members, a data member string *d_string. Clearly, Strings
should define a copy constructor, a destructor and an overloaded assignment operator.

Now consider the following function loadStrings (std::istream &in) extracting the strings for
a strings object from in. Next, the Strings object filled by 1oadStrings is returned by value.
The function 1oadStrings returns a temporary object, which can then used to initialize an external
Strings object:

Strings loadStrings (std::istream &in)
{
Strings ret;
// load the strings into 'ret'
return ret;
}
// usage:
Strings store(loadStrings(cin));

In this example two full copies of a St rings object are required:

e initializing 1oadString’s value return type from its local Strings ret object;

e initializing store from 1oadString’s return value

We can improve the above procedure by defining a move constructor. Here is the declaration of the
Strings class move constructor:

Strings (Strings &&tmp) ;

Move constructors of classes using dynamic memory allocation are allowed to assign the values of
pointer data members to their own pointer data members without requiring them to make a copy of
the source’s data. Next, the temporary’s pointer value is set to zero to prevent its destructor from
destroying data now owned by the just constructed object. The move constructor has grabbed or stolen
the data from the temporary object. This is OK as the temporary object cannot be referred to again (as
it is anonymous, it cannot be accessed by other code) and the temporary objects cease to exist shortly
after the constructor’s call. Here is the implementation of St rings move constructor:

Strings::Strings (Strings &&tmp)

d_string(tmp.d_string),
d_size(tmp.d_size),
d_capacity (tmp.d_capacity)
tmp.d_string = 0;
tmp.d_size = 0;
tmp.d_capacity = 0;

Move construction (in general: moving) must leave the object from which information was moved in a
valid state. It is not specified in what way that valid state must be realized, but a good rule of thumb



are also set to 0 when 1ts d_ st ring pointer 1s set to 0.

In section 9.5 it was stated that the copy constructor is almost always available. Almost always as
the declaration of a move constructor suppresses the default availability of the copy constructor. The
default copy constructor is also suppressed if a move assignment operator is declared (cf. section 9.7.3).

The following example shows a simple class Class, declaring a move constructor. In the main function
following the class interface a Class object is defined which is then passed to the constructor of a
second Class object. Compilation fails with the compiler reporting:

error: cannot bind 'Class' lvalue to 'Classé&é&'
error: initializing argument 1 of 'Class::Class(Classé&&)'’

class Class
{
public:
Class () = default;
Class (Class &&tmp)
{}
bi

int main ()

{
Class one;
Class two{ one };

The cure is easy: after declaring a (possibly default) copy constructor the error disappears:

class Class

{

public:
Class () = default;
Class (Class const &other) = default;

Class (Class &&tmp)
{1}
}i

int main ()
{
Class one;
Class two{ one };

9.7.2 The move constructor (composition)

Classes not using pointer members pointing to memory controlled by its objects (and not having base
classes doing so, see chapter 13) may also benefit from overloaded members expecting rvalue references.
The class benefits from move operations when one or more of the composed data members themselves
support move operations.

Move operations cannot be implemented if the class type of a composed data member does not support
moving or copying. Currently, st ream classes fall into this category.

An example of a move-aware class is the class std:string. A class Person could use composition
by defining std: :string d_name and std::string d_address. Its move constructor would then
have the following prototype:



However, the following implementation of this move constructor is incorrect:

Person: :Person (Person &&tmp)

d_name (tmp.d_name),
d_address (tmp.d_address)
{}

It is incorrect as string’s copy constructors rather than string’s move constructors are called. If
you’re wondering why this happens then remember that move operations are only performed for anony-
mous objects. To the compiler anything having a name isn’t anonymous. And so, by implication, having
available a rvalue reference does not mean that we’re referring to an anonymous object. But we know
that the move constructor is only called for anonymous arguments. To use the corresponding string
move operations we have to inform the compiler that we’re talking about anonymous data members
as well. For this a cast could be used (e.g., static_cast<Person &&> (tmp)), but the C++-0x stan-
dard provides the function std: :move to anonymize a named object. The correct implementation of
Person’s move construction is, therefore:

Person: :Person (Person &&tmp)

d_name ( std::move (tmp.d_name) ),
d_address( std::move (tmp.d_address) )
{}

The function std: :move is (indirectly) declared by many header files. If no header is already declaring
std: :move then include utility

When a class using composition not only contains class type data members but also other types of data
(pointers, references, primitive data types), then these other data types can be initialized as usual.
Primitive data type members can simply be copied; references can be initialized as usual and pointers
may use move operations as discussed in the previous section.

The compiler never calls move operations for variables having names. Let’s consider the implications
of this by looking at the next example, assuming the class Class offers a move constructor and a copy
constructor:

Class factory();

void fun (Class const &other); // a
void fun(Class &&tmp); // b

void callee(Class &&tmp)

{
fun (tmp) ; // 1

}

int main ()

{
callee(factory());

}

e At 1 function a is called. At first sight this might be surprising, but fun’s argument is not an
anonymous temporary object but a named temporary object.

Realizing that fun (tmp) might be called twice the compiler’s choice is understandable. If tmp’s data
would have been grabbed at the first call, the second call would receive tmp without any data. But at the



&&) 18 called. For this, once again, std: :move 1s used:

fun (std: :move (tmp) ) ; // last call!

9.7.3 Move-assignment

In addition to the overloaded assignment operator a move assignment operator may be implemented
for classes supporting move operations. In this case, if the class supports swapping the implementation
is surprisingly simple. No copy construction is required and the move assignment operator can simply
be implemented like this:

Class &operator=(Class &&tmp)
{

swap (tmp) ;

return *this;

If swapping is not supported then the assignment can be performed for each of the data members in
turn, using std: :move as shown in the previous section with a class Person. Here is an example
showing how to do this with that class Person:

Person &operator=(Person &&tmp)

{
d_name = std::move (tmp.d_name);
d_address = std::move (tmp.d_address) ;
return xthis;

As noted previously (section 9.7.1) declaring a move assignment operator suppresses the default avail-
ability of the copy constructor. It is made available again by declaring the copy constructor in the
class’s interface (and of course by providing an explicit implementation or by using the = default
default implementation).

9.7.4 Revising the assignment operator (part II)

Now that we've familiarized ourselves with the overloaded assignment operator and the move-
assignment, let’s once again have a look at their implementations for a class Class, supporting swap-
ping through its swap member. Here is the generic implementation of the overloaded assignment
operator:

Class &operator=(Class const &other)
{

Class tmp{ other };

swap (tmp) ;

return *this;

and this is the move-assignment operator:

Class &operator=(Class &&tmp)
{

swap (tmp) ;

return xthis;



the move-assignment operator’s code once a copy ot the other object 1s available. Since the overloaded
assignment operator’s tmp object really is nothing but a temporary Class object we can use this fact by
implementing the overloaded assignment operator in terms of the move-assignment. Here is a second
revision of the overloaded assignment operator:

Class &operator=(Class const &other)
{

Class tmp{ other };

return xthis = std::move (tmp);

9.7.5 Moving and the destructor

Once a class becomes a move-aware class one should realize that its destructor still performs its job as
implemented. Consequently, when moving pointer values from a temporary source to a destination the
move constructor should make sure that the temporary’s pointer value is set to zero, to prevent doubly
freeing memory.

If a class defines pointers to pointer data members there usually is not only a pointer that is moved,
but also a size_t defining the number of elements in the array of pointers.

Once again, consider the class Strings. Its destructor is implemented like this:

Strings::~Strings ()
{
for (string xxend = d_string + d_size; end-- != d_string; )
delete *xend;
delete[] d_string;

The move constructor (and other move operations!) must realize that the destructor not only deletes
d_string, but also considers d_size. A member implementing move operations should therefore not
only set d_string to zero but also d_size. The previously shown move constructor for Strings is
therefore incorrect. Its improved implementation is:

Strings::Strings (Strings &&tmp)

d_string(tmp.d_string),
d_size(tmp.d_size),
d_capacity (tmp.d_capacity)
tmp.d_string = 0;
tmp.d_size = 0;

If operations by the destructor all depend on d_string having a non-zero value then variations of the
above approach are possible. The move operations could merely set d_string to 0, testing whether
d_string == 0 in the destructor (and if so, end the destructor’s actions). In the latter variant the
d_size assignment can be omitted.

9.7.6 Move-only classes

Classes may very well allow move semantics without offering copy semantics. Most stream classes
belong to this category. Extending their definition with move semantics greatly enhances their us-



returning an object constructed by the function) can easily be implemented. K.g.,

// assume char xfilename
ifstream inStream(openlIstream(filename));

For this example to work an i fstream constructor must offer a move constructor. This ensures that
only one object refers to the open istream.

Once classes offer move semantics their objects can also safely be stored in standard containers (cf.
chapter 12). When such containers perform reallocations (e.g., when their sizes are enlarged) they use
the object’s move constructors rather than their copy constructors. As move-only classes suppress copy
semantics containers storing objects of move-only classes implement the correct behavior in that it is
impossible to assign such containers to each other.

9.7.7 Default move constructors and assignment operators

As we've seen, classes by default offer a copy constructor and assignment operator. These class mem-
bers are implemented so as to provide basic support: data members of primitive data types are copied
byte-by-byte, but for class type data members their corresponding copy constructors c.q. assignment
operators are called. The compiler also attempts to provide default implementations for move con-
structors and move assignment operators. However, the default constructors and assignment operators
cannot always be provided.

These are the rules the compiler applies when deciding what to provide or not to provide:

e If the copy constructor or the copy assignment operator is declared, then the default move con-
structor and move assignment operator are suppressed; their use is replaced by the corresponding
copy operation (constructor or assignment operator);

e If the move constructor or the move assignment operator is declared then the copy constructor
and the copy assignment operator are implicitly declared as deleted, and can therefore not be
used anymore;

e If either the move constructor or the move assignment operator is declared, then (in addition to
suppressing the copy operations) the default implementation of the other move-member is also
suppressed;

* In all other cases the default copy and move constructors and the default copy and assignment
operators are provided.

If default implementations of copy or move constructors or assignment operators are suppressed, but
they should be available, then it’s easy to provide the default implementations by specifying the re-
quired signatures, to which the specification ‘= default’is added.

Here is an example of a class offering all defaults: constructor, copy constructor, move constructor, copy
assignment operator and move assignment operator:

class Defaults

{
int d_x;
Mov d_mov;

}i

Assuming that Mov is a class offering move operations in addition to the standard copy operations, then
the following actions are performed on the destination’s d_mov and d_x:

Defaults factory();



int main ()

{ Mov operation: d_x:
Defaults one; Mov (), undefined
Defaults two (one) ; Mov (Mov const &), one.d_x

Defaults three (factory()); Mov (Mov &&tmp), tmp.d_x

one = two; Mov: :operator=( two.d_x
Mov const &),

factory () ; Mov: :operator=( tmp.d_x
Mov &&tmp)

one

If, Defaults declares at least one constructor (not being the copy- or move constructor) as well as the
copy assignment operators then only the default copy- and declared assignment operator are available.
E.g.:

class Defaults

{
int d_x;
Mov d_mov;

public:
Defaults (int x);

Defaults &operator=(Default const &rhs);
}i

Defaults factory();

int main ()

{ Mov operation: resulting d_x:
Defaults one; ERROR: not available
Defaults two (one) ; Mov (Mov const &), one.d_x
Defaults three(factory()); Mov (Mov const &), one.d_x
one = two; Mov: :operatpr=( two.d_x
Mov const &)
one = factory(); Mov: :operator=( tmp.d_x

Mov const &)

To reestablish the defaults, append = default to the appropriate declarations:

class Defaults
{
int d_x;
Mov d_mov;

public:
Defaults () = default;
Defaults (int x);
// Defaults (Default const &) remains available (by default)

Defaults (Defaults &&tmp) = default;



Defaults &operator=(Defaults &&tmp) = default;
}i

Be cautious declaring defaults, as default implementations copy data members of primitive types byte-
by-byte from the source object to the destination object. This is likely to cause problems with pointer
type data members.

The = default suffix can only be used when declaring constructors or assignment operators in the
class’s public section.

9.7.8 Moving: implications for class design

Here are some general rules to apply when designing classes offering value semantics (i.e., classes
whose objects can be used to initialize other objects of their class and that can be asssigned to other
objects of their class):

¢ (Classes using pointers to dynamically allocated memory, owned by the class’s objects must be
provided with a copy constructor, an overloaded copy assignment operator and a destructor;

¢ (Classes using pointers to dynamically allocated memory, owned by the class’s objects, should be
provided with a move constructor and a move assignment operator;

¢ (Classes using composition may benefit from move constructors and move assignment operators
as well. Some classes support neither move nor copy construction and assignment (for example:
stream classes don’t). If your class contains data members of such class types then defining move
operations is pointless.

In the previous sections we’ve also encountered an important design principle that can be applied to
move-aware classes:

Whenever a member of a class receives a const & to an object of its own class and creates a
copy of that object to perform its actual actions on, then that function’s implementation can
be implemented by an overloaded function expecting an rvalue reference.

The former function can now call the latter by passing std: :move (tmp) to it. The advantages of this
design principle should be clear: there is only one implementation of the actual actions, and the class
automatically becomes move-aware with respect to the involved function.

We’ve seen an initial example of the use of this principle in section 9.7.4. Of course, the principle cannot
be applied to the copy constructor itself, as you need a copy constructor to make a copy. The copy- and
move constructors must always be implemented independently from each other.

9.8 Copy Elision and Return Value Optimization

When the compiler selects a member function (or constructor) it applies a simple set of rules, matching
arguments with parameter types.

Below two tables are shown. The first table should be used in cases where a function argument has a
name, the second table should be used in cases where the argument is anonymous. In each table select
the const or non-const column and then use the topmost overloaded function that is available having
the specified parameter type.

The tables do not handle functions defining value parameters. If a function has overloads expecting,
respectively, a value parameter and some form of reference parameter the compiler reports an ambigu-
ity when such a function is called. In the following selection procedure we may assume, without loss of
generality, that this ambiguity does not occur and that all parameter types are reference parameters.



* a named argument (an lvalue or a named rvalue)

the argument is:
non-const const
Use the topmost (T &)
available function (T const &) (T const &)

Example: for an int x argument a function fun (int &) is selected rather than a function
fun(int const &). Ifno fun(int &) is available the fun (int const &) function is used.
If neither is available (and fun (int) hasn’t been defined instead) the compiler reports an error.

* an anonymous argument (an anonymous temporary or a literal value)

the argument is:
non-const const
Use the topmost (T &&)
available function (T const &) (T const &)

Example: when the return value of an int arg () function is passed to a function fun for which
various overloaded versions are available fun (int &&) is selected. If this function is unavailable
but fun (int const &) is, then the latter function is used. If none of these two functions is
available the compiler reports an error.

The tables show that eventually all arguments can be used with a function specifying a T const &
parameter. For anonymous arguments a similar catch all is available having a higher priority: T const
&& matches all anonymous arguments. Functions having this signature are normally not defined as
their implementations are (should be) identic