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Abstract

This document is intended for knowledgeable users of C (or any other language using a C-like grammar,

like Perl or Java) who would like to know more about, or make the transition to, C++. This document is

the main textbook for Frank’s C++ programming courses, which are yearly organized at the University

of Groningen. The C++ Annotations do not cover all aspects of C++, though. In particular, C++’s basic

grammar is not covered when equal to C’s grammar. Any basic book on C may be consulted to refresh

that part of C++’s grammar.

If you want a hard-copy version of the C++ Annotations: printable versions are available in zip-

archives containing files in postscript, pdf and other formats at

https://gitlab.com/fbb-git/cppannotations-zip

Pages of files having names starting with cplusplus are in A4 paper size, pages of files having names

starting with cplusplusus are in the US legal paper size. The C++ Annotations are also available as

a Kindle book.

The latest version of the C++ Annotations in html-format can be browsed at:

https://fbb-git.gitlab.io/cppannotations/

and/or at

http://www.icce.rug.nl/documents/
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Chapter 1

Overview Of The Chapters

The chapters of the C++ Annotations cover the following topics:

• Chapter 1: This overview of the chapters.

• Chapter 2: A general introduction to C++.

• Chapter 3: A first impression: differences between C and C++.

• Chapter 4: Name Spaces: how to avoid name collisions.

• Chapter 5: The ‘string’ data type.

• Chapter 6: The C++ I/O library.

• Chapter 7: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of a class.

• Chapter 8: Static data and functions: members of a class not bound to objects.

• Chapter 9: Allocation and returning unused memory: new, delete, and the function

set_new_handler().

• Chapter 10: Exceptions: handle errors where appropriate, rather than where they occur.

• Chapter 11: Give your own meaning to operators.

• Chapter 12: Abstract Containers to put stuff into.

• Chapter 13: Building classes upon classes: setting up class hierarchies.

• Chapter 14: Changing the behavior of member functions accessed through base class pointers.

• Chapter 15: Gaining access to private parts: friend functions and classes.

• Chapter 16: Classes having pointers to members: pointing to locations inside objects.

• Chapter 17: Constructing classes and enums within classes.

• Chapter 18: The Standard Template Library.

• Chapter 19: The STL generic algorithms.

• Chapter 20: Multi Threading.

• Chapter 21: Function templates: using molds for type independent functions.

• Chapter 22: Class templates: using molds for type independent classes.

• Chapter 23: Advanced Template Use: programming the compiler.

• Chapter 24: Several examples of programs written in C++.
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Chapter 2

Introduction

This document offers an introduction to the C++ programming language. It is a guide for C/C++

programming courses, yearly presented by Frank at the University of Groningen. This document is

not a complete C/C++ handbook, as much of the C-background of C++ is not covered. Other sources

should be referred to for that (e.g., the on-line book1 suggested to me by George Danchev (danchev

at spnet dot net)).

The reader should be forewarned that extensive knowledge of the C programming language is actually

assumed. The C++ Annotations continue where topics of the C programming language end, such as

pointers, basic flow control and the construction of functions.

Some elements of the language, like specific lexical tokens (like digraphs (e.g., <: for [, and >: for ]))

are not covered by the C++ Annotations, as these tokens occur extremely seldom in C++ source code.

In addition, trigraphs (using ??< for {, and ??> for }) have been removed from C++.

The working draft of the C++ standard is freely available, and can be cloned from the git-repository at

https://gitlab.com/cplusplus/draft.git

The version number of the C++ Annotations (currently 11.5.0) is updated when the content of the

document change. The first number is the major number, and is probably not going to change for some

time: it indicates a major rewriting. The middle number is increased when new information is added to

the document. The last number only indicates small changes; it is increased when, e.g., series of typos

are corrected.

This document is published by the Center of Information Technology, University of Groningen, the

Netherlands under the GNU General Public License2.

The C++ Annotations were typeset using the yodl3 formatting system.

All correspondence concerning suggestions, additions, improvements or changes

to this document should be directed to the author:

Frank B. Brokken

University of Groningen,

PO Box 407,

9700 AK Groningen

The Netherlands

(email: f.b.brokken@rug.nl)

In this chapter an overview of C++’s defining features is presented. A few extensions to C are reviewed

and the concepts of object based and object oriented programming (OOP) are briefly introduced.

1http://publications.gbdirect.co.uk/c_book/
2http://www.gnu.org/licenses/
3https://fbb-git.gitlab.io/yodl/
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2.1 What’s new in the C++ Annotations

This section is modified when the first or second part of the version number changes (and occasionally

also for the third field of the version number). At a major version upgrade the entries of the previous

major version are kept, and entries referring to older releases are removed.

• Version 11.5.0 adds section 18.10 to chapter 18 showing how local variables can directly be asso-

ciated with structured data returned by functions.

• Version 11.4.0 contains a complete overhaul of section 23.13, covering the C++2a concepts.

• Version 11.3.0 covers the three-way comparison operator (cf. section 11.6.2) and various compari-

son classes (cf. section 18.7), added to C++ at the C++2a standard.

• Version 11.2.0 moves the (rewritten) coverage of the chrono and filesystem namespaces to

the Namespaces chapter, and contains a rewrite of the sections covering error_codes,

error_categories, and error_conditions (cf. sections 4.3.2, 10.9, and 23.7).

• Version 11.1.0 contains an almost complete rewrite of the sections covering concepts (section

23.13).

• Version 11.0.0 covers new elements and elements that were re-introduced at the C++2a standard.

Version 11.0.0 is made available at the time the C++2a standard has not yet formally been re-

leased, and compilers do not yet implement all its new elements. Therefore, modifications and

updates may be required once the C++2a standard has officially become the next standard. How-

ever, the elements of the new standard that are now covered by the C++ Annotations are (mostly)

supported by compilers.

– Modules (cf. section 7.12) simplify header processing. E.g., when using modules header

include guards are not required anymore.

– The section about unrestricted unions (9.9) received a major upgrade, and was moved to

chapter 9.

– The section about the syntax of lambda expressions (section 11.11) received a major upgrade.

– Section 4.3 covering the std::filesystem namespace received a new subsection showing

which facilities of the std::filesystem namespace are replacing traditional C functions.

– Transactional memory (covered in section 20.14) simplify access to shared data in multi-

threaded programs.

– Section 22.5.5 covers folding expressions can be used to associate binary operators with a

variadic number of arguments.

– Section 22.6 received a sub-section covering specializing std::tuple elements in combina-

tion with structured binding declarations.

– Section 23.13 covers concepts (re-introduced into the language after having been considered

before), allowing template writers to define requirements for their templates that must be

satisfied before their templates can be used.

2.2 C++’s history

The first implementation of C++ was developed in the 1980s at the AT&T Bell Labs, where the Unix

operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, converting special constructions in

its source code to plain C. Back then this code was compiled by a standard C compiler. The ‘pre-code’,

which was read by the C++ pre-compiler, was usually located in a file with the extension .cc, .C or

.cpp. This file would then be converted to a C source file with the extension .c, which was thereupon

compiled and linked.



the preliminary work of a C++ pre-compiler is nowadays usually performed during the actual compila-

tion process. Often compilers determine the language used in a source file from its extension. This holds

true for Borland’s and Microsoft’s C++ compilers, which assume a C++ source for an extension .cpp.

The GNU compiler g++, which is available on many Unix platforms, assumes for C++ the extension

.cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is a superset

of C: C++ offers the full C grammar and supports all C-library functions, and adds to this features of

its own. This makes the transition from C to C++ quite easy. Programmers familiar with C may start

‘programming in C++’ by using source files having extensions .cc or .cpp instead of .c, and may then

comfortably slip into all the possibilities offered by C++. No abrupt change of habits is required.

2.2.1 History of the C++ Annotations

The original version of the C++ Annotations was written by Frank Brokken and Karel Kubat in Dutch

using LaTeX. After some time, Karel rewrote the text and converted the guide to a more suitable format

and (of course) to English in September 1994.

The first version of the guide appeared on the net in October 1994. By then it was converted to SGML.

Gradually new chapters were added, and the content was modified and further improved (thanks to

countless readers who sent us their comments).

In major version four Frank added new chapters and converted the document from SGML to yodl4.

The C++ Annotations are freely distributable. Be sure to read the legal notes5.

Reading the annotations beyond this point implies that you are aware of these

notes and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to

Frank6.

2.2.2 Compiling a C program using a C++ compiler

Prospective C++ programmers should realize that C++ is not a perfect superset of C. There are some

differences you might encounter when you simply rename a file to a file having the extension .cc and

run it through a C++ compiler:

• In C, sizeof(’c’) equals sizeof(int), ’c’ being any ASCII character. The underlying phi-

losophy is probably that chars, when passed as arguments to functions, are passed as integers

anyway. Furthermore, the C compiler handles a character constant like ’c’ as an integer con-

stant. Hence, in C, the function calls

putchar(10);

and

putchar('\n');

are synonymous.

By contrast, in C++, sizeof(’c’) is always 1 (but see also section 3.4.2). An int is still an int,

though. As we shall see later (section 2.5.4), the two function calls

somefunc(10);

4https://fbb-git.gitlab.io/yodl/
5legal.shtml
6mailto:f.b.brokken@rug.nl



somefunc('\n');

may be handled by different functions: C++ distinguishes functions not only by their names, but

also by their argument types, which are different in these two calls. The former using an int

argument, the latter a char.

• C++ requires very strict prototyping of external functions. E.g., in C a prototype like

void func();

means that a function func() exists, returning no value. The declaration doesn’t specify which

arguments (if any) are accepted by the function.

However, in C++ the above declaration means that the function func() does not accept any

arguments at all. Any arguments passed to it result in a compile-time error.

Note that the keyword extern is not required when declaring functions. A function definition

becomes a function declaration simply by replacing a function’s body by a semicolon. The keyword

extern is required, though, when declaring variables.

2.2.3 Compiling a C++ program

To compile a C++ program, a C++ compiler is required. Considering the free nature of this document,

it won’t come as a surprise that a free compiler is suggested here. The Free Software Foundation (FSF)

provides at http://www.gnu.org a free C++ compiler which is, among other places, also part of the

Debian (http://www.debian.org) distribution of Linux ( http://www.linux.org).

Always use the latest C++ standard supported by your compiler. When the latest standard isn’t used by

default, but is already partially implemented it can usually be selected by specifying the appropriate

flag. E.g., to use the C++2a standard specify the flag --std=c++2a. In the C++ Annotations it is

assumed that this flag is used when compiling the examples.

2.2.3.1 C++ under MS-Windows

For MS-Windows Cygwin (http://cygwin.com) or MinGW (http://mingw-w64.org/doku.php)

provide the foundation for installing the Windows port of the GNU g++ compiler (see also

https://docs.microsoft.com/en-us/windows/wsl/about).

The GNU g++ compiler’s official home page is http://gcc.gnu.org, also containing information

about how to install the compiler in an MS-Windows system.

2.2.3.2 Compiling a C++ source text

Generally the following command can be used to compile a C++ source file ‘source.cc’:

g++ source.cc

This produces a binary program (a.out or a.exe). If the default name is inappropriate, the name of

the executable can be specified using the -o flag (here producing the program source):

g++ -o source source.cc

If a mere compilation is required, the compiled module can be produced using the -c flag:

g++ -c source.cc



C++ programs quickly become too complex to maintain ‘by hand’. With all serious programming

projects program maintenance tools are used. Usually the standard make program is used to main-

tain C++ programs, but good alternatives exist, like the icmake7 or ccbuild8 program maintenance

utilities.

It is strongly advised to start using maintenance utilities early in the study of C++.

2.3 C++: advantages and claims

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed advantages

of C++ are:

• New programs would be developed in less time because old code can be reused.

• Creating and using new data types would be easier than in C.

• The memory management under C++ would be easier and more transparent.

• Programs would be less bug-prone, as C++ uses a stricter syntax and type checking.

• ‘Data hiding’, the usage of data by one program part while other program parts cannot access the

data, would be easier to implement with C++.

Which of these allegations are true? Originally, our impression was that the C++ language was some-

what overrated; the same holding true for the entire object-oriented programming (OOP) approach. The

enthusiasm for the C++ language resembles the once uttered allegations about Artificial-Intelligence

(AI) languages like Lisp and Prolog: these languages were supposed to solve the most difficult AI-

problems ‘almost without effort’. New languages are often oversold: in the end, each problem can be

coded in any programming language (say BASIC or assembly language). The advantages and disadvan-

tages of a given programming language aren’t in ‘what you can do with them’, but rather in ‘which tools

the language offers to implement an efficient and understandable solution to a programming problem’.

Often these tools take the form of syntactic restrictions, enforcing or promoting certain constructions or

simply suggesting intentions by applying or ‘embracing’ such syntactic forms. Rather than a long list of

plain assembly instructions we now use flow control statements, functions, objects or even (with C++)

so-called templates to structure and organize code and to express oneself ‘eloquently’ in the language of

one’s choice.

Concerning the above allegations of C++, we support the following, however.

• The development of new programs while existing code is reused can also be implemented in C by,

e.g., using function libraries. Functions can be collected in a library and need not be re-invented

with each new program. C++, however, offers specific syntax possibilities for code reuse, apart

from function libraries (see chapters 13 and 21).

• Creating and using new data types is certainly possible in C; e.g., by using structs, typedefs

etc.. From these types other types can be derived, thus leading to structs containing structs

and so on. In C++ these facilities are augmented by defining data types which are completely

‘self supporting’, taking care of, e.g., their memory management automatically (without having to

resort to an independently operating memory management system as used in, e.g., Java).

• In C++ memory management can in principle be either as easy or as difficult as it is in C. Es-

pecially when dedicated C functions such as xmalloc and xrealloc are used (allocating the

memory or aborting the program when the memory pool is exhausted). However, with functions

like malloc it is easy to err. Frequently errors in C programs can be traced back to miscalcula-

tions when using malloc. Instead, C++ offers facilities to allocate memory in a somewhat safer

way, using its operator new.

7https://fbb-git.gitlab.io/icmake/
8https://gitlab.com/bneijt/ccbuild/



ever, most modern C compilers implement ‘warning levels’; it is then the programmer’s choice

to disregard or get rid of the warnings. In C++ many of such warnings become fatal errors (the

compilation stops).

• As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or static

variables can be used and special data types such as structs can be manipulated by dedicated

functions. Using such techniques, data hiding can be implemented even in C; though it must be

admitted that C++ offers special syntactic constructions, making it far easier to implement ‘data

hiding’ (and more in general: ‘encapsulation’) in C++ than in C.

C++ in particular (and OOP in general) is of course not the solution to all programming problems.

However, the language does offer various new and elegant facilities which are worth investigating. At

the downside, the level of grammatical complexity of C++ has increased significantly as compared to

C. This may be considered a serious drawback of the language. Although we got used to this increased

level of complexity over time, the transition was neither fast nor painless.

With the C++ Annotations we hope to help the reader when transiting from C to C++ by focusing on

the additions of C++ as compared to C and by leaving out plain C. It is our hope that you like this

document and may benefit from it.

Enjoy and good luck on your journey into C++!

2.4 What is Object-Oriented Programming?

Object-oriented (and object-based) programming propagates a slightly different approach to program-

ming problems than the strategy usually used in C programs. In C programming problems are usually

solved using a ‘procedural approach’: a problem is decomposed into subproblems and this process is

repeated until the subtasks can be coded. Thus a conglomerate of functions is created, communicating

through arguments and variables, global or local (or static).

In contrast (or maybe better: in addition) to this, an object-based approach identifies the keywords

used in a problem statement. These keywords are then depicted in a diagram where arrows are drawn

between those keywords to depict an internal hierarchy. The keywords become the objects in the im-

plementation and the hierarchy defines the relationship between these objects. The term object is used

here to describe a limited, well-defined structure, containing all information about an entity: data types

and functions to manipulate the data. As an example of an object oriented approach, an illustration

follows:

The employees and owner of a car dealer and auto garage company are paid as follows. First,

mechanics who work in the garage are paid a certain sum each month. Second, the owner of

the company receives a fixed amount each month. Third, there are car salesmen who work

in the showroom and receive their salary each month plus a bonus per sold car. Finally, the

company employs second-hand car purchasers who travel around; these employees receive

their monthly salary, a bonus per bought car, and a restitution of their travel expenses.

When representing the above salary administration, the keywords could be mechanics, owner, salesmen

and purchasers. The properties of such units are: a monthly salary, sometimes a bonus per purchase

or sale, and sometimes restitution of travel expenses. When analyzing the problem in this manner we

arrive at the following representation:

• The owner and the mechanics can be represented by identical types, receiving a given salary per

month. The relevant information for such a type would be the monthly amount. In addition this

object could contain data as the name, address and social security number.

• Car salesmen who work in the showroom can be represented as the same type as above but with

some extra functionality: the number of transactions (sales) and the bonus per transaction.



Figure 2.1: Hierarchy of objects in the salary administration.

In the hierarchy of objects we would define the dependency between the first two objects by letting

the car salesmen be ‘derived’ from the owner and mechanics.

• Finally, there are the second-hand car purchasers. These share the functionality of the salesmen

except for travel expenses. The additional functionality would therefore consist of the expenses

made and this type would be derived from the salesmen.

The hierarchy of the identified objects are further illustrated in Figure 2.1.

The overall process in the definition of a hierarchy such as the above starts with the description of the

most simple type. Traditionally (and still encountered with some popular object oriented languages)

more complex types are thereupon derived from the basic type, with each derived type adding some

new functionality. From these derived types, more complex types can again be derived ad infinitum,

until a representation of the entire problem can be made.

Over the years this approach has become less popular in C++ as it typically results in very tight cou-

pling among those types, which in turns reduces rather than enhances the understanding, maintain-

ability and testability of complex programs. The term coupling refers to the degree of independence

between software components: tight coupling means a strong dependency, which is frowned upon in

C++. In C++ object oriented programs more and more favor small, easy to understand hierarchies,

limited coupling and a developmental process where design patterns (cf. Gamma et al. (1995)) play a

central role.

In C++ classes are frequently used to define the characteristics of objects. Classes contain the necessary

functionality to do useful things. Classes generally do not offer all their functionality (and typically

none of their data) to objects of other classes. As we will see, classes tend to hide their properties in

such a way that they are not directly modifiable by the outside world. Instead, dedicated functions

are used to reach or modify the properties of objects. Thus class-type objects are able to uphold their

own integrity. The core concept here is encapsulation of which data hiding is just an example. These

concepts are further elaborated in chapter 7.

2.5 Differences between C and C++

In this section some examples of C++ code are shown. Some differences between C and C++ are high-

lighted.

2.5.1 The function ‘main’

In C++ there are only two variants of the function main: int main() and int main(int argc,

char ∗∗argv).



• The return type of main is int, and not void;

• The function main cannot be overloaded (for other than the abovementioned signatures);

• It is not required to use an explicit return statement at the end of main. If omitted main returns

0;

• The value of argv[argc] equals 0;

• The ‘third char ∗∗envp parameter’ is not defined by the C++ standard and should be avoided.

Instead, the global variable extern char ∗∗environ should be declared providing access to the

program’s environment variables. Its final element has the value 0;

• A C++ program ends normally when the main function returns. Using a function try block (cf.

section 10.11) for main is also considered a normal end of a C++ program. When a C++ ends

normally, destructors (cf. section 9.2) of globally defined objects are activated. A function like

exit(3) does not normally end a C++ program and using such functions is therefore deprecated.

2.5.2 End-of-line comment

According to the ANSI/ISO definition, ‘end of line comment’ is implemented in the syntax of C++. This

comment starts with // and ends at the end-of-line marker. The standard C comment, delimited by /∗

and ∗/ can still be used in C++:

int main()

{

// this is end-of-line comment

// one comment per line

/*
this is standard-C comment, covering

multiple lines

*/

}

Despite the example, it is advised not to use C type comment inside the body of C++ functions. Some-

times existing code must temporarily be suppressed, e.g., for testing purposes. In those cases it’s very

practical to be able to use standard C comment. If such suppressed code itself contains such comment,

it would result in nested comment-lines, resulting in compiler errors. Therefore, the rule of thumb is

not to use C type comment inside the body of C++ functions (alternatively, #if 0 until #endif pair of

preprocessor directives could of course also be used).

2.5.3 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function before it is called, and

the call must match the prototype. The program

int main()

{

printf("Hello World\n");

}

often compiles under C, albeit with a warning that printf() is an unknown function. But C++ compil-

ers (should) fail to produce code in such cases. The error is of course caused by the missing #include

<stdio.h> (which in C++ is more commonly included as #include <cstdio> directive).



possible to define int main() without explicitly defining a return statement, within main it is not

possible to use a return statement without an explicit int-expression. For example:

int main()

{

return; // won't compile: expects int expression, e.g.

// return 1;

}

Implicit conversions from void ∗ to non-void pointers are not allowed. E.g., the following isn’t accepted

in C++:

void *none()

{

return 0;

}

int main()

{

int *empty = none();

}

2.5.4 Function Overloading

In C++ it is possible to define functions having identical names but performing different actions. The

functions must differ in their parameter lists (and/or in their const attribute). An example is given

below:

#include <stdio.h>

void show(int val)

{

printf("Integer: %d\n", val);

}

void show(double val)

{

printf("Double: %lf\n", val);

}

void show(char const *val)

{

printf("String: %s\n", val);

}

int main()

{

show(12);

show(3.1415);

show("Hello World!\n");

}

In the above program three functions show are defined, only differing in their parameter lists, expecting

an int, double and char ∗, respectively. The functions have identical names. Functions having

identical names but different parameter lists are called overloaded. The act of defining such functions

is called ‘function overloading’.



share their names (in this example show), the compiler (and hence the linker) use quite different names.

The conversion of a name in the source file to an internally used name is called ‘name mangling’. E.g.,

the C++ compiler might convert the prototype void show (int) to the internal name VshowI, while

an analogous function having a char ∗ argument might be called VshowCP. The actual names that are

used internally depend on the compiler and are not relevant for the programmer, except where these

names show up in e.g., a listing of the content of a library.

Some additional remarks with respect to function overloading:

• Do not use function overloading for functions doing conceptually different tasks. In the example

above, the functions show are still somewhat related (they print information to the screen).

However, it is also quite possible to define two functions lookup, one of which would find a name

in a list while the other would determine the video mode. In this case the behavior of those two

functions have nothing in common. It would therefore be more practical to use names which

suggest their actions; say, findname and videoMode.

• C++ does not allow identically named functions to differ only in their return values, as it is always

the programmer’s choice to either use or ignore a function’s return value. E.g., the fragment

printf("Hello World!\n");

provides no information about the return value of the function printf. Two functions printf

which only differ in their return types would therefore not be distinguishable to the compiler.

• In chapter 7 the notion of const member functions is introduced (cf. section 7.7). Here it is

merely mentioned that classes normally have so-called member functions associated with them

(see, e.g., chapter 5 for an informal introduction to the concept). Apart from overloading member

functions using different parameter lists, it is then also possible to overload member functions

by their const attributes. In those cases, classes may have pairs of identically named member

functions, having identical parameter lists. Then, these functions are overloaded by their const

attribute. In such cases only one of these functions must have the const attribute.

2.5.5 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments are

supplied by the compiler when they are not specified by the programmer. For example:

#include <stdio.h>

void showstring(char *str = "Hello World!\n");

int main()

{

showstring("Here's an explicit argument.\n");

showstring(); // in fact this says:

// showstring("Hello World!\n");

}

The possibility to omit arguments in situations where default arguments are defined is just a nice

touch: it is the compiler who supplies the lacking argument unless it is explicitly specified at the call.

The code of the program will neither be shorter nor more efficient when default arguments are used.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4);



int main()

{

two_ints(); // arguments: 1, 4

two_ints(20); // arguments: 20, 4

two_ints(20, 5); // arguments: 20, 5

}

When the function two_ints is called, the compiler supplies one or two arguments whenever necessary.

A statement like two_ints(,6) is, however, not allowed: when arguments are omitted they must be

on the right-hand side.

Default arguments must be known at compile-time since at that moment arguments are supplied to

functions. Therefore, the default arguments must be mentioned at the function’s declaration, rather

than at its implementation:

// sample header file

void two_ints(int a = 1, int b = 4);

// code of function in, say, two.cc

void two_ints(int a, int b)

{

...

}

It is an error to supply default arguments in both function definitions and function declarations. When

applicable default arguments should be provided in function declarations: when the function is used

by other sources the compiler commonly reads the header file rather than the function definition itself.

Consequently the compiler has no way to determine the values of default arguments if they are provided

in the function definition.

2.5.6 NULL-pointers vs. 0-pointers and nullptr

In C++ all zero values are coded as 0. In C NULL is often used in the context of pointers. This difference

is purely stylistic, though one that is widely adopted. In C++ NULL should be avoided (as it is a macro,

and macros can --and therefore should-- easily be avoided in C++, see also section 8.1.4). Instead 0 can

almost always be used.

Almost always, but not always. As C++ allows function overloading (cf. section 2.5.4) the programmer

might be confronted with an unexpected function selection in the situation shown in section 2.5.4:

#include <stdio.h>

void show(int val)

{

printf("Integer: %d\n", val);

}

void show(double val)

{

printf("Double: %lf\n", val);

}

void show(char const *val)

{

printf("String: %s\n", val);

}



int main()

{

show(12);

show(3.1415);

show("Hello World!\n");

}

In this situation a programmer intending to call show(char const ∗) might call show(0). But this

doesn’t work, as 0 is interpreted as int and so show(int) is called. But calling show(NULL) doesn’t

work either, as C++ usually defines NULL as 0, rather than ((void ∗)0). So, show(int) is called

once again. To solve these kinds of problems the new C++ standard introduces the keyword nullptr

representing the 0 pointer. In the current example the programmer should call show(nullptr) to

avoid the selection of the wrong function. The nullptr value can also be used to initialize pointer

variables. E.g.,

int *ip = nullptr; // OK

int value = nullptr; // error: value is no pointer

2.5.7 The ‘void’ parameter list

In C, a function prototype with an empty parameter list, such as

void func();

means that the argument list of the declared function is not prototyped: for functions using this pro-

totype the compiler does not warn against calling func with any set of arguments. In C the keyword

void is used when it is the explicit intent to declare a function with no arguments at all, as in:

void func(void);

As C++ enforces strict type checking, in C++ an empty parameter list indicates the total absence of

parameters. The keyword void is thus omitted.

2.5.8 The ‘#define __cplusplus’

Each C++ compiler which conforms to the ANSI/ISO standard defines the symbol __cplusplus: it is

as if each source file were prefixed with the preprocessor directive #define __cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.9 Using standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used in

C++ programs. Such functions, however, must be declared as C functions.

As an example, the following code fragment declares a function xmalloc as a C function:

extern "C" void *xmalloc(int size);

This declaration is analogous to a declaration in C, except that the prototype is prefixed with extern

"C".



extern "C"

{

// C-declarations go in here

}

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C header

file myheader.h which declares C functions can be included in a C++ source file as follows:

extern "C"

{

#include <myheader.h>

}

Although these two approaches may be used, they are actually seldom encountered in C++ sources. A

more frequently used method to declare external C functions is encountered in the next section.

2.5.10 Header files for both C and C++

The combination of the predefined symbol __cplusplus and the possibility to define extern "C"

functions offers the ability to create header files for both C and C++. Such a header file might, e.g.,

declare a group of functions which are to be used in both C and C++ programs.

The setup of such a header file is as follows:

#ifdef __cplusplus

extern "C"

{

#endif

/* declaration of C-data and functions are inserted here. E.g., */

void *xmalloc(int size);

#ifdef __cplusplus

}

#endif

Using this setup, a normal C header file is enclosed by extern "C" { which occurs near the top of the

file and by }, which occurs near the bottom of the file. The #ifdef directives test for the type of the

compilation: C or C++. The ‘standard’ C header files, such as stdio.h, are built in this manner and

are therefore usable for both C and C++.

In addition C++ headers should support include guards. In C++ it is usually undesirable to include

the same header file twice in the same source file. Such multiple inclusions can easily be avoided by

including an #ifndef directive in the header file. For example:

#ifndef MYHEADER_H_

#define MYHEADER_H_

// declarations of the header file is inserted here,

// using #ifdef __cplusplus etc. directives

#endif

When this file is initially scanned by the preprocessor, the symbol MYHEADER_H_ is not yet defined. The

#ifndef condition succeeds and all declarations are scanned. In addition, the symbol MYHEADER_H_

is defined.



defined and consequently all information between the #ifndef and #endif directives is skipped by

the compiler.

In this context the symbol name MYHEADER_H_ serves only for recognition purposes. E.g., the name of

the header file can be used for this purpose, in capitals, with an underscore character instead of a dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give C++

header files no extension. For example, the standard iostreams cin, cout and cerr are available

after including the header file iostream, rather than iostream.h. In the Annotations this convention

is used with the standard C++ header files, but not necessarily everywhere else.

There is more to be said about header files. Section 7.11 provides an in-depth discussion of the preferred

organization of C++ header files. In addition, starting with the C++2a standard modules are available

resulting in a somewhat more efficient way of handling declarations than offered by the traditional

header files. In the C++ Annotations modules are covered in chapter 7, section 7.12.

2.5.11 Defining local variables

Although already available in the C programming language, local variables should only be defined

once they’re needed. Although doing so requires a little getting used to, eventually it tends to produce

more readable, maintainable and often more efficient code than defining variables at the beginning of

compound statements. We suggest to apply the following rules of thumb when defining local variables:

• Local variables should be created at ‘intuitively right’ places, such as in the example below. This

does not only entail the for-statement, but also all situations where a variable is only needed,

say, half-way through the function.

• More in general, variables should be defined in such a way that their scope is as limited and

localized as possible. When avoidable local variables are not defined at the beginning of functions

but rather where they’re first used.

• It is considered good practice to avoid global variables. It is fairly easy to lose track of which

global variable is used for what purpose. In C++ global variables are seldom required, and by

localizing variables the risk of using the same variable for multiple purposes (thereby invalidating

the separate purposes of the variable), can easily be avoided.

If considered appropriate, nested blocks can be used to localize auxiliary variables. However, situations

exist where local variables are considered appropriate inside nested statements. The just mentioned

for statement is of course a case in point, but local variables can also be defined within the condition

clauses of if-else statements, within selection clauses of switch statements and condition clauses

of while statements. Variables thus defined are available to the full statement, including its nested

statements. For example, consider the following switch statement:

#include <stdio.h>

int main()

{

switch (int c = getchar())

{

case 'a':

case 'e':

case 'i':

case 'o':

case 'u':

printf("Saw vowel %c\n", c);

break;



printf("Saw EOF\n");

break;

case '0' ... '9':

printf("Saw number character %c\n", c);

break;

default:

printf("Saw other character, hex value 0x%2x\n", c);

}

}

Note the location of the definition of the character ‘c’: it is defined in the expression part of the switch

statement. This implies that ‘c’ is available only to the switch statement itself, including its nested

(sub)statements, but not outside the scope of the switch.

The same approach can be used with if and while statements: a variable that is defined in the

condition clause of an if and while statement is available in their nested statements. There are some

caveats, though:

• The variable that is defined in the condition clause must be a variable which is initialized to a

numeric or logical value;

• The variable definition cannot be nested (e.g., using parentheses) within a more complex expres-

sion.

The former point of attention should come as no big surprise: in order to be able to evaluate the log-

ical condition of an if or while statement, the value of the variable must be interpretable as either

zero (false) or non-zero (true). Usually this is no problem, but in C++ objects (like objects of the type

std::string (cf. chapter 5)) are often returned by functions. Such objects may or may not be in-

terpretable as numeric values. If not (as is the case with std::string objects), then such variables

can not be defined at the condition or expression clauses of condition- or repetition statements. The

following example will therefore not compile:

if (std::string myString = getString()) // assume getString returns

{ // a std::string value

// process myString

}

The above example requires additional clarification. Often a variable can profitably be given local scope,

but an extra check is required immediately following its initialization. The initialization and the test

cannot both be combined in one expression. Instead two nested statements are required. Consequently,

the following example won’t compile either:

if ((int c = getchar()) && strchr("aeiou", c))

printf("Saw a vowel\n");

If such a situation occurs, either use two nested if statements, or localize the definition of int c using

a nested compound statement:

if (int c = getchar()) // nested if-statements

if (strchr("aeiou", c))

printf("Saw a vowel\n");

{ // nested compound statement

int c = getchar();



printf("Saw a vowel\n");

}

2.5.12 The keyword ‘typedef’

The keyword typedef is still used in C++, but is not required anymore when defining union, struct

or enum definitions. This is illustrated in the following example:

struct SomeStruct

{

int a;

double d;

char string[80];

};

When a struct, union or other compound type is defined, the tag of this type can be used as type

name (this is SomeStruct in the above example):

SomeStruct what;

what.d = 3.1415;

2.5.13 Functions as part of a struct

In C++ we may define functions as members of structs. Here we encounter the first concrete example

of an object: as previously described (see section 2.4), an object is a structure containing data while

specialized functions exist to manipulate those data.

A definition of a struct Point is provided by the code fragment below. In this structure, two int

data fields and one function draw are declared.

struct Point // definition of a screen-dot

{

int x; // coordinates

int y; // x/y

void draw(); // drawing function

};

A similar structure could be part of a painting program and could, e.g., represent a pixel. With respect

to this struct it should be noted that:

• The function draw mentioned in the struct definition is a mere declaration. The actual code

of the function defining the actions performed by the function is found elsewhere (the concept of

functions inside structs is further discussed in section 3.2).

• The size of the struct Point is equal to the size of its two ints. A function declared inside the

structure does not affect its size. The compiler implements this behavior by allowing the function

draw to be available only in the context of a Point.

The Point structure could be used as follows:

Point a; // two points on

Point b; // the screen



a.x = 0; // define first dot

a.y = 10; // and draw it

a.draw();

b = a; // copy a to b

b.y = 20; // redefine y-coord

b.draw(); // and draw it

As shown in the above example a function that is part of the structure may be selected using the dot (.)

(the arrow (->) operator is used when pointers to objects are available). This is therefore identical to

the way data fields of structures are selected.

The idea behind this syntactic construction is that several types may contain functions having identical

names. E.g., a structure representing a circle might contain three int values: two values for the

coordinates of the center of the circle and one value for the radius. Analogously to the Point structure,

a Circle may now have a function draw to draw the circle.

2.5.14 Evaluation order of operands

Traditionally, the evaluation order of expressions of operands of binary operators is, except for the

boolean operators and and or, not defined. C++ changed this for postfix expressions, assignment ex-

pressions (including compound assignments), and shift operators:

• Expressions using postfix operators (like index operators and member selectors) are evaluated

from left to right (do not confuse this with postfix increment or decrement operators, which cannot

be concatenated (e.g., variable++++ does not compile)).

• Assignment expressions are evaluated from right to left;

• Operands of shift operators are evaluated from left to right.

In the following examples first is evaluated before second, before third, before fourth, whether

they are single variables, parenthesized expressions, or function calls:

first.second

fourth += third = second += first

first << second << third << fourth

first >> second >> third >> fourth

In addition, when overloading an operator, the function implementing the overloaded operator is eval-

uated like the built-in operator it overloads, and not in the way function calls are generally ordered.





Chapter 3

A First Impression Of C++

In this chapter C++ is further explored. The possibility to declare functions in structs is illustrated

in various examples; the concept of a class is introduced; casting is covered in detail; many new types

are introduced and several important notational extensions to C are discussed.

3.1 Notable differences with C

Before we continue with the ‘real’ object-approach to programming, we first introduce some notable

differences with the C programming language: not mere differences between C and C++, but important

syntactic constructs and keywords not found or differently used in C.

3.1.1 Using the keyword ‘const’

Even though the keyword const is part of the C grammar, its use is more important and much more

common and strictly used in C++ than it is in C.

The const keyword is a modifier stating that the value of a variable or of an argument may not be

modified. In the following example the intent is to change the value of a variable ival, which fails:

int main()

{

int const ival = 3; // a constant int

// initialized to 3

ival = 4; // assignment produces

// an error message

}

This example shows how ival may be initialized to a given value in its definition; attempts to change

the value later (in an assignment) are not permitted.

Variables that are declared const can, in contrast to C, be used to specify the size of an array, as in the

following example:

int const size = 20;

char buf[size]; // 20 chars big

Another use of the keyword const is seen in the declaration of pointers, e.g., in pointer-arguments. In

the declaration
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buf is a pointer variable pointing to chars. Whatever is pointed to by buf may not be changed through

buf: the chars are declared as const. The pointer buf itself however may be changed. A statement

like ∗buf = ’a’; is therefore not allowed, while ++buf is.

In the declaration

char *const buf;

buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf may

be changed at will.

Finally, the declaration

char const *const buf;

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: whatever occurs to the left

to the keyword may not be changed.

Although simple, this rule of thumb is often used. For example, Bjarne Stroustrup states (in

http://www.research.att.com/~bs/bs_faq2.html#constplacement):

Should I put "const" before or after the type?

I put it before, but that’s a matter of taste. "const T" and "T const" were always (both) allowed

and equivalent. For example:

const int a = 1; // OK

int const b = 2; // also OK

My guess is that using the first version will confuse fewer programmers (“is more idiomatic”).

But we’ve already seen an example where applying this simple ‘before’ placement rule for the keyword

const produces unexpected (i.e., unwanted) results as we will shortly see (below). Furthermore, the

‘idiomatic’ before-placement also conflicts with the notion of const functions, which we will encounter

in section 7.7. With const functions the keyword const is also placed behind rather than before the

name of the function.

The definition or declaration (either or not containing const) should always be read from the variable

or function identifier back to the type identifier:

“Buf is a const pointer to const characters”

This rule of thumb is especially useful in cases where confusion may occur. In examples of C++ code

published in other places one often encounters the reverse: const preceding what should not be altered.

That this may result in sloppy code is indicated by our second example above:

char const *buf;

What must remain constant here? According to the sloppy interpretation, the pointer cannot be altered

(as const precedes the pointer). In fact, the char values are the constant entities here, as becomes

clear when we try to compile the following program:

int main()



char const *buf = "hello";

++buf; // accepted by the compiler

*buf = 'u'; // rejected by the compiler

}

Compilation fails on the statement ∗buf = ’u’; and not on the statement ++buf.

Marshall Cline’s C++ FAQ1 gives the same rule (paragraph 18.5) , in a similar context:

[18.5] What’s the difference between "const Fred∗ p", "Fred∗ const p" and "const Fred∗ const

p"?

You have to read pointer declarations right-to-left.

Marshall Cline’s advice can be improved, though. Here’s a recipe that will effortlessly dissect even the

most complex declaration:

1. start reading at the variable’s name

2. read as far as possible until you reach the end of the declaration or an (as yet unmatched) closing

parenthesis.

3. return to the point where you started reading, and read backwards until you reach the beginning

of the declaration or a matching opening parenthesis.

4. If you reached an opening parenthesis, continue at step 2 beyond the parenthesis where you

previously stopped.

Let’s apply this recipe to the following (by itself irrelevant) complex declaration. Little arrows indicate

how far we should read at each step and the direction of the arrow indicates the reading direction:

char const *(* const (*(*ip)())[])[]

ip Start at the variable's name:

'ip' is

ip) Hitting a closing paren: revert

-->

(*ip) Find the matching open paren:

<- 'a pointer to'

(*ip)()) The next unmatched closing par:

--> 'a function (not expecting

arguments)'

(*(*ip)()) Find the matching open paren:

<- 'returning a pointer to'

(*(*ip)())[]) The next closing par:

--> 'an array of'

(* const (*(*ip)())[]) Find the matching open paren:

<-------- 'const pointers to'

(* const (*(*ip)())[])[] Read until the end:

1http://www.parashift.com/c++-faq-lite/const-correctness.html



char const *(* const (*(*ip)())[])[] Read backwards what's left:

<----------- 'pointers to const chars'

Collecting all the parts, we get for char const ∗(∗ const (∗(∗ip)())[])[]: ip is a pointer to a

function (not expecting arguments), returning a pointer to an array of const pointers to an array of

pointers to const chars. This is what ip represents; the recipe can be used to parse any declaration you

ever encounter.

3.1.2 Namespaces

C++ introduces the notion of a namespace: all symbols are defined in a larger context, called a names-

pace. Namespaces are used to avoid name conflicts that could arise when a programmer would like to

define a function like sin operating on degrees, but does not want to lose the capability of using the

standard sin function, operating on radians.

Namespaces are covered extensively in chapter 4. For now it should be noted that most compilers

require the explicit declaration of a standard namespace: std. So, unless otherwise indicated, it is

stressed that all examples in the Annotations now implicitly use the

using namespace std;

declaration. So, if you actually intend to compile examples given in the C++ Annotations, make sure

that the sources start with the above using declaration.

3.1.3 The scope resolution operator ::

C++ introduces several new operators, among which the scope resolution operator (::). This operator

can be used in situations where a global variable exists having the same name as a local variable:

#include <stdio.h>

double counter = 50; // global variable

int main()

{

for (int counter = 1; // this refers to the

counter != 10; // local variable

++counter)

{

printf("%d\n",

::counter // global variable

/ // divided by

counter); // local variable

}

}

In the above program the scope operator is used to address a global variable instead of the local variable

having the same name. In C++ the scope operator is used extensively, but it is seldom used to reach

a global variable shadowed by an identically named local variable. Its main purpose is encountered in

chapter 7.



Analogous to C, C++ defines standard input- and output streams which are available when a program

is executed. The streams are:

• cout, analogous to stdout,

• cin, analogous to stdin,

• cerr, analogous to stderr.

Syntactically these streams are not used as functions: instead, data are written to streams or read

from them using the operators <<, called the insertion operator and >>, called the extraction operator.

This is illustrated in the next example:

#include <iostream>

using namespace std;

int main()

{

int ival;

char sval[30];

cout << "Enter a number:\n";

cin >> ival;

cout << "And now a string:\n";

cin >> sval;

cout << "The number is: " << ival << "\n"

"And the string is: " << sval << '\n';

}

This program reads a number and a string from the cin stream (usually the keyboard) and prints these

data to cout. With respect to streams, please note:

• The standard streams are declared in the header file iostream. In the examples in the C++

Annotations this header file is often not mentioned explicitly. Nonetheless, it must be included

(either directly or indirectly) when these streams are used. Comparable to the use of the using

namespace std; clause, the reader is expected to #include <iostream> with all the exam-

ples in which the standard streams are used.

• The streams cout, cin and cerr are variables of so-called class-types. Such variables are com-

monly called objects. Classes are discussed in detail in chapter 7 and are used extensively in

C++.

• The stream cin extracts data from a stream and copies the extracted information to variables

(e.g., ival in the above example) using the extraction operator (two consecutive > characters:

>>). Later in the Annotations we will describe how operators in C++ can perform quite different

actions than what they are defined to do by the language, as is the case here. Function overloading

has already been mentioned. In C++ operators can also have multiple definitions, which is called

operator overloading.

• The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate variables

of different types. In the above example cout << ival results in the printing of an integer value,

whereas cout << "Enter a number" results in the printing of a string. The actions of the

operators therefore depend on the types of supplied variables.

• The extraction operator (>>) performs a so called type safe assignment to a variable by ‘extracting’

its value from a text stream. Normally, the extraction operator skips all whitespace characters

preceding the values to be extracted.



serting "\n" or ’\n’. But when inserting the endl symbol the line is terminated followed by

the flushing of the stream’s internal buffer. Thus, endl can usually be avoided in favor of ’\n’

resulting in somewhat more efficient code.

The stream objects cin, cout and cerr are not part of the C++ grammar proper. The streams are part

of the definitions in the header file iostream. This is comparable to functions like printf that are not

part of the C grammar, but were originally written by people who considered such functions important

and collected them in a run-time library.

A program may still use the old-style functions like printf and scanf rather than the new-style

streams. The two styles can even be mixed. But streams offer several clear advantages and in many

C++ programs have completely replaced the old-style C functions. Some advantages of using streams

are:

• Using insertion and extraction operators is type-safe. The format strings which are used with

printf and scanf can define wrong format specifiers for their arguments, for which the compiler

sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is performed by

the compiler. Consequently it isn’t possible to err by providing an int argument in places where,

according to the format string, a string argument should appear. With streams there are no

format strings.

• The functions printf and scanf (and other functions using format strings) in fact implement

a mini-language which is interpreted at run-time. In contrast, with streams the C++ compiler

knows exactly which in- or output action to perform given the arguments used. No mini-language

here.

• In addition the possibilities of the insertion and extraction operators may be extended allowing

objects of classes that didn’t exist when the streams were originally designed to be inserted into

or extracted from streams. Mini languages as used with printf cannot be extended.

• The usage of the left-shift and right-shift operators in the context of the streams illustrates yet

another capability of C++: operator overloading allowing us to redefine the actions an operator

performs in certain contexts. Coming from C operator overloading requires some getting used to,

but after a short little while these overloaded operators feel rather comfortable.

• Streams are independent of the media they operate upon. This (at this point somewhat abstract)

notion means that the same code can be used without any modification at all to interface your code

to any kind of device. The code using streams can be used when the device is a file on disk; an

Internet connection; a digital camera; a DVD device; a satellite link; and much more: you name

it. Streams allow your code to be decoupled (independent) of the devices your code is supposed to

operate on, which eases maintenance and allows reuse of the same code in new situations.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 6 iostreams are

covered in greater detail. Even though printf and friends can still be used in C++ programs, streams

have practically replaced the old-style C I/O functions like printf. If you think you still need to use

printf and related functions, think again: in that case you’ve probably not yet completely grasped the

possibilities of stream objects.

3.2 Functions as part of structs

Earlier we noted that functions can be part of structs (see section 2.5.13). Such functions are called

member functions. This section briefly discusses how to define such functions.

The code fragment below shows a struct having data fields for a person’s name and address. A

function print is included in the struct’s definition:

struct Person



char name[80];

char address[80];

void print();

};

When defining the member function print the structure’s name (Person) and the scope resolution

operator (::) are used:

void Person::print()

{

cout << "Name: " << name << "\n"

"Address: " << address << '\n';

}

The implementation of Person::print shows how the fields of the struct can be accessed without

using the structure’s type name. Here the function Person::print prints a variable name. Since

Person::print is itself a part of struct person, the variable name implicitly refers to the same

type.

This struct Person could be used as follows:

Person person;

strcpy(person.name, "Karel");

strcpy(person.address, "Marskramerstraat 33");

person.print();

The advantage of member functions is that the called function automatically accesses the data fields

of the structure for which it was invoked. In the statement person.print() the object person is the

‘substrate’: the variables name and address that are used in the code of print refer to the data stored

in the person object.

3.2.1 Data hiding: public, private and class

As mentioned before (see section 2.3), C++ contains specialized syntactic possibilities to implement

data hiding. Data hiding is the capability of sections of a program to hide its data from other sections.

This results in very clean data definitions. It also allows these sections to enforce the integrity of their

data.

C++ has three keywords that are related to data hiding: private, protected and public. These

keywords can be used in the definition of structs. The keyword public allows all subsequent fields of

a structure to be accessed by all code; the keyword private only allows code that is part of the struct

itself to access subsequent fields. The keyword protected is discussed in chapter 13, and is somewhat

outside of the scope of the current discussion.

In a struct all fields are public, unless explicitly stated otherwise. Using this knowledge we can

expand the struct Person:

struct Person

{

private:

char d_name[80];

char d_address[80];

public:

void setName(char const *n);



Figure 3.1: Private data and public interface functions of the class Person.

void setAddress(char const *a);

void print();

char const *name();

char const *address();

};

As the data fields d_name and d_address are in a private section they are only accessible to the

member functions which are defined in the struct: these are the functions setName, setAddress

etc.. As an illustration consider the following code:

Person fbb;

fbb.setName("Frank"); // OK, setName is public

strcpy(fbb.d_name, "Knarf"); // error, x.d_name is private

Data integrity is implemented as follows: the actual data of a struct Person are mentioned in the

structure definition. The data are accessed by the outside world using special functions that are also

part of the definition. These member functions control all traffic between the data fields and other

parts of the program and are therefore also called ‘interface’ functions. The thus implemented data

hiding is illustrated in Figure 3.1. The members setName and setAddress are declared with char

const ∗ parameters. This indicates that the functions will not alter the strings which are supplied as

their arguments. Analogously, the members name and address return char const ∗s: the compiler

prevents callers of those members from modifying the information made accessible through the return

values of those members.

Two examples of member functions of the struct Person are shown below:

void Person::setName(char const *n)

{

strncpy(d_name, n, 79);

d_name[79] = 0;

}

char const *Person::name()

{

return d_name;

}

The power of member functions and of the concept of data hiding results from the abilities of member

functions to perform special tasks, e.g., checking the validity of the data. In the above example setName



overflow.

Another illustration of the concept of data hiding is the following. As an alternative to member func-

tions that keep their data in memory a library could be developed featuring member functions storing

data on file. To convert a program storing Person structures in memory to one that stores the data

on disk no special modifications are required. After recompilation and linking the program to a new

library it is converted from storage in memory to storage on disk. This example illustrates a broader

concept than data hiding; it illustrates encapsulation. Data hiding is a kind of encapsulation. Encap-

sulation in general results in reduced coupling of different sections of a program. This in turn greatly

enhances reusability and maintainability of the resulting software. By having the structure encapsu-

late the actual storage medium the program using the structure becomes independent of the actual

storage medium that is used.

Though data hiding can be implemented using structs, more often (almost always) classes are used

instead. A class is a kind of struct, except that a class uses private access by default, whereas structs

use public access by default. The definition of a class Person is therefore identical to the one shown

above, except that the keyword class has replaced struct while the initial private: clause can be

omitted. Our typographic suggestion for class names (and other type names defined by the program-

mer) is to start with a capital character to be followed by the remainder of the type name using lower

case letters (e.g., Person).

3.2.2 Structs in C vs. structs in C++

In this section we’ll discuss an important difference between C and C++ structs and (member) func-

tions. In C it is common to define several functions to process a struct, which then require a pointer

to the struct as one of their arguments. An imaginary C header file showing this concept is:

/* definition of a struct PERSON This is C */

typedef struct

{

char name[80];

char address[80];

} PERSON;

/* some functions to manipulate PERSON structs */

/* initialize fields with a name and address */

void initialize(PERSON *p, char const *nm,

char const *adr);

/* print information */

void print(PERSON const *p);

/* etc.. */

In C++, the declarations of the involved functions are put inside the definition of the struct or class.

The argument denoting which struct is involved is no longer needed.

class Person

{

char d_name[80];

char d_address[80];

public:

void initialize(char const *nm, char const *adr);

void print();



};

In C++ the struct parameter is not used. A C function call such as:

PERSON x;

initialize(&x, "some name", "some address");

becomes in C++:

Person x;

x.initialize("some name", "some address");

3.3 Several additions to C’s grammar

3.3.1 References

In addition to the common ways to define variables (plain variables or pointers) C++ introduces refer-

ences defining synonyms for variables. A reference to a variable is like an alias; the variable and the

reference can both be used in statements involving the variable:

int int_value;

int &ref = int_value;

In the above example a variable int_value is defined. Subsequently a reference ref is defined, which

(due to its initialization) refers to the same memory location as int_value. In the definition of ref, the

reference operator & indicates that ref is not itself an int but a reference to one. The two statements

++int_value;

++ref;

have the same effect: they increment int_value’s value. Whether that location is called int_value

or ref does not matter.

References serve an important function in C++ as a means to pass modifiable arguments to functions.

E.g., in standard C, a function that increases the value of its argument by five and returning nothing

needs a pointer parameter:

void increase(int *valp) // expects a pointer

{ // to an int

*valp += 5;

}

int main()

{

int x;

increase(&x); // pass x's address

}

This construction can also be used in C++ but the same effect is also achieved using a reference:

void increase(int &valr) // expects a reference



valr += 5;

}

int main()

{

int x;

increase(x); // passed as reference

}

It is arguable whether code such as the above should be preferred over C’s method, though. The

statement increase (x) suggests that not x itself but a copy is passed. Yet the value of x changes

because of the way increase() is defined. However, references can also be used to pass objects that

are only inspected (without the need for a copy or a const ∗) or to pass objects whose modification is an

accepted side-effect of their use. In those cases using references are strongly preferred over existing

alternatives like copy by value or passing pointers.

Behind the scenes references are implemented using pointers. So, as far as the compiler is concerned

references in C++ are just const pointers. With references, however, the programmer does not need

to know or to bother about levels of indirection. An important distinction between plain pointers and

references is of course that with references no indirection takes place. For example:

extern int *ip;

extern int &ir;

ip = 0; // reassigns ip, now a 0-pointer

ir = 0; // ir unchanged, the int variable it refers to

// is now 0.

In order to prevent confusion, we suggest to adhere to the following:

• In those situations where a function does not alter its parameters of a built-in or pointer type,

value parameters can be used:

void some_func(int val)

{

cout << val << '\n';

}

int main()

{

int x;

some_func(x); // a copy is passed

}

• When a function explicitly must change the values of its arguments, a pointer parameter is pre-

ferred. These pointer parameters should preferably be the function’s initial parameters. This is

called return by argument.

void by_pointer(int *valp)

{

*valp += 5;

}

• When a function doesn’t change the value of its class- or struct-type arguments, or if the modi-

fication of the argument is a trivial side-effect (e.g., the argument is a stream) references can be

used. Const-references should be used if the function does not modify the argument:

void by_reference(string const &str)



cout << str; // no modification of str

}

int main ()

{

int x = 7;

by_pointer(&x); // a pointer is passed

// x might be changed

string str("hello");

by_reference(str); // str is not altered

}

References play an important role in cases where the argument is not changed by the function

but where it is undesirable to copy the argument to initialize the parameter. Such a situation

occurs when a large object is passed as argument, or is returned by the function. In these cases

the copying operation tends to become a significant factor, as the entire object must be copied. In

these cases references are preferred.

If the argument isn’t modified by the function, or if the caller shouldn’t modify the returned

information, the const keyword should be used. Consider the following example:

struct Person // some large structure

{

char name[80];

char address[90];

double salary;

};

Person person[50]; // database of persons

// printperson expects a

// reference to a structure

// but won't change it

void printperson (Person const &subject)

{

cout << "Name: " << subject.name << '\n' <<

"Address: " << subject.address << '\n';

}

// get a person by index value

Person const &personIdx(int index)

{

return person[index]; // a reference is returned,

} // not a copy of person[index]

int main()

{

Person boss;

printperson(boss); // no pointer is passed,

// so `boss' won't be

// altered by the function

printperson(personIdx(5));

// references, not copies

// are passed here

}

• Furthermore, note that there is yet another reason for using references when passing objects as

function arguments. When passing a reference to an object, the activation of a so called copy

constructor is avoided. Copy constructors are covered in chapter 9.



the following example:

int &func()

{

static int value;

return value;

}

This allows the use of the following constructions:

func() = 20;

func() += func();

It is probably superfluous to note that such constructions should normally not be used. Nonetheless,

there are situations where it is useful to return a reference. We have actually already seen an example

of this phenomenon in our previous discussion of streams. In a statement like cout << "Hello" <<

’\n’; the insertion operator returns a reference to cout. So, in this statement first the "Hello" is

inserted into cout, producing a reference to cout. Through this reference the ’\n’ is then inserted in

the cout object, again producing a reference to cout, which is then ignored.

Several differences between pointers and references are pointed out in the next list below:

• A reference cannot exist by itself, i.e., without something to refer to. A declaration of a reference

like

int &ref;

is not allowed; what would ref refer to?

• References can be declared as external. These references were initialized elsewhere.

• References may exist as parameters of functions: they are initialized when the function is called.

• References may be used in the return types of functions. In those cases the function determines

what the return value refers to.

• References may be used as data members of classes. We return to this usage later.

• Pointers are variables by themselves. They point at something concrete or just “at nothing”.

• References are aliases for other variables and cannot be re-aliased to another variable. Once a

reference is defined, it refers to its particular variable.

• Pointers (except for const pointers) can be reassigned to point to different variables.

• When an address-of operator & is used with a reference, the expression yields the address of the

variable to which the reference applies. In contrast, ordinary pointers are variables themselves,

so the address of a pointer variable has nothing to do with the address of the variable pointed to.

3.3.2 Rvalue References

In C++, temporary (rvalue) values are indistinguishable from const & types. C++ introduces a new

reference type called an rvalue reference, which is defined as typename &&.

The name rvalue reference is derived from assignment statements, where the variable to the left of the

assignment operator is called an lvalue and the expression to the right of the assignment operator is

called an rvalue. Rvalues are often temporary, anonymous values, like values returned by functions.



typename &). They can be contrasted to rvalue references (using the notation typename &&).

The key to understanding rvalue references is the concept of an anonymous variable. An anonymous

variable has no name and this is the distinguishing feature for the compiler to associate it automatically

with an rvalue reference if it has a choice. Before introducing some interesting constructions let’s first

have a look at some standard situations where lvalue references are used. The following function

returns a temporary (anonymous) value:

int intVal()

{

return 5;

}

Although intVal’s return value can be assigned to an int variable it requires copying, which might

become prohibitive when a function does not return an int but instead some large object. A reference or

pointer cannot be used either to collect the anonymous return value as the return value won’t survive

beyond that. So the following is illegal (as noted by the compiler):

int &ir = intVal(); // fails: refers to a temporary

int const &ic = intVal(); // OK: immutable temporary

int *ip = &intVal(); // fails: no lvalue available

Apparently it is not possible to modify the temporary returned by intVal. But now consider these

functions:

void receive(int &value) // note: lvalue reference

{

cout << "int value parameter\n";

}

void receive(int &&value) // note: rvalue reference

{

cout << "int R-value parameter\n";

}

and let’s call this function from main:

int main()

{

receive(18);

int value = 5;

receive(value);

receive(intVal());

}

This program produces the following output:

int R-value parameter

int value parameter

int R-value parameter

The program’s output shows the compiler selecting receive(int &&value) in all cases where it re-

ceives an anonymous int as its argument. Note that this includes receive(18): a value 18 has no

name and thus receive(int &&value) is called. Internally, it actually uses a temporary variable to

store the 18, as is shown by the following example which modifies receive:

void receive(int &&value)



++value;

cout << "int R-value parameter, now: " << value << '\n';

// displays 19 and 6, respectively.

}

Contrasting receive(int &value) with receive(int &&value) has nothing to do with int

&value not being a const reference. If receive(int const &value) is used the same results are

obtained. Bottom line: the compiler selects the overloaded function using the rvalue reference if the

function is passed an anonymous value.

The compiler runs into problems if void receive(int &value) is replaced by void receive(int

value), though. When confronted with the choice between a value parameter and a reference param-

eter (either lvalue or rvalue) it cannot make a decision and reports an ambiguity. In practical contexts

this is not a problem. Rvalue references were added to the language in order to be able to distinguish

the two forms of references: named values (for which lvalue references are used) and anonymous values

(for which rvalue references are used).

It is this distinction that allows the implementation of move semantics and perfect forwarding. At

this point the concept of move semantics cannot yet fully be discussed (but see section 9.7 for a more

thorough discussion) but it is very well possible to illustrate the underlying ideas.

Consider the situation where a function returns a struct Data containing a pointer to a dynamically

allocated NTBS. We agree that Data objects are only used after initialization, for which two init

functions are available. As an aside: when Data objects are no longer required the memory pointed at

by text must again be returned to the operating system; assume that that task is properly performed.

struct Data

{

char *text;

void init(char const *txt); // initialize text from txt

void init(Data const &other)

{

text = strdup(other.text);

}

};

There’s also this interesting function:

Data dataFactory(char const *text);

Its implementation is irrelevant, but it returns a (temporary) Data object initialized with text. Such

temporary objects cease to exist once the statement in which they are created end.

Now we’ll use Data:

int main()

{

Data d1;

d1.init(dataFactory("object"));

}

Here the init function duplicates the NTBS stored in the temporary object. Immediately thereafter

the temporary object ceases to exist. If you think about it, then you realize that that’s a bit over the

top:

• the dataFactory function uses init to initialize the text variable of its temporary Data object.

for that it uses strdup;



• the statement ends, and the temporary object ceases to exist.

That’s two strdup calls, but the temporary Data object thereafter is never used again.

To handle cases like these rvalue reference were introduced. We add the following function to the

struct Data:

void init(Data &&tmp)

{

text = tmp.text; // (1)

tmp.text = 0; // (2)

}

Now, when the compiler translates d1.init(dataFactory("object")) it notices that

dataFactory returns a (temporary) object, and because of that it uses the init(Data &&tmp)

function. As we know that the tmp object ceases to exist after executing the statement in which it

is used, the d1 object (at (1)) grabs the temporary object’s text value, and then (at (2)) assigns 0 to

other.text so that the temporary object’s free(text) action does no harm.

Thus, struct Data suddenly has become move-aware and implements move semantics, removing the

(extra copy) drawback of the previous approach, and instead of making an extra copy of the temporary

object’s NTBS the pointer value is simply transferred to its new owner.

3.3.3 Lvalues, rvalues and more

Although this section contains forward references to chapters 5, 7, and 16, its topic best fits the current

chapter. This section can be skipped without loss of continuity, and you might consider returning to it

once you’re familiar with the content of these future chapters.

Historically, the C programming language distinguished between lvalues and rvalues. The terminology

was based on assignment expressions, where the expression to the left of the assignment operator

receives a value (e.g., it referred to a location in memory where a value could be written into, like a

variable), while the expression to the right of the assignment operator only had to represent a value (it

could be a temporary variable, a constant value or the value stored in a variable):

lvalue = rvalue;

C++ adds to this basic distinction several new ways of referring to expressions:

• lvalue: an lvalue in C++ has the same meaning as in C. It refers to a location where a value can

be stored, like a variable, a reference to a variable, or a dereferenced pointer.

• xvalue: an xvalue indicates an expiring value. An expiring value refers to an object (cf. chapter

7) just before its lifetime ends. Such objects normally have to make sure that resources they own

(like dynamically allocated memory) also cease to exist, but such resources may, just before the

object’s lifetime ends, be moved to another location, thus preventing their destruction.

• gvalue: a gvalue is a generalized lvalue. A generalized lvalue refers to anything that may receive

a value. It is either an lvalue or an xvalue.

• prvalue: a prvalue is a pure rvalue: a literal value (like 1.2e3) or an immutable object (e.g., the

value returned from a function returning a constant std::string (cf. chapter 5)).

An expression’s value is an xvalue if it is:

• the value returned by a function returning an rvalue reference to an object;



• an expression accessing a non-static class data member whose object is

– an xvalue, or

– a .∗ (pointer-to-member) expression (cf. chapter 16) in which the left-hand side operand is

an xvalue and the right-hand side operand is a pointer to a data member.

The effect of this rule is that named rvalue references are treated as lvalues and anonymous

rvalue references to objects are treated as xvalues.

Rvalue references to functions are treated as lvalues whether anonymous or not.

Here is a small example. Consider this simple struct:

struct Demo

{

int d_value;

};

In addition we have these function declarations and definitions:

Demo &&operator+(Demo const &lhs, Demo const &rhs);

Demo &&factory();

Demo demo;

Demo &&rref = static_cast<Demo &&>(demo);

Expressions like

factory();

factory().d_value;

static_cast<Demo &&>(demo);

demo + demo

are xvalues. However, the expression

rref;

is an lvalue.

In many situations it’s not particularly important to know what kind of gvalue or what kind of rvalue

is actually used. In the C++ Annotations the term lhs (left hand side) is frequently used to indicate an

operand that’s written to the left of a binary operator, while the term rhs (right hand side) is frequently

used to indicate an operand that’s written to the right of a binary operator. Lhs and rhs operands could

actually be gvalues (e.g., when representing ordinary variables), but they could also be prvalues (e.g.,

numeric values added together using the addition operator). Whether or not lhs and rhs operands are

gvalues or lvalues can always be determined from the context in which they are used.

3.3.4 Strongly typed enumerations

Enumeration values in C++ are in fact int values, thereby bypassing type safety. E.g., values of

different enumeration types may be compared for (in)equality, albeit through a (static) type cast.

Another problem with the current enum type is that their values are not restricted to the enum type

name itself, but to the scope where the enumeration is defined. As a consequence, two enumerations

having the same scope cannot have identical names.



example:

enum class SafeEnum

{

NOT_OK, // 0, by implication

OK = 10,

MAYBE_OK // 11, by implication

};

Enum classes use int values by default, but the used value type can easily be changed using the :

type notation, as in:

enum class CharEnum: unsigned char

{

NOT_OK,

OK

};

To use a value defined in an enum class its enumeration name must be provided as well. E.g., OK is not

defined, CharEnum::OK is.

Using the data type specification (noting that it defaults to int) it is possible to use enum class forward

declarations. E.g.,

enum Enum1; // Illegal: no size available

enum Enum2: unsigned int; // Legal: explicitly declared type

enum class Enum3; // Legal: default int type is used

enum class Enum4: char; // Legal: explicitly declared type

A sequence of symbols of a strongly typed enumeration can also be indicated in a switch using the

ellipsis syntax, as shown in the next example:

SafeEnum enumValue();

switch (enumValue())

{

case SafeEnum::NOT_OK ... SafeEnum::OK:

cout << "Status is known\n";

break;

default:

cout << "Status unknown\n";

break;

}

3.3.5 Initializer lists

The C language defines the initializer list as a list of values enclosed by curly braces, possibly them-

selves containing initializer lists. In C these initializer lists are commonly used to initialize arrays and

structs.

C++ extends this concept by introducing the type initializer_list<Type> where Type is replaced

by the type name of the values used in the initializer list. Initializer lists in C++ are, like their coun-

terparts in C, recursive, so they can also be used with multi-dimensional arrays, structs and classes.



Like in C, initializer lists consist of a list of values surrounded by curly braces. But unlike C, functions

can define initializer list parameters. E.g.,

void values(std::initializer_list<int> iniValues)

{

}

A function like values could be called as follows:

values({2, 3, 5, 7, 11, 13});

The initializer list appears as an argument which is a list of values surrounded by curly braces. Due to

the recursive nature of initializer lists a two-dimensional series of values can also be passes, as shown

in the next example:

void values2(std::initializer_list<std::initializer_list<int>> iniValues)

{}

values2({{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13}});

Initializer lists are constant expressions and cannot be modified. However, their size and values may

be retrieved using their size, begin, and end members as follows:

void values(initializer_list<int> iniValues)

{

cout << "Initializer list having " << iniValues.size() << "values\n";

for

(

initializer_list<int>::const_iterator begin = iniValues.begin();

begin != iniValues.end();

++begin

)

cout << "Value: " << *begin << '\n';

}

Initializer lists can also be used to initialize objects of classes (cf. section 7.5).

Implicit conversions, also called narrowing conversions are not allowed when specifying values of ini-

tializer lists. Narrowing conversions are encountered when values are used of a type whose range is

larger than the type specified when defining the initializer list. For example

• specifying float or double values to define initializer lists of int values;

• specifying integral values exceeding the range of float to define initializer lists of float values;

• specifying values of integral types of a wider range than the integral type that is specified for the

initializer list, except if the specified values lie within the range of the initializer list’s integral

type

Some examples:

initializer_list<int> ii{ 1.2 }; // 1.2 isn't an int value

initializer_list<unsigned> iu{ ~0ULL }; // unsigned long long doesn't fit



C++, like C, also supports designated initialization. However, as C++ requires that destruction of data

members occurs in the opposite order as their construction it is required that, when using designated

initialization, members are initialized in the order in which they are declared in their class or struct.

E.g.,

struct Data

{

int d_first;

double d_second;

std::string d_third;

};

Data data{ .d_first = 1, .d_third = "hello" };

In this example, d_first and d_third are explicitly initialized, while d_second is implicitly initial-

ized to its default value (so: 0.0).

In C++ it is not allowed to reorder the initialization of members in a desginated initialization list. So,

Data data{ .d_third = "hello", .d_first = 1 } is an error, but Data data{ .d_third =

"hello" } is OK, as there is no ordering conflict in the latter example (this also initializes d_first

and d_second to 0).

Likewise, a union can be initialized using designated initialization, as illustrated by the next example:

union Data

{

int d_first;

double d_second;

std::string *d_third;

};

// initialize the union's d_third field:

Data data{ .d_third = new string{ "hello" } };

3.3.6 Initializers for bit-fields

Bit-fields are used to specify series of bits in an integral value type. For example, in networking soft-

ware processing IP4 packets, the first uint32_t value of IP4 packets contain:

• the version (4 bits);

• the header length (4 bits);

• the type of service (8 bits);

• the total length (16 bits)

Rather than using complex bit and bit-shift operations, these fields inside integral values can be speci-

fied using bit-fields. E.g.,

struct FirstIP4word

{

uint32_t version: 4;

uint32_t header: 4;

uint32_t tos: 8;

uint32_t length: 16;

};



first object, simply do:

cout << first.version << '\n';

and to set its header length to 10 simply do

first.header = 10;

Bit fields are already available in C. The C++2a standard allows them to be initialized by default by

using initialization expressions in their definitions. E.g.,

struct FirstIP4word

{

uint32_t version: 4 = 1; // version now 1, by default

uint32_t header: 4 = 10; // TCP header length now 10, by default

uint32_t tos: 8;

uint32_t length: 16;

};

The initialization expressions are evaluated when the object using the bit-fields is defined. Also, when

a variable is used to initialize a bit-field the variable must at least have been declared when the struct

containing bit-fields is defined. E.g.,

extern int value;

struct FirstIP4word

{

...

uint32_t length: 16 = value; // OK: value has been declared

};

3.3.7 Type inference using ‘auto’

The keyword auto can be used to simplify type definitions of variables and return types of functions if

the compiler is able to determine the proper types of such variables or functions.

Using auto as a storage class specifier is no longer supported by C++: a variable definition like auto

int var results in a compilation error.

The keyword auto is used in situations where it is very hard to determine the variable’s type. These

situations are encountered, e.g., in the context of templates (cf. chapters 18 until 23). It is also used in

situations where a known type is a very long one but also automatically available to the compiler. In

such cases the programmer uses auto to avoid having to type long type definitions.

At this point in the Annotations only simple examples can be given. Refer to section 21.1.2 for addi-

tional information about auto (and the related decltype function).

When defining and initializing a variable int variable = 5 the type of the initializing expression

is well known: it’s an int, and unless the programmer’s intentions are different this could be used to

define variable’s type (a somewhat contrived example as in this case it reduces rather than improves

the clarity of the code):

auto variable = 5;

However, it is attractive to use auto. In chapter 5 the iterator concept is introduced (see also chapters

12 and 18). Iterators frequently have long type definitions, like



Functions may return objects having such types. Since the compiler knows about these types we may

exploit this knowledge by using auto. Assume that a function begin() is declared like this:

std::vector<std::string>::const_reverse_iterator begin();

Rather than writing a long variable definition (at // 1, below) a much shorter definition (at // 2) can

be used:

std::vector<std::string>::const_reverse_iterator iter = begin(); // 1

auto iter = begin(); // 2

It’s also easy to define and initialized additional variables of such types. When initializing such vari-

ables iter can be used to initialize those variables, and auto can be used, so the compiler deduces

their types:

auto start = iter;

When defining variables using auto the variable’s type is deduced from the variable’s initializing ex-

pression. Plain types and pointer types are used as-is, but when the initializing expression is a refer-

ence type, then the reference’s basic type (without the reference, omitting const or volatile specifi-

cations) is used.

If a reference type is required then auto & or auto && can be used. Likewise, const and/or pointer

specifications can be used in combination with the auto keyword itself. Here are some examples:

int value;

auto another = value; // 'int another' is defined

string const &text();

auto str = text(); // text's plain type is string, so

// string str, NOT string const str

// is defined

str += "..."; // so, this is OK

int *ip = &value;

auto ip2 = ip; // int *ip2 is defined.

int *const &ptr = ip;

auto ip3 = ptr; // int *ip3 is defined, omitting const &

auto const &ip4 = ptr; // int *const &ip4 is defined.

In the next to last auto specification, the tokens (reading right to left) from the reference to the basic

type are omitted: here const & was appended to ptr’s basic type (int ∗). Hence, int ∗ip2 is

defined.

In the last auto specification auto also produces int ∗, but in the type definition const & is added

to the type produced by auto, so int ∗const &ip4 is defined.

The auto keyword can also be used to postpone the definition of a function’s return type. The declara-

tion of a function intArrPtr returning a pointer to arrays of 10 ints looks like this:

int (*intArrPtr())[10];

Such a declaration is fairly complex. E.g., among other complexities it requires ‘protection of the

pointer’ using parentheses in combination with the function’s parameter list. In situations like these



fication of the function’s return type after any other specification the function might receive (e.g., as a

const member (cf. section 7.7) or following its noexcept specification (cf. section 23.8)).

Using auto to declare the above function, the declaration becomes:

auto intArrPtr() -> int (*)[10];

A return type specification using auto is called a late-specified return type.

Since the C++14 standard late return type specifications are no longer required for functions returning

auto. Such functions can now simply be declared like this:

auto autoReturnFunction();

In this case some restrictions apply, both to the function definitions and the function declarations:

• If multiple return statements are used in function definitions they all must return values of iden-

tical types;

• Functions merely returning auto cannot be used before the compiler has seen their definitions.

So they cannot be used after mere declarations;

• When functions returning auto are implemented as recursive function then at least one return

statement must have been seen before the recursive call. E.g.,

auto fibonacci(size_t n)

{

if (n <= 1)

return n;

return fibonacci(n - 1) + fibonacci(n - 2);

}

3.3.7.1 Structured binding declarations

Usually functions return single-valued results: doubles, ints, strings, etc. When functions need

to return multiple values a return by argument construction is often used, where addresses of variables

that live outside of the called function are passed to functions, allowing the functions to assign new

values to those variables.

When multiple values should be returned from a function a struct can be used, but pairs (cf. section

12.2) or tuples (cf. section 22.6) can also be used. Here’s a simple example, where a function fun returns

a struct having two data fields:

struct Return

{

int first;

double second;

};

Return fun()

{

return Return{ 1, 12.5 };

}

(Briefly forward referencing to sections 12.2 and 22.6: the struct definition can completely be omitted

if fun returns a pair or tuple. In those cases the following code remains valid.)



uses that variable’s fields to access first and second. If you don’t like the typing, auto can also be

used:

int main()

{

auto r1 = fun();

cout << r1.first;

}

Instead of referring to the elements of the returned struct, pair or tuple structured binding dec-

larations can also be used. Here, auto is followed by a (square brackets surrounded) comma-separated

list of variables, where each variable is defined, and receives the value of the corresponding field or

element of the called function’s return value. So, the above main function can also be written like this:

int main()

{

auto [one, two] = fun();

cout << one; // one and two: now defined

}

Merely specifying auto results in fun’s return value being copied, and the structured bindings vari-

ables will refer to the copied value. But structured binding declarations can also be used in combination

with (lvalue/rvalue) return values. The following ensures that rone and rtwo refer to the elements of

fun’s anonymous return value:

int main()

{

auto &&[rone, rtwo] = fun();

}

If the called function returns a value that survives the function call itself, then structured binding

declarations can use lvalue references. E.g.,

Return &fun2()

{

static Return ret{ 4, 5 };

return ret;

}

int main()

{

auto &[lone, ltwo] = fun2(); // OK: referring to ret's fields

}

To use structured binding declarations it is not required to use function calls. The object providing the

data can also anonymously be defined:

int main()

{

auto const &[lone, ltwo] = Return{ 4, 5 };

// or:

auto &&[lone, ltwo] = Return{ 4, 5 };

}

The object doesn’t even have to make its data members publicly available. In section TUPLES using

structured bindings not necessarily referring to data members is covered.



benefit from using locally defined variables of various types. Such variables can easily be defined using

structured binding declarations that are initialized from anonymous structs, pairs or tuples. Here is

an example illustrating this:

// define a struct:

struct Three

{

size_t year;

double firstAmount;

double interest;

};

// define an array of Three objects, and process each in turn:

Three array[10];

fill(array); // not implemented here

for (auto &[year, amount, interest]: array)

cout << "Year " << year << ": amount = " << amount << '\n';

When using structured bindings the structured binding declaration must specify all elements that are

available. So if a struct has four data members the structured binding declaration must define four

elements. To avoid warnings of unused variables at lease one of the variables of the structured binding

declaration must be used.

3.3.8 Defining types and ‘using’ declarations

In C++ typedef is commonly used to define shorthand notations for complex types. Assume we want to

define a shorthand for ‘a pointer to a function expecting a double and an int, and returning an unsigned

long long int’. Such a function could be:

unsigned long long int compute(double, int);

A pointer to such a function has the following form:

unsigned long long int (*pf)(double, int);

If this kind of pointer is frequently used, consider defining it using typedef: simply put typedef in

front of it and the pointer’s name is turned into the name of a type. It could be capitalized to let it stand

out more clearly as the name of a type:

typedef unsigned long long int (*PF)(double, int);

After having defined this type, it can be used to declare or define such pointers:

PF pf = compute; // initialize the pointer to a function like

// 'compute'

void fun(PF pf); // fun expects a pointer to a function like

// 'compute'

However, including the pointer in the typedef might not be a very good idea, as it masks the fact that

pf is a pointer. After all, PF pf looks more like ‘int x’ than ‘int ∗x’. To document that pf is in fact

a pointer, slightly change the typedef:

typedef unsigned long long int FUN(double, int);

FUN *pf = compute; // now pf clearly is a pointer.



header files which are then included by multiple source files in which the typedefs should be used.

In addition to typedef C++ offers the using keyword to associate a type and an identifier. In prac-

tice typedef and using can be used interchangeably. The using keyword arguably result in more

readable type definitions. Consider the following three (equivalent) definitions:

• The traditional, C style definition of a type, embedding the type name in the definition (turning a

variable name into a type name):

typedef unsigned long long int FUN(double, int);

• Apply using to improve the visibility (for humans) of the type name, by moving the type name to

the front of the definition:

using FUN = unsigned long long int (double, int);

• An alternative construction, using a late-specified return type (cf. section 3.3.7):

using FUN = auto (double, int) -> unsigned long long int;

3.3.9 Range-based for-loops

The C++ for-statement is identical to C’s for-statement:

for (init; cond; inc)

statement

Often the initialization, condition, and increment parts are fairly obvious, as in situations where all

elements of an array or vector must be processed. Many languages offer the foreach statement for

that and C++ offers the std::for_each generic algorithm (cf. section 19.1.18).

In addition to the traditional syntax C++ adds new syntax for the for-statement: the range-based for-

loop. This new syntax can be used to process all element of a range in turn. Three types of ranges are

distinguished:

• Plain arrays (e.g., int array[10]);

• Initializer lists;

• Standard containers (or comparable) (cf. chapter 12);

• Any other type offering begin() and end() functions returning so-called iterators (cf. section

18.2).

The following additional for-statement syntax is available:

// assume int array[30]

for (auto &element: array)

statement

The part to the left of the colon is called the for range declaration. The declared variable (element) is

a formal name; use any identifier you like. The variable is only available within the nested statement,

and it refers to (or is a copy of) each of the elements of the range, from the first element up to the last.

There’s no formal requirement to use auto, but using auto is extremely useful in many situations.

Not only in situations where the range refers to elements of some complex type, but also in situations



names. In the above example int could also have been used.

The reference symbol (&) is important in the following cases:

• if you want to modify the elements in the nested statements

• if the elements themselves are structs (or classes, cf. chapter 7)

When the reference symbol is omitted the variable will be a copy of each of the subsequent elements of

the range. Fine, probably, if you merely need to look at the variables when they are of primitive types,

but needlessly inefficient if you have an array of BigStruct elements:

struct BigStruct

{

double array[100];

int last;

};

Inefficient, because you don’t need to make copies of the array’s elements. Instead, use references to

elements:

BigStruct data[100]; // assume properly initialized elsewhere

int countUsed()

{

int sum = 0;

// const &: the elements aren't modified

for (auto const &element: data)

sum += element.last;

return sum;

}

Range-based for-loops can also benefit from structured bindings. If struct Element holds a int key

and a double value, and all the values of positive keys should be added then the following code

snippet accomplishes that:

Element elems[100]; // somehow initialized

double sum = 0;

for (auto const &[key, value]: elems)

{

if (key > 0)

sum += value;

}

The C++2a standard also supports an optional initialization section (like the ones already available

for if and switch statements) for range-based for-loops. Assume the elements of an array must be

inserted into cout, but before each element we want to display the element’s index. The index variable

is not used outside the for-statement, and the extension offered in the C++2a standard allows us to

localize the index variable. Here is an example:

// localize idx: only visible in the for-stmnt

for (size_t idx = 0; auto const &element: data)

cout << idx++ << ": " << element << '\n';



Standard series of ASCII characters (a.k.a. C strings) are delimited by double quotes, supporting escape

sequences like \n, \\ and \", and ending in 0-bytes. Such series of ASCII-characters are commonly

known as null-terminated byte strings (singular: NTBS, plural: NTBSs). C’s NTBS is the foundation

upon which an enormous amount of code has been built

In some cases it is attractive to be able to avoid having to use escape sequences (e.g., in the context of

XML). C++ allows this using raw string literals.

Raw string literals start with an R, followed by a double quote, optionally followed by a label (which

is an arbitrary sequence of non-blank characters, followed by (). The raw string ends at the closing

parenthesis ), followed by the label (if specified when starting the raw string literal), which is in turn

followed by a double quote. Here are some examples:

R"(A Raw \ "String")"

R"delimiter(Another \ Raw "(String))delimiter"

In the first case, everything between "( and )" is part of the string. Escape sequences aren’t sup-

ported so the text \ " within the first raw string literal defines three characters: a backslash, a blank

character and a double quote. The second example shows a raw string defined between the markers

"delimiter( and )delimiter".

Raw string literals come in very handy when long, complex ascii-character sequences (e.g., usage-info

or long html-sequences) are used. In the end they are just that: long NTBSs. Those long raw string

literals should be separated from the code that uses them, thus maintaining the readability of the using

code.

As an illustration: the bisonc++ parser generator supports an option +NOTRANS(-{}-{})prompt.

When specified, the code generated by bisonc++ inserts prompting code when debugging is requested.

Directly inserting the raw string literal into the function processing the prompting code results in code

that is very hard to read:

void prompt(ostream &out)

{

if (d_genDebug)

out << (d_options.prompt() ? R"(

if (d_debug__)

{

s_out__ << "\n================\n"

"? " << dflush__;

std::string s;

getline(std::cin, s);

}

)" : R"(

if (d_debug__)

s_out__ << '\n';

)"

) << '\n';

}

Readability is greatly enhanced by defining the raw string literals as named NTBSs, defined in the

source file’s anonymous namespace (cf. chapter 4):

namespace {

char const noPrompt[] =

R"(

if (d_debug__)



)";

char const doPrompt[] =

R"(

if (d_debug__)

{

s_out__ << "\n================\n"

"? " << dflush__;

std::string s;

getline(std::cin, s);

}

)";

} // anonymous namespace

void prompt(ostream &out)

{

if (d_genDebug)

out << (d_options.prompt() ? doPrompt : noPrompt) << '\n';

}

3.3.11 Binary constants

In addition to hexadecimal integral constants (starting with 0x), octal integral constants (starting with

0), and decimal integral constants (starting with one of the digits 1..9), binary integral constants can

be defined using the prefixes 0b or 0B. E.g., to represent the (decimal) value 5 the notation 0b101 can

also be used.

The binary constants come in handy in the context of, e.g., bit-flags, as it immediately shows which

bit-fields are set, while other notations are less informative.

3.3.12 Selection statements with initializers

The standard for repetition statements start with an optional initialization clause. The initialization

clause allows us to localize variables to the scope of the for statements. Initialization clauses van also

be used in selection statements.

Consider the situation where an action should be performed if the next line read from the standard

input stream equals go!. Traditionally, when used inside a function, intending to localize the string to

contain the content of the next line as much as possible, constructions like the following had to be used:

void function()

{

// ... any set of statements

{

string line; // localize line

if (getline(cin, line))

action();

}

// ... any set of statements

}

Since init ; clauses can also be used for selection statements (if and switch statements) (note that

with selection statements the semicolon is part of the initialization clause, which is different from the

optional init (no semicolon) clause in for statements), we can rephrase the above example as follows:



{

// ... any set of statements

if (string line; getline(cin, line))

action();

// ... any set of statements

}

Note that a variable may still also be defined in the actual condition clauses. This is true for both

the extended if and switch statement. However, before using the condition clauses an initialization

clause may be used to define additional variables (plural, as it may contain a comma-separated list of

variables, similar to the syntax that’s available for for-statements).

3.3.13 Attributes

Attributes are compiler directives that are inserted into source files to inform the compiler of some

peculiarity of the code (variable or function) that follows the specified attribute. Attributes are used to

inform the compiler about situations that are intentional, and thus prevent the compiler from issuing

warnings.

The following attributes are recognized:

• [[carries_dependency]]:

This attribute is currently not yet covered by the C++ Annotations. At this point in the C++

Annotations it can safely be ignored.

• [[deprecated]]:

This attribute (and its alternative form [[deprecated("reason")]]) is available since the

C++14 standard. It indicates that the use of the name or entity declared with this attribute is

allowed, but discouraged for some reason. This attribute can be used for classes, typedef-names,

variables, non-static data members, functions, enumerations, and template specializations. An

existing non-deprecated entity may be redeclared deprecated, but once an entity has been declared

deprecated it cannot be redeclared as ‘undeprecated’. When encountering the [[deprecated]]

attribute the compiler generates a warning, e.g.,

demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated

[-Wdeprecated-declarations] deprecatedFunction();

demo.cc:5:21: note: declared here

[[deprecated]] void deprecatedFunction()

When using the alternative form (e.g., [[deprecated("do not use")]] void fun()) the

compiler generates a warning showing the text between the double quotes, e.g.,

demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated:

do not use [-Wdeprecated-declarations]

deprecatedFunction();

demo.cc:5:38: note: declared here

[[deprecated("do not use")]] void deprecatedFunction()

• [[fallthrough]]

When statements nested under case entries in switch statements continue into subsequent

case or default entries the compiler issues a ‘falling through’ warning. If falling through is

intentional the attribute [[fallthrough]], which then must be followed by a semicolon, should

be used. Here is an annotated example:

void function(int selector)



switch (selector)

{

case 1:

case 2: // no falling through, but merged entry points

cout << "cases 1 and 2\n";

[[fallthrough]]; // no warning: intentionally falling through

case 3:

cout << "case 3\n";

case 4: // a warning is issued: falling through not

// announced.

cout << "case 4\n";

[[fallthrough]]; // error: there's nothing beyond

}

}

• [[maybe_unused]]

This attribute can be applied to a class, typedef-name, variable, parameter, non-static data mem-

ber, a function, an enumeration or an enumerator. When it is applied to an entity no warning is

generated when the entity is not used. Example:

void fun([[maybe_unused]] size_t argument)

{

// argument isn't used, but no warning

// telling you so is issued

}

• [[nodiscard]]

The attribute [[nodiscard]] may be specified when declaring a function, class or enumeration.

If a function is declared [[nodiscard]] or if a function returns an entity previously declared us-

ing [[nodiscard]] then the return value of such a function may only be ignored when explicitly

cast to void. Otherwise, when the return value is not used a warning is issued. Example:

int [[nodiscard]] importantInt();

struct [[nodiscard]] ImportantStruct { ... };

ImportantStruct factory();

int main()

{

importantInt(); // warning issued

factory(); // warning issued

}

• [[noreturn]]:

[[noreturn]] indicates that the function does not return. [[noreturn]]’s behavior

is undefined if the function declared with this attribute actually returns. The follow-

ing standard functions have this attribute: std::_Exit, std::abort, std::exit,

std::quick_exit, std::unexpected, std::terminate, std::rethrow_exception,

std::throw_with_nested, std::nested_exception::rethrow_nested, Here is an

example of a function declaration and definition using the [[noreturn]] attribute:

[[noreturn]] void doesntReturn();

[[noreturn]] void doesntReturn()



exit(0);

}

3.3.14 Three-way comparison (<=>)

The C++2a standard added the three-way comparison operator <=>, also known as the spaceship op-

erator, to C++. In C++ operators can be defined for class-types, among which equality and comparison

operators (the familiar set of ==, !=, <, <=, > and >= operators). To provide classes with all

comparison operators merely the the equality and the spaceship operator need to be defined.

Its priority is less than the priorities of the bit-shift operators << and >> and larger than the priorities

of the ordering operators <, <=, >, and >=.

Section 11.6.2 covers the construction of the three-way comparison operator.

3.4 New language-defined data types

In C the following built-in data types are available: void, char, short, int, long, float and

double. C++ extends these built-in types with several additional built-in types: the types bool,

wchar_t, long long and long double (Cf. ANSI/ISO draft (1995), par. 27.6.2.4.1 for examples

of these very long types). The type long long is merely a double-long long datatype. The type long

double is merely a double-long double datatype. These built-in types as well as pointer variables are

called primitive types in the C++ Annotations.

There is a subtle issue to be aware of when converting applications developed for 32-bit architectures to

64-bit architectures. When converting 32-bit programs to 64-bit programs, only long types and pointer

types change in size from 32 bits to 64 bits; integers of type int remain at their size of 32 bits. This

may cause data truncation when assigning pointer or long types to int types. Also, problems with

sign extension can occur when assigning expressions using types shorter than the size of an int to an

unsigned long or to a pointer. More information about this issue can be found here2.

Except for these built-in types the class-type string is available for handling character strings. The

datatypes bool, and wchar_t are covered in the following sections, the datatype string is covered in

chapter 5. Note that recent versions of C may also have adopted some of these newer data types (no-

tably bool and wchar_t). Traditionally, however, C doesn’t support them, hence they are mentioned

here.

Now that these new types are introduced, let’s refresh your memory about letters that can be used in

literal constants of various types. They are:

• b or B: in addition to its use to indicate a hexadecimal value, it can also be used to define a binary

constant. E.g., 0b101 equals the decimal value 5. The 0b prefix can be used to specify binary

constants starting with the C++14 standard.

• E or e: the exponentiation character in floating point literal values. For example: 1.23E+3.

Here, E should be pronounced (and interpreted) as: times 10 to the power. Therefore, 1.23E+3

represents the value 1230.

• F can be used as postfix to a non-integral numeric constant to indicate a value of type float,

rather than double, which is the default. For example: 12.F (the dot transforms 12 into a

floating point value); 1.23E+3F (see the previous example. 1.23E+3 is a double value, whereas

1.23E+3F is a float value).

• L can be used as prefix to indicate a character string whose elements are wchar_t-type characters.

For example: L"hello world".

2http://developers.sun.com/solaris/articles/ILP32toLP64Issues.html



int, which is the default. Note that there is no letter indicating a short type. For that a

static_cast<short>() must be used.

• p, to specify the power in hexadecimal floating point numbers. E.g. 0x10p4. The exponent itself is

read as a decimal constant and can therefore not start with 0x. The exponent part is interpreted

as a power of 2. So 0x10p2 is (decimal) equal to 64: 16 ∗ 2^2.

• U can be used as postfix to an integral value to indicate an unsigned value, rather than an int.

It may also be combined with the postfix L to produce an unsigned long int value.

And, of course: the x and a until f characters can be used to specify hexadecimal constants (optionally

using capital letters).

3.4.1 The data type ‘bool’

The type bool represents boolean (logical) values, for which the (now reserved) constants true and

false may be used. Except for these reserved values, integral values may also be assigned to vari-

ables of type bool, which are then implicitly converted to true and false according to the following

conversion rules (assume intValue is an int-variable, and boolValue is a bool-variable):

// from int to bool:

boolValue = intValue ? true : false;

// from bool to int:

intValue = boolValue ? 1 : 0;

Furthermore, when bool values are inserted into streams then true is represented by 1, and false

is represented by 0. Consider the following example:

cout << "A true value: " << true << "\n"

"A false value: " << false << '\n';

The bool data type is found in other programming languages as well. Pascal has its type Boolean;

Java has a boolean type. Different from these languages, C++’s type bool acts like a kind of int type.

It is primarily a documentation-improving type, having just two values true and false. Actually,

these values can be interpreted as enum values for 1 and 0. Doing so would ignore the philosophy

behind the bool data type, but nevertheless: assigning true to an int variable neither produces

warnings nor errors.

Using the bool-type is usually clearer than using int. Consider the following prototypes:

bool exists(char const *fileName); // (1)

int exists(char const *fileName); // (2)

With the first prototype, readers expect the function to return true if the given filename is the name

of an existing file. However, with the second prototype some ambiguity arises: intuitively the return

value 1 is appealing, as it allows constructions like

if (exists("myfile"))

cout << "myfile exists";

On the other hand, many system functions (like access, stat, and many other) return 0 to indicate a

successful operation, reserving other values to indicate various types of errors.

As a rule of thumb I suggest the following: if a function should inform its caller about the success or

failure of its task, let the function return a bool value. If the function should return success or various



constants. Only when the function returns a conceptually meaningful integral value (like the sum of

two int values), let the function return an int value.

3.4.2 The data type ‘wchar_t’

The wchar_t type is an extension of the char built-in type, to accommodate wide character values (but

see also the next section). The g++ compiler reports sizeof(wchar_t) as 4, which easily accommo-

dates all 65,536 different Unicode character values.

Note that Java’s char data type is somewhat comparable to C++’s wchar_t type. Java’s char type is

2 bytes wide, though. On the other hand, Java’s byte data type is comparable to C++’s char type: one

byte. Confusing?

3.4.3 Unicode encoding

In C++ string literals can be defined as NTBSs. Prepending an NTBS by L (e.g., L"hello") defines a

wchar_t string literal.

C++ also supports 8, 16 and 32 bit Unicode encoded strings. Furthermore, two new data types are

introduced: char16_t and char32_t storing, respectively, a UTF-16 and a UTF-32 unicode value.

A char type value fits in a utf_8 unicode value. For character sets exceeding 256 different values

wider types (like char16_t or char32_t) should be used.

String literals for the various types of unicode encodings (and associated variables) can be defined as

follows:

char utf_8[] = u8"This is UTF-8 encoded.";

char16_t utf16[] = u"This is UTF-16 encoded.";

char32_t utf32[] = U"This is UTF-32 encoded.";

Alternatively, unicode constants may be defined using the \u escape sequence, followed by a hexadec-

imal value. Depending on the type of the unicode variable (or constant) a UTF-8, UTF-16 or UTF-32

value is used. E.g.,

char utf_8[] = u8"\u2018";

char16_t utf16[] = u"\u2018";

char32_t utf32[] = U"\u2018";

Unicode strings can be delimited by double quotes but raw string literals can also be used.

3.4.4 The data type ‘long long int’

C++ also supports the type long long int. On 32 bit systems it has at least 64 usable bits.

3.4.5 The data type ‘size_t’

The size_t type is not really a built-in primitive data type, but a data type that is promoted by POSIX

as a typename to be used for non-negative integral values answering questions like ‘how much’ and ‘how

many’, in which case it should be used instead of unsigned int. It is not a specific C++ type, but also

available in, e.g., C. Usually it is defined implicitly when a (any) system header file is included. The

header file ‘officially’ defining size_t in the context of C++ is cstddef.



modified by a modifier. Thus, it improves the self-documenting value of source code.

Sometimes functions explictly require unsigned int to be used. E.g., on amd-architectures the X-

windows function XQueryPointer explicitly requires a pointer to an unsigned int variable as one

of its arguments. In such situations a pointer to a size_t variable can’t be used, but the address of an

unsigned int must be provided. Such situations are exceptional, though.

Other useful bit-represented types also exists. E.g., uint32_t is guaranteed to hold 32-bits unsigned

values. Analogously, int32_t holds 32-bits signed values. Corresponding types exist for 8, 16 and 64

bits values. These types are defined in the header file cstdint and can be very useful when you need

to specify or use integral value types of fixed sizes.

3.4.6 std::byte

TO DO

3.4.7 Digit separators

To improve the readability of large numbers digit separators for integer and floating point literals can

be used. The digit separator is a single quote which may be inserted between digits of such literals

to enhance human readability. Multiple digit separators may be used, but only one separator can be

inserted between successive digits. E.g.,

1'000'000

3.141'592'653'589'793'238'5

''123 // won't compile

1''23 // won't compile either

3.5 A new syntax for casts

Traditionally, C offers the following cast syntax:

(typename)expression

here typename is the name of a valid type, and expression is an expression.

C style casts are now deprecated. C++ programs should merely use the new style C++ casts as they

offer the compiler facilities to verify the sensibility of the cast. Facilities which are not offered by the

classic C-style cast.

A cast should not be confused with the often used constructor notation:

typename(expression)

the constructor notation is not a cast, but a request to the compiler to construct an (anonymous) variable

of type typename from expression.

If casts are really necessary one of several new-style casts should be used. These new-style casts are

introduced in the upcoming sections.



The static_cast<type>(expression) is used to convert ‘conceptually comparable or related types’

to each other. Here as well as in other C++ style casts type is the type to which the type of expression

should be cast.

Here are some examples of situations where the static_cast can (or should) be used:

• When converting an int to a double.

This happens, for example when the quotient of two int values must be computed without losing

the fraction part of the division. The sqrt function called in the following fragment returns 2:

int x = 19;

int y = 4;

sqrt(x / y);

whereas it returns 2.179 when a static_cast is used, as in:

sqrt(static_cast<double>(x) / y);

The important point to notice here is that a static_cast is allowed to change the representation

of its expression into the representation that’s used by the destination type.

Also note that the division is put outside of the cast expression. If the division is performed within

the cast’s expression (as in static_cast<double>(x / y)) an integer division has already

been performed before the cast has had a chance to convert the type of an operand to double.

• When converting enum values to int values (in any direction).

Here the two types use identical representations, but different semantics. Assigning an ordinary

enum value to an int doesn’t require a cast, but when the enum is a strongly typed enum a cast

is required. Conversely, a static_cast is required when assigning an int value to a variable of

some enum type. Here is an example:

enum class Enum

{

VALUE

};

cout << static_cast<int>(Enum::VALUE); // show the numeric value

• When converting related pointers to each other.

The static_cast is used in the context of class inheritance (cf. chapter 13) to convert a pointer

to a so-called ‘derived class’ to a pointer to its ‘base class’. It cannot be used for casting unrelated

types to each other (e.g., a static_cast cannot be used to cast a pointer to a short to a pointer

to an int).

A void ∗ is a generic pointer. It is frequently used by functions in the C library (e.g., memcpy(3)).

Since it is the generic pointer it is related to any other pointer, and a static_cast should be used

to convert a void ∗ to an intended destination pointer. This is a somewhat awkward left-over

from C, which should probably only be used in that context. Here is an example:

The qsort function from the C library expects a pointer to a (comparison) function having two

void const ∗ parameters. In fact, these parameters point to data elements of the array to be

sorted, and so the comparison function must cast the void const ∗ parameters to pointers to the

elements of the array to be sorted. So, if the array is an int array[] and the compare function’s

parameters are void const ∗p1 and void const ∗p2 then the compare function obtains the

address of the int pointed to by p1 by using:

static_cast<int const *>(p1);



static_cast is allowed to change the expression’s representation!).

Here is an example: the C function tolower requires an int representing the value of an

unsigned char. But char by default is a signed type. To call tolower using an available

char ch we should use:

tolower(static_cast<unsigned char>(ch))

3.5.2 The ‘const_cast’-operator

The const keyword has been given a special place in casting. Normally anything const is const for

a good reason. Nonetheless situations may be encountered where the const can be ignored. For these

special situations the const_cast should be used. Its syntax is:

const_cast<type>(expression)

A const_cast<type>(expression) expression is used to undo the const attribute of a (pointer)

type.

The need for a const_castmay occur in combination with functions from the standard C library which

traditionally weren’t always as const-aware as they should. A function strfun(char ∗s) might be

available, performing some operation on its char ∗s parameter without actually modifying the char-

acters pointed to by s. Passing char const hello[] = "hello"; to strfun produces the warning

passing `const char *' as argument 1 of `fun(char *)' discards const

A const_cast is the appropriate way to prevent the warning:

strfun(const_cast<char *>(hello));

3.5.3 The ‘reinterpret_cast’-operator

The third new-style cast is used to change the interpretation of information: the reinterpret_cast.

It is somewhat reminiscent of the static_cast, but reinterpret_cast should only be used when

it is known that the information as defined in fact is or can be interpreted as something completely

different. Its syntax is:

reinterpret_cast<pointer type>(pointer expression)

Think of the reinterpret_cast as a cast offering a poor-man’s union: the same memory location may

be interpreted in completely different ways.

The reinterpret_cast is used, for example, in combination with the write function that is available

for streams. In C++ streams are the preferred interface to, e.g., disk-files. The standard streams like

std::cin and std::cout also are stream objects.

Streams intended for writing (‘output streams’ like cout) offer write members having the prototype

write(char const *buffer, int length)

To write the value stored within a double variable to a stream in its un-interpreted binary form the

stream’s write member is used. However, as a double ∗ and a char ∗ point to variables using differ-

ent and unrelated representations, a static_cast cannot be used. In this case a reinterpret_cast

is required. To write the raw bytes of a variable double value to cout we use:

cout.write(reinterpret_cast<char const *>(&value), sizeof(double));



Effectively we tell the compiler: back off, we know what we’re doing, so stop fuzzing. All bets are off,

and we’d better do know what we’re doing in situations like these. As a case in point consider the

following code:

int value = 0x12345678; // assume a 32-bits int

cout << "Value's first byte has value: " << hex <<

static_cast<int>(

*reinterpret_cast<unsigned char *>(&value)

);

The above code produces different results on little and big endian computers. Little endian computers

show the value 78, big endian computers the value 12. Also note that the different representations used

by little and big endian computers renders the previous example (cout.write(...)) non-portable

over computers of different architectures.

As a rule of thumb: if circumstances arise in which casts have to be used, clearly document the reasons

for their use in your code, making double sure that the cast does not eventually cause a program to

misbehave. Also: avoid reinterpret_casts unless you have to use them.

3.5.4 The ‘dynamic_cast’-operator

Finally there is a new style cast that is used in combination with polymorphism (see chapter 14). Its

syntax is:

dynamic_cast<type>(expression)

Different from the static_cast, whose actions are completely determined compile-time, the

dynamic_cast’s actions are determined run-time to convert a pointer to an object of some class (e.g.,

Base) to a pointer to an object of another class (e.g., Derived) which is found further down its so-called

class hierarchy (this is also called downcasting).

At this point in the Annotations a dynamic_cast cannot yet be discussed extensively, but we return

to this topic in section 14.6.1.

3.5.5 Casting ’shared_ptr’ objects

This section can safely be skipped without loss of continuity.

In the context of the class shared_ptr, which is covered in section 18.4, several more new-style casts

are available. Actual coverage of these specialized casts is postponed until section 18.4.5.

These specialized casts are:

• static_pointer_cast, returning a shared_ptr to the base-class section of a derived class

object;

• const_pointer_cast, returning a shared_ptr to a non-const object from a shared_ptr to a

constant object;

• dynamic_pointer_cast, returning a shared_ptr to a derived class object from a shared_ptr

to a base class object.



3.6 Keywords and reserved names in C++

C++’s keywords are a superset of C’s keywords. Here is a list of all keywords of the language:

alignas char16_t double long reinterpret_cast true

alignof char32_t dynamic_cast module requires try

and class else mutable return typedef

and_eq co_await enum namespace short typeid

asm co_return explicit new signed typename

atomic_cancel co_yield export noexcept sizeof union

atomic_commit compl extern not static unsigned

atomic_noexcept concept false not_eq static_assert using

auto const float nullptr static_cast virtual

bitand const_cast for operator struct void

bitor constexpr friend or switch volatile

bool continue goto or_eq synchronized wchar_t

break decltype if private template while

case default import protected this xor

catch delete inline public thread_local xor_eq

char do int register throw

Notes:

• Since the C++17 standard the keyword register is no longer used, but it remains a reserved

identifier. In other words, definitions like

register int index;

result in compilation errors. Also, register is no longer considered a storage class specifier

(storage class specifiers are extern, thread_local, mutable and static).

• the operator keywords: and, and_eq, bitand, bitor, compl, not, not_eq, or,

or_eq, xor and xor_eq are symbolic alternatives for, respectively, &&, &=, &, |, ~, !,

!=, ||, |=, ^ and ^=.

• C++ also recognizes the special identifiers final, override, transaction_safe, and

transaction_safe_override. These identifiers are special in the sense that they acquire spe-

cial meanings when declaring classes or polymorphic functions. Section 14.4 provides further

details.

Keywords can only be used for their intended purpose and cannot be used as names for other entities

(e.g., variables, functions, class-names, etc.). In addition to keywords identifiers starting with an un-

derscore and living in the global namespace (i.e., not using any explicit namespace or using the mere

:: namespace specification) or living in the std namespace are reserved identifiers in the sense that

their use is a prerogative of the implementor.





Chapter 4

Namespaces

4.1 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program functions

like cos, sin, tan etc. are to be used accepting arguments in degrees rather than arguments in

radians. Unfortunately, the function name cos is already in use, and that function accepts radians as

its arguments, rather than degrees.

Problems like these are usually solved by defining another name, e.g., the function name cosDegrees

is defined. C++ offers an alternative solution through namespaces. Namespaces can be considered as

areas or regions in the code in which identifiers may be defined. Identifiers defined in a namespace

normally won’t conflict with names already defined elsewhere (i.e., outside of their namespaces). So,

a function cos (expecting angles in degrees) could be defined in a namespace Degrees. When calling

cos from within Degrees you would call the cos function expecting degrees, rather than the standard

cos function expecting radians.

4.1.1 Defining namespaces

Namespaces are defined according to the following syntax:

namespace identifier

{

// declared or defined entities

// (declarative region)

}

The identifier used when defining a namespace is a standard C++ identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,

classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined

within a function body. However, it is possible to define a namespace using multiple namespace decla-

rations. Namespaces are ‘open’ meaning that a namespace CppAnnotations could be defined in a file

file1.cc and also in a file file2.cc. Entities defined in the CppAnnotations namespace of files

file1.cc and file2.cc are then united in one CppAnnotations namespace region. For example:

// in file1.cc

namespace CppAnnotations

{

double cos(double argInDegrees)

{

61



}

}

// in file2.cc

namespace CppAnnotations

{

double sin(double argInDegrees)

{

...

}

}

Both sin and cos are now defined in the same CppAnnotations namespace.

Namespace entities can be defined outside of their namespaces. This topic is discussed in section

4.1.4.1.

4.1.1.1 Declaring entities in namespaces

Instead of defining entities in a namespace, entities may also be declared in a namespace. This allows

us to put all the declarations in a header file that can thereupon be included in sources using the

entities defined in the namespace. Such a header file could contain, e.g.,

namespace CppAnnotations

{

double cos(double degrees);

double sin(double degrees);

}

4.1.1.2 A closed namespace

Namespaces can be defined without a name. Such an anonymous namespace restricts the visibility of

the defined entities to the source file defining the anonymous namespace.

Entities defined in the anonymous namespace are comparable to C’s static functions and variables. In

C++ the static keyword can still be used, but its preferred use is in class definitions (see chapter 7).

In situations where in C static variables or functions would have been used the anonymous namespace

should be used in C++.

The anonymous namespace is a closed namespace: it is not possible to add entities to the same anony-

mous namespace using different source files.

4.1.2 Referring to entities

Given a namespace and its entities, the scope resolution operator can be used to refer to its entities.

For example, the function cos() defined in the CppAnnotations namespace may be used as follows:

// assume CppAnnotations namespace is declared in the

// following header file:

#include <cppannotations>

int main()

{

cout << "The cosine of 60 degrees is: " <<



}

This is a rather cumbersome way to refer to the cos() function in the CppAnnotations namespace,

especially so if the function is frequently used. In cases like these an abbreviated form can be used

after specifying a using declaration. Following

using CppAnnotations::cos; // note: no function prototype,

// just the name of the entity

// is required.

calling cos results in a call of the cos function defined in the CppAnnotations namespace. This

implies that the standard cos function, accepting radians, is not automatically called anymore. To call

that latter cos function the plain scope resolution operator should be used:

int main()

{

using CppAnnotations::cos;

...

cout << cos(60) // calls CppAnnotations::cos()

<< ::cos(1.5) // call the standard cos() function

<< '\n';

}

A using declaration can have restricted scope. It can be used inside a block. The using declaration

prevents the definition of entities having the same name as the one used in the using declaration. It

is not possible to specify a using declaration for a variable value in some namespace, and to define

(or declare) an identically named object in a block also containing a using declaration. Example:

int main()

{

using CppAnnotations::value;

...

cout << value << '\n'; // uses CppAnnotations::value

int value; // error: value already declared.

}

4.1.2.1 The ‘using’ directive

A generalized alternative to the using declaration is the using directive:

using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are used as if they

were declared by using declarations.

While the using directive is a quick way to import all the names of a namespace (assuming the names-

pace has previously been declared or defined), it is at the same time a somewhat dirty way to do so, as

it is less clear what entity is actually used in a particular block of code.

If, e.g., cos is defined in the CppAnnotations namespace, CppAnnotations::cos is going to be used

when cos is called. However, if cos is not defined in the CppAnnotations namespace, the standard

cos function will be used. The using directive does not document as clearly as the using declaration

what entity will actually be used. Therefore use caution when applying the using directive.

Namespace declarations are context sensitive: when a using namespace declaration is specified in-

side a compound statement then the declaration is valid until the compound statement’s closing curly



fying std::string, but once the compound statement has ended the scope of the using namespace

std declaration has also ended, and so std:: is required once again when defining second:

#include <string>

int main()

{

{

using namespace std;

string first;

}

std::string second;

}

A using namespace directive cannot be used within the declaration block of a class- or enumeration-

type. E.g., the following example won’t compile:

struct Namespace

{

using namespace std; // won't compile

};

4.1.2.2 ‘Koenig lookup’

If Koenig lookup were called the ‘Koenig principle’, it could have been the title of a new Ludlum novel.

However, it is not. Instead it refers to a C++ technicality.

‘Koenig lookup’ refers to the fact that if a function is called without specifying its namespace, then the

namespaces of its argument types are used to determine the function’s namespace. If the namespace

in which the argument types are defined contains such a function, then that function is used. This

procedure is called the ‘Koenig lookup’.

As an illustration consider the next example. The function FBB::fun(FBB::Value v) is defined in

the FBB namespace. It can be called without explicitly mentioning its namespace:

#include <iostream>

namespace FBB

{

enum Value // defines FBB::Value

{

FIRST

};

void fun(Value x)

{

std::cout << "fun called for " << x << '\n';

}

}

int main()

{

fun(FBB::FIRST); // Koenig lookup: no namespace

// for fun() specified

}

/*
generated output:



*/

The compiler is rather smart when handling namespaces. If Value in the namespace FBB would have

been defined as typedef int Value then FBB::Value would be recognized as int, thus causing the

Koenig lookup to fail.

As another example, consider the next program. Here two namespaces are involved, each defining their

own fun function. There is no ambiguity, since the argument defines the namespace and FBB::fun is

called:

#include <iostream>

namespace FBB

{

enum Value // defines FBB::Value

{

FIRST

};

void fun(Value x)

{

std::cout << "FBB::fun() called for " << x << '\n';

}

}

namespace ES

{

void fun(FBB::Value x)

{

std::cout << "ES::fun() called for " << x << '\n';

}

}

int main()

{

fun(FBB::FIRST); // No ambiguity: argument determines

// the namespace

}

/*
generated output:

FBB::fun() called for 0

*/

Here is an example in which there is an ambiguity: fun has two arguments, one from each namespace.

The ambiguity must be resolved by the programmer:

#include <iostream>

namespace ES

{

enum Value // defines ES::Value

{

FIRST

};

}

namespace FBB



enum Value // defines FBB::Value

{

FIRST

};

void fun(Value x, ES::Value y)

{

std::cout << "FBB::fun() called\n";

}

}

namespace ES

{

void fun(FBB::Value x, Value y)

{

std::cout << "ES::fun() called\n";

}

}

int main()

{

// fun(FBB::FIRST, ES::FIRST); ambiguity: resolved by

// explicitly mentioning

// the namespace

ES::fun(FBB::FIRST, ES::FIRST);

}

/*
generated output:

ES::fun() called

*/

An interesting subtlety with namespaces is that definitions in one namespace may break the code

defined in another namespace. It shows that namespaces may affect each other and that namespaces

may backfire if we’re not aware of their peculiarities. Consider the following example:

namespace FBB

{

struct Value

{};

void fun(int x);

void gun(Value x);

}

namespace ES

{

void fun(int x)

{

fun(x);

}

void gun(FBB::Value x)

{

gun(x);

}

}

Whatever happens, the programmer’d better not use any of the functions defined in the ES namespace,



programmer won’t even be given the opportunity to call ES::fun since the compilation fails.

Compilation fails for gun but not for fun. But why is that so? Why is ES::fun flawlessly compiling

while ES::gun isn’t? In ES::fun fun(x) is called. As x’s type is not defined in a namespace the

Koenig lookup does not apply and fun calls itself with infinite recursion.

With ES::gun the argument is defined in the FBB namespace. Consequently, the FBB::gun function is

a possible candidate to be called. But ES::gun itself also is possible as ES::gun’s prototype perfectly

matches the call gun(x).

Now consider the situation where FBB::gun has not yet been declared. Then there is of course no

ambiguity. The programmer responsible for the ES namespace is resting happily. Some time after

that the programmer who’s maintaining the FBB namespace decides it may be nice to add a function

gun(Value x) to the FBB namespace. Now suddenly the code in the namespace ES breaks because of

an addition in a completely other namespace (FBB). Namespaces clearly are not completely independent

of each other and we should be aware of subtleties like the above. Later in the C++ Annotations (chapter

11) we’ll return to this issue.

Koenig lookup is only used in the context of namespaces. If a function is defined outside of a namespace,

defining a parameter of a type that’s defined inside a namespace, and that namespace also defines a

function with an identical signature, then the compiler reports an ambiguity when that function is

called. Here is an example, assuming the abovementioned namespace FBB is also available:

void gun(FBB::Value x);

int main(int argc, char **argv)

{

gun(FBB::Value{}); // ambiguity: FBB::gun and ::gun can both

// be called.

}

4.1.3 The standard namespace

The std namespace is reserved by C++. The standard defines many entities that are part of the

runtime available software (e.g., cout, cin, cerr); the templates defined in the Standard Template

Library (cf. chapter 18); and the Generic Algorithms (cf. chapter 19) are defined in the std namespace.

Regarding the discussion in the previous section, using declarations may be used when referring to

entities in the std namespace. For example, to use the std::cout stream, the code may declare this

object as follows:

#include <iostream>

using std::cout;

Often, however, the identifiers defined in the std namespace can all be accepted without much thought.

Because of that, one frequently encounters a using directive, allowing the programmer to omit a

namespace prefix when referring to any of the entities defined in the namespace specified with the

using directive. Instead of specifying using declarations the following using directive is frequently

encountered: construction like

#include <iostream>

using namespace std;

Should a using directive, rather than using declarations be used? As a rule of thumb one might decide

to stick to using declarations, up to the point where the list becomes impractically long, at which point

a using directive could be considered.



• Programmers should not declare or define anything inside the namespace std. This is not com-

piler enforced but is imposed upon user code by the standard;

• Using declarations and directives should not be imposed upon code written by third parties. In

practice this means that using directives and declarations should be banned from header files

and should only be used in source files (cf. section 7.11.1).

4.1.4 Nesting namespaces and namespace aliasing

Namespaces can be nested. Here is an example:

namespace CppAnnotations

{

int value;

namespace Virtual

{

void *pointer;

}

}

The variable value is defined in the CppAnnotations namespace. Within the CppAnnotations

namespace another namespace (Virtual) is nested. Within that latter namespace the variable

pointer is defined. To refer to these variable the following options are available:

• The fully qualified names can be used. A fully qualified name of an entity is a list of all the

namespaces that are encountered until reaching the definition of the entity. The namespaces and

entity are glued together by the scope resolution operator:

int main()

{

CppAnnotations::value = 0;

CppAnnotations::Virtual::pointer = 0;

}

• A using namespace CppAnnotations directive can be provided. Now value can be used with-

out any prefix, but pointer must be used with the Virtual:: prefix:

using namespace CppAnnotations;

int main()

{

value = 0;

Virtual::pointer = 0;

}

• A using namespace directive for the full namespace chain can be used. Now value needs its

CppAnnotations prefix again, but pointer doesn’t require a prefix anymore:

using namespace CppAnnotations::Virtual;

int main()

{

CppAnnotations::value = 0;

pointer = 0;

}



quired anymore:

using namespace CppAnnotations;

using namespace Virtual;

int main()

{

value = 0;

pointer = 0;

}

• The same can be accomplished (i.e., no namespace prefixes) for specific variables by providing

specific using declarations:

using CppAnnotations::value;

using CppAnnotations::Virtual::pointer;

int main()

{

value = 0;

pointer = 0;

}

• A combination of using namespace directives and using declarations can also be used. E.g., a

using namespace directive can be used for the CppAnnotations::Virtual namespace, and a

using declaration can be used for the CppAnnotations::value variable:

using namespace CppAnnotations::Virtual;

using CppAnnotations::value;

int main()

{

value = 0;

pointer = 0;

}

Following a using namespace directive all entities of that namespace can be used without any further

prefix. If a single using namespace directive is used to refer to a nested namespace, then all entities

of that nested namespace can be used without any further prefix. However, the entities defined in the

more shallow namespace(s) still need the shallow namespace’s name(s). Only after providing specific

using namespace directives or using declarations namespace qualifications can be omitted.

When fully qualified names are preferred but a long name like

CppAnnotations::Virtual::pointer

is considered too long, a namespace alias may be used:

namespace CV = CppAnnotations::Virtual;

This defines CV as an alias for the full name. The variable pointer may now be accessed using:

CV::pointer = 0;

A namespace alias can also be used in a using namespace directive or using declaration:

namespace CV = CppAnnotations::Virtual;

using namespace CV;



Starting with the C++17 standard, when nesting namespaces a nested namespace can directly be re-

ferred to using scope resolution operators. E.g.,

namespace Outer::Middle::Inner

{

// entities defined/declared here are defined/declared in the Inner

// namespace, which is defined in the Middle namespace, which is

// defined in the Outer namespace

}

4.1.4.1 Defining entities outside of their namespaces

It is not strictly necessary to define members of namespaces inside a namespace region. But before an

entity is defined outside of a namespace it must have been declared inside its namespace.

To define an entity outside of its namespace its name must be fully qualified by prefixing the member

by its namespaces. The definition may be provided at the global level or at intermediate levels in the

case of nested namespaces. This allows us to define an entity belonging to namespace A::B within the

region of namespace A.

Assume the type int INT8[8] is defined in the CppAnnotations::Virtual namespace. Further-

more assume that it is our intent to define a function squares, inside the namespace

CppAnnotations::Virtual returning a pointer to CppAnnotations::Virtual::INT8.

Having defined the prerequisites within the CppAnnotations::Virtual namespace, our function

could be defined as follows (cf. chapter 9 for coverage of the memory allocation operator new[]):

namespace CppAnnotations

{

namespace Virtual

{

void *pointer;

typedef int INT8[8];

INT8 *squares()

{

INT8 *ip = new INT8[1];

for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)

(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

}

}

}

The function squares defines an array of one INT8 vector, and returns its address after initializing

the vector by the squares of the first eight natural numbers.

Now the function squares can be defined outside of the CppAnnotations::Virtual namespace:

namespace CppAnnotations

{

namespace Virtual

{



typedef int INT8[8];

INT8 *squares();

}

}

CppAnnotations::Virtual::INT8 *CppAnnotations::Virtual::squares()

{

INT8 *ip = new INT8[1];

for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)

(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

}

In the above code fragment note the following:

• squares is declared inside of the CppAnnotations::Virtual namespace.

• The definition outside of the namespace region requires us to use the fully qualified name of the

function and of its return type.

• Inside the body of the function squares we are within the CppAnnotations::Virtual names-

pace, so inside the function fully qualified names (e.g., for INT8) are not required any more.

Finally, note that the function could also have been defined in the CppAnnotations region. In that

case the Virtual namespace would have been required when defining squares() and when specifying

its return type, while the internals of the function would remain the same:

namespace CppAnnotations

{

namespace Virtual

{

void *pointer;

typedef int INT8[8];

INT8 *squares();

}

Virtual::INT8 *Virtual::squares()

{

INT8 *ip = new INT8[1];

for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)

(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

}

}

4.2 The std::chrono namespace (handling time)

The C programming language offers tools like sleep(3) and select(2) to suspend program execution for

a certain amount of time. And of course the family of time(3) functions for setting and displaying time



was unavailable, their usefulness is limited when used in multi threaded programs. Multi threading

has become part of C++ (covered in detail in chapter 20), and additional time-related functions are

available in the std::filesystem namespace, covered below in this chapter.

In multi threaded programs threads are frequently suspended, albeit usually for a very short time.

E.g., when a thread wants to access a variable, but the variable is currently being updated by another

thread, then the former thread should wait until the latter thread has completed the update. Updating

a variable usually doesn’t take much time, but if it takes an unexpectedly long time, then the former

thread may want to be informed about that, so it can do something else while the latter thread is busy

updating the variable. Interactions between threads like these cannot be realized with functions like

sleep and select.

The std::chrono namespace bridges the gap between the traditionally available time-related func-

tions and the time-related requirements of multi-threading and of the std::filesystem name

space. All but the specific std::filesystem related time functionality is available after includ-

ing the <chrono> header file. After including the <filesystem> header file the facilities of the

std::filesystem are available.

Time can be measured in various resolutions: in Olympic games time differences of hundreds of seconds

may make the distinction between a gold and silver medal, but when planning a vacation we might

talk about months before we go on vacation. Time resolutions are specified through objects of the class

std::ratio, which (apart from including the <chrono> header file) is also available after including

the <ratio> header file.

Different events usually last for different amounts of time (given a specific time resolution). Amounts

of time are specified through objects of the class std::chrono::duration.

Events can also be characterized by their points in time: midnight, January 1, 1970 GMT is a point

in time, as is 19:00, December 5, 2010. Points in time are specified through objects of the class

std::chrono::time_point.

It’s not just that resolutions, durations of events, and points in time of events may differ, but the

devices (clocks) we use for specifying time also differ. In the old days hour glasses were used (and

sometimes they’re still used when boiling eggs), but on the other hand we may use atomic clocks when

measurements should be very precise. Four different types of clocks are available. The commonly used

clock is std::chrono::system_clock, but in the context of the file system there’s also an (implicitly

defined) filesystem::__file_clock.

In the upcoming sections the details of the std::chrono namespace are covered. First we look at

characteristics of time resolutions. How to handle amounts of time given their resolutions is covered

next. The next section describes facilities for defining and handling time-points. The relationships

between these types and the various clock-types are covered thereafter.

In this chapter the specification std::chrono:: is often omitted (in practice using namespace std

followed by using namespace chrono is commonly used; [std::]chrono:: specifications are oc-

casionally used to avoid ambiguities). Also, every now and then you’ll encounter forward references to

later chapters, like the reference to the chapter about multi-threading. These are hard to avoid, but

studying those chapters at this point fortunately can be postponed without loss of continuity.

4.2.1 Time resolutions: std::ratio

Time resolutions (or units of time) are essential components of time specifications. Time resolutions are

defined through objects of the class std::ratio.

Before the class ratio can be used, the <ratio> header file must be included. Instead the <chrono>

header file can be included.

The class ratio requires two template arguments. These are positive integral numbers surrounded

by pointed brackets defining, respectively, the numerator and denominator of a fraction (by default the



ratio<1> - representing one;

ratio<60> - representing 60

ratio<1, 1000> - representing 1/1000.

The class ratio defines two directly accessible static data members: num represents its numerator, den

its denominator. A ratio definition by itself simply defines a certain amount. E.g., when executing the

following program

#include <ratio>

#include <iostream>

using namespace std;

int main()

{

cout << ratio<5, 1000>::num << ',' << ratio<5, 1000>::den << '\n' <<

milli::num << ',' << milli::den << '\n';

}

the text 1,200 is displayed, as that’s the ‘amount’ represented by ratio<5, 1000>: ratio simplifies

the fraction whenever possible.

A fairly large number of predefined ratio types exist. They are, like ratio itself, defined in the

standard namespace and can be used instead of the more cumbersome ratio<x> or ratio<x, y>

specification:

yocto 10−24 zepto 10−21

atto 10−18 femto 10−15 pico 10−12

nano 10−9 micro 10−6 milli 10−3

centi 10−2 deci 10−1

deca 101 hecto 102 kilo 103

mega 106 giga 109 tera 1012

peta 1015 exa 1018

zetta 1021 yotta 1024

(note: the definitions of the types yocto, zepto, zetta and yotta use integral constants exceeding

64 bits. Although these constants are defined in C++, they are not available on 64 bit or smaller

architectures.)

Time related ratios can very well be interpreted as fractions or multiple of seconds, with ratio<1,

1> representing a resolution of one second.

Here is an example showing how these abbreviations can be used:

cout << milli::num << ',' << milli::den << '\n' <<

kilo::num << ',' << kilo::den << '\n';

4.2.2 Amounts of time: std::chrono::duration

Amounts of time are specified through objects of the class std::chrono::duration.

Before using the class duration the <chrono> header file must be included.



mally used) defining the type holding the duration’s amount of time, and a time-resolution (called its

resolution), usually specified through a std::ratio-type (often using one of its chrono abbreviations).

Using the predefined std::deca ratio, representing units of 10 seconds an interval of 30 minutes is

defined as follows:

duration<int64_t, std::deca> halfHr(180);

Here halfHr represents a time interval of 180 deca-seconds, so 1800 seconds. Comparable to the

predefined ratios predefined duration types are available:

nanoseconds duration<int64_t, nano>

microseconds duration<int64_t, micro>

milliseconds duration<int64_t, milli>

seconds duration<int64_t>

minutes duration<int64_t, ratio<60>>

hours duration<int64_t, ratio<3600>>

Using these types, a time amount of 30 minutes can now simply be defined as minutes

halfHour(30).

The two types that were specified when defining a duration<Type, Resolution> can be retrieved

as, respectively,

• rep, which is equivalent to the numeric type (like int64_t). E.g., seconds::rep is equivalent

to int64_t;

• period, which is equivalent to the ratio type (like kilo) and so duration<int,

kilo>::period::num is equal to 1.

Duration objects can be constructed by specifying an argument of its numeric type:

• duration(Type const &value):

a specific duration of value time units. Type refers to the duration’s numeric type (e.g., int64_t).

So, when defining

minutes halfHour(30);

the argument 30 is stored inside its int64_t data member.

Duration supports copy- and move-constructors (cf. chapter 9) and its default constructor initializes its

int64_t data member to zero.

The amount of time stored in a duration object may be modified by adding or subtracting two duration

objects or by multiplying, dividing, or computing a modulo value of its data member. Numeric mul-

tiplication operands may be used as left-hand side or right-hand side operands; in combination with

the other multiplication operators the numeric operands must be used as right-hand side operands.

Compound assignment operators are also available. Some examples:

minutes fullHour = minutes{ 30 } + halfHour;

fullHour = 2 * halfHour;

halfHour = fullHour / 2;

fullHour = halfHour + halfHour;

halfHour /= 2;

halfHour *= 2;



requiring a duration object). The other three are static members (cf. chapter 8) which can be used

without requiring objects (as shown at the zero code snippet):

• Type count() const returns the value that is stored inside the duration object’s data mem-

ber. For halfHour it returns 30, not 1800;

• duration<Type, Resolution>::zero():

this is an (immutable) duration object whose count member returns 0. E.g.:

seconds::zero().count(); // equals int64_t 0

• duration<Type, Resolution>::min():

an immutable duration object whose count member returns the lowest value of its Type (i.e.,

std::numeric_limits<Type>::min() (cf. section 21.11));

• duration<Type, Resolution>::max():

an immutable duration object whose count member returns the lowest value of its Type (i.e.,

std::numeric_limits<Type>::max()).

Duration objects using different resolutions may be combined as long as no precision is lost. When

duration objects using different resolutions are combined the resulting resolution is the finer of the

two. When compound binary operators are used the receiving object’s resolution must be the finer or

the compilation fails.

minutes halfHour{ 30 };

hours oneHour{ 1 };

cout << (oneHour + halfHour).count(); // displays: 90

halfHour += oneHour; // OK

// oneHour += halfHours; // won't compile

The suffixes h, min, s, ms, us, ns can be used for integral values, creating the corresponding

duration time intervals. E.g., minutes min = 1h stores 60 in min.

4.2.3 Clocks measuring time

Clocks are used for measuring time. C++ offers several predefined clock types, and all

but one of them are defined in the std::chrono namespace. The exception is the clock

std::filesystem::__file_clock (see section 4.3.1 for its details).

Before using the chrono clocks the <chrono> header file must be included.

We need clock types when defining points in time (see the next section). All predefined clock types

define the following types:

• the clock’s duration type: Clock::duration (predefined clock types use nanoseconds). E.g.,

system_clock::duration oneDay{ 24h };

• the clock’s resolution type: Clock::period (predefined clock types use nano). E.g., cout <<

system_clock::period::den << ’\n’;

• the clock’s type that is used to store amounts of time: Clock::rep (predefined clock types use

int64_t). E.g., system_clock::rep amount = 0;

• the clock’s type that is used to store time points (described in the next section):

Clock::time_point (predefined clock types use time_point<system_clock,

nanoseconds>) E.g., system_clock::time_point start.



the current time (relative to the clock’s epoch). It is a static member and can be used this way:

system_clock::time_point tp = system_clock::now().

There are three predefined clock types in the chrono namespace:

• system_clock is the ‘wall clock’, using the system’s real time clock;

• steady_clock is a clock whose time increases in parallel with the increase of real time;

• high_resolution_clock is the computer’s fastest clock (i.e., the clock having the shortest

timer-tick interval). In practice this is the same clock as system_clock.

The __file_clock is defined in the std::filesystem namespace ( covered in section 4.3.1).

In addition to now the classes system_clock and high_resolution_clock (referred to as Clock

below) offer these two static members:

• std::time_t Clock::to_time_t(Clock::time_point const &tp)

a std::time_t value (the same type as returned by C’s time(2) function) representing the same

point in time as timePoint.

• Clock::time_point Clock::from_time_t(std::time_t seconds)

a time_point representing the same point in time as time_t.

The example illustrates how these functions can be called:

system_clock::from_time_t(

system_clock::to_time_t(

system_clock::from_time_t(

time(0);

)

)

);

4.2.4 Points in time: std::chrono::time_point

Single moments in time can be specified through objects of the class std::chrono::time_point.

Before using the class time_point the <chrono> header file must be included.

Like duration the class time_point requires two template arguments: A clock type and a duration

type. Usually system_clock is used as the clock’s type using nanoseconds as the default duration

type (it may be omitted if nanoseconds is the intended duration type). Otherwise specify the dura-

tion type as the time_point’s second template argument. The following two time point definitions

therefore use identifcal time point types:

time_point<standard_clock, nanoseconds> tp1;

time_point<standard_clock> tp2;

The class time_point supports three constructors:

• time_point():

the default constructor is initialized to the beginning of the clock’s epoch. For system_clock it

is January, 1, 1970, 00:00h, but notice that filesystem::__file_clock uses a different epoch

(see section 4.3.1 below);



the copy constructor (cf. chapter 9) initializes a time_point object using the time point defined

by other. If other’s resolution uses a larger period than the period of the constructed object

then other’s point in time is represented in the constructed object’s resolution (an illustration

is provided below, at the description of the member time_since_epoch);

• time_point(time_point<Clock, Duration> const &&tmp):

the move constructor (cf. chapter 9) acts comparably to the copy constructor, converting tmp’s

resolution to the constructed object while moving tmp to the constructed object.

The following operators and members are available:

• time_point &operator+=(duration const &amount):

The amount of time represented by amount is added to the current time_point object. This

operator is also available as binary arithmetic operator using a time_point const & and a

duration const & operand (in any order). Example:

system_clock::now() + seconds{ 5 };

• time_point &operator-=(duration const &amount):

The amount of time represented by amount is subtracted from the current time_point object.

This operator is also available as binary arithmetic operator using a time_point const & and

a duration const & operand (in any order). Example:

time_point<system_clock> point = system_clock::now();

point -= seconds{ 5 };

• duration time_since_epoch() const:

duration is the duration type used by the time point object for which this member is called. It

returns the amount of time since the epoch that’s represented by the object.

• time_point min() const:

a static member returning the time point’s duration::min value. Example:

cout <<

time_point<system_clock>::min().time_since_epoch().count() << '\n';

// shows -9223372036854775808

• time_point max() const:

a static member returning the time point’s duration::max value.

All predefined clocks use nanoseconds as their time resolution. To express the time in a less precise

resolution take one unit of time of the less precise resolution (e.g., hours(1)) and convert it to nanosec-

onds. Then divide the value returned by the time point’s time_since_epoch().count()member by

count member of the less precise resolution converted to nanoseconds. Using this procedure the num-

ber of hours passed since the beginning of the epoch can be determined:

cout << system_clock::now().time_since_epoch().count() /

nanoseconds(hours(1)).count() <<

" hours since the epoch\n";

Time point objects based on the system clock or on the high resolution clock can be converted to

std::time_t (or the equivalent type time_t) values. Such time_t values are used when convert-

ing time to text. For such conversions the manipulator put_time (cf. section 6.3.2) is commonly used,

but put_time must be provided with the address of a std::tm object, which in turn can be obtained

from a std::time_t value. The whole process is fairly complex, and the core elements are visualized

in figure 4.1.

The essential step eventually leading to the insertion of a time point’s value into a std::ostream con-

sists of using system_clock::to_time_t(time_point<system_clock> const &tp) to convert

a time point to a time_t value (instead of using system_clock the high_resolution_clock can

also be used). How a time point can be inserted into a std::ostream is described in section 6.4.4.
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4.3 The std::filesystem namespace

Computers commonly store information that must survice reboots in their file systems. Traditionally, to

manipulate the file system the C programming language offers functions performing the required sys-

tem calls. Such functions (like rename(2), truncate(2), opendir(2), and realpath(3)) are of course

also available in C++, but their signatures and way of use are often less attractive as they usually ex-

pect char const ∗ parameters and may use static buffers or memory allocation based on malloc(3)

and free(3).

Since 2003 the Boost library1 offers wrappers around these functions, offering interfaces to those

system calls that are more C++-like.

Currently C++ directly supports these functions in the std::filesystem namespace. These facilities

can be used after including the <filesystem> header file.

The filesystem namespace is extensive: it contains more than 10 different classes, and more than

30 free functions. To refer to the identifiers defined in the std::filesystem namespace their fully

qualified names (e.g., std::filesystem::path can be used). Alternatively, after specifying ‘using

namespace std::filesystem;’ the identifiers can be used without further qualifications. Names-

pace specifications like ‘namespace fs = std::filesystem;’ are also encountered, allowing speci-

fications like fs::path.

Functions in the filesystem namespace may fail. When functions cannot perform their assigned

tasks they may throw exceptions (cf. chapter 10) or they may assign values to error_code objects that

are passed as arguments to those functions (see section 4.3.2 below).

4.3.1 the ’__file_clock’ type

In section 4.2.3 it was stated that various predefined clocks are available, of which the system_clock

refers to the clock used by the computer itself. The filesystem namespace uses a different clock: the

std::filesystem::__file_clock. Time points obtained using the __file_clock differ from the

time points obtained using the system clock: time points using the __file_clock are based on an

epoch that (currently) lies well beyond the epoch Jan 1, 00:00:00 1970 that is used by the system clock:

Fri Dec 31 23:59:59 2173. The two epochs can be positioned on a time scale with the present somewhere

in between:

<------|-----------------------|-----------------------|------->

system_clock's --------> present <-------- __file_clock's

epoch starts positive negative epoch starts

count count

The __file_clock has its own peculiarities: the static member now is available, as are the the non-

static members: additions and subtractions of durations and the member time_since_epoch can all

be used. The other members (to_time_t, from_time_t, min and max) aren’t available.

Since to_time_t is not available for __file_clock how can we show the time or obtain the time’s

components of a time_point<__file_clock> object?

Computing the difference between the epochs we find 6’437’663’999 seconds, which we can add to the

obtained time since the __file_clock’s epoch to obtain the time since the system_clock’s epoch.

If timePt holds the duration since the __file_clock epoch then

6'437'663'999 + system_clock::to_time_t(

time_point<system_clock>{ nanoseconds(timePt) })

equals the number of seconds since the system_clock’s epoch.

1http://www.boost.org/doc/libs/1_65_1/libs/filesystem/doc/index.htm



the begin of its epoch might change. By using the now members of both clocks this drawback is avoided:

auto systemNow = system_clock::now().time_since_epoch();

auto fileNow = __file_clock::now().time_since_epoch();

time_t diff = (systemNow - fileNow) / 1'000'000'000;

time_t seconds = diff + system_clock::to_time_t(

time_point<system_clock>{ nanoseconds(timePt) });

4.3.2 The class ’error_code’

Objects of the class std::error_code encapsulate error values, and associated error categories (cf.

section 10.9). Traditionally error values are available as values assigned to the global int errno

variable. By convention, when errno’s value equals zero there’s no error. This convention was adopted

by error_code.

Error codes can be defined for many conceptually different situations. Those situations are character-

ized by their own error categories.

Error categories are used to associate error_code objects with the errors that are defined by those

categories. Default available error categories may use values like EADDRINUSE (or the equivalent enum

class errc value address_in_use) but new types of error categories, tailored to other contexts,

can also be defined. Defining error categories is covered near the end of the C++ Annotations (section

23.7.1). At this point two error_category members are briefly introduced:

• std::string message(int err) returning a textual description of error err (like address

already in use when err equals address_in_use).

• char const ∗name() returning the name of the error category (like generic for the generic cat-

egory);

Error category classes are singleton classes: only one object exists of each error category. In the con-

text of the filesystem namespace the standard category system_category is used, and a reference to

the system_category object is returned by the free function std::system_category, expecting no

arguments. The public interface of the class error_code declares these construtors and members:

Constructors:

• error_code() noexcept:

the object is initialized with error value 0 and the system_category error category. Value 0 is

not considered an error;

• Copy- and move-constructors are available;

• error_code(int ec, error_category const &cat) noexcept:

the object is initialized from error value ec (e.g., errno, set by a failing function), and a

const reference to the applicable error category (provided by, e.g., std::system_category()

or std::generic_category()). Here is an example defining an error_code object:

error_code ec{ 5, system_category() };

• error_code(ErrorCodeEnum value) noexcept:

this is a member template (cf. section 22.1.3), using template header template <class

ErrorCodeEnum>. It initializes the object with the return value of make_error_code(value)

(see below). In section 23.7 defining ErrorCodeEnums is covered. Note: ErrorCodeEnum as such

does not exist. It is a mere placeholder for existing ErrorCodeEnum enumerations;



• The overloaded assignment operator and an assignment operator accepting an ErrorCodeEnum

are available;

• void assign(int val, error_category const &cat):

assigns new values to the object’s error value and category. E.g, ec.assign(0,

generic_category());

• error_category const &category() const noexcept:

returns a reference to the object’s error category;

• void clear() noexcept:

sets the error_code’s value to 0 and its error category to system_category;

• error_condition default_error_condition() const noexcept:

returns the current category’s default error condition initialized with the current object’s error

value and error category (see section 10.9.2 for details about the class error_condition);

• string message() const:

the message that is associated with the current object’s error value is returned (equivalent to

category().message(ec.value()));

• explicit operator bool() const noexcept:

returns true if the object’s error value is unequal 0 (i.e., it represents and error)

• int value() const noexcept:

returns the object’s error value.

Free functions:

• Two error_code objects can be compared for (in) equality and can be ordered (using

operator<).

Ordering error_codes associated with different error categories has no meaning. But when the

error categories are identical then they are compared by their error code values (cf. this SG14

discussion summary2);

• error_code make_error_code(errc value) noexcept:

returns an error_code object initialized with static_cast<int>(value) and

generic_category(). This function converts an enum class errc value to an error_code.

Other error related enums may also be defined with which tailored make_error_code functions

can be associated (cf. section 23.7;)

• std::ostream &operator<<(std::ostream & os, error_code const &ec):

executes the following statement:

return os << ec.category().name() << ':' << ec.value();

Several functions introduced below define an optional last error_code &ec parameter. Those func-

tions have noexcept specifications. If those functions cannot complete their tasks, then ec is set to the

appropriate error code, calling ec.clear() if no error was encountered. If no ec argument is provided

then those functions throw a filesystem_error exception if they cannot complete their tasks.

4.3.3 Names of file system entries: path

Objects of the class filesysten::path hold names of file system entries. The class path is a value

class: a default constructor (empty path) as well as standard copy/move construction/assignment facil-

ities are available. In addition, the following constructors can be used:

• path(string &&tmp);

2http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0824r1.html



any acceptable type that provides the characters of the path (e.g., source is a NTBS);

• path(InputIter begin, InputIter end):

the characters from begin to end define the path’s name.

A thus constructed path doesn’t have to refer to an existing file system entry.

Path constructors expect character sequences (including NTBSs) that may consist of various (all op-

tional) elements:

• a root-name, e.g., a disk-name (like E:) or device indicator (like //nfs);

• a root-directory, present if it is the first character after the (optional) root-name;

• filename characters (not containing directory separators). In addition the ‘single dot filename’

(.) represents the current directory and the ‘double dot filename’ (..) represents the current

directory’s parent directory;

• directory separators (by default the forward slash). Multiple consecutive separators are automat-

ically merged into one separator.

The constructors also define a last format ftmp = auto_format parameter, fir which in practice

almost never an argument has to be provided (for its details see cppreference3.)

Many functions expect path arguments which can usually be created from NTBSs or std::string

objects as path allows promotions (cf. section 11.4). E.g., the filesystem function absolute expects a

const &path argument. It can be called like this: absolute("tmp/filename").

4.3.3.1 Path modifiers

Objects of the class path can be handled in various ways:

• path &append(Type const &arg) or path &operator/=(Type const &arg):

the arguments that can be passed to the constructors can also be passed to these members. The

arg argument is separated from the path’s current content by a directory separator (unless the

path is initially empty as in cout << path{}.append("entry")). See also concat, below;

• void clear(): the path’s content is erased;

• int compare(Type const &other):

returns the result of lexicographically comparing the current path’s content with other. Other

can be a path, a string-type or an NTBS;

• path &concat(Type const &arg) or path &operator+=(Type const &arg):

similar to append, but no directory separator is used when adding arg to the current path;

• path &remove_filename():

removes the last component of the stored path. If only a root-directory is stored, then the root

directory is removed. Note that the last directory separator is kept, unless it is the only path

element;

• path &replace_extension(path const &replacement = path{} ):

replaces the extension of the last component of the stored path (including the extension’s dot)

with replacement. The extension is removed if replacement is empty. If the path calling

replace_extension has no extension then replacement is added. The replacement may op-

tionally start with a dot. The path object’s extension receives only one dot;

3http://en.cppreference.com/w/cpp/experimental/fs/path



replaces the last component of the stored path with replacement, which itself may contain mul-

tiple path elements. If only a root-directory is stored, then it is replaced by replacement. The

member’s behavior is undefined if the current path object is empty;

Accessors (no arguments, const members) return the path’s content in various forms, depending on

the used accessor member: c_str returns an NTBS, string, wstring, u8string, u16string,

u32string (possibly prefixed by generic_, like generic_string) returns a string-type of object.

Example:

path ulb{ "/usr/local/bin" };

cout << ulb.string() << '\n'; // shows: /usr/local/bin

Double quotes surround the displayed path name when inserting a path object into a stream. The

double quotes are omitted when accessing the path’s content as an NTBS or as a string, and also when

assigning (or casting) path objects to strings.

When extracting path objects from streams the path name that is extracted may optionally be sur-

rounded by double quotes. The extracted path contains one set of surrounding quotes.

All of the path’s components are sequentially accessed using its begin and end iterators: each com-

ponent is returned as a path. If available root names and root directories are returned as initial compo-

nents, followed by the individual directories and finally filename components. The directory separators

themselves are not returned when iterating over a path’s components.

Path components may also directly be obtained (if a component isn’t present then an empty path

component is returned). The following decomposers are available: root_name, root_directory,

root_path, relative_path, parent_path ( returning the current path-content from which the

last element has been removed), filename, stem (returning the filename without its dot-extension),

and extension. Example:

path ulb{ "/usr/local/bin" };

cout << ulb.relative_path() << '\n'; // shows: "usr/local/bin"

// (note the double quotes)

When prefixed by has_ the member returns a bool which is true if the component is present. Also

available: is_absolute, is_relative.

4.3.3.2 Path operators and free functions

In addition to the member functions various (free) operators are available:

Path objects can be compared (using the ==, !=, <, <=, >, and >= operators); the / operator

returns the concatenated lhs and rhs, separated by a directory separator.

Comparisons use lexicographical comparisons (as if by comparing the return values of their string

members).

In addition free functions are available. Some of these copy files. Those functions accept an optional

std::filesystem::copy_options argument. The enum class copy_options defines symbolic

constants that can be used to fine-tune the behavior of these functions. The enumeration supports

bitwise operators (the symbols’ values are shown between parentheses). It defines these symbols:

• When copying files:

– none (0): report an error (default behavior);

– skip_existing (1): keep the existing file, without reporting an error;

– overwrite_existing (2): replace the existing file;



• When copying subdirectories:

– none (0): skip subdirectories (default behavior);

– recursive (8): recursively copy subdirectories and their content;

• When copying symlinks:

– none (0): follow symlinks (default behavior);

– copy_symlinks (16): copy symlinks as symlinks, not as the files they point to;

– skip_symlinks (32): ignore symlinks;

• To control copy’s behavior itself:

– none (0): copy file content (default behavior);

– directories_only (64): copy the directory structure, but do not copy any non-directory

files;

– create_symlinks (128): instead of creating copies of files, create symlinks pointing to the

originals (the source path must be an absolute path unless the destination path is in the

current directory);

– create_hard_links (256): instead of creating copies of files, create hardlinks that resolve

to the same files as the originals.

The following functions expect path arguments:

• path absolute(path const &src, path const& base):

a copy of src to which, unless already available in src, absolute(base)’s root name and root

directory are prepended. It can be called like this: absolute("tmp/filename"), returning

the (absolute) current working directory to which absolute’s argument is appended as a final

element, separated by a directory separator. Relative path indicators (like ../) are kept. The

returned path merely is an absolute path. If relative path indicators should be removed, then

use the next function;

• path canonical(path const &src [, error_code &ec]):

returns src’s canonical path. The argument src must refer to an existing directory entry. Ex-

ample:

path man{ "/usr/local/bin/../../share/man" };

cout << canonical(man) << '\n'; // shows: "/usr/share/man"

• void copy(path const &src, path const &dest [, copy_options opts [,

error_code &ec]]):

src must exist. Copies src to dest if the cp program would also succeed.

If src is a directory, and dest does not exist, dest is created. Directories are recursively copied

if copy options recursive or none were specified;

• bool copy_file(path const &src, path const &dest [, copy_options opts [,

error_code &ec]]):

src must exist. Copies src to dest if the cp program would also succeed. Symbolic links are

followed. The value true is returned if copying succeeded;

• void copy_symlink(path const &src, path const &dest [, error_code &ec]):

creates the symlink dest as a copy of the symlink src;

• bool create_directories(path const &dest [, error_code &ec]):

creates each component of dest, unless already existing. The value true is returned if dest was

actually created. If false is returned ec contains an error-code, which is zero (ec.value() ==

0) if dest already existed. See also create_directory below;



error_code &ec]):

dest’s parent directory must exist. This function creates directory dest if it does not yet exist.

The value true is returned if dest was actually created. If false is returned ec contains an

error-code, which is zero (ec.value() == 0) if dest already existed. If existing is specified,

then dest receives the same attributes as existing;

• bool create_directory_symlink(path const &dir, path const &link [,

error_code &ec]):

like create_symlink, but should be used to create a symbolic link to a directory. See also

create_symlink below;

• bool create_hardlink(path const &dest, path const &link [, error_code

&ec]):

creates a hard link from link to dest. Dest must exist;

• bool create_symlink(path const &dest, path const &link [, error_code &ec]):

creates a symbolic (soft) link from link to dest; dest does not have to exist;

• path current_path([error_code &ec]), void current_path(path const &toPath

[, error_code &ec]):

the former function returns the current working directory (cwd), the latter changes the cwd to

toPath;

• bool equivalent(path const &path1, path const &path2 [, error_code &ec]):

true is returned if path1 and path2 refer to the same file or directory, and have identical sta-

tuses. Both paths must exist;

• bool exists(path const &dest [, error_code &ec]), exists(file_status

status):

true is returned if dest exists (actually: if status(dest[, ec]) (see below) returns

true). Note: when iterating over directories, the iterator usually provides the entries’ sta-

tuses. In those cases calling exists(iterator->status()) is more efficient than calling

exists(∗iterator);

• std::unintmax_t file_size(path const &dest [, error_code &ec]):

returns the size in bytes of a regular file (or symlink destination);

• std::uintmax_t hard_link_count(path const &dest [, error_code &ec]):

returns the number of hard links associated with dest;

• file_time_type last_write_time(path const &dest [, error_code &ec]), void

last_write_time(path const &dest, file_time_type newTime [, error_code

&ec]):

the former function returns dest’s last modification time; the latter function changes dest’s

last modification time to newTime. The return type file_time_type is defined through a using

alias for chrono::time_point (cf. section 4.2.4). The returned time_point is guaranteed

to cover all file time values that may be encountered in the current file system. Referring to

section 4.3.1: here is how the time returned by last_write_time can be represented using the

system_clock’s epoch:

int main()

{

// get `now' according to the system_clock and

// the __file_clock, compute their difference in

// nanoseconds and seconds:

auto systemNow = system_clock::now().time_since_epoch();

auto fileNow = __file_clock::now().time_since_epoch();

duration diffNano = systemNow - fileNow;

time_t diff = diffNano.count() / 1'000'000'000;

cout << "system_clock now: " << systemNow.count() << "\n"



"difference (nano): " << diffNano.count() << "\n"

"difference (secs): " << diff << '\n';

auto lwt = last_write_time("lastwritetime.cc").time_since_epoch();

time_t seconds = diff + system_clock::to_time_t(

time_point<system_clock>{ nanoseconds(lwt) } );

cout << "lastwritetime.cc's time: " <<

put_time(gmtime(&seconds), "%c") << '\n';

seconds =

system_clock::to_time_t(time_point<system_clock>{ diffNano });

cout << "__file_clock's epoch time expressed using the system_clock:\n"

" " << put_time(gmtime(&seconds), "%c") << "\n"

"same, merely using the difference in `now' clock-seconds:\n"

" " << put_time(gmtime(&diff), "%c") << '\n';

}

• path read_symlink(path const &src [, error_code &ec]):

src must refer to a symbolic link or an error is generated. The link’s target is returned;

• bool remove(path const &dest [, error_code &ec]), std::uintmax_t

remove_all(path const &dest [, error_code &ec]):

remove removes the file, symlink, or empty directory dest, returning true if dest could be

removed; remove_all removes dest if it’s a file (or symlink); and recursively removes directory

dest, returning the number of removed entries;

• void rename(path const &src, path const &dest [, error_code &ec]):

renames src to dest, as if using the standard mv(1) command (if dest exists it is overwritten);

• void resize_file(path const &src, std::uintmax_t size [, error_code &ec]):

src’s size is changed to size as if using the standard truncate(1) command;

• space_info space(path const &src [, error_code &ec]):

returns information about the file system in which src is located;

• path system_complete(path const &src[, error_code& ec]):

returns the absolute path matching src, using current_path as its base;

• path temp_directory_path([error_code& ec]):

returns the path to a directory that can be used for temporary files. The directory is not cre-

ated, but its name is commonly available from the environment variables TMPDIR, TMP, TEMP,

or TEMPDIR. Otherwise, /tmp is returned.

4.3.4 Handling directories: directory_entry

The file system is a recursive data structure. Its top-level entry is a directory (the root directory) con-

taining plain directory entries (files, (soft) links, named sockets, etc.) and possibly also (sub)directory

entries referring to nested directories which in turn may contiain plain- and (sub)directory entries.

In the std::filesystem namespace the elements of directories are objects of the class

directory_entry, containing names and statuses of the entries of that directory.

The class directory_entry supports all standard constructors and assignment operators and in ad-

dition a constructor expecting a path:

directory_entry(path const &entry);

Objects of the class directory_entry can be constructed by name, without requiring that those ob-

jects refer to existing entries in the computer’s file system. The assignment operator is also available,



operator is not available.

‘directory_entry’ objects may be compared using the ==, !=, <, <=, >, and >= opera-

tors. These operators are then applied to their path objects: directory_entry("one") ==

directory_entry("one") returns true.

In addition to these operators the class directory_entry also has these member functions:

• void assign(path const &dest):

the current path is replaced by dest (its action is identical to that of the overloaded assignment

operator);

• void replace_filename(path const &dest):

the last element of the current object’s path is replaced by dest. If that element is empty (like

when the object’s path ends in a directory separator) then dest is appended to the current object’s

path;

• path const &path() const, operator path const &() const:

the current object’s path name is returned;

• file_system::file_status status([error_code &ec]):

returns type and attributes of the directory entry referred to by the current object. If the

current object refers to a symlink, and the symlink’s type and status are required, then use

symlink_status (see also section 4.3.5 below).

4.3.4.1 Visiting directory entries: (recursive_)directory_iterator

The filesystem namespace has two classes simplifying directory processing: objects of the class

directory_iterator are (input) iterators iterating over the entries of directories; and objects of

the class recursive_directory_iterator are (input) iterators recursively visiting all entries of

directories.

The classes (recursive_)directory_iterator provides default, copy, and move constructors. Ob-

jects of both classes may also be constructed from a path and an optional error_code. E.g.,

directory_iterator(path const &dest [, error_code &ec]);

All members of standard input iterators (cf. section 18.2) are supported. These iterators point to

directory_entry objects referring to entries in the computer’s file system. E.g.,

cout << *directory_iterator{ "/home" } << '\n'; // shows the first

// entry under /home

End-iterators matching these objects are available through the default constructed objects of the two

classes. In addition, range-based for loops can be used as shown by the next example:

for (auto &entry: directory_iterator("/var/log"))

cout << entry << '\n';

For-statements explicitly defining iterators can also be used:

for (

auto iter = directory_iterator("/var/log"),

end = directory_iterator{};

iter != end;

++iter

)

cout << entry << '\n';



the first element of its directory. Such iterators can also explicitly be defined: auto &iter =

begin(base), auto iter = begin(base), auto &iter = base or auto iter = base. All

these iter objects refer to base’s data, and incrementing them also advances base to its next el-

ement:

recursive_directory_iterator base{ "/var/log/" };

auto iter = base;

// final two elements show identical paths,

// different from the first element.

cout << *iter << ' ' << *++iter << ' ' << *base << '\n';

The functions begin and end that are used in the above examples are, like

(recursive_)directory_iterator, available in the filesystem namespace.

The recursive_directory_iterator also accepts a directory_options argument (see below),

by default specified as directory_options::none:

recursive_directory_iterator(path const &dest,

directory_options options [, error_code &ec]);

The enum class directory_options defines values that are used to fine-tune the behavior of

recursive_directory_iterator objects, supporting bitwise operators (the values of its symbols

are shown between parentheses):

• none (0): directory symlinks are skipped, denied permission to enter a subdirectory generates an

error;

• follow_directory_symlink (1): symlinks to subdirectories are followed;

• skip_permission_denied (2): directories that cannot be entered are silently skipped.

The class recursive_directory_iterator also has these members:

• int depth() const:

returns the current iteration depth. The depth of the initial directory, specified at construction-

time, equals 0;

• void disable_recursion_pending():

when called before incrementing the iterator the next directory entry is not recursively visited if it

is a sub-directory. Then, after incrementing the iterator recursion is again allowed. If a recursion

should end at a specific depth then this function must repeatedly be called before calling the

iterator’s increment operator once depth() returns that specific depth;

• recursive_directory_iterator &increment(error_code &ec):

acts identically to the iterator’s increment operator. However, when an error occurs operator++

throws a filesystem_error exception, while increment assigns the error to ec;

• directory_options options() const:

returns the option(s) specified at construction-time;

• void pop():

ends processing the current directory, and continues at the next entry in the current directory’s

parent. When (in a for-statement, see the example below) called from the initial directory that

directory’s processing ends;

• bool recursion_pending() const:

true is returned if recursive processing of sub-directories of the currently processed directory is

allowed. If so, and the directory entry the iterator points at is a sub-directory then processing

continues at that sub-directory at the iterator’s next increment;



directories.

int main()

{

recursive_directory_iterator base{ "/var/log" };

for (auto entry = base, end = end(base); entry != end; ++entry)

{

cout << entry.depth() << ": " << *entry << '\n';

if (entry.depth() == 1)

entry.disable_recursion_pending();

}

}

The above program handles entries as they come. If other strategies are needed they have to be im-

plemented. E.g., a breadth-first strategy first visits all the non-directory entries and then visits the

sub-directories. In the next example this is realized by processing each of the directories stored in

level (initially it merely contains the starting directory). ‘Processing a directory’ means that its non-

directory entries are directly processed while the names of its sub-directories are stored in next. Once

all entries in level have been processed the names of the next level sub-directories are available in

next and by assigning next to level all directories at the next level are processed. When reaching

the most deeply nested sub-directories next remains empty and the while statement ends:

void breadth(path const &dir) // starting dir.

{

vector<path> level{ dir }; // currently processed level

while (not level.empty()) // process all its dirs.

{

vector<path> next; // dirs of the next level

for (auto const &dir: level) // visit all dirs at this level

{

cout << "At " << dir << '\n';

// at each dir: visit all entries

for (auto const &entry: directory_iterator{ dir })

{

if (entry.is_directory()) // store all dirs at the current

next.push_back(entry); // level

else // or process its non-dir entry

cout << " entry: " << entry << '\n';

}

}

level = next; // continue at the next level,

} // which eventually won't exist

}

4.3.5 Types (file_type) and permissions (perms) of file system elements:
file_status

File system entries (represented by path objects), have several attributes: permissions (e.g., the owner

may modifiy an entry, others may only read entries), and types (like plain files, directories, and soft-

links).

Types and permissions of file system entries are available through objects of the class file_status.



erators.

The constructor

explicit file_status(file_type type = file_type::none,

perms permissions = perms::unknown)

creates the file status for a specific type of file system entry having a specific set of permissions. It also

acts as default constructor.

The constructor’s first parameter is an enumeration specifying the type of a file system entry repre-

sented by a path object:

• not_found = -1 indicates that a file system entry whose status was requested was not found

(this is not considered an error);

• none indicates either that the file status has not yet been evaluated, or that an error occurred

when an entry’s status was evaluated;

• regular: the entry is a regular file;

• directory: the entry is a directory;

• symlink: the entry is a symbolic link;

• block: the entry is a block device;

• character: the entry is a character device;

• fifo: the entry is a named pipe;

• socket: the entry is a socket file;

• unknown: the entry is an unknown file type

The constructor’s second parameter defines the enum class perms specifying the access permissions

of file system entries. The enumeration’s symbols were selected so that their meanings should be more

descriptive than the constants defined in the <sys/stat.h> header file, but other than that they have

identical values. All bitwise operators can be used by values of the enum class perms. Here is an

overview of the symbols defined by the enum class perms:



Symbol Value sys/stat.h Meaning

none 0000 No permission bits were set

owner_read 0400 S_IRUSR File owner has read permission

owner_write 0200 S_IWUSR File owner has write permission

owner_exec 0100 S_IXUSR File owner has execute/search permissions

owner_all 0700 S_IRWXU File owner has read, write, and execute/search

permissions

group_read 0040 S_IRGRP The file’s group has read permission

group_write 0020 S_IWGRP The file’s group has write permission

group_exec 0010 S_IXGRP The file’s group has execute/search permis-

sions

group_all 0070 S_IRWXG The file’s group has read, write, and exe-

cute/search permissions

others_read 0004 S_IROTH Other users have read permission

others_write 0002 S_IWOTH Other users have write permission

others_exec 0001 S_IXOTH Other users have execute/search permissions

others_all 0007 S_IRWXO Other users have read, write, and exe-

cute/search permissions

all 0777 All users have read, write, and execute/search

permissions

set_uid 04000 S_ISUID Set user ID to file owner user ID on execution

set_gid 02000 S_ISGID Set group ID to file’s user group ID on execu-

tion

sticky_bit 01000 S_ISVTX POSIX XSI specifies that when set on a direc-

tory only file owners may delete files even if

the directory is writeable by others (used, e.g.,

with /tmp)

mask 07777 All valid permission bits.

The class file_status provides these members:

• perms permissions() const and void permissions(perms newPerms [,

perm_options opts] [, error_code &ec]):

the former member returns the permissions of the file system entry represented by the

file_status object, the latter can be used to modify those permissions. The enum class

perm_options has these values:

– replace: current options are replaced by newPerms;

– add: newPerms are added to the current permissions;

– remove: newPerms are removed from the current permissions;

– nofollow: when path refers to a symbolic link the permissions of the symbolic link instead

of those of the file system entry the link refers to are updated.

• file_type type() const and void type(file_type type):

the former member returns the type of the file system entry represented by the file_status

object, the latter can be used to set the type.

4.3.5.1 Obtaining the status of file system entries

The filesystem functions status and symlink_status retrieve or change statuses of file system

entries. These functions may be called with a final (optional) error_code argument which is assigned

an appropriate error code if they cannot perform their tasks. If the argument is omitted the members

throw exceptions if they cannot perform their tasks:

• file_status status(path const &dest [, error_code &ec]):

returns type and attributes of dest;



when calling status of a path object that represents a symbolic link the status of the entry the

link refers to is obtained. To obtain the status information of the symbolic link itself this member

should be used;

• bool status_known(file_status const &status):

returns true if status refers to a determined status (status itself may indicate that the entity

referred to by status does not exist). One way of receiving false is by passing it a default status

object: status_known(file_status{});

Once a file_status object is obtained the file type of the entry whose status it represents can be

interrogated using these functions (defined in the filesystem namespace, where WHATEVER is the

requested specification):

bool is_WHATEVER(file_status status)

bool is_WHATEVER(path const path &entry [, error_code &ec])

These functions return true if status or status matches the requested type. Here are the available

functions:

• is_block_file: the path refers to a block device;

• is_character_file: the path refers to a character device;

• is_directory: the path refers to a directory;

• is_empty: the path refers to an empty file or directory;

• is_fifo: the path refers to a named pipe;

• is_other: the path does not refer to a directory, regular file or symlink;

• is_regular_file: the path refers to a regular file;

• is_socket: the path refers to a named socket;

• is_symlink: the path refers to a symbolic link;

Alternatively, the file_status::type() member can be used in, e.g., a switch to select an entry

matching its file_type return value (see the previous section (4.3.5) for a description of the symbols

defined by the file_type enum).

Here is a little program showing how file statuses can be obtained and shown (for the map see section

12.4.7):

namespace

{

std::unordered_map<file_type, char const *> statusMap =

{

{ file_type::not_found, "an unknown file" },

{ file_type::none, "not yet or erroneously evaluated "

"file type" },

{ file_type::regular, "a regular file" },

{ file_type::directory, "a directory" },

{ file_type::symlink, "a symbolic link" },

{ file_type::block, "a block device" },

{ file_type::character, "a character device" },

{ file_type::fifo, "a named pipe" },

{ file_type::socket, "a socket file" },

{ file_type::unknown, "an unknown file type" }

};



int main()

{

cout << oct;

string line;

while (true)

{

cout << "enter the name of a file system entry: ";

if (not getline(cin, line) or line.empty())

break;

path entry{ line };

error_code ec;

file_status stat = status(entry, ec);

if (not status_known(stat))

{

cout << "status of " << entry << " is unknown. "

"Ec = " << ec << '\n';

continue;

}

cout << "status of " << entry << ": type = " <<

statusMap[stat.type()] <<

", permissions: " <<

static_cast<size_t>(stat.permissions()) << '\n';

}

}

4.3.6 Information about the space of file systems: space_info

Every existing path lives in a file system, Sizes of file systems typically are quite large, but there is a

limit to their sizes.

The size of file systems, the number of bytes that is currently being used and the remaining number

of bytes is made available by the function space(path const &entry [, error_code &ec]),

returning the information about the file system containing entry in a POD struct space_info.

If the error_code argument is provided then it is cleared if no error occurs, and set to the operating

system’s error code if an error has occurred. If an error occurs and the error_code argument was not

provided then a filesystem_error exception is thrown, receiving path as its first argument and the

operating system’s error code as its error_code argument.

The returned space_info has three fields:

uintmax_t capacity; // total size in bytes

uintmax_t free; // number of free bytes on the file system

uintmax_t available; // free bytes for a non-privileged process

If a field cannot be determined it is set to -1 (i.e., the max. value of the type uintmax_t).

The function can be used this way:

int main()

{



auto pod = space(tmp);

cout << "The filesystem containing /tmp has a capacity of " <<

pod.capacity << " bytes,\n"

"i.e., " << pod.capacity / (1024 * 1024) << " MB.\n"

"# free bytes: " << pod.free << "\n"

"# available: " << pod.available << "\n"

"free + available: " << pod.free + pod.available << '\n';

}

4.3.7 File system exceptions: filesystem_error

The std::filesystem namespace offers its own exception type filesystem_error (see also chapter

10). Its constructor has the following signature (the bracketed parameters are optional):

filesystem_error(string const &what,

[path const &path1, [path const &path2,]]

error_code ec);

As filesystem facilities are closely related to standard system functions, errc error code enumera-

tion values can be used to obtain error_codes to pass to filesystem_error, as illustrated by the

following program:

int main()

try

{

try

{

throw filesystem_error{ "exception encountered", "p1", "p2",

make_error_code(errc::address_in_use) };

}

catch (filesystem_error const &fse)

{

cerr << "what: " << fse.what() << "\n"

"path1: " << fse.path1() << "\n"

"path2: " << fse.path2() << "\n"

"code: " << fse.code() << '\n';

throw;

}

}

catch (exception const &ec)

{

cerr << "\n"

"plain exception's what: " << ec.what() << "\n\n";

}



Chapter 5

The ‘string’ Data Type

C++ offers many solutions for common problems. Most of these facilities are part of the Standard

Template Library or they are implemented as generic algorithms (see chapter 19).

Among the facilities C++ programmers have developed over and over again are those manipulating

chunks of text, commonly called strings. The C programming language offers rudimentary string sup-

port.

To process text C++ offers a std::string type. In C++ the traditional C library functions manipulat-

ing NTB strings are deprecated in favor of using string objects. Many problems in C programs are

caused by buffer overruns, boundary errors and allocation problems that can be traced back to improp-

erly using these traditional C string library functions. Many of these problems can be prevented using

C++ string objects.

Actually, string objects are class type variables, and in that sense they are comparable to stream

objects like cin and cout. In this section the use of string type objects is covered. The focus is on

their definition and their use. When using string objects the member function syntax is commonly

used:

stringVariable.operation(argumentList)

For example, if string1 and string2 are variables of type std::string, then

string1.compare(string2)

can be used to compare both strings.

In addition to the common member functions the string class also offers a wide variety of operators,

like the assignment (=) and the comparison operator (==). Operators often result in code that is easy to

understand and their use is generally preferred over the use of member functions offering comparable

functionality. E.g., rather than writing

if (string1.compare(string2) == 0)

the following is generally preferred:

if (string1 == string2)

To define and use string-type objects, sources must include the header file <string>. To merely

declare the string type the header iosfwd can be included.

In addition to std::string, the header file string defines the following string types:

• std::wstring, a string type consisting of wchar_t characters;
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• std::u32string, a string type consisting of char32_t characters.

5.1 Operations on strings

Some of the operations that can be performed on strings return indices within the strings. Whenever

such an operation fails to find an appropriate index, the value string::npos is returned. This value

is a symbolic value of type string::size_type, which is (for all practical purposes) an (unsigned)

int.

All string member functions accepting string objects as arguments also accept NTBS arguments.

The same usually holds true for operators accepting string objects.

Some string-members use iterators. Iterators are formally introduced in section 18.2. Member func-

tions using iterators are listed in the next section (5.2), but the iterator concept itself is not further

covered by this chapter.

Strings support a large variety of members and operators. A short overview listing their capabilities is

provided in this section, with subsequent sections offering a detailed discussion. The bottom line: C++

strings are extremely versatile and there is hardly a reason for falling back on the C library to process

text. C++ strings handle all the required memory management and thus memory related problems,

which are the #1 source of problems in C programs, can be prevented when C++ strings are used.

Strings do come at a price, though. The class’s extensive capabilities have also turned it into a beast.

It’s hard to learn and master all its features and in the end you’ll find that not all that you expected

is actually there. For example, std::string doesn’t offer case-insensitive comparisons. But in the

end it isn’t even as simple as that. It is there, but it is somewhat hidden and at this point in the C++

Annotations it’s too early to study into that hidden corner yet. Instead, realize that C’s standard library

does offer useful functions that can be used as long as we’re aware of their limitations and are able to

avoid their traps. So for now, to perform a traditional case-insensitive comparison of the content of two

std::string objects str1 and str2 the following will do:

strcasecmp(str1.c_str(), str2.c_str());

Strings support the following functionality:

• initialization:

when string objects are defined they are always properly initialized. In other words, they are

always in a valid state. Strings may be initialized empty or already existing text can be used to

initialize strings.

• assignment:

strings may be given new values. New values may be assigned using member functions (like

assign) but a plain assignment operator (i.e., =)may also be used. Furthermore, assignment to a

character buffer is also supported.

• conversions:

the partial or complete content of string objects may be interpreted as C strings but the string’s

content may also be processed as a series of raw binary bytes, not necessarily terminating in a

0-valued character. Furthermore, in many situations plain characters and C strings may be used

where std::strings are accepted as well.

• breakdown:

the individual characters stored in a string can be accessed using the familiar index operator ([])

allowing us to either access or modify information in the middle of a string.

• comparisons:

strings may be compared to other strings (NTBSs) using the familiar logical comparison operators

==, !=, <, <=, > and >=. There are also member functions available offering a more fine-

grained comparison.



the content of strings may be modified in many ways. Operators are available to add information

to string objects, to insert information in the middle of string objects, or to replace or erase (parts

of) a string’s content.

• swapping:

the string’s swapping capability allows us in principle to exchange the content of two string objects

without a byte-by-byte copying operation of the string’s content.

• searching:

the locations of characters, sets of characters, or series of characters may be searched for from any

position within the string object and either searching in a forward or backward direction.

• housekeeping:

several housekeeping facilities are offered: the string’s length, or its empty-state may be interro-

gated. But string objects may also be resized.

• stream I/O:

strings may be extracted from or inserted into streams. In addition to plain string extraction a

line of a text file may be read without running the risk of a buffer overrun. Since extraction and

insertion operations are stream based the I/O facilities are device independent.

5.2 A std::string reference

In this section the string members and string-related operations are referenced. The subsections cover,

respectively the string’s initializers, iterators, operators, and member functions. The following termi-

nology is used throughout this section:

• object is always a string-object;

• argument is a string const & or a char const ∗ unless indicated otherwise. The content of

an argument never is modified by the operation processing the argument;

• opos refers to an offset into an object string;

• apos refers to an offset into an argument;

• on represents a number of characters in an object (starting at opos);

• an represents a number of characters in an argument (starting at apos).

Both opos and apos must refer to existing offsets, or an exception (cf. chapter 10) is generated. In

contrast, an and on may exceed the number of available characters, in which case only the available

characters are considered.

Many members declare default values for on, an and apos. Some members declare default values

for opos. Default offset values are 0, the default values of on and an is string::npos, which can be

interpreted as ‘the required number of characters to reach the end of the string’.

With members starting their operations at the end of the string object’s content proceeding backwards,

the default value of opos is the index of the object’s last character, with on by default equal to opos +

1, representing the length of the substring ending at opos.

In the overview of member functions presented below it may be assumed that all these parameters

accept default values unless indicated otherwise. Of course, the default argument values cannot be

used if a function requires additional arguments beyond the ones otherwise accepting default values.

Some members have overloaded versions expecting an initial argument of type char const ∗. But

even if that is not the case the first argument can always be of type char const ∗ where a parameter

of std::string is defined.



these may be ignored at this point without loss of continuity. Like apos and opos, iterators must refer

to existing positions and/or to an existing range of characters within the string object’s content.

All string-member functions computing indices return the predefined constant string::npos on

failure.

The s literal suffix to indicate that a std::string constant is intended when a string literal (like

"hello world") is used. It can be used after declaring using namespace std or, more specific,

after declaring using namespace std::literals::string_literals.

When string literals are used when explicitly defining or using std::string objects the s-suffix is

hardly ever required, but it may come in handy when using the auto keyword. E.g., auto str =

"hello world"s defines std::string str, whereas it would have been a char const ∗ if the

literal suffix had been omitted.

5.2.1 Initializers

After defining string objects they are guaranteed to be in a valid state. At definition time string objects

may be initialized in one of the following ways: The following string constructors are available:

• string object:

initializes object to an empty string. When defining a string this way no argument list may be

specified;

• string object(string::size_type count, char ch):

initializes object with count characters ch. Caveat: to initialize a string object using this con-

structor do not use the curly-braces variant, but use the constructor as shown, to avoid selecting

the initializer-list constructor (see below);

• string object(string const &argument):

initializes object with argument;

• string object(std::string const &argument, string::size_type apos,

string::size_type an):

initializes object with argument’s content starting at index position apos, using at most an of

argument’s characters;

• string object(InputIterator begin, InputIterator end):

initializes object with the characters in the range of characters defined by the two

InputIterators.

• string object(std::initializer_list<char> chars):

initializes object with the characters specified in the initializer list. The string may also directly

be initialized, using the curly braced initialization. Here is an example showing both forms:

string str1({'h', 'e', 'l', 'l', 'o'});

string str2{ 'h', 'e', 'l', 'l', 'o' };

5.2.2 Iterators

See section 18.2 for details about iterators. As a quick introduction to iterators: an iterator acts like a

pointer, and pointers can often be used in situations where iterators are requested. Iterators usually

come in pairs, defining a range of entities. The begin-iterator points to the first entity, the end-iterator

points just beyond the last entity of the range. Their difference is equal to the number of entities in the

iterator-range.

Iterators play an important role in the context of generic algorithms (cf. chapter 19). The class

std::string defines the following iterator types:



these iterators are forward iterators. The const_iterator is returned by string

const objects, the plain iterator is returned by non-const string objects. Characters

referred to by iterators may be modified;

• string::reverse_iterator and string::reverse_const_iterator:

these iterators are also forward iterators but when incrementing the iterator the previ-

ous character in the string object is reached. Other than that they are comparable to,

respectively, string::iterator and string::const_iterator.

5.2.3 Operators

String objects may be manipulated by member functions but also by operators. Using operators of-

ten results in more natural-looking code. In cases where operators are available having equivalent

functionality as member function the operator is practically always preferred.

The following operators are available for string objects (in the examples ‘object’ and ‘argument’ refer

to existing std::string objects).

• plain assignment:

a character, C or C++ string may be assigned to a string object. The assignment

operator returns its left-hand side operand. Example:

object = argument;

object = "C string";

object = 'x';

object = 120; // same as object = 'x'

• addition:

the arithmetic additive assignment operator and the addition operator add text to a

string object. The compound assignment operator returns its left-hand side operand,

the addition operator returns its result in a temporary string object. When using the

addition operator either the left-hand side operand or the right-hand side operand must

be a std::string object. The other operand may be a char, a C string or a C++ string.

Example:

object += argument;

object += "hello";

object += 'x'; // integral expressions are OK

argument + otherArgument; // two std::string objects

argument + "hello"; // using + at least one

"hello" + argument; // std::string is required

argument + 'a'; // integral expressions are OK

'a' + argument;

• index operator:

The index operator may be used to retrieve object’s individual characters, or to assign

new values to individual characters of a non-const string object. There is no range-

checking (use the at() member function for that). This operator returns a char & or

char const &. Example:

object[3] = argument[5];

• logical operators:

the logical comparison operators may be applied to two string objects or to a string object

and a C string to compare their content. These operators return a bool value. The ==,



icographical comparison of their content using the ASCII character collating sequence.

Example:

object == object; // true

object != (object + 'x'); // true

object <= (object + 'x'); // true

• stream related operators:

the insertion-operator (cf. section 3.1.4) may be used to insert a string object into

an ostream, the extraction-operator may be used to extract a string object from an

istream. The extraction operator by default first ignores all whitespace characters

and then extracts all consecutively non-blank characters from an istream. Instead

of a string a character array may be extracted as well, but the advantage of using a

string object should be clear: the destination string object is automatically resized to

the required number of characters. Example:

cin >> object;

cout << object;

5.2.4 Member functions

The std::string class offers many member function as well as additional non-member functions that

should be considered part of the string class. All these functions are listed below in alphabetic order.

The symbolic value string::npos is defined by the string class. It represents ‘index-not-found’

when returned by member functions returning string offset positions. Example: when calling

‘object.find(’x’)’ (see below) on a string object not containing the character ’x’, npos is returned,

as the requested position does not exist.

The final 0-byte used in C strings to indicate the end of an NTBS is not considered part of a C++ string,

and so the member function will return npos, rather than length() when looking for 0 in a string

object containing the characters of a C string.

Here are the standard functions that operate on objects of the class string. When a parameter of

size_t is mentioned it may be interpreted as a parameter of type string::size_type, but without

defining a default argument value. The type size_type should be read as string::size_type.

With size_type the default argument values mentioned in section 5.2 apply. All quoted functions are

member functions of the class std::string, except where indicated otherwise.

• char &at(size_t opos):

a reference to the character at the indicated position is returned. When called with string

const objects a char const & is returned. The member function performs range-checking, rais-

ing an exception (that by default aborts the program) if an invalid index is passed.

• string &append(InputIterator begin, InputIterator end):

the characters in the range defined by begin and end are appended to the current string object.

• string &append(string const &argument, size_type apos, size_type an):

argument (or a substring) is appended to the current string object.

• string &append(char const ∗argument, size_type an):

the first an characters of argument are appended to the string object.

• string &append(size_type n, char ch):

n characters ch are appended to the current string object.

• string &assign(string const &argument, size_type apos, size_type an):

argument (or a substring) is assigned to the string object. If argument is of type char const ∗

and one additional argument is provided the second argument is interpreted as a value initializing

an, using 0 to initialize apos.



n characters ch are assigned to the current string object.

• char &back():

returns a reference to the last char stored inside the string object. The result is undefined for

empty strings.

• string::iterator begin():

an iterator referring to the first character of the current string object is returned. With const

string objects a const_iterator is returned.

• size_type capacity() const:

the number of characters that can currently be stored in the string object without needing to

resize it is returned.

• string::const_iterator cbegin():

a const_iterator referring to the first character of the current string object is returned.

• string::const_iterator cend():

a const_iterator referring to the end of the current string object is returned.

• void clear():

the string’s content is erased.

• int compare(string const &argument) const:

the text stored in the current string object and the text stored in argument is compared using a

lexicographical comparison using the ASCII character collating sequence. zero is returned if the

two strings have identical content, a negative value is returned if the text in the current object

should be ordered before the text in argument; a positive value is returned if the text in the

current object should be ordered beyond the text in argument.

• int compare(size_t opos, size_t on, string const &argument) const:

a substring of the text stored in the current string object is compared to the text stored in

argument. At most on characters starting at offset opos are compared to the text in argument.

• int compare(size_t opos, size_t on, string const &argument, size_type

apos, size_type an):

a substring of the text stored in the current string object is compared to a substring of the

text stored in argument. At most on characters of the current string object, starting at offset

opos, are compared to at most an characters of argument, starting at offset apos. In this case

argument must be a string object.

• int compare(size_t opos, size_t on, char const ∗argument, size_t an):

a substring of the text stored in the current string object is compared to a substring of the text

stored in argument. At most on characters of the current string object starting at offset opos

are compared to at most an characters of argument. Argument must have at least an characters.

The characters may have arbitrary values: 0-valued characters have no special meanings.

• size_t copy(char ∗argument, size_t on, size_type opos) const:

the content of the current string object are (partially) copied into argument. The actual number

of characters copied is returned. The second argument, specifying the number of characters to

copy, from the current string object is required. No 0-valued character is appended to the copied

string but can be appended to the copied text using an idiom like the following:

argument[object.copy(argument, string::npos)] = 0;

Of course, the programmer should make sure that argument’s size is large enough to accommo-

date the additional 0-byte.

• string::const_reverse_iterator crbegin():

a const_reverse_iterator referring to the last character of the current string object is re-

turned.



a const_reverse_iterator referring to the begin of the current string object is returned.

• char const ∗c_str() const:

the content of the current string object as an NTBS.

• char const ∗data() const:

the raw content of the current string object are returned. Since this member does not return an

NTBS (as c_str does), it can be used to retrieve any kind of information stored inside the current

string object including, e.g., series of 0-bytes:

string s(2, 0);

cout << static_cast<int>(s.data()[1]) << '\n';

• bool empty() const:

true is returned if the current string object contains no data.

• string::iterator end():

an iterator referring to the position just beyond the last character of the current string object is

returned. With const string objects a const_iterator is returned.

• string &erase(size_type opos, size_type on):

a (sub)string of the information stored in the current string object is erased.

• string::iterator erase(string::iterator begin, string::iterator end):

the parameter end is optional. If omitted the value returned by the current object’s end member

is used. The characters defined by the begin and end iterators are erased. The iterator begin is

returned, which is then referring to the position immediately following the last erased character.

• size_t find(string const &argument, size_type opos) const:

the first index in the current string object is returned where argument is found.

• size_t find(char const ∗argument, size_type opos, size_type an) const:

the first index in the current string object is returned where argument is found. When all three

arguments are specified the first argument must be a char const ∗.

• size_t find(char ch, size_type opos) const:

the first index in the current string object is returned where ch is found.

• size_t find_first_of(string const &argument, size_type opos) const:

the first index in the current string object is returned whose character matches any character

from argument.

• size_type find_first_of(char const ∗argument, size_type opos, size_type

an) const:

the first index in the current string object is returned whose character matches any character

from argument. If opos is provided it refers to the first index in the current string object where

the search for argument should start. If omitted, the string object is completely scanned. If an

is provided it indicates the number of characters of the char const ∗ argument that should be

used in the search. It defines a substring starting at the beginning of argument. If omitted, all

of argument’s characters are used.

• size_type find_first_of(char ch, size_type opos):

the first index in the current string object is returned whose character is equal to ch.

• size_t find_first_not_of(string const &argument, size_type opos) const:

the first index in the current string object is returned whose character does not match any char-

acter from argument.

• size_type find_first_not_of(char const ∗argument, size_type opos,

size_type an) const:

the first index in the current string object is returned whose character does not match any

character from argument. The opos and an parameters are handled as with find_first_of



the first index in the current string object is returned whose character is unequal to ch.

• size_t find_last_of(string const &argument, size_type opos) const:

the last index in the current string object is returned whose character matches any character from

argument.

• size_type find_last_of(char const ∗argument, size_type opos, size_type an)

const:

the last index in the current string object is returned whose character matches any character

from argument. If opos is provided it refers to the last index in the current string object

where the search for argument should start (searching backward towards the beginning of the

current object). If omitted, the string object is scanned completely. If an is provided it indicates

the number of characters of the char const ∗ argument that should be used in the search.

It defines a substring starting at the beginning of argument. If omitted, all of argument’s

characters are used.

• size_type find_last_of(char ch, size_type opos):

the last index in the current string object is returned whose character is equal to ch.

• size_t find_last_not_of(string const &argument, size_type opos) const:

the last index in the current string object is returned whose character does not match any char-

acter from argument.

• size_type find_last_not_of(char const ∗argument, size_type opos, size_type

an) const:

the last index in the current string object is returned whose character does not match any

character from argument. The opos and an parameters are handled as with find_last_of.

• size_t find_last_not_of(char ch, size_type opos) const:

the last index in the current string object is returned whose character is unequal to ch.

• char &front():

returns a reference to the first char stored inside the string object. The result is undefined for

empty strings.

• allocator_type get_allocator():

returns the allocator of the class std::string

• istream &std::getline(istream &istr, string &object, char delimiter =

’\n’):

Note: this is not a member function of the class string.

A line of text is read from istr. All characters until delimiter (or the end of the stream,

whichever comes first) are read from istr and are stored in object. If the delimiter is encoun-

tered it is removed from the stream, but is not stored in object.

If the delimiter is not found, istr.eof returns true (see section 6.3.1). Since streams may be

interpreted as bool values (cf. section 6.3.1) a commonly encountered idiom to read all lines from

a stream successively into a string object line looks like this:

while (getline(istr, line))

process(line);

The content of the last line, whether or not it was terminated by a delimiter, is eventually also

assigned to object.

• string &insert(size_t opos, string const &argument, size_type apos,

size_type an):

a (sub)string of argument is inserted into the current string object at the current string object’s

index position opos. Arguments for apos and an must either both be provided or they must both

be omitted.

• string &insert(size_t opos, char const ∗argument, size_type an):

argument (of type char const ∗) is inserted at index opos into the current string object.



Count characters ch are inserted at index opos into the current string object.

• string::iterator insert(string::iterator begin, char ch):

the character ch is inserted at the current object’s position referred to by begin. Begin is re-

turned.

• string::iterator insert(string::iterator begin, size_t count, char ch):

Count characters ch are inserted at the current object’s position referred to by begin. Begin is

returned.

• string::iterator insert(string::iterator begin, InputIterator abegin,

InputIterator aend):

the characters in the range defined by the InputIterators abegin and aend are inserted at

the current object’s position referred to by begin. Begin is returned.

• size_t length() const:

the number of characters stored in the current string object is returned.

• size_t max_size() const:

the maximum number of characters that can be stored in the current string object is returned.

• void pop_back():

The string’s last character is removed from the string object.

• void push_back(char ch):

The character ch is appended to the string object.

• string::reverse_iterator rbegin():

a reverse iterator referring to the last character of the current string object is returned. With

const string objects a reverse_const_iterator is returned.

• string::reverse_iterator rend():

a reverse iterator referring to the position just before the first character of the current string

object is returned. With const string objects a reverse_const_iterator is returned.

• string &replace(size_t opos, size_t on, string const &argument, size_type

apos, size_type an):

a (sub)string of characters in object are replaced by the (subset of) characters of argument. If

on is specified as 0 argument is inserted into object at offset opos.

• string &replace(size_t opos, size_t on, char const ∗argument, size_type

an):

a series of characters in object are replaced by the first an characters of char const ∗

argument.

• string &replace(size_t opos, size_t on, size_type count, char ch):

on characters of the current string object, starting at index position opos, are replaced by count

characters ch.

• string &replace(string::iterator begin, string::iterator end, string const

&argument):

the series of characters in the current string object defined by the iterators begin and end are

replaced by argument. If argument is a char const ∗, an additional argument an may be

used, specifying the number of characters of argument that are used in the replacement.

• string &replace(string::iterator begin, string::iterator end, size_type

count, char ch):

the series of characters in the current string object defined by the iterators begin and end are

replaced by count characters having values ch.

• string &replace(string::iterator begin, string::iterator end,

InputIterator abegin, InputIterator aend):

the series of characters in the current string object defined by the iterators begin and end are

replaced by the characters in the range defined by the InputIterators abegin and aend.



the current string object’s capacity is changed to at least request. After calling this member,

capacity’s return value will be at least request. A request for a smaller size than the value re-

turned by capacity is ignored. A std::length_error exception is thrown if request exceeds

the value returned by max_size (std::length_error is defined in the stdexcept header).

Calling reserve() has the effect of redefining a string’s capacity: when enlarging the capacity

extra memory is allocated, but not immediately available to the program. This is illustrated by

the exception thrown by the string’s at() member when trying to access an element exceeding

the string’s size but not the string’s capacity.

• void resize(size_t size, char ch = 0):

the current string object is resized to size characters. If the string object is resized to a size

larger than its current size the additional characters will be initialized to ch. If it is reduced in

size the characters having the highest indices are chopped off.

• size_t rfind(string const &argument, size_type opos) const:

the last index in the current string object where argument is found is returned. Searching pro-

ceeds from the current object’s offset opos back to its beginning.

• size_t rfind(char const ∗argument, size_type opos, size_type an) const:

the last index in the current string object where argument is found is returned. Searching pro-

ceeds from the current object’s offset opos back to its beginning. The parameter an specifies the

length of the substring of argument to look for, starting at argument’s beginning.

• size_t rfind(char ch, size_type opos)const:

the last index in the current string object where ch is found is returned. Searching proceeds from

the current object’s offset opos back to its beginning.

• void shrink_to_fit():

optionally reduces the amount of memory allocated by a vector to its current size. The imple-

mentor is free to ignore or otherwise optimize this request. In order to guarantee a ‘shrink to fit’

operation the

string{ stringObject }.swap(stringObject)

idiom can be used.

• size_t size() const:

the number of characters stored in the current string object is returned. This member is a syn-

onym of length().

• string substr(size_type opos, size_type on) const:

a substring of the current string object of at most on characters starting at index opos is returned.

• void swap(string &argument):

the content of the current string object are swapped with the content of argument. For this

member argument must be a string object and cannot be a char const ∗.

5.2.5 Conversion functions

Several string conversion functions are available operating on or producing std::string objects.

These functions are listed below in alphabetic order. They are not member functions, but class-less

(free) functions declared in the std namespace. The <string> header file must be included before

they can be used.

• float stof(std::string const &str, size_t ∗pos = 0):

Initial whitespace characters in str are ignored. Then the following sequences of characters are

converted to a float value, which is returned:

– A decimal floating point constant:

* An optional + or - character



*

* An optional e or E character, followed by an optional - or + character, followed by a series

of decimal digits

– A hexadecimal floating point constant:

* An optional + or - character

* 0x or 0X

* A series of hexadecimal digits, possibly containing one decimal point character

* An optional p or P character, followed by an optional - or + character, followed by a series

of decimal digits

– An infinity expression:

* An optional + or - character

* The words inf or infinity (case insensitive words)

– A ‘not a number’ expression:

* An optional + or - character

* The words nan or nan(alphanumeric character sequence) (nan is a case insensi-

tive word), resulting in a NaN floating point value

If pos != 0 the index of the first character in str which was not converted is returned in ∗pos. A

std::invalid_argument exception is thrown if the characters in str could not be converted to

a float, a std::out_of_range exception is thrown if the converted value would have exceeded

the range of float values.

• double stod(std::string const &str, size_t ∗pos = 0):

A conversion as described with stof is performed, but now to a value of type double.

• double stold(std::string const &str, size_t ∗pos = 0):

A conversion as described with stof is performed, but now to a value of type long double.

• int stoi(std::string const &str, size_t ∗pos = 0, int base = 10):

Initial whitespace characters in str are ignored. Then all characters representing numeric con-

stants of the number system whose base is specified are converted to an int value, which is

returned. An optional + or - character may prefix the numeric characters. Values starting with 0

are automatically interpreted as octal values, values starting with 0x or 0X as hexadecimal char-

acters. The value base must be between 2 and 36. If pos != 0 the index of the first character

in str which was not converted is returned in ∗pos. A std::invalid_argument exception is

thrown if the characters in str could not be converted to an int, a std::out_of_range excep-

tion is thrown if the converted value would have exceeded the range of int values.

Here is an example of its use:

int value = stoi(" -123"s); // assigns value -123

value = stoi(" 123"s, 0, 5); // assigns value 38

• long stol(std::string const &str, size_t ∗pos = 0, int base = 10):

A conversion as described with stoi is performed, but now to a value of type long.

• long long stoll(std::string const &str, size_t ∗pos = 0, int base = 10):

A conversion as described with stoi is performed, but now to a value of type long long.

• unsigned long stoul(std::string const &str, size_t ∗pos = 0, int base =

10):

A conversion as described with stoi is performed, but now to a value of type unsigned long.

• unsigned long long stoull(std::string const &str, size_t ∗pos = 0, int

base = 10):

A conversion as described with stoul is performed, but now to a value of type unsigned long

long.



Type can be of the types int, long, long long, unsigned, unsigned long, unsigned

long long, float, double, or long double. The value of the argument is converted to a

textual representation, which is returned as a std::string value.

• std::wstring to_wstring(Type value):

The conversion as described at to_string is performed, returning a std::wstring.





Chapter 6

The IO-stream Library

Extending the standard stream (FILE) approach, well known from the C programming language, C++

offers an input/output (I/O) library based on class concepts.

All C++ I/O facilities are defined in the namespace std. The std:: prefix is omitted below, except for

situations where this would result in ambiguities.

Earlier (in chapter 3) we’ve seen several examples of the use of the C++ I/O library, in particular

showing insertion operator (<<) and the extraction operator (>>). In this chapter we’ll cover I/O in

more detail.

The discussion of input and output facilities provided by the C++ programming language heavily uses

the class concept and the notion of member functions. Although class construction has not yet been

covered (for that see chapter 7) and although inheritance is not covered formally before chapter 13, it

is quite possible to discuss I/O facilities long before the technical background of class construction has

been covered.

Most C++ I/O classes have names starting with basic_ (like basic_ios). However, these basic_

names are not regularly found in C++ programs, as most classes are also defined using typedef defi-

nitions like:

typedef basic_ios<char> ios;

Since C++ supports various kinds of character types (e.g., char, wchar_t), I/O facilities were developed

using the template mechanism allowing for easy conversions to character types other than the tradi-

tional char type. As elaborated in chapter 21, this also allows the construction of generic software,

that could thereupon be used for any particular type representing characters. So, analogously to the

above typedef there exists a

typedef basic_ios<wchar_t> wios;

This type definition can be used for the wchar_t type. Because of the existence of these type defini-

tions, the basic_ prefix was omitted from the C++ Annotations without loss of continuity. The C++

Annotations primarily focus on the standard 8-bits char type.

Iostream objects cannot be declared using standard forward declarations, like:

class std::ostream; // now erroneous

Instead, to declare iostream classes the <iosfwd> header file should be included:

#include <iosfwd> // correct way to declare iostream classes

109



into streams. Compare this to the situation commonly encountered in C where the fprintf function

is used to indicate by a format string what kind of value to expect where. Compared to this latter

situation C++’s iostream approach immediately uses the objects where their values should appear, as

in

cout << "There were " << nMaidens << " virgins present\n";

The compiler notices the type of the nMaidens variable, inserting its proper value at the appropriate

place in the sentence inserted into the cout iostream.

Compare this to the situation encountered in C. Although C compilers are getting smarter and smarter,

and although a well-designed C compiler may warn you for a mismatch between a format specifier

and the type of a variable encountered in the corresponding position of the argument list of a printf

statement, it can’t do much more than warn you. The type safety seen in C++ prevents you from making

type mismatches, as there are no types to match.

Apart from this, iostreams offer more or less the same set of possibilities as the standard FILE-based I/O

used in C: files can be opened, closed, positioned, read, written, etc.. In C++ the basic FILE structure,

as used in C, is still available. But C++ adds to this I/O based on classes, resulting in type safety,

extensibility, and a clean design.

In the ANSI/ISO standard the intent was to create architecture independent I/O. Previous implemen-

tations of the iostreams library did not always comply with the standard, resulting in many extensions

to the standard. The I/O sections of previously developed software may have to be partially rewritten.

This is tough for those who are now forced to modify old software, but every feature and extension

that was once available can be rebuilt easily using ANSI/ISO standard conforming I/O. Not all of these

reimplementations can be covered in this chapter, as many reimplementations rely on inheritance and

polymorphism, which topics are formally covered by chapters 13 and 14. Selected reimplementations

are provided in chapter 24, and in this chapter references to particular sections in other chapters are

given where appropriate. This chapter is organized as follows (see also Figure 6.1):

• The class ios_base is the foundation upon which the iostreams I/O library was built. It defines

the core of all I/O operations and offers, among other things, facilities for inspecting the state of

I/O streams and for output formatting.

• The class ios was directly derived from ios_base. Every class of the I/O library doing input or

output is itself derived from this ios class, and so inherits its (and, by implication, ios_base’s)

capabilities. The reader is urged to keep this in mind while reading this chapter. The concept of

inheritance is not discussed here, but rather in chapter 13.

The class ios is important in that it implements the communication with a buffer that is used

by streams. This buffer is a streambuf object which is responsible for the actual I/O to/from the

underlying device. Consequently iostream objects do not perform I/O operations themselves, but

leave these to the (stream)buffer objects with which they are associated.

• Next, basic C++ output facilities are discussed. The basic class used for output operations is

ostream, defining the insertion operator as well as other facilities writing information to streams.

Apart from inserting information into files it is possible to insert information into memory buffers,

for which the ostringstream class is available. Formatting output is to a great extent possible

using the facilities defined in the ios class, but it is also possible to insert formatting commands

directly into streams using manipulators. This aspect of C++ output is discussed as well.

• Basic C++ input facilities are implemented by the istream class. This class defines the extraction

operator and related input facilities. Comparably to inserting information into memory buffers

(using ostringstream) a class istringstream is available to extract information from memory

buffers.

• Finally, several advanced I/O-related topics are discussed. E.g., reading and writing from the

same stream and mixing C and C++ I/O using filebuf objects. Other I/O related topics are

covered elsewhere in the C++ Annotations, e.g., in chapter 24.



Figure 6.1: Central I/O Classes



objects to be input or output and, on the other hand, the streambuf, which is responsible for the actual

input and output to the device accessed by a streambuf object.

This approach allows us to construct a new kind of streambuf for a new kind of device, and use that

streambuf in combination with the ‘good old’ istream- and ostream-class facilities. It is important to

understand the distinction between the formatting roles of iostream objects and the buffering interface

to an external device as implemented in a streambuf object. Interfacing to new devices (like sockets

or file descriptors) requires the construction of a new kind of streambuf, rather than a new kind of

istream or ostream object. A wrapper class may be constructed around the istream or ostream

classes, though, to ease the access to a special device. This is how the stringstream classes were

constructed.

6.1 Special header files

Several iostream related header files are available. Depending on the situation at hand, the following

header files should be used:

• iosfwd: sources should include this header file if only a declaration of the stream classes is re-

quired. For example, if a function defines a reference parameter to an ostream then the compiler

does not need to know exactly what an ostream is. When declaring such a function the ostream

class merely needs to be be declared. One cannot use

class std::ostream; // erroneous declaration

void someFunction(std::ostream &str);

but, instead, one should use:

#include <iosfwd> // correctly declares class ostream

void someFunction(std::ostream &str);

• <ios>: sources should include this header file when using types and facilites (like

ios::off_type, see below) defined in the ios class.

• <streambuf>: sources should include this header file when using streambuf or filebuf

classes. See sections 14.8 and 14.8.2.

• <istream>: sources should include this preprocessor directive when using the class istream or

when using classes that do both input and output. See section 6.5.1.

• <ostream>: sources should include this header file when using the class ostream class or when

using classes that do both input and output. See section 6.4.1.

• <iostream>: sources should include this header file when using the global stream objects (like

cin and cout).

• <fstream>: sources should include this header file when using the file stream classes. See

sections 6.4.2, 6.5.2, and 6.6.3.

• <sstream>: sources should include this header file when using the string stream classes. See

sections 6.4.3 and 6.5.3.

• <iomanip>: sources should include this header file when using parameterized manipulators.

See section 6.3.2.



6.2 The foundation: the class ‘ios_base’

The class std::ios_base forms the foundation of all I/O operations, and defines, among other things,

facilities for inspecting the state of I/O streams and most output formatting facilities. Every stream

class of the I/O library is, through the class ios, derived from this class, and inherits its capabilities.

As ios_base is the foundation on which all C++ I/O was built, we introduce it here as the first class of

the C++ I/O library.

Note that, as in C, I/O in C++ is not part of the language (although it is part of the ANSI/ISO standard

on C++). Although it is technically possible to ignore all predefined I/O facilities, nobody does so, and

the I/O library therefore represents a de facto I/O standard for C++. Also note that, as mentioned

before, the iostream classes themselves are not responsible for the eventual I/O, but delegate this to an

auxiliary class: the class streambuf or its derivatives.

It is neither possible nor required to construct an ios_base object directly. Its construction is always

a side-effect of constructing an object further down the class hierarchy, like std::ios. Ios is the next

class down the iostream hierarchy (see Figure 6.1). Since all stream classes in turn inherit from ios,

and thus also from ios_base, the distinction between ios_base and ios is in practice not important.

Therefore, facilities actually provided by ios_base will be discussed as facilities provided by ios. The

reader who is interested in the true class in which a particular facility is defined should consult the

relevant header files (e.g., ios_base.h and basic_ios.h).

6.3 Interfacing ‘streambuf’ objects: the class ‘ios’

The std::ios class is derived directly from ios_base, and it defines de facto the foundation for all

stream classes of the C++ I/O library.

Although it is possible to construct an ios object directly, this is seldom done. The purpose of the class

ios is to provide the facilities of the class basic_ios, and to add several new facilites, all related to

the streambuf object which is managed by objects of the class ios.

All other stream classes are either directly or indirectly derived from ios. This implies, as explained

in chapter 13, that all facilities of the classes ios and ios_base are also available to other stream

classes. Before discussing these additional stream classes, the features offered by the class ios (and

by implication: by ios_base) are now introduced.

In some cases it may be required to include ios explicitly. An example is the situations where the

formatting flags themselves (cf. section 6.3.2.2) are referred to in source code.

The class ios offers several member functions, most of which are related to formatting. Other fre-

quently used member functions are:

• std::streambuf ∗ios::rdbuf():

A pointer to the streambuf object forming the interface between the ios object and the device

with which the ios object communicates is returned. See sections 14.8 and 24.1.2 for more infor-

mation about the class streambuf.

• std::streambuf ∗ios::rdbuf(std::streambuf ∗new):

The current ios object is associated with another streambuf object. A pointer to the

ios object’s original streambuf object is returned. The object to which this pointer

points is not destroyed when the stream object goes out of scope, but is owned by the

caller of rdbuf.

• std::ostream ∗ios::tie():

A pointer to the ostream object that is currently tied to the ios object is returned (see the next

member). The return value 0 indicates that currently no ostream object is tied to the ios object.

See section 6.5.5 for details.
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The ostream object is tied to current ios object. This means that the ostream object

is flushed every time before an input or output action is performed by the current ios

object. A pointer to the ios object’s original ostream object is returned. To break the

tie, pass the argument 0. See section 6.5.5 for an example.

6.3.1 Condition states

Operations on streams may fail for various reasons. Whenever an operation fails, further operations on

the stream are suspended. It is possible to inspect, set and possibly clear the condition state of streams,

allowing a program to repair the problem rather than having to abort. The members that are available

for interrogating or manipulating the stream’s state are described in the current section.

Conditions are represented by the following condition flags:

• ios::badbit:

if this flag has been raised an illegal operation has been requested at the level of the streambuf

object to which the stream interfaces. See the member functions below for some examples.

• ios::eofbit:

if this flag has been raised, the ios object has sensed end of file.

• ios::failbit:

if this flag has been raised, an operation performed by the stream object has failed (like an attempt

to extract an int when no numeric characters are available on input). In this case the stream

itself could not perform the operation that was requested of it.

• ios::goodbit:

this flag is raised when none of the other three condition flags were raised.

Several condition member functions are available to manipulate or determine the states of ios objects.

Originally they returned int values, but their current return type is bool:

• bool ios::bad():

the value true is returned when the stream’s badbit has been set and false other-

wise. If true is returned it indicates that an illegal operation has been requested at the

level of the streambuf object to which the stream interfaces. What does this mean? It

indicates that the streambuf itself is behaving unexpectedly. Consider the following

example:

std::ostream error(0);

Here an ostream object is constructed without providing it with a working streambuf

object. Since this ‘streambuf’ will never operate properly, its badbit flag is raised from

the very beginning: error.bad() returns true.

• bool ios::eof():

the value true is returned when end of file (EOF) has been sensed (i.e., the eofbit flag

has been set) and false otherwise. Assume we’re reading lines line-by-line from cin,

but the last line is not terminated by a final \n character. In that case std::getline

attempting to read the \n delimiter hits end-of-file first. This raises the eofbit flag and

cin.eof() returns true. For example, assume std::string str and main executing

the statements:

getline(cin, str);

cout << cin.eof();

Then

echo "hello world" | program



echo -n "hello world" | program

the value 1 (EOF sensed) is printed.

• bool ios::fail():

the value true is returned when bad returns true or when the failbit flag was set.

The value false is returned otherwise. In the above example, cin.fail() returns

false, whether we terminate the final line with a delimiter or not (as we’ve read a

line). However, executing another getline results in raising the failbit flag, causing

cin::fail() to return true. In general: fail returns true if the requested stream

operation failed. A simple example showing this consists of an attempt to extract an

int when the input stream contains the text hello world. The value not fail() is

returned by the bool interpretation of a stream object (see below).

• ios::good():

the value of the goodbit flag is returned. It equals true when none of the other condi-

tion flags (badbit, eofbit, failbit) was raised. Consider the following little pro-

gram:

#include <iostream>

#include <string>

using namespace std;

void state()

{

cout << "\n"

"Bad: " << cin.bad() << " "

"Fail: " << cin.fail() << " "

"Eof: " << cin.eof() << " "

"Good: " << cin.good() << '\n';

}

int main()

{

string line;

int x;

cin >> x;

state();

cin.clear();

getline(cin, line);

state();

getline(cin, line);

state();

}

When this program processes a file having two lines, containing, respectively, hello

and world, while the second line is not terminated by a \n character the following is

shown:

Bad: 0 Fail: 1 Eof: 0 Good: 0

Bad: 0 Fail: 0 Eof: 0 Good: 1

Bad: 0 Fail: 0 Eof: 1 Good: 0



the first line is successfully read (good returning true). Finally the second line is read

(incompletely): good returning false, and eof returning true.

• Interpreting streams as bool values:

streams may be used in expressions expecting logical values. Some examples are:

if (cin) // cin itself interpreted as bool

if (cin >> x) // cin interpreted as bool after an extraction

if (getline(cin, str)) // getline returning cin

When interpreting a stream as a logical value, it is actually ‘not fail()’ that is inter-

preted. The above examples may therefore be rewritten as:

if (not cin.fail())

if (not (cin >> x).fail())

if (not getline(cin, str).fail())

The former incantation, however, is used almost exclusively.

The following members are available to manage error states:

• void ios::clear():

When an error condition has occurred, and the condition can be repaired, then clear

can be used to clear the error state of the file. An overloaded version exists accepting

state flags, that are set after first clearing the current set of flags: clear(int state).

Its return type is void

• ios::iostate ios::rdstate():

The current set of flags that are set for an ios object are returned (as an int). To test

for a particular flag, use the bitwise and operator:

if (!(iosObject.rdstate() & ios::failbit))

{

// last operation didn't fail

}

Note that this test cannot be performed for the goodbit flag as its value equals zero.

To test for ‘good’ use a construction like:

if (iosObject.rdstate() == ios::goodbit)

{

// state is `good'
}

• void ios::setstate(ios::iostate state):

A stream may be assigned a certain set of states using setstate. Its return type is

void. E.g.,

cin.setstate(ios::failbit); // set state to `fail'

To set multiple flags in one setstate() call use the bitor operator:

cin.setstate(ios::failbit | ios::eofbit)

The member clear is a shortcut to clear all error flags. Of course, clearing the flags doesn’t

automatically mean the error condition has been cleared too. The strategy should be:

– An error condition is detected,

– The error is repaired

– The member clear is called.

C++ supports an exception mechanism to handle exceptional situations. According to the ANSI/ISO

standard, exceptions can be used with stream objects. Exceptions are covered in chapter 10. Using

exceptions with stream objects is covered in section 10.7.



The way information is written to streams (or, occasionally, read from streams) is controlled by format-

ting flags.

Formatting is used when it is necessary to, e.g., set the width of an output field or input buffer and

to determine the form (e.g., the radix) in which values are displayed. Most formatting features belong

to the realm of the ios class. Formatting is controlled by flags, defined by the ios class. These flags

may be manipulated in two ways: using specialized member functions or using manipulators, which

are directly inserted into or extracted from streams. There is no special reason for using either method;

usually both methods are possible. In the following overview the various member functions are first

introduced. Following this the flags and manipulators themselves are covered. Examples are provided

showing how the flags can be manipulated and what their effects are.

Many manipulators are parameterless and are available once a stream header file (e.g., iostream) has

been included. Some manipulators require arguments. To use the latter manipulators the header file

iomanip must be included.

6.3.2.1 Format modifying member functions

Several member functions are available manipulating the I/O formatting flags. Instead of using the

members listed below manipulators are often available that may directly be inserted into or extracted

from streams. The available members are listed in alphabetical order, but the most important ones in

practice are setf, unsetf and width.

• ios &ios::copyfmt(ios &obj):

all format flags of obj are copied to the current ios object. The current ios object is returned.

• ios::fill() const:

the current padding character is returned. By default, this is the blank space.

• ios::fill(char padding):

the padding character is redefined, the padding character that was used before the re-

definition is returned. Instead of using this member function the setfill manipulator

may be inserted directly into an ostream. Example:

cout.fill('0'); // use '0' as padding char

cout << setfill('+'); // use '+' as padding char

• ios::fmtflags ios::flags() const:

the current set of flags controlling the format state of the stream for which the member function

is called is returned. To inspect whether a particular flag was set, use the bit_and operator.

Example:

if (cout.flags() & ios::hex)

cout << "Integral values are printed as hex numbers\n"

• ios::fmtflags ios::flags(ios::fmtflags flagset):

the previous set of flags are returned and the new set of flags are defined by flagset.

Multiple flags are specified using the bitor operator. Example:

// change the representation to hexadecimal

cout.flags(ios::hex | cout.flags() & ~ios::dec);

• int ios::precision() const:

the number of significant digits used when outputting floating point values is returned (default:

6).



the number of significant digits to use when outputting real values is set to signif.

The previously used number of significant digits is returned. If the number of required

digits exceeds signif then the number is displayed in ‘scientific’ notation (cf. section

6.3.2.2). Manipulator: setprecision. Example:

cout.precision(3); // 3 digits precision

cout << setprecision(3); // same, using the manipulator

cout << 1.23 << " " << 12.3 << " " << 123.12 << " " << 1234.3 << '\n';

// displays: 1.23 12.3 123 1.23e+03

• ios::fmtflags ios::setf(ios::fmtflags flags):

sets one or more formatting flags (use the bitor operator to combine multiple flags).

Already set flags are not affected. The previous set of flags is returned. Instead of

using this member function the manipulator setiosflags may be used. Examples are

provided in the next section (6.3.2.2).

• ios::fmtflags ios::setf(ios::fmtflags flags, ios::fmtflags mask):

clears all flags mentioned in mask and sets the flags specified in flags. The previous

set of flags is returned. Some examples are (but see the next section (6.3.2.2) for a more

thorough discussion):

// left-adjust information in wide fields:

cout.setf(ios::left, ios::adjustfield);

// display integral values as hexadecimal numbers:

cout.setf(ios::hex, ios::basefield);

// display floating point values in scientific notation:

cout.setf(ios::scientific, ios::floatfield);

• ios::fmtflags ios::unsetf(fmtflags flags):

the specified formatting flags are cleared (leaving the remaining flags unaltered) and

returns the previous set of flags. A request to unset an active default flag (e.g.,

cout.unsetf(ios::dec)) is ignored. Instead of this member function the manipu-

lator resetiosflags may also be used. Example:

cout << 12.24; // displays 12.24

cout.setf(ios::fixed);

cout << 12.24; // displays 12.240000

cout.unsetf(ios::fixed); // undo a previous ios::fixed setting.

cout << 12.24; // displays 12.24

cout << resetiosflags(ios::fixed); // using manipulator rather

// than unsetf

• int ios::width() const:

the currently active output field width to use on the next insertion is returned. The

default value is 0, meaning ‘as many characters as needed to write the value’.

• int ios::width(int nchars):

the field width of the next insertion operation is set to nchars, returning the previously

used field width. This setting is not persistent. It is reset to 0 after every insertion

operation. Manipulator: std::setw(int). Example:

cout.width(5);

cout << 12; // using 5 chars field width

cout << setw(12) << "hello"; // using 12 chars field width



Most formatting flags are related to outputting information. Information can be written to output

streams in basically two ways: using binary output information is written directly to an output stream,

without converting it first to some human-readable format and using formatted output by which values

stored in the computer’s memory are converted to human-readable text first. Formatting flags are

used to define the way this conversion takes place. In this section all formatting flags are covered.

Formatting flags may be (un)set using member functions, but often manipulators having the same

effect may also be used. For each of the flags it is shown how they can be controlled by a member

function or -if available- a manipulator.

To display information in wide fields:

• ios::internal:

to add fill characters (blanks by default) between the minus sign of negative numbers

and the value itself. Other values and data types are right-adjusted. Manipulator:

std::internal. Example:

cout.setf(ios::internal, ios::adjustfield);

cout << internal; // same, using the manipulator

cout << '\'' << setw(5) << -5 << "'\n"; // displays '- 5'

• ios::left:

to left-adjust values in fields that are wider than needed to display the values. Manipulator:

std::left. Example:

cout.setf(ios::left, ios::adjustfield);

cout << left; // same, using the manipulator

cout << '\'' << setw(5) << "hi" << "'\n"; // displays 'hi '

• ios::right:

to right-adjust values in fields that are wider than needed to display the values. Manipulator:

std::right. This is the default. Example:

cout.setf(ios::right, ios::adjustfield);

cout << right; // same, using the manipulator

cout << '\'' << setw(5) << "hi" << "'\n"; // displays ' hi'

Using various number representations:

• ios::dec:

to display integral values as decimal numbers. Manipulator: std::dec. This is the default.

Example:

cout.setf(ios::dec, ios::basefield);

cout << dec; // same, using the manipulator

cout << 0x10; // displays 16

• ios::hex:

to display integral values as hexadecimal numbers. Manipulator: std::hex. Example:

cout.setf(ios::hex, ios::basefield);

cout << hex; // same, using the manipulator

cout << 16; // displays 10



to display integral values as octal numbers. Manipulator: std::oct. Example:

cout.setf(ios::oct, ios::basefield);

cout << oct; // same, using the manipulator

cout << 16; // displays 20

• std::setbase(int radix):

This is a manipulator that can be used to change the number representation to decimal, hexadec-

imal or octal. Example:

cout << setbase(8); // octal numbers, use 10 for

// decimal, 16 for hexadecimal

cout << 16; // displays 20

Fine-tuning displaying values:

• ios::boolalpha:

logical values may be displayed as text using the text ‘true’ for the true logical value, and ‘false’

for the false logical value using boolalpha. By default this flag is not set. Complementary flag:

ios::noboolalpha. Manipulators: std::boolalpha and std::noboolalpha. Example:

cout.setf(ios::boolalpha);

cout << boolalpha; // same, using the manipulator

cout << (1 == 1); // displays true

• ios::showbase:

to display the numeric base of integral values. With hexadecimal values the 0x prefix is used,

with octal values the prefix 0. For the (default) decimal value no particular prefix is used. Com-

plementary flag: ios::noshowbase. Manipulators: std::showbase and std::noshowbase.

Example:

cout.setf(ios::showbase);

cout << showbase; // same, using the manipulator

cout << hex << 16; // displays 0x10

• ios::showpos:

to display the + sign with positive decimal (only) values. Complementary flag:

ios::noshowpos. Manipulators: std::showpos and std::noshowpos. Example:

cout.setf(ios::showpos);

cout << showpos; // same, using the manipulator

cout << 16; // displays +16

cout.unsetf(ios::showpos); // Undo showpos

cout << 16; // displays 16

• ios::uppercase:

to display letters in hexadecimal values using capital letters. Complementary flag:

ios::nouppercase. Manipulators: std::uppercase and std::nouppercase. By default

lower case letters are used. Example:

cout.setf(ios::uppercase);

cout << uppercase; // same, using the manipulator

cout << hex << showbase <<

3735928559; // displays 0XDEADBEEF

Displaying floating point numbers



to display real values using a fixed decimal point (e.g., 12.25 rather than 1.225e+01), the

fixed formatting flag is used. It can be used to set a fixed number of digits behind the

decimal point. Manipulator: fixed. Example:

cout.setf(ios::fixed, ios::floatfield);

cout.precision(3); // 3 digits behind the .

// Alternatively:

cout << setiosflags(ios::fixed) << setprecision(3);

cout << 3.0 << " " << 3.01 << " " << 3.001 << '\n';

<< 3.0004 << " " << 3.0005 << " " << 3.0006 << '\n'

// Results in:

// 3.000 3.010 3.001

// 3.000 3.001 3.001

The example shows that 3.0005 is rounded away from zero, becoming 3.001 (likewise

-3.0005 becomes -3.001). First setting precision and then fixed has the same effect.

• ios::scientific:

to display real values in scientific notation (e.g., 1.24e+03). Manipulator: std::scientific.

Example:

cout.setf(ios::scientific, ios::floatfield);

cout << scientific; // same, using the manipulator

cout << 12.25; // displays 1.22500e+01

• ios::showpoint:

to display a trailing decimal point and trailing decimal zeros when real numbers are

displayed. Complementary flag: ios::noshowpoint. Manipulators: std::showpoint,

std::noshowpoint. Example:

cout << fixed << setprecision(3); // 3 digits behind .

cout.setf(ios::showpoint); // set the flag

cout << showpoint; // same, using the manipulator

cout << 16.0 << ", " << 16.1 << ", " << 16;

// displays: 16.000, 16.100, 16

Note that the final 16 is an integral rather than a floating point number, so it has no decimal

point. So showpoint has no effect. If ios::showpoint is not active trailing zeros are discarded.

If the fraction is zero the decimal point is discarded as well. Example:

cout.unsetf(ios::fixed, ios::showpoint); // unset the flags

cout << 16.0 << ", " << 16.1;

// displays: 16, 16.1

Handling whitespace and flushing streams

• std::endl:

manipulator inserting a newline character and flushing the stream. Often flushing the stream is

not required and doing so would needlessly slow down I/O processing. Consequently, using endl

should be avoided (in favor of inserting ’\n’) unless flushing the stream is explicitly intended.

Note that streams are automatically flushed when the program terminates or when a stream is

‘tied’ to another stream (cf. tie in section 6.3). Example:

cout << "hello" << endl; // prefer: << '\n';



manipulator inserting a 0-byte into a stream. It is usually used in combination with memory-

streams (cf. section 6.4.3).

• std::flush:

a stream may be flushed using this member. Often flushing the stream is not required and doing

so would needlessly slow down I/O processing. Consequently, using flush should be avoided

unless it is explicitly required to do so. Note that streams are automatically flushed when the

program terminates or when a stream is ‘tied’ to another stream (cf. tie in section 6.3). Example:

cout << "hello" << flush; // avoid if possible.

• ios::skipws:

leading whitespace characters (blanks, tabs, newlines, etc.) are skipped when a value is extracted

from a stream. This is the default. If the flag is not set, leading whitespace characters are not

skipped. Manipulator: std::skipws. Example:

cin.setf(ios::skipws); // to unset, use

// cin.unsetf(ios::skipws)

cin >> skipws; // same, using the manipulator

int value;

cin >> value; // skips initial blanks

• ios::unitbuf:

the stream for which this flag is set flushes its buffer after every output operation Often flushing

a stream is not required and doing so would needlessly slow down I/O processing. Consequently,

setting unitbuf should be avoided unless flushing the stream is explicitly intended. Note that

streams are automatically flushed when the program terminates or when a stream is ‘tied’ to

another stream (cf. tie in section 6.3). Complementary flag: ios::nounitbuf. Manipulators:

std::unitbuf, std::nounitbuf. Example:

cout.setf(ios::unitbuf);

cout << unitbuf; // same, using the manipulator

cout.write("xyz", 3); // flush follows write.

• std::ws:

manipulator removing all whitespace characters (blanks, tabs, newlines, etc.) at the current file

position. White space characters are removed if present even if the flag ios::noskipws has been

set. Example (assume the input contains 4 blank characters followed by the character X):

cin >> ws; // skip whitespace

cin.get(); // returns 'X'

6.4 Output

In C++ output is primarily based on the std::ostream class. The ostream class defines the basic

operators and members inserting information into streams: the insertion operator (<<), and special

members like write writing unformatted information to streams.

The class ostream acts as base class for several other classes, all offering the functionality of the

ostream class, but adding their own specialties. In the upcoming sections the following classes are

discussed:

• The class ostream, offering the basic output facilities;

• The class ofstream, allowing us to write files (comparable to C’s fopen(filename, "w"));

• The class ostringstream, allowing us to write information to memory (comparable to C’s

sprintf function).



The class ostream defines basic output facilities. The cout, clog and cerr objects are all ostream

objects. All facilities related to output as defined by the ios class are also available in the ostream

class.

We may define ostream objects using the following ostream constructor:

• std::ostream object(std::streambuf ∗sb):

this constructor creates an ostream object which is a wrapper around an existing

std::streambuf object. It isn’t possible to define a plain ostream object (e.g., us-

ing std::ostream out;) that can thereupon be used for insertions. When cout or its

friends are used, we are actually using a predefined ostream object that has already

been defined for us and interfaces to the standard output stream using a (also prede-

fined) streambuf object handling the actual interfacing.

It is, however, possible to define an ostream object passing it a 0-pointer. Such an object

cannot be used for insertions (i.e., it raises its ios::bad flag when something is inserted

into it), but it may be given a streambuf later. Thus it may be preliminary constructed,

suspending its use until an appropriate streambuf becomes available (see also section

14.8.3).

To define the ostream class in C++ sources, the <ostream> header file must be included. To use

the predefined ostream objects (std::cerr, std::cout etc.) the <iostream> header file must be

included.

6.4.1.1 Writing to ‘ostream’ objects

The class ostream supports both formatted and binary output.

The insertion operator (<<) is used to insert values in a type safe way into ostream objects. This is

called formatted output, as binary values which are stored in the computer’s memory are converted to

human-readable ASCII characters according to certain formatting rules.

The insertion operator points to the ostream object to receive the information. The normal associativ-

ity of << remains unaltered, so when a statement like

cout << "hello " << "world";

is encountered, the leftmost two operands are evaluated first (cout << "hello "), and an ostream

& object, which is actually the same cout object, is returned. Now, the statement is reduced to

cout << "world";

and the second string is inserted into cout.

The << operator has a lot of (overloaded) variants, so many types of variables can be inserted into

ostream objects. There is an overloaded <<-operator expecting an int, a double, a pointer, etc. etc..

Each operator returns the ostream object into which the information so far has been inserted, and can

thus immediately be followed by the next insertion.

Streams lack facilities for formatted output like C’s printf and vprintf functions. Although it is not

difficult to implement these facilities in the world of streams, printf-like functionality is hardly ever

required in C++ programs. Furthermore, as it is potentially type-unsafe, it might be better to avoid

this functionality completely.

When binary files must be written, normally no text-formatting is used or required: an int value

should be written as a series of raw bytes, not as a series of ASCII numeric characters 0 to 9. The

following member functions of ostream objects may be used to write ‘binary files’:



to write a single character to the output stream. Since a character is a byte, this member function

could also be used for writing a single character to a text-file.

• ostream& write(char const ∗buffer, int length):

to write at most length bytes, stored in the char const ∗buffer to the ostream object. Bytes

are written as they are stored in the buffer, no formatting is done whatsoever. Note that the first

argument is a char const ∗: a type cast is required to write any other type. For example, to

write an int as an unformatted series of byte-values use:

int x;

out.write(reinterpret_cast<char const *>(&x), sizeof(int));

The bytes written by the above write call are written to the ostream in an order depending

on the endian-ness of the underlying hardware. Big-endian computers write the most significant

byte(s) of multi-byte values first, little-endian computers first write the least significant byte(s).

6.4.1.2 ‘ostream’ positioning

Although not every ostream object supports repositioning, they usually do. This means that it is

possible to rewrite a section of the stream which was written earlier. Repositioning is frequently used

in database applications where it must be possible to access the information in the database at random.

The current position can be obtained and modified using the following members:

• ios::pos_type tellp():

the current (absolute) position in the file where the next write-operation to the stream will take

place is returned.

• ostream &seekp(ios::off_type step, ios::seekdir org):

modifies a stream’s actual position. The function expects an off_type step representing the

number of bytes the current stream position is moved with respect to org. The step value may

be negative, zero or positive.

The origin of the step, org is a value in the ios::seekdir enumeration. Its values are:

– ios::beg:

the stepsize is computed relative to the beginning of the stream. This value is used by default.

– ios::cur:

the stepsize is computed relative to the current position of the stream (as returned by tellp).

– ios::end:

the stepsize is interpreted relative to the current end position of the stream.

It is OK to seek or write beyond the last file position. Writing bytes to a location beyond EOF will

pad the intermediate bytes with 0-valued bytes: null-bytes. Seeking before ios::beg raises the

ios::fail flag.

6.4.1.3 ‘ostream’ flushing

Unless the ios::unitbuf flag has been set, information written to an ostream object is not imme-

diately written to the physical stream. Rather, an internal buffer is filled during the write-operations,

and when full it is flushed.

The stream’s internal buffer can be flushed under program control:

• ostream& flush():

any buffered information stored internally by the ostream object is flushed to the device to which

the ostream object interfaces. A stream is flushed automatically when:

– the object ceases to exist;



– a stream supporting the close-operation is explicitly closed (e.g., a std::ofstream object,

cf. section 6.4.2).

6.4.2 Output to files: the class ‘ofstream’

The std::ofstream class is derived from the ostream class: it has the same capabilities as the

ostream class, but can be used to access files or create files for writing.

In order to use the ofstream class in C++ sources, the <fstream> header file must be included.

Including fstream does not automatically make available the standard streams cin, cout and cerr.

Include iostream to declare these standard streams.

The following constructors are available for ofstream objects:

• ofstream object:

this is the basic constructor. It defines an ofstream object which may be associated

with an actual file later, using its open() member (see below).

• ofstream object(char const ∗name, ios::openmode mode = ios::out):

this constructor defines an ofstream object and associates it immediately with the file

named name using output mode mode. Section 6.4.2.1 provides an overview of available

output modes. Example:

ofstream out("/tmp/scratch");

It is not possible to open an ofstream using a file descriptor. The reason for this is (apparently)

that file descriptors are not universally available over different operating systems. Fortunately, file

descriptors can be used (indirectly) with a std::streambuf object (and in some implementations:

with a std::filebuf object, which is also a streambuf). Streambuf objects are discussed in section

14.8, filebuf objects are discussed in section 14.8.2.

Instead of directly associating an ofstream object with a file, the object can be constructed first, and

opened later.

• void open(char const ∗name, ios::openmode mode = ios::out):

associates an ofstream object with an actual file. If the ios::fail flag was set before call-

ing open and opening succeeds the flag is cleared. Opening an already open stream fails. To

reassociate a stream with another file it must first be closed:

ofstream out("/tmp/out");

out << "hello\n";

out.close(); // flushes and closes out

out.open("/tmp/out2");

out << "world\n";

• void close():

closes the ofstream object. The function sets the ios::fail flag of the closed object. Closing

the file flushes any buffered information to the associated file. A file is automatically closed when

the associated ofstream object ceases to exist.

• bool is_open() const:

assume a stream was properly constructed, but it has not yet been attached to a file. E.g., the

statement ofstream ostr was executed. When we now check its status through good(), a non-

zero (i.e., OK) value is returned. The ‘good’ status here indicates that the stream object has been

constructed properly. It doesn’t mean the file is also open. To test whether a stream is actually

open, is_open should be called. If it returns true, the stream is open. Example:

#include <fstream>



using namespace std;

int main()

{

ofstream of;

cout << "of's open state: " << boolalpha << of.is_open() << '\n';

of.open("/dev/null"); // on Unix systems

cout << "of's open state: " << of.is_open() << '\n';

}

/*
Generated output:

of's open state: false

of's open state: true

*/

6.4.2.1 Modes for opening stream objects

The following file modes or file flags are available when constructing or opening ofstream (or istream,

see section 6.5.2) objects. The values are of type ios::openmode. Flags may be combined using the

bitor operator.

• ios::app:

reposition the stream to its end before every output command (see also ios::ate below). The file

is created if it doesn’t yet exist. When opening a stream in this mode any existing content of the

file is kept.

• ios::ate:

start initially at the end of the file. Note that any existing content is only kept if some other

flag tells the object to do so. For example ofstream out("gone", ios::ate) rewrites the file

gone, because the implied ios::out causes the rewriting. If rewriting of an existing file should

be prevented, the ios::in mode should be specified too. However, when ios::in is specified

the file must already exist. The ate mode only initially positions the file at the end of file position.

After that information may be written in the middle of the file using seekp. When the app mode

is used information is only written at end of file (effectively ignoring seekp operations).

• ios::binary:

open a file in binary mode (used on systems distinguishing text- and binary files, like MS-

Windows).

• ios::in:

open the file for reading. The file must exist.

• ios::out:

open the file for writing. Create it if it doesn’t yet exist. If it exists, the file is rewritten.

• ios::trunc:

start initially with an empty file. Any existing content of the file is lost.

The following combinations of file flags have special meanings:

in | out: The stream may be read and written. However, the

file must exist.

in | out | trunc: The stream may be read and written. It is

(re)created empty first.



have a second parameter of type ios::openmode. In contrast to this, the bitor operator returns an

int when applied to two enum-values. The question why the bitor operator may nevertheless be used

here is answered in a later chapter (cf. section 11.12).

6.4.3 Output to memory: the class ‘ostringstream’

To write information to memory using stream facilities, std::ostringstream objects should be used.

As the class ostringstream is derived from the class ostream all ostream’s facilities are available to

ostringstream objects as well. To use and define ostringstream objects the header file <sstream>

must be included. In addition the class ostringstream offers the following constructors and members:

• ostringstream ostr(string const &init, ios::openmode mode = ios::out):

when specifying openmode as ios::ate, the ostringstream object is initialized by the string

init and remaining insertions are appended to the content of the ostringstream object.

• ostringstream ostr(ios::openmode mode = ios::out):

this constructor can also be used as default constructor. Alternatively it allows, e.g., forced addi-

tions at the end of the information stored in the object so far (using ios::app). Example:

std::ostringstream out;

• std::string str() const:

a copy of the string that is stored inside the ostringstream object is returned.

• void str(std::string const &str):

the current object is reinitialized with new initial content.

The following example illustrates the use of the ostringstream class: several values are inserted

into the object. Then, the text contained by the ostringstream object is stored in a std::string,

whose length and content are thereupon printed. Such ostringstream objects are most often used for

doing ‘type to string’ conversions, like converting int values to text. Formatting flags can be used with

ostringstreams as well, as they are part of the ostream class.

Here is an example showing an ostringstream object being used:

#include <iostream>

#include <sstream>

using namespace std;

int main()

{

ostringstream ostr("hello ", ios::ate);

cout << ostr.str() << '\n';

ostr.setf(ios::showbase);

ostr.setf(ios::hex, ios::basefield);

ostr << 12345;

cout << ostr.str() << '\n';

ostr << " -- ";

ostr.unsetf(ios::hex);

ostr << 12;

cout << ostr.str() << '\n';



ostr.str("new text");

cout << ostr.str() << '\n';

ostr.seekp(4, ios::beg);

ostr << "world";

cout << ostr.str() << '\n';

}

/*
Output from this program:

hello

hello 0x3039

hello 0x3039 -- 12

new text

new world

*/

6.4.4 The ‘put_time’ manipulator

The manipulator std::put_time(std::tm const ∗specs, char const ∗fmt) can be used to in-

sert time specifications into std::ostream objects.

Time specifications are provided in std::tm objects, and the way the time should be displayed is

defined by the format string fmt.

Starting with a chrono::time_point the following steps must be performed to insert the time point’s

time into a std::ostream:

• Obtain a time_point (e.g.: system_clock{}.now());

• Pass the time point to the clock’s to_time_t function, saving the returned time_t value:

time_t secs = system_clock::to_time_t( system_clock{}.now() );

• Pass sec’s address to either std::localtime or std::gmtime. These functions return

std::tm structs containing the required time components expressed in, respectively, the com-

puter’s local time or GMT;

• Pass the return value of either localtime or gmtime together with a format string (e.g., "%c")

to put_time, inserting it into an std::ostream:

// displays, e.g., Mon Nov 4 21:34:59 2019

time_t secs = system_clock::to_time_t( system_clock{}.now() );

std::cout << std::put_time(std::localtime(&secs), "%c") << '\n';

A simple function returning put_time’s return value and expecting a time_point and format string

can be defined which handles the above two statements. E.g., (omitting the std:: and std::chrono::

specifications for brevity):

auto localTime(time_point<system_clock> const &tp, char const *fmt)

{

time_t secs = system_clock::to_time_t( tp );

return put_time(localtime(&secs), fmt);

}

// used as:

cout << localTime(system_clock{}.now(), "%c") << '\n';



character as part of the format string write it twice: %%. In addition to the standard escape sequences,

%n can be used instead of \n, and %t can be used instead of \t.

Year specifiers

Specifier Meaning std::tm field(s)

%Y year as a 4 digit decimal number tm_year

%EY year in an alternative representation tm_year

%y last 2 digits of year as a decimal number

(range [00,99])

tm_year

%Oy last 2 digits of year using an alternative nu-

meric system

tm_year

%Ey year as offset from locale’s alternative calen-

dar period %EC (locale-dependent)

tm_year

%C first 2 digits of year as a decimal number

(range [00,99])

tm_year

%EC name of the base year (period) in the locale’s

alternative representation

tm_year

%G ISO 8601 week-based year, i.e. the year that

contains the specified week

tm_year,

tm_wday,

tm_yday

%g last 2 digits of ISO 8601 week-based year

(range [00,99])

tm_year,

tm_wday,

tm_yday

Month specifiers

Specifier Meaning std::tm field(s)

%b abbreviated month name, e.g. Oct tm_mon

%m month as a decimal number (range [01,12]) tm_mon

%Om month using an alternative numeric system tm_mon

Week specifiers

Specifier Meaning std::tm field(s)

%U week of the year as a decimal number (Sunday

is the first day of the week) (range [00,53])

tm_year,

tm_wday,

tm_yday

%OU week of the year, as by %U, using an alterna-

tive numeric system

tm_year,

tm_wday,

tm_yday

%W week of the year as a decimal number (Monday

is the first day of the week) (range [00,53])

tm_year,

tm_wday,

tm_yday

%OW week of the year, as by %W, using an alterna-

tive numeric system

tm_year,

tm_wday,

tm_yday

%V ISO 8601 week of the year (range [01,53]) tm_year,

tm_wday,

tm_yday

%OV week of the year, as by %V, using an alterna-

tive numeric system

tm_year,

tm_wday,

tm_yday



Specifier Meaning std::tm field(s)

%j day of the year as a decimal number (range

[001,366])

tm_yday

%d day of the month as a decimal number (range

[01,31])

tm_mday

%Od zero-based day of the month using an alterna-

tive numeric system

tm_mday

%e day of the month as a decimal number (range

[1,31])

tm_mday

%Oe one-based day of the month using an alterna-

tive numeric system

tm_mday

Day of the week specifiers

Specifier Meaning std::tm field(s)

%a abbreviated weekday name, e.g. Fri tm_wday

%A full weekday name, e.g. Friday tm_wday

%w weekday as a decimal number, where Sunday

is 0 (range [0-6])

tm_wday

%Ow weekday, where Sunday is 0, using an alterna-

tive numeric system

tm_wday

%u weekday as a decimal number, where Monday

is 1 (ISO 8601 format) (range [1-7])

tm_wday

%Ou weekday, where Monday is 1, using an alter-

native numeric system

tm_wday

Hour, minute, second specifiers

Specifier Meaning std::tm field(s)

%H hour as a decimal number, 24 hour clock

(range [00-23])

tm_hour

%OH hour from 24-hour clock using an alternative

numeric system

tm_hour

%I hour as a decimal number, 12 hour clock

(range [01,12])

tm_hour

%OI hour from 12-hour clock using the alternative

numeric system

tm_hour

%M minute as a decimal number (range [00,59]) tm_min

%OM minute using an alternative numeric system tm_min

%S second as a decimal number (range [00,60]) tm_sec

%OS second using an alternative numeric system tm_sec



Specifier Meaning std::tm field(s)

%c standard date and time string, e.g. Sun Oct 17

04:41:13 2010

all

%Ec alternative date and time string all

%x localized date representation all

%Ex alternative date representation all

%X localized time representation all

%EX alternative time representation all

%D equivalent to "%m/%d/%y" tm_mon,

tm_mday,

tm_year

%F equivalent to "%Y-%m-%d" (the ISO 8601 date

format)

tm_mon,

tm_mday,

tm_year

%r localized 12-hour clock time tm_hour,

tm_min,

tm_sec

%R equivalent to "%H:%M" tm_hour,

tm_min

%T equivalent to "%H:%M:%S" (the ISO 8601 time

format)

tm_hour,

tm_min,

tm_sec

%p localized a.m. or p.m. tm_hour

%z offset from UTC in the ISO 8601 format (e.g.

-0430;

no characters if time zone information is not

available)

tm_isdst

%Z time zone name or abbreviation

(no characters if time zone information is not

available)

tm_isdst

6.5 Input

In C++ input is primarily based on the std::istream class. The istream class defines the basic

operators and members extracting information from streams: the extraction operator (>>), and special

members like istream::read reading unformatted information from streams.

The class istream acts as base class for several other classes, all offering the functionality of the

istream class, but adding their own specialties. In the upcoming sections the following classes are

discussed:

• The class istream, offering the basic facilities for doing input;

• The class ifstream, allowing us to read files (comparable to C’s fopen(filename, "r"));

• The class istringstream, allowing us to extract information from memory rather than from file

(comparable to C’s sscanf function).

6.5.1 Basic input: the class ‘istream’

The class istream defines basic input facilities. The cin object, is an istream object. All facilities

related to input as defined by the ios class are also available in the istream class.

We may define istream objects using the following istream constructor:

• istream object(streambuf ∗sb):



std::streambuf object. Similarly to ostream objects, istream objects may be de-

fined by passing it initially a 0-pointer. See section 6.4.1 for a discussion, see also section

14.8.3, and see chapter 24 for examples.

To define the istream class in C++ sources, the <istream> header file must be included. To use the

predefined istream object cin, the <iostream> header file must be included.

6.5.1.1 Reading from ‘istream’ objects

The class istream supports both formatted and unformatted (binary) input. The extraction operator

(operator>>) is used to extract values in a type safe way from istream objects. This is called format-

ted input, whereby human-readable ASCII characters are converted, according to certain formatting

rules, to binary values.

The extraction operator points to the objects or variables to receive new values. The normal associativ-

ity of >> remains unaltered, so when a statement like

cin >> x >> y;

is encountered, the leftmost two operands are evaluated first (cin >> x), and an istream & object,

which is actually the same cin object, is returned. Now, the statement is reduced to

cin >> y

and the y variable is extracted from cin.

The >> operator has many (overloaded) variants and thus many types of variables can be extracted

from istream objects. There is an overloaded >> available for the extraction of an int, of a double,

of a string, of an array of characters, possibly to the location pointed at by a pointer, etc., etc.. String or

character array extraction by default first skips all whitespace characters, and then extracts all consec-

utive non-whitespace characters. Once an extraction operator has been processed the istream object

from which the information was extracted is returned and it can immediately be used for additional

istream operations that appear in the same expression.

Streams do not support facilities for formatted input as offered by C’s scanf and vscanf functions.

Although it is not difficult to add such facilities to the world of streams, scanf-like functionality is in

practice never needed in C++ programs. Furthermore, as it is potentially type-unsafe, it is better to

avoid using C-type formatted input.

When binary files must be read, the information should normally not be formatted: an int value should

be read as a series of unaltered bytes, not as a series of ASCII numeric characters 0 to 9. The following

member functions for reading information from istream objects are available:

• int gcount() const:

the number of characters read from the input stream by the last unformatted input operation is

returned.

• int get():

the next available single character is returned as an unsigned char value using an int return

type. EOF is returned if no more character are available.

• istream &get(char &ch):

the next single character read from the input stream is stored in ch. The member function returns

the stream itself which may be inspected to determine whether a character was obtained or not.

• istream &get(char ∗buffer, int len, char delim = ’\n’):

At most len - 1 characters are read from the input stream into the array starting at buffer,



tered. However, the delimiter itself is not removed from the input stream.

Having stored the characters into buffer, a 0-valued character is written beyond the last char-

acter stored into the buffer. The functions eof and fail (see section 6.3.1) return 0 (false) if

the delimiter was encountered before reading len - 1 characters or if the delimiter was not en-

countered after reading len - 1 characters. It is OK to specifiy a 0-valued character delimiter:

this way NTBSs may be read from a (binary) file.

• istream &getline(char ∗buffer, int len, char delim = ’\n’):

this member function operates analogously to the get member function, but getline removes

delim from the stream if it is actually encountered. The delimiter itself, if encountered, is not

stored in the buffer. If delim was not found (before reading len - 1 characters) the fail

member function, and possibly also eof returns true. Realize that the std::string class also

offers a function std::getlinewhich is generally preferred over this getline member function

that is described here (see section 5.2.4).

• istream &ignore():

one character is skipped from the input stream.

• istream &ignore(int n):

n characters are skipped from the input stream.

• istream &ignore(int n, int delim):

at most n characters are skipped but skipping characters stops after having removed delim from

the input stream.

• int peek():

this function returns the next available input character, but does not actually remove the charac-

ter from the input stream. EOF is returned if no more characters are available.

• istream &putback(char ch):

The character ch is ‘pushed back’ into the input stream, to be read again as the next available

character. EOF is returned if this is not allowed. Normally, it is OK to put back one character.

Example:

string value;

cin >> value;

cin.putback('X');

// displays: X

cout << static_cast<char>(cin.get());

• istream &read(char ∗buffer, int len):

At most len bytes are read from the input stream into the buffer. If EOF is encountered first,

fewer bytes are read, with the member function eof returning true. This function is commonly

used when reading binary files. Section 6.5.2 contains an example in which this member function

is used. The member function gcount() may be used to determine the number of characters that

were retrieved by read.

• istream &readsome(char ∗buffer, int len):

at most len bytes are read from the input stream into the buffer. All available characters are read

into the buffer, but if EOF is encountered, fewer bytes are read, without setting the ios::eofbit

or ios::failbit.

• istream &unget():

the last character that was read from the stream is put back.

6.5.1.2 ‘istream’ positioning

Although not every istream object supports repositioning, some do. This means that it is possible to

read the same section of a stream repeatedly. Repositioning is frequently used in database applications

where it must be possible to access the information in the database randomly.



• ios::pos_type tellg():

the stream’s current (absolute) position where the stream’s next read-operation will take place is

returned.

• istream &seekg(ios::off_type step, ios::seekdir org):

modifies a stream’s actual position. The function expects an off_type step representing the

number of bytes the current stream position is moved with respect to org. The step value may

be negative, zero or positive.

The origin of the step, org is a value in the ios::seekdir enumeration. Its values are:

– ios::beg:

the stepsize is computed relative to the beginning of the stream. This value is used by default.

– ios::cur:

the stepsize is computed relative to the current position of the stream (as returned by tellp).

– ios::end:

the stepsize is interpreted relative to the current end position of the stream.

It is OK to seek beyond the last file position. Seeking before ios::beg raises the ios::failbit

flag.

6.5.2 Input from files: the class ‘ifstream’

The std::ifstream class is derived from the istream class: it has the same capabilities as the

istream class, but can be used to access files for reading.

In order to use the ifstream class in C++ sources, the <fstream> header file must be included.

Including fstream does not automatically make available the standard streams cin, cout and cerr.

Include iostream to declare these standard streams.

The following constructors are available for ifstream objects:

• ifstream object:

this is the basic constructor. It defines an ifstream object which may be associated

with an actual file later, using its open() member (see below).

• ifstream object(char const ∗name, ios::openmode mode = ios::in):

this constructor can be used to define an ifstream object and associate it immediately

with the file named name using input mode mode. Section 6.4.2.1 provides an overview

of available input modes. Example:

ifstream in("/tmp/input");

Instead of directly associating an ifstream object with a file, the object can be constructed first, and

opened later.

• void open(char const ∗name, ios::openmode mode = ios::in):

associates an ifstream object with an actual file. If the ios::fail flag was set before call-

ing open and opening succeeds the flag is cleared. Opening an already open stream fails. To

reassociate a stream with another file it must first be closed:

ifstream in("/tmp/in");

in >> variable;

in.close(); // closes in

in.open("/tmp/in2");

in >> anotherVariable;



closes the ifstream object. The function sets the ios::fail flag of the closed object. Closing

the file flushes any buffered information to the associated file. A file is automatically closed when

the associated ifstream object ceases to exist.

• bool is_open() const:

assume a stream was properly constructed, but it has not yet been attached to a file. E.g., the

statement ifstream ostr was executed. When we now check its status through good(), a non-

zero (i.e., OK) value is returned. The ‘good’ status here indicates that the stream object has been

constructed properly. It doesn’t mean the file is also open. To test whether a stream is actually

open, is_open should be called. If it returns true, the stream is open. Also see the example

in section 6.4.2. The following example illustrates reading from a binary file (see also section

6.5.1.1):

#include <fstream>

using namespace std;

int main(int argc, char **argv)

{

ifstream in(argv[1]);

double value;

// reads double in raw, binary form from file.

in.read(reinterpret_cast<char *>(&value), sizeof(double));

}

6.5.3 Input from memory: the class ‘istringstream’

To read information from memory using stream facilities, std::istringstream objects should be

used. As the class istringstream is derived from the class istream all istream’s facilities are

available to istringstream objects as well. To use and define istringstream objects the header file

<sstream> must be included. In addition the class istringstream offers the following constructors

and members:

• istringstream istr(string const &init, ios::openmode mode = ios::in):

the object is initialized with init’s content

• istringstream istr(ios::openmode mode = ios::in):

this constructor is usually used as the default constructor. Example:

std::istringstream in;

• void str(std::string const &str):

the current object is reinitialized with new initial content.

The following example illustrates the use of the istringstream class: several values are extracted

from the object. Such istringstream objects are most often used for doing ‘string to type’ conver-

sions, like converting text to int values (cf. C’s atoi function). Formatting flags can be used with

istringstreams as well, as they are part of the istream class. In the example note especially the

use of the member seekg:

#include <iostream>

#include <sstream>

using namespace std;

int main()

{

istringstream istr("123 345"); // store some text.



istr.seekg(2); // skip "12"

istr >> x; // extract int

cout << x << '\n'; // write it out

istr.seekg(0); // retry from the beginning

istr >> x; // extract int

cout << x << '\n'; // write it out

istr.str("666"); // store another text

istr >> x; // extract it

cout << x << '\n'; // write it out

}

/*
output of this program:

3

123

666

*/

6.5.4 Copying streams

Usually, files are copied either by reading a source file character by character or line by line. The basic

mold to process streams is as follows:

• Continuous loop:

1. read from the stream

2. if reading did not succeed (i.e., fail returns true), break from the loop

3. process the information that was read

Note that reading must precede testing, as it is only possible to know after actually attempting to read

from a file whether the reading succeeded or not. Of course, variations are possible: getline(istream

&, string &) (see section 6.5.1.1) returns an istream &, so here reading and testing may be con-

tracted using one expression. Nevertheless, the above mold represents the general case. So, the follow-

ing program may be used to copy cin to cout:

#include <iostream>

using namespace::std;

int main()

{

while (true)

{

char c;

cin.get(c);

if (cin.fail())

break;

cout << c;

}

}

Contraction is possible here by combining get with the if-statement, resulting in:

if (!cin.get(c))

break;



Simply copying a file isn’t required very often. More often a situation is encountered where a file is

processed up to a certain point, followed by plain copying the file’s remaining information. The next

program illustrates this. Using ignore to skip the first line (for the sake of the example it is assumed

that the first line is at most 80 characters long), the second statement uses yet another overloaded

version of the <<-operator, in which a streambuf pointer is inserted into a stream. As the member

rdbuf returns a stream’s streambuf ∗, we have a simple means of inserting a stream’s content into

an ostream:

#include <iostream>

using namespace std;

int main()

{

cin.ignore(80, '\n'); // skip the first line and...

cout << cin.rdbuf(); // copy the rest through the streambuf *
}

This way of copying streams only assumes the existence of a streambuf object. Consequently it can be

used with all specializations of the streambuf class.

6.5.5 Coupling streams

Ostream objects can be coupled to ios objects using the tie member function. Tying results in flushing

the ostream’s buffer whenever an input or output operation is performed on the ios object to which

the ostream object is tied. By default cout is tied to cin (using cin.tie(cout)). This tie means that

whenever an operation on cin is requested, cout is flushed first. To break the tie, ios::tie(0) can

be called. In the example: cin.tie(0).

Another useful coupling of streams is shown by the tie between cerr and cout. Because of the tie

standard output and error messages written to the screen are shown in sync with the time at which

they were generated:

#include <iostream>

using namespace std;

int main()

{

cerr.tie(0); // untie

cout << "first (buffered) line to cout ";

cerr << "first (unbuffered) line to cerr\n";

cout << "\n";

cerr.tie(&cout); // tie cout to cerr

cout << "second (buffered) line to cout ";

cerr << "second (unbuffered) line to cerr\n";

cout << "\n";

}

/*
Generated output:

first (unbuffered) line to cerr

first (buffered) line to cout

second (buffered) line to cout second (unbuffered) line to cerr

*/

An alternative way to couple streams is to make streams use a common streambuf object. This can



∗

use, e.g. their own formatting, one stream can be used for input, the other for output, and redirection

using the stream library rather than operating system calls can be implemented. See the next sections

for examples.

6.6 Advanced topics

6.6.1 Moving streams

Stream classes (e.g.„ all stream classes covered in this chapter) are movable and can be swapped. This

implies that factory functions can be designed for stream classes. Here is an example:

ofstream out(string const &name)

{

ofstream ret(name); // construct ofstream

return ret; // return value optimization, but

} // OK as moving is supported

int main()

{

ofstream mine(out("out")); // return value optimizations, but

// OK as moving is supported

ofstream base("base");

ofstream other;

base.swap(other); // swapping streams is OK

other = std::move(base); // moving streams is OK

// other = base; // this would fail: copy assignment

// is not available for streams

}

6.6.2 Redirecting streams

Using ios::rdbuf streams can be forced to share their streambuf objects. Thus information written

to one stream is actually written to another stream; a phenomenon normally called redirection. Redi-

rection is commonly implemented at the operating system level, and sometimes that is still necessary

(see section 24.2.3).

A common situation where redirection is useful is when error messages should be written to file rather

than to the standard error stream, usually indicated by its file descriptor number 2. In the Unix

operating system using the bash shell, this can be realized as follows:

program 2>/tmp/error.log

Following this command any error messages written by program are written to /tmp/error.log,

instead of appearing on the screen.

Here is an example showing how this can be implemented using streambuf objects. Assume program

expects an argument defining the name of the file to write the error messages to. It could be called as

follows:

program /tmp/error.log



#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char **argv)

{

ofstream errlog; // 1

streambuf *cerr_buffer = 0; // 2

if (argc == 2)

{

errlog.open(argv[1]); // 3

cerr_buffer = cerr.rdbuf(errlog.rdbuf()); // 4

}

else

{

cerr << "Missing log filename\n";

return 1;

}

cerr << "Several messages to stderr, msg 1\n";

cerr << "Several messages to stderr, msg 2\n";

cout << "Now inspect the contents of " <<

argv[1] << "... [Enter] ";

cin.get(); // 5

cerr << "Several messages to stderr, msg 3\n";

cerr.rdbuf(cerr_buffer); // 6

cerr << "Done\n"; // 7

}

/*
Generated output on file argv[1]

at cin.get():

Several messages to stderr, msg 1

Several messages to stderr, msg 2

at the end of the program:

Several messages to stderr, msg 1

Several messages to stderr, msg 2

Several messages to stderr, msg 3

*/

• At lines 1-2 local variables are defined: errlog is the ofstream to write the error messages to,

and cerr_buffer is a pointer to a streambuf, to point to the original cerr buffer.

• At line 3 the alternate error stream is opened.

• At line 4 redirection takes place: cerr now writes to the streambuf defined by errlog. It is

important that the original buffer used by cerr is saved, as explained below.

• At line 5 we pause. At this point, two lines were written to the alternate error file. We get a

chance to take a look at its content: there were indeed two lines written to the file.



at the end of main. If cerr’s buffer would not have been restored, then at that point cerr would

refer to a non-existing streambuf object, which might produce unexpected results. It is the

responsibility of the programmer to make sure that an original streambuf is saved before redi-

rection, and is restored when the redirection ends.

• Finally, at line 7, Done is again written to the screen, as the redirection has been terminated.

6.6.3 Reading AND Writing streams

Streams can be read and written using std::fstream objects. As with ifstream and ofstream

objects, its constructor expects the name of the file to be opened:

fstream inout("iofile", ios::in | ios::out);

Note the use of the constants ios::in and ios::out, indicating that the file must be opened for

both reading and writing. Multiple mode indicators may be used, concatenated by the bitor operator.

Alternatively, instead of ios::out, ios::app could have been used and mere writing would become

appending (at the end of the file).

Reading and writing to the same file is always a bit awkward: what to do when the file may not yet

exist, but if it already exists it should not be rewritten? Having fought with this problem for some time

I now use the following approach:

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main()

{

fstream rw("fname", ios::out | ios::in);

if (!rw) // file didn't exist yet

{

rw.clear(); // try again, creating it using ios::trunc

rw.open("fname", ios::out | ios::trunc | ios::in);

}

if (!rw) // can't even create it: bail out

{

cerr << "Opening `fname' failed miserably" << '\n';

return 1;

}

cerr << "We're at: " << rw.tellp() << '\n';

// write something

rw << "Hello world" << '\n';

rw.seekg(0); // go back and read what's written

string s;

getline(rw, s);

cout << "Read: " << s << '\n';

}



can be attempted using the ios::trunc flag. If the file already existed, the construction would have

succeeded. By specifying ios::ate when defining rw, the initial read/write action would by default

have taken place at EOF.

Under DOS-like operating systems that use the multiple character sequence \r\n to separate lines in

text files the flag ios::binary is required to process binary files ensuring that \r\n combinations are

processed as two characters. In general, ios::binary should be specified when binary (non-text) files

are to be processed. By default files are opened as text files. Unix operating systems do not distinguish

text files from binary files.

With fstream objects, combinations of file flags are used to make sure that a stream is or is not

(re)created empty when opened. See section 6.4.2.1 for details.

Once a file has been opened in read and write mode, the << operator can be used to insert information

into the file, while the >> operator may be used to extract information from the file. These operations

may be performed in any order, but a seekg or seekp operation is required when switching between

insertions and extractions. The seek operation is used to activate the stream’s data used for reading

or those used for writing (and vice versa). The istream and ostream parts of fstream objects share

the stream’s data buffer and by performing the seek operation the stream either activates its istream

or its ostream part. If the seek is omitted, reading after writing and writing after reading simply

fails. The example shows a whitespace-delimited word being read from a file, writing another string to

the file, just beyond the point where the just read word terminated. Finally yet another string is read

which is found just beyond the location where the just written strings ended:

fstream f("filename", ios::in | ios::out);

string str;

f >> str; // read the first word

// write a well known text

f.seekg(0, ios::cur);

f << "hello world";

f.seekp(0, ios::cur);

f >> str; // and read again

Since a seek or clear operation is required when alternating between read and write (extraction and

insertion) operations on the same file it is not possible to execute a series of << and >> operations in

one expression statement.

Of course, random insertions and extractions are hardly ever used. Generally, insertions and extrac-

tions occur at well-known locations in a file. In those cases, the position where insertions or extractions

are required can be controlled and monitored by the seekg, seekp, tellg and tellp members (see

sections 6.4.1.2 and 6.5.1.2).

Error conditions (see section 6.3.1) occurring due to, e.g., reading beyond end of file, reaching end of

file, or positioning before begin of file, can be cleared by the clear member function. Following clear

processing may continue. E.g.,

fstream f("filename", ios::in | ios::out);

string str;

f.seekg(-10); // this fails, but...

f.clear(); // processing f continues

f >> str; // read the first word

A situation where files are both read and written is seen in database applications, using files consisting

of records having fixed sizes, and where locations and sizes of pieces of information are known. For



retrieve a particular line, given its order-number in the file. A binary file index allows for the quick

retrieval of the location of lines.

#include <iostream>

#include <fstream>

#include <string>

#include <climits>

using namespace std;

void err(char const *msg)

{

cout << msg << '\n';

}

void err(char const *msg, long value)

{

cout << msg << value << '\n';

}

void read(fstream &index, fstream &strings)

{

int idx;

if (!(cin >> idx)) // read index

{

cin.clear(); // allow reading again

cin.ignore(INT_MAX, '\n'); // skip the line

return err("line number expected");

}

index.seekg(idx * sizeof(long)); // go to index-offset

long offset;

if

(

!index.read // read the line-offset

(

reinterpret_cast<char *>(&offset),

sizeof(long)

)

)

return err("no offset for line", idx);

if (!strings.seekg(offset)) // go to the line's offset

return err("can't get string offset ", offset);

string line;

if (!getline(strings, line)) // read the line

return err("no line at ", offset);

cout << "Got line: " << line << '\n'; // show the line

}

void write(fstream &index, fstream &strings)

{

string line;



if (!getline(cin, line)) // read the line

return err("line missing");

strings.seekp(0, ios::end); // to strings

index.seekp(0, ios::end); // to index

long offset = strings.tellp();

if

(

!index.write // write the offset to index

(

reinterpret_cast<char *>(&offset),

sizeof(long)

)

)

return err("Writing failed to index: ", offset);

if (!(strings << line << '\n')) // write the line itself

return err("Writing to `strings' failed");

// confirm writing the line

cout << "Write at offset " << offset << " line: " << line << '\n';

}

int main()

{

fstream index("index", ios::trunc | ios::in | ios::out);

fstream strings("strings", ios::trunc | ios::in | ios::out);

cout << "enter `r <number>' to read line <number> or "

"w <line>' to write a line\n"

"or enter `q' to quit.\n";

while (true)

{

cout << "r <nr>, w <line>, q ? "; // show prompt

index.clear();

strings.clear();

string cmd;

cin >> cmd; // read cmd

if (cmd == "q") // process the cmd.

return 0;

if (cmd == "r")

read(index, strings);

else if (cmd == "w")

write(index, strings);

else if (cin.eof())

{

cout << "\n"

"Unexpected end-of-file\n";

return 1;

}

else

cout << "Unknown command: " << cmd << '\n';



}

Another example showing reading and writing of files is provided by the next program. It also illus-

trates the processing of NTBSs:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{ // r/w the file

fstream f("hello", ios::in | ios::out | ios::trunc);

f.write("hello", 6); // write 2 NTB strings

f.write("hello", 6);

f.seekg(0, ios::beg); // reset to begin of file

char buffer[100]; // or: char *buffer = new char[100]

char c;

// read the first `hello'
cout << f.get(buffer, sizeof(buffer), 0).tellg() << '\n';

f >> c; // read the NTB delim

// and read the second `hello'
cout << f.get(buffer + 6, sizeof(buffer) - 6, 0).tellg() << '\n';

buffer[5] = ' '; // change asciiz to ' '

cout << buffer << '\n'; // show 2 times `hello'
}

/*
Generated output:

5

11

hello hello

*/

A completely different way to read and write streams may be implemented using streambufmembers.

All considerations mentioned so far remain valid (e.g., before a read operation following a write opera-

tion seekgmust be used). When streambuf objects are used, either an istream is associated with the

streambuf object of another ostream object, or an ostream object is associated with the streambuf

object of another istream object. Here is the previous program again, now using associated streams:

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

void err(char const *msg); // see earlier example

void err(char const *msg, long value);

void read(istream &index, istream &strings)

{

index.clear();

strings.clear();

// insert the body of the read() function of the earlier example



void write(ostream &index, ostream &strings)

{

index.clear();

strings.clear();

// insert the body of the write() function of the earlier example

}

int main()

{

ifstream index_in("index", ios::trunc | ios::in | ios::out);

ifstream strings_in("strings", ios::trunc | ios::in | ios::out);

ostream index_out(index_in.rdbuf());

ostream strings_out(strings_in.rdbuf());

cout << "enter `r <number>' to read line <number> or "

"w <line>' to write a line\n"

"or enter `q' to quit.\n";

while (true)

{

cout << "r <nr>, w <line>, q ? "; // show prompt

string cmd;

cin >> cmd; // read cmd

if (cmd == "q") // process the cmd.

return 0;

if (cmd == "r")

read(index_in, strings_in);

else if (cmd == "w")

write(index_out, strings_out);

else

cout << "Unknown command: " << cmd << '\n';

}

}

In this example

• the streams associated with the streambuf objects of existing streams are not ifstream or

ofstream objects but basic istream and ostream objects.

• The streambuf object is not defined by an ifstream or ofstream object. Instead it is defined

outside of the streams, using a filebuf (cf. section 14.8.2) and constructions like:

filebuf fb("index", ios::in | ios::out | ios::trunc);

istream index_in(&fb);

ostream index_out(&fb);

• An ifstream object can be constructed using stream modes normally used with ofstream ob-

jects. Conversely, an ofstream objects can be constructed using stream modes normally used

with ifstream objects.

• If istream and ostreams share a streambuf, then their read and write pointers (should) point

to the shared buffer: they are tightly coupled.



(of course) that it opens the possibility of using stream objects with specialized streambuf ob-

jects. These streambuf objects may specifically be constructed to control and interface particular

devices. Elaborating this (see also section 14.8) is left as an exercise to the reader.



Chapter 7

Classes

The C programming language offers two methods for structuring data of different types. The C struct

holds data members of various types, and the C union also defines data members of various types.

However, a union’s data members all occupy the same location in memory and the programmer may

decide on which one to use.

In this chapter classes are introduced. A class is a kind of struct, but its content is by default

inaccessible to the outside world, whereas the content of a C++ struct is by default accessible to the

outside world. In C++ structs find little use: they are mainly used to aggregate data within the

context of classes or to define elaborate return values. Often a C++ struct merely contains plain old

data (POD, cf. section 9.10). In C++ the class is the main data structuring device, by default enforcing

two core concepts of current-day software engineering: data hiding and encapsulation (cf. sections 3.2.1

and 7.1.1).

The union is another data structuring device the language offers. The traditional C union is still

available, but C++ also offers unrestricted unions. Unrestricted unions are unions whose data fields

may be of class types. The C++ Annotations covers these unrestricted unions in section 9.9, after having

introduced several other new concepts of C++,

C++ extends the C struct and union concepts by allowing the definition of member functions (in-

troduced in this chapter) within these data types. Member functions are functions that can only be

used with objects of these data types or within the scope of these data types. Some of these member

functions are special in that they are always, usually automatically, called when an object starts its life

(the so-called constructor) or ends its life (the so-called destructor). These and other types of member

functions, as well as the design and construction of, and philosophy behind, classes are introduced in

this chapter.

We step-by-step construct a class Person, which could be used in a database application to store a

person’s name, address and phone number.

Let’s start by creating a class Person right away. From the onset, it is important to make the

distinction between the class interface and its implementation. A class may loosely be defined as ‘a set

of data and all the functions operating on those data’. This definition is later refined but for now it is

sufficient to get us started.

A class interface is a definition, defining the organization of objects of that class. Normally a definition

results in memory reservation. E.g., when defining int variable the compiler ensures that some

memory is reserved in the final program storing variable’s values. Although it is a definition no

memory is set aside by the compiler once it has processed the class definition. But a class definition

follows the one definition rule: in C++ entities may be defined only once. As a class definition does not

imply that memory is being reserved the term class interface is preferred instead.

Class interfaces are normally contained in a class header file, e.g., person.h. We’ll start our class

Person interface here (cf section 7.7 for an explanation of the const keywords behind some of the

class’s member functions):
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class Person

{

std::string d_name; // name of person

std::string d_address; // address field

std::string d_phone; // telephone number

size_t d_mass; // the mass in kg.

public: // member functions

void setName(std::string const &name);

void setAddress(std::string const &address);

void setPhone(std::string const &phone);

void setMass(size_t mass);

std::string const &name() const;

std::string const &address() const;

std::string const &phone() const;

size_t mass() const;

};

The member functions that are declared in the interface must still be implemented. The implementa-

tion of these members is properly called their definition.

In addition to member functions classes also commonly define the data that are manipulated by

those member functions. These data are called the data members. In Person they are d_name,

d_address, d_phone and d_mass. Data members should be given private access rights. Since the

class uses private access rights by default they are usually simply listed at the top of the class interface.

All communication between the outer world and the class data is routed through the class’s member

functions. Data members may receive new values (e.g., using setName) or they may be retrieved for

inspection (e.g., using name). Functions merely returning values stored inside the object, not allowing

the caller to modify these internally stored values, are called accessors.

Syntactically there is only a marginal difference between a class and a struct. Classes by default define

private members, structs define public members. Conceptually, though, there are differences. In C++

structs are used in the way they are used in C: to aggregate data, which are all freely accessible.

Classes, on the other hand, hide their data from access by the outside world (which is aptly called

data hiding) and offer member functions to define the communication between the outer world and the

class’s data members.

Following Lakos (Lakos, J., 2001) Large-Scale C++ Software Design (Addison-Wesley) I suggest the

following setup of class interfaces:

• All data members have private access rights, and are placed at the top of the interface.

• All data members start with d_, followed by a name suggesting their meaning (in chapter 8 we’ll

also encounter data members starting with s_).

• Non-private data members do exist, but one should be hesitant to define non-private access rights

for data members (see also chapter 13).

• Two broad categories of member functions are manipulators and accessors. Manipulators allow

the users of objects to modify the internal data of the objects. By convention, manipulators start

with set. E.g., setName.

• With accessors, a get-prefix is still frequently encountered, e.g., getName. However, following the

conventions promoted by the Qt (see http://www.trolltech.com) Graphical User Interface

Toolkit, the get-prefix is now deprecated. So, rather than defining the member getAddress, it

should simply be named address.



following the class’s data members. They are the important elements of the interface as they

define the features the class is offering to its users. It’s a matter of convention to list them high

up in the interface. The keyword private is needed beyond the public members to switch back

from public members to private access rights which nicely separates the members that may be

used ‘by the general public’ from the class’s own support members.

Style conventions usually take a long time to develop. There is nothing obligatory about them, though.

I suggest that readers who have compelling reasons not to follow the above style conventions use their

own. All others are strongly advised to adopt the above style conventions.

Finally, referring back to section 3.1.2 that

using namespace std;

must be used in most (if not all) examples of source code. As explained in sections 7.11 and 7.11.1 the

using directive should follow the preprocessor directive(s) including the header files, using a setup like

the following:

#include <iostream>

#include "person.h"

using namespace std;

int main()

{

...

}

7.1 The constructor

C++ classes usually contain two special categories of member functions which are essential to the

proper working of classes. These categories are the constructors and the destructor. The destructor’s

primary task is to return memory allocated by an object to the common pool when an object goes ‘out

of scope’. Allocation of memory is discussed in chapter 9, and an in-depth coverage of destructors is

therefore postponed until we reach that chapter. In the current chapter the emphasis is on the class’s

internal organization and on its constructors.

Constructors are recognized by their names which are equal to their class names. Constructors

do not specify return values, not even void. E.g., the class Person may define a constructor

Person::Person(). The C++ run-time system ensures that the constructor of a class is called when

a variable of the class is defined. It is possible to define a class lacking any constructor. In that case

the compiler defines a default constructor that is called when an object of that class is defined. What

actually happens in that case depends on the data members that are defined by that class (cf. section

7.3.1).

Objects may be defined locally or globally. However, in C++ most objects are defined locally. Globally

defined objects are hardly ever required and are somewhat deprecated.

When a function defines a local object, that object’s constructor is called every time the function is

called. The object’s constructor is activated at the point where the object is defined (a subtlety is that

an object may be defined implicitly as, e.g., a temporary variable in an expression).

When an object is defined as a static object it is constructed when the program starts. In this case its

constructor is called even before the function main starts. Example:

#include <iostream>



class Demo

{

public:

Demo();

};

Demo::Demo()

{

cout << "Demo constructor called\n";

}

Demo d;

int main()

{}

/*
Generated output:

Demo constructor called

*/

The program contains one global object of the class Demowith main having an empty body. Nonetheless,

the program produces some output generated by the constructor of the globally defined Demo object.

Constructors have a very important and well-defined role. They must ensure that all the class’s data

members have sensible or at least well-defined values once the object has been constructed. We’ll get

back to this important task shortly. The default constructor has no argument. It is defined by the

compiler unless another constructor is defined and unless its definition is suppressed (cf. section 7.6).

If a default constructor is required in addition to another constructor then the default constructor must

explicitly be defined as well. C++ provides special syntax to realize that without much effort, which is

also covered by section 7.6.

7.1.1 A first application

Our example class Person has three string data members and a size_t d_mass data member. Access

to these data members is controlled by interface functions.

Whenever an object is defined the class’s constructor(s) ensure that its data members are given ‘sen-

sible’ values. Thus, objects never suffer from uninitialized values. Data members may be given new

values, but that should never be directly allowed. It is a core principle (called data hiding) of good

class design that its data members are private. The modification of data members is therefore fully

controlled by member functions and thus, indirectly, by the class-designer. The class encapsulates all

actions performed on its data members and due to this encapsulation the class object may assume

the ‘responsibility’ for its own data-integrity. Here is a minimal definition of Person’s manipulating

members:

#include "person.h" // given earlier

using namespace std;

void Person::setName(string const &name)

{

d_name = name;

}

void Person::setAddress(string const &address)

{

d_address = address;



void Person::setPhone(string const &phone)

{

d_phone = phone;

}

void Person::setMass(size_t mass)

{

d_mass = mass;

}

It’s a minimal definition in that no checks are performed. But it should be clear that checks are easy to

implement. E.g., to ensure that a phone number only contains digits one could define:

void Person::setPhone(string const &phone)

{

if (phone.empty())

d_phone = " - not available -";

else if (phone.find_first_not_of("0123456789") == string::npos)

d_phone = phone;

else

cout << "A phone number may only contain digits\n";

}

Note the double negation in this implementation. Double negations are very hard to read, and an

encapsulating member bool hasOnly handles the test, and improves setPhone’s readability:

bool Person::hasOnly(char const *characters, string const &object)

{

// object only contains 'characters'

return object.find_first_not_of(characters) == string::npos;

}

and setPhone becomes:

void Person::setPhone(string const &phone)

{

if (phone.empty())

d_phone = " - not available -";

else if (hasOnly("0123456789", phone))

d_phone = phone;

else

cout << "A phone number may only contain digits\n";

}

Since hasOnly is an encapsulated member function we can ensure that it’s only used with non-empty

string objects, so hasOnly itself doesn’t have to check for that.

Access to the data members is controlled by accessor members. Accessors ensure that data members

cannot suffer from uncontrolled modifications. Since accessors conceptually do not modify the object’s

data (but only retrieve the data) these member functions are given the predicate const. They are called

const member functions, which, as they are guaranteed not to modify their object’s data, are available

to both modifiable and constant objects (cf. section 7.7).

To prevent backdoors we must also make sure that the data member is not modifiable through an

accessor’s return value. For values of built-in primitive types that’s easy, as they are usually returned

by value, which are copies of the values found in variables. But since objects may be fairly large making

copies is usually prevented by returning objects by reference. A backdoor is created by returning a



definition:

string &Person::name() const

{

return d_name;

}

Person somebody;

somebody.setName("Nemo");

somebody.name() = "Eve"; // Oops, backdoor changing the name

To prevent the backdoor objects are returned as const references from accessors. Here are the imple-

mentations of Person’s accessors:

#include "person.h" // given earlier

using namespace std;

string const &Person::name() const

{

return d_name;

}

string const &Person::address() const

{

return d_address;

}

string const &Person::phone() const

{

return d_phone;

}

size_t Person::mass() const

{

return d_mass;

}

The Person class interface remains the starting point for the class design: its member functions define

what can be asked of a Person object. In the end the implementation of its members merely is a

technicality allowing Person objects to do their jobs.

The next example shows how the class Person may be used. An object is initialized and passed to a

function printperson(), printing the person’s data. Note the reference operator in the parameter list

of the function printperson. Only a reference to an existing Person object is passed to the function,

rather than a complete object. The fact that printperson does not modify its argument is evident

from the fact that the parameter is declared const.

#include <iostream>

#include "person.h" // given earlier

using namespace std;

void printperson(Person const &p)

{

cout << "Name : " << p.name() << "\n"

"Address : " << p.address() << "\n"

"Phone : " << p.phone() << "\n"

"Mass : " << p.mass() << '\n';

}



{

Person p;

p.setName("Linus Torvalds");

p.setAddress("E-mail: Torvalds@cs.helsinki.fi");

p.setPhone("");

p.setMass(75); // kg.

printperson(p);

}

/*
Produced output:

Name : Linus Torvalds

Address : E-mail: Torvalds@cs.helsinki.fi

Phone : - not available -

Mass : 75

*/

7.1.2 Constructors: with and without arguments

The class Person’s constructor so far has not received any parameters. C++ allows constructors to be

defined with or without parameter lists. The arguments are supplied when an object is defined.

For the class Person a constructor expecting three strings and a size_t might be useful. Repre-

senting, respectively, the person’s name, address, phone number and mass. This constructor can be

implemented like this (but see also section 7.3.1):

Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

{

d_name = name;

d_address = address;

setPhone(phone);

d_mass = mass;

}

It must of course also be declared in the class interface:

class Person

{

// data members (not altered)

public:

Person(std::string const &name, std::string const &address,

std::string const &phone, size_t mass);

// rest of the class interface (not altered)

};

Now that this constructor has been declared, the default constructor must explicitly be declared as

well if we still want to be able to construct a plain Person object without any specific initial values for

its data members. The class Person would thus support two constructors, and the part declaring the

constructors now becomes:

class Person



// data members

public:

Person();

Person(std::string const &name, std::string const &address,

std::string const &phone, size_t mass);

// additional members

};

In this case, the default constructor doesn’t have to do very much, as it doesn’t have to initialize the

string data members of the Person object. As these data members are objects themselves, they are

initialized to empty strings by their own default constructor. However, there is also a size_t data

member. That member is a variable of a built-in type and such variabes do not have constructors and

so are not initialized automatically. Therefore, unless the value of the d_mass data member is explicitly

initialized its value is:

• a random value for local Person objects;

• 0 for global and static Person objects.

The 0-value might not be too bad, but normally we don’t want a random value for our data members.

So, even the default constructor has a job to do: initializing the data members which are not initialized

to sensible values automatically. Its implementation can be:

Person::Person()

{

d_mass = 0;

}

Using constructors with and without arguments is illustrated next. The object karel is initialized by

the constructor defining a non-empty parameter list while the default constructor is used for the anon

object. When constructing objects using constructors requiring arguments you are advised to surround

the arguments by curly braces. Parentheses can often also be used, and sometimes even have to be

used (cf. section 12.4.2), but mindlessly using parentheses instead of curly braces may easily result in

unexpected problems (cf. section 7.2). Hence the advice to prefer curly braces rather than parentheses.

Here’s the example showing two constructor-calls:

int main()

{

Person karel{ "Karel", "Rietveldlaan 37", "542 6044", 70 };

Person anon;

}

The two Person objects are defined when main starts as they are local objects, living only for as long

as main is active.

If Person objects must be definable using other arguments, corresponding constructors must be added

to Person’s interface. Apart from overloading class constructors it is also possible to provide construc-

tors with default argument values. These default arguments must be specified with the constructor

declarations in the class interface, like so:

class Person

{

public:

Person(std::string const &name,

std::string const &address = "--unknown--",



size_t mass = 0);

};

Often, constructors use highly similar implementions. This results from the fact that the construc-

tor’s parameters are often defined for convenience: a constructor not requiring a phone number but

requiring a mass cannot be defined using default arguments, since phone is not the constructor’s last

parameter. Consequently a special constructor is required not having phone in its parameter list. How-

ever, this doesn’t necessarily mean that constructors must duplicate their code, as constructors may call

each other (called constructor delegation). Constructor delegation is illustrated in section 7.4.1 below.

7.1.2.1 The order of construction

The possibility to pass arguments to constructors allows us to monitor the construction order of objects

during program execution. This is illustrated by the next program using a class Test. The program

defines a global Test object and two local Test objects. The order of construction is as expected: first

global, then main’s first local object, then func’s local object, and then, finally, main’s second local

object:

#include <iostream>

#include <string>

using namespace std;

class Test

{

public:

Test(string const &name); // constructor with an argument

};

Test::Test(string const &name)

{

cout << "Test object " << name << " created" << '\n';

}

Test globaltest("global");

void func()

{

Test functest("func");

}

int main()

{

Test first{ "main first" };

func();

Test second{ "main second" };

}

/*
Generated output:

Test object global created

Test object main first created

Test object func created

Test object main second created

*/



7.2 Ambiguity resolution

Calling constructors using parentheses may result in unexpected surprises. Assume the following class

interface is available:

class Data

{

public:

Data();

Data(int one);

Data(int one, int two);

void display();

};

The intention is to define two objects of the class Data, using, respectively, the first and second con-

structors, while using parentheses in the object definitions. Your code looks like this (and compiles

correctly):

#include "data.h"

int main()

{

Data d1();

Data d2(argc);

}

Now it’s time to make some good use of the Data objects. Let’s add two statements to main:

d1.display();

d2.display();

But, surprise, the compiler complains about the first of these two:

error: request for member ’display’ in ’d1’, which is of non-class type ’Data()’

What’s going on here? First of all, notice the data type the compiler refers to: Data(), rather than

Data. What are those () doing there?

Before answering that question, let’s broaden our story somewhat. We know that somewhere in a

library a factory function dataFactory exists. A factory function creates and returns an object of

a certain type. This dataFactory function returns a Data object, constructed using Data’s default

constructor. Hence, dataFactory needs no arguments. We want to use dataFactory in our program,

but must declare the function. So we add the declaration to main, as that’s the only location where

dataFactory will be used. It’s a function, not requiring arguments, returning a Data object:

Data dataFactory();

This, however, looks remarkably similar to our d1 object definition:

Data d1();

We found the source of our problem: Data d1() apparently is not the definition of a d1 object, but the

declaration of a function, returning a Data object. So, what’s happening here and how should we define

a Data object using Data’s default constructor?

First: what’s happening here is that the compiler, when confronted with Data d1(), actually had a

choice. It could either define a Data object, or declare a function. It declares a function.



language’s standard, by always letting a declaration prevail over a definition. We’ll encounter more

situations where this ambiguity occurs later on in this section.

Second: there are several ways we can solve this ambiguity the way we want it to be solved. To define

an object using its default constructor:

• merely mention it (like int x): Data d1;

• use the curly-brace initialization: Data d1{};

• use the assignment operator and an anonymous default constructed Data object: Data d1 =

Data{}, or possibly Data d1 = Data().

7.2.1 Types ‘Data’ vs. ‘Data()’

Data() in the above context defines a default constructed anonymous Data object. This takes us back

to the compiler error. According to the compiler, our original d1 apparently was not of type Data, but

of type Data(). So what’s that?

Let’s first have a look at our second constructor. It expects an int. We would like to define another

Data object, using the second constructor, but want to pass the default int value to the constructor,

using int(). We know this defines a default int value, as cout << int() << ’\n’ nicely displays

0, and int x = int() also initialized x to 0. So we define ‘Data di(int())’ in main.

Not good: again the compiler complains when we try to use di. After ‘di.display()’ the compiler

tells us:

error: request for member ’display’ in ’di’, which is of non-class type ’Data(int (∗)())’

Oops, again not as expected.... Didn’t we pass 0? Why the sudden pointer? It’s that same ‘use a dec-

laration when possible’ strategy again. The notation Type() not only represents the default value of

type Type, but it’s also a shorthand notation for an anonymous pointer to a function, not expecting ar-

guments, and returning a Type value, which you can verify by defining ‘int (∗ip)() = nullptr’,

and passing ip as argument to di: di(ip) compiles fine.

So why doesn’t the error occur when inserting int() or assigning int() to int x? In these latter

cases nothing is declared. Rather, ‘cout’ and ‘int x =’ require expressions determining values, which

is provided by int()’s ‘natural’ interpretation. But with ‘Data di(int())’ the compiler again has

a choice, and (by design) it chooses a declaration because the declaration takes priority. Now int()’s

interpretation as an anonymous pointer is available and therefore used.

Likewise, if int x has been defined, ‘Data b1(int(x))’ declares b1 as a function, expecting an

int (as int(x) represents a type), while ‘Data b2((int)x)’ defines b2 as a Data object, using the

constructor expecting a single int value.

Again, to use default entities, values or objects, prefer {} over (): Data di{ int{} } defines di of

type Data, calling the Data(int x) constructor and uses int’s default value 0.

7.2.2 Superfluous parentheses

Let’s play some more. At some point in our program we defined int b. Then, in a compound statement

we need to construct an anonymous Data object, initialized using b, followed by displaying b:

int b = 18;

{

Data(b);

cout << b;

}



error: cannot bind ‘std::ostream & << Data const &’

Here we didn’t insert int b but Data b. Had we omitted the compound statement, the compiler would

have complained about a doubly defined b entity, as Data(b) simply means Data b, a Data object

constructed by default. The compiler may omit superfluous parentheses when parsing a definition or

declaration.

Of course, the question now becomes how a temporary object Data, initialized with int b can be

defined. Remember that the compiler may remove superfluous parentheses. So, what we need to do is

to pass an int to the anonymous Data object, without using the int’s name.

• We can use a cast: Data(static_cast<int>(b));

• We can use a curly-brace initialization: Data{ b }.

Values and types make big differences. Consider the following definitions:

Data (*d4)(int); // 1

Data (*d5)(3); // 2

Definition 1 should cause no problems: it’s a pointer to a function, expecting an int, returning a Data

object. Hence, d4 is a pointer variable.

Definition 2 is slightly more complex. Yes, it’s a pointer. But it has nothing to do with a function. So

what’s that argument list containing 3 doing there? Well, it’s not an argument list. It’s an initialization

that looks like an argument list. Remember that variables can be initialized using the assignment

statement, by parentheses or by curly parentheses. So instead of ‘(3)’ we could have written ‘= 3’

or ‘{3}’. Let’s pick the first alternative, resulting in:

Data (*d5) = 3;

Now we get to ‘play compiler’ again. Removing some superfluous parentheses we get:

Data *d5 = 3;

It’s a pointer to a Data object, initialized to 3. This is semantically incorrect, but that’s only clear after

the syntactical analysis. If I had initially written

Data (*d5)(&d1); // 2

the fun resulting from contrasting int and 3 would most likely have been spoiled.

7.2.3 Existing types

Once a type name has been defined it also prevails over identifiers representing variables, if the com-

piler is given a choice. This, too, can result in interesting constructions.

Assume a function process expecting an int exists in a library. We want to use this function to process

some int data values. So in main process is declared and called:

int process(int Data);

process(argc);



superfluous parentheses, like so:

int process(int (Data));

process(argc);

Now we’re in trouble. The compiler now generates an error, caused by its rule to let declarations

prevail over definitions. Data now becomes the name of the class Data, and analogous to int (x)

the parameter int (Data) is parsed as int (∗)(Data): a pointer to a function, expecting a Data

object, returning an int.

Here is another example. When, instead of declaring

int process(int Data[10]);

we declare, e.g., to emphasize the fact that an array is passed to process:

int process(int (Data[10]));

the process function does not expect a pointer to int values, but a pointer to a function expecting a

pointer to Data elements, returning an int.

To summarize the findings in the ‘Ambiguity Resolution’ section:

• The compiler will try to remove superfluous parentheses;

• But if the parenthesized construction represents a type, it will try to use the type;

• More in general: when possible the compiler will interpret a syntactic construction as a declara-

tion, rather than as a definition (of an object or variable).

• Most problems that result from the compiler interpreting constructions as declarations are caused

by us using parentheses. As a rule of thumb: use curly braces, rather than parentheses when

constructing objects (or values).

7.3 Objects inside objects: composition

In the class Person objects are used as data members. This construction technique is called composi-

tion.

Composition is neither extraordinary nor C++ specific: in C a struct or union field is commonly used

in other compound types. In C++ it requires some special thought as their initialization sometimes is

subject to restrictions, as discussed in the next few sections.

7.3.1 Composition and (const) objects: (const) member initializers

Unless specified otherwise object data members of classes are initialized by their default constructors.

Using the default constructor might not always be the optimal way to intialize an object and it might

not even be possible: a class might simply not define a default constructor.

Earlier we’ve encountered the following constructor of the Person:

Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

{



d_address = address;

d_phone = phone;

d_mass = mass;

}

Think briefly about what is going on in this constructor. In the constructor’s body we encounter as-

signments to string objects. Since assignments are used in the constructor’s body their left-hand side

objects must exist. But when objects are coming into existence constructors must have been called. The

initialization of those objects is thereupon immediately undone by the body of Person’s constructor.

That is not only inefficient but sometimes downright impossible. Assume that the class interface men-

tions a string const data member: a data member whose value is not supposed to change at all (like

a birthday, which usually doesn’t change very much and is therefore a good candidate for a string

const data member). Constructing a birthday object and providing it with an initial value is OK, but

changing the initial value isn’t.

The body of a constructor allows assignments to data members. The initialization of data members

happens before that. C++ defines the member initializer syntax allowing us to specify the way data

members are initialized at construction time. Member initializers are specified as a list of constructor

specifications between a colon following a constructor’s parameter list and the opening curly brace of a

constructor’s body, as follows:

Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

:

d_name(name),

d_address(address),

d_phone(phone),

d_mass(mass)

{}

In this example the member initialization used parentheses surrounding the intialization expression.

Instead of parentheses curly braces may also be used. E.g., d_name could also be initialized this way:

d_name{ name },

Member initialization always occurs when objects are composed in classes: if no constructors are men-

tioned in the member initializer list the default constructors of the objects are called. Note that this

only holds true for objects. Data members of primitive data types are not initialized automatically.

Member initialization can, however, also be used for primitive data members, like int and double. The

above example shows the initialization of the data member d_mass from the parameter mass. When

member initializers are used the data member could even have the same name as the constructor’s

parameter (although this is deprecated) as there is no ambiguity and the first (left) identifier used

in a member initializer is always a data member that is initialized whereas the identifier between

parentheses is interpreted as the parameter.

The order in which class type data members are initialized is defined by the order in which those

members are defined in the composing class interface. If the order of the initialization in the constructor

differs from the order in the class interface, the compiler complains, and reorders the initialization so

as to match the order of the class interface.

Member initializers should be used as often as possible. As shown it may be required to use them (e.g.,

to initialize const data members, or to initialize objects of classes lacking default constructors) but not

using member initializers also results in inefficient code as the default constructor of a data member

is always automatically called unless an explicit member initializer is specified. Reassignment in the

constructor’s body following default construction is then clearly inefficient. Of course, sometimes it is

fine to use the default constructor, but in those cases the explicit member initializer can be omitted.



that assignment in favor of using a member initializer.

7.3.2 Composition and reference objects: reference member initializers

Apart from using member initializers to initialize composed objects (be they const objects or not), there

is another situation where member initializers must be used. Consider the following situation.

A program uses an object of the class Configfile, defined in main to access the information in a

configuration file. The configuration file contains parameters of the program which may be set by

changing the values in the configuration file, rather than by supplying command line arguments.

Assume another object used in main is an object of the class Process, doing ‘all the work’. What

possibilities do we have to tell the object of the class Process that an object of the class Configfile

exists?

• The objects could have been declared as global objects. This is a possibility, but not a very good

one, since all the advantages of local objects are lost.

• The Configfile object may be passed to the Process object at construction time. Bluntly pass-

ing an object (i.e., by value) might not be a very good idea, since the object must be copied into

the Configfile parameter, and then a data member of the Process class can be used to make

the Configfile object accessible throughout the Process class. This might involve yet another

object-copying task, as in the following situation:

Process::Process(Configfile conf) // a copy from the caller

{

d_conf = conf; // copying to d_conf member

}

• The copy-instructions can be avoided if pointers to the Configfile objects are used, as in:

Process::Process(Configfile *conf) // pointer to external object

{

d_conf = conf; // d_conf is a Configfile *
}

This construction as such is OK, but forces us to use the ‘->’ field selector operator, rather than the

‘.’ operator, which is (disputably) awkward. Conceptually one tends to think of the Configfile

object as an object, and not as a pointer to an object. In C this would probably have been the

preferred method, but in C++ we can do better.

• Rather than using value or pointer parameters, the Configfile parameter could be defined as a

reference parameter of Process’s constructor. Next, use a Config reference data member in the

class Process.

But a reference variable cannot be initialized using an assignment, and so the following is incorrect:

Process::Process(Configfile &conf)

{

d_conf = conf; // wrong: no assignment

}

The statement d_conf = conf fails, because it is not an initialization, but an assignment of one

Configfile object (i.e., conf), to another (d_conf). An assignment to a reference variable is actually

an assignment to the variable the reference variable refers to. But which variable does d_conf refer to?

To no variable at all, since we haven’t initialized d_conf. After all, the whole purpose of the statement

d_conf = conf was to initialize d_conf....



initialize d_conf:

Process::Process(Configfile &conf)

:

d_conf(conf) // initializing reference member

{}

The above syntax must be used in all cases where reference data members are used. E.g., if d_ir would

have been an int reference data member, a construction like

Process::Process(int &ir)

:

d_ir(ir)

{}

would have been required.

7.4 Data member initializers

Non-static data members of classes are usually initialized by the class’s constructors. Frequently (but

not always) the same initializations are used by different constructors, resulting in multiple points

where the initializations are performed, which in turn complicates class maintenance.

Consider a class defining several data members: a pointer to data, a data member storing the number

of data elements the pointer points at, a data member storing the sequence number of the object. The

class also offer a basic set of constructors, as shown in the following class interface:

class Container

{

Data *d_data;

size_t d_size;

size_t d_nr;

static size_t s_nObjects;

public:

Container();

Container(Container const &other);

Container(Data *data, size_t size);

Container(Container &&tmp);

};

The initial values of the data members are easy to describe, but somewhat hard to implement. Consider

the initial situation and assume the default constructor is used: all data members should be set to 0,

except for d_nr which must be given the value ++s_nObjects. Since these are non-default actions, we

can’t declare the default constructor using = default, but we must provide an actual implementation:

Container()

:

d_data(0),

d_size(0),

d_nr(++s_nObjects)

{}



type would have been a (move aware) class type, we would still have to provide implementations for all

of the above constructors.

C++, however, also supports data member initializers, simplifying the initialization of non-static data

members. Data member initializers allow us to assign initial values to data members. The compiler

must be able to compute these initial values from initialization expressions, but the initial values do

not have to be constant expressions. So ++s_nObjects can be an initial value.

Using data member initializers for the class Container we get:

class Container

{

Data *d_data = 0;

size_t d_size = 0;

size_t d_nr = ++s_nObjects;

static size_t s_nObjects;

public:

Container() = default;

Container(Container const &other);

Container(Data *data, size_t size);

Container(Container &&tmp);

};

Note that the data member initializations are recognized by the compiler, and are applied to its imple-

mentation of the default constructor. In fact, all constructors will apply the data member initializations,

unless explicitly initialized otherwise. E.g., the move-constructor may now be implemented like this:

Container(Container &&tmp)

:

d_data(tmp.d_data),

d_size(tmp.d_size)

{

tmp.d_data = 0;

}

Although d_nr’s intialization is left out of the implementation it is initialized due to the data member

initialization provided in the class’s interface.

An aggregate is an array or a class (usually a struct with no user-defined constructors, no private

or protected non-static data members, no base classes (cf. chapter 13), and no virtual functions (cf.

chapter 14)). E.g.,

struct POD // defining aggregate POD

{

int first = 5;

double second = 1.28;

std::string hello{ "hello" };

};

To initialize such aggregates braced initializer lists can be used. In fact, their use is preferred over

using the older form (using parentheses), as using braces avoids confusion with function declarations.

E.g.,

POD pod{ 4, 13.5, "hi there" };



stop at any data member, in which case the default (or explicitly defined initialization values) of the

remaining data members are used. E.g.,

POD pod{ 4 }; // uses second: 1.28, hello: "hello"

7.4.1 Delegating constructors

Often constructors are specializations of each other, allowing objects to be constructed specifying only

subsets of arguments for all of its data members, using default argument values for the remaining data

members.

Before the C++11 standard common practice was to define a member like init performing all initial-

izations common to constructors. Such an init function, however, cannot be used to initialize const

or reference data members, nor can it be used to perform so-called base class initializations (cf. chapter

13).

Here is an example where such an init function might have been used. A class Stat is designed as a

wrapper class around C’s stat(2) function. The class might define three constructors: one expecting no

arguments and initializing all data members to appropriate values; a second one doing the same, but

it calls stat for the filename provided to the constructor; and a third one expecting a filename and a

search path for the provided file name. Instead of repeating the initialization code in each constructor,

the common code can be factorized into a member init which is called by the constructors.

C++ offers an alternative by allowing constructors to call each other. This is called delegating construc-

tors which is illustrated by the next example:

class Stat

{

public:

Stat()

:

Stat("", "") // no filename/searchpath

{}

Stat(std::string const &fileName)

:

Stat(fileName, "") // only a filename

{}

Stat(std::string const &fileName, std::string const &searchPath)

:

d_filename(fileName),

d_searchPath(searchPath)

{

// remaining actions to be performed by the constructor

}

};

C++ allows static const integral data members to be initialized within the class interfaces (cf. chapter

8). The C++11 standard adds to this the facility to define default initializations for plain data members

in class interfaces (these data members may or may not be const or of integral types, but (of course)

they cannot be reference data members).

These default initializations may be overruled by constructors. E.g., if the class Stat uses a data

member bool d_hasPath which is false by default but the third constructor (see above) should

initialize it to true then the following approach is possible:

class Stat

{



public:

Stat(std::string const &fileName, std::string const &searchPath)

:

d_hasPath(true) // overrule the interface-specified

{} // value

};

Here d_hasPath receives its value only once: it’s always initialized to false except when the shown

constructor is used in which case it is initialized to true.

7.5 Uniform initialization

When defining variables and objects they may immediately be given initial values. Class type objects

are always initialized using one of their available constructors. C already supports the array and struct

initializer list consisting of a list of constant expressions surrounded by a pair of curly braces.

C++ supports a comparable initialization, called uniform initialization. It uses the following syntax:

Type object{ value list };

When defining objects using a list of objects each individual object may use its own uniform initializa-

tion.

The advantage of uniform initialization over using constructors is that using constructor arguments

may sometimes result in an ambiguity as constructing an object may sometimes be confused with

using the object’s overloaded function call operator (cf. section 11.10). As initializer lists can only be

used with plain old data (POD) types (cf. section 9.10) and with classes that are ‘initializer list aware’

(like std::vector) the ambiguity does not arise when initializer lists are used.

Uniform initialization can be used to initialize an object or variable, but also to initialize data members

in a constructor or implicitly in the return statement of functions. Examples:

class Person

{

// data members

public:

Person(std::string const &name, size_t mass)

:

d_name {name},

d_mass {mass}

{}

Person copy() const

{

return {d_name, d_mass};

}

};

Object definitions may be encountered in unexpected places, easily resulting in (human) confusion.

Consider a function ‘func’ and a very simple class Fun (struct is used, as data hiding is not an issue

here; in-class implementations are used for brevity):

void func();



{

Fun(void (*f)())

{

std::cout << "Constructor\n";

};

void process()

{

std::cout << "process\n";

}

};

Assume that in main a Fun object is defined as follows:

Fun fun(func);

Running this program displays Constructor, confirming that the object fun is constructed.

Next we change this line of code, intending to call process from an anonymous Fun object:

Fun(func).process();

As expected, Constructor appears, followed by the text process.

What about just defining an anonymous Fun object? We do:

Fun(func);

Now we’re in for a surprise. The compiler complains that Fun’s default constructor is missing. Why’s

that? Insert some blanks immediately after Fun and you get Fun (func). Parentheses around an

identifier are OK, and are stripped off once the parenthesized expression has been parsed. In this

case: (func) equals func, and so we have Fun func: the definition of a Fun func object, using Fun’s

default constructor (which isn’t provided).

So why does Fun(func).process() compile? In this case we have a member selector operator, whose

left-hand operand must be an class-type object. The object must exist, and Fun(func) represents that

object. It’s not the name of an existing object, but a constructor expecting a function like func exists.

The compiler now creates an anonymous Fun, passing it func as its argument.

Clearly, in this example, parentheses cannot be used to create an anonymous Fun object. However, the

uniform initialization can be used. To define the anonymous Fun object use this syntax:

Fun{ func };

(which can also be used to immediately call one of its members. E.g., Fun{func}.process()).

Although the uniform intialization syntax is slightly different from the syntax of an initializer list (the

latter using the assignment operator) the compiler nevertheless uses the initializer list if a constructor

supporting an initializer list is available. As an example consider:

class Vector

{

public:

Vector(size_t size);

Vector(std::initializer_list<int> const &values);

};

Vector vi = {4};



expecting a size_t argument. If the latter constructor is required the definition using the standard

constructor syntax must be used. I.e., Vector vi(4).

Initializer lists are themselves objects that may be constructed using another initializer list. However,

values stored in an initializer list are immutable. Once the initializer list has been defined their values

remain as-is.

Before using initializer lists the initializer_list header file must be included.

Initializer lists support a basic set of member functions and constructors:

• initializer_list<Type> object:

defines object as an empty initializer list

• initializer_list<Type> object { list of Type values }:

defines object as an initializer list containing Type values

• initializer_list<Type> object(other):

initializes object using the values stored in other

• size_t size() const:

returns the number of elements in the initializer list

• Type const ∗begin() const:

returns a pointer to the first element of the initializer list

• Type const ∗end() const:

returns a pointer just beyond the location of the last element of the initializer list

7.6 Defaulted and deleted class members

In everyday class design two situations are frequently encountered:

• A class offering constructors explicitly has to define a default constructor;

• A class (e.g., a class implementing a stream) cannot initialize objects by copying the values from

an existing object of that class (called copy construction) and cannot assign objects to each other.

Once a class defines at least one constructor its default constructor is not automatically defined by the

compiler. C++ relaxes that restriction somewhat by offering the ‘= default’ syntax. A class specify-

ing ‘= default’ with its default constructor declaration indicates that the trivial default constructor

should be provided by the compiler. A trivial default constructor performs the following actions:

• Its data members of built-in or primitive types are not initialized;

• Its composed (class type) data members are initialized by their default constructors.

• If the class is derived from a base class (cf. chapter 13) the base class is initialized by its default

constructor.

Trivial implementations can also be provided for the copy constructor, the overloaded assignment oper-

ator, and the destructor. Those members are introduced in chapter 9.

Conversely, situations exist where some (otherwise automatically provided) members should not be

made available. This is realized by specifying ‘= delete’. Using = default and = delete is il-

lustrated by the following example. The default constructor receives its trivial implementation, copy-

construction is prevented:

class Strings



public:

Strings() = default;

Strings(std::string const *sp, size_t size);

Strings(Strings const &other) = delete;

};

7.7 Const member functions and const objects

The keyword const is often used behind the parameter list of member functions. This keyword indi-

cates that a member function does not alter the data members of its object. Such member functions are

called const member functions. In the class Person, we see that the accessor functions were declared

const:

class Person

{

public:

std::string const &name() const;

std::string const &address() const;

std::string const &phone() const;

size_t mass() const;

};

The rule of thumb given in section 3.1.1 applies here too: whichever appears to the left of the keyword

const, is not altered. With member functions this should be interpreted as ‘doesn’t alter its own data’.

When implementing a const member function the const attribute must be repeated:

string const &Person::name() const

{

return d_name;

}

The compiler prevents the data members of a class from being modified by one of its const member

functions. Therefore a statement like

d_name[0] = toupper(static_cast<unsigned char>(d_name[0]));

results in a compiler error when added to the above function’s definition.

Const member functions are used to prevent inadvertent data modification. Except for constructors

and the destructor (cf. chapter 9) only const member functions can be used with (plain, references or

pointers to) const objects.

Const objects are frequently encountered as const & parameters of functions. Inside such functions

only the object’s const members may be used. Here is an example:

void displayMass(ostream &out, Person const &person)

{

out << person.name() << " weighs " << person.mass() << " kg.\n";

}

Since person is defined as a Person const & the function displayMass cannot call, e.g.,

person.setMass(75).



overloaded by their const attribute the compiler uses the member function matching most closely the

const-qualification of the object:

• When the object is a const object, only const member functions can be used.

• When the object is not a const object, non-constmember functions are used, unless only a const

member function is available. In that case, the const member function is used.

The next example illustrates how (non) const member functions are selected:

#include <iostream>

using namespace std;

class Members

{

public:

Members();

void member();

void member() const;

};

Members::Members()

{}

void Members::member()

{

cout << "non const member\n";

}

void Members::member() const

{

cout << "const member\n";

}

int main()

{

Members const constObject;

Members nonConstObject;

constObject.member();

nonConstObject.member();

}

/*
Generated output:

const member

non const member

*/

As a general principle of design: member functions should always be given the const attribute, unless

they actually modify the object’s data.

7.7.1 Anonymous objects

Sometimes objects are used because they offer a certain functionality. The objects only exist because of

their functionality, and nothing in the objects themselves is ever changed. The following class Print

offers a facility to print a string, using a configurable prefix and suffix. A partial class interface could

be:



{

public:

Print(ostream &out);

void print(std::string const &prefix, std::string const &text,

std::string const &suffix) const;

};

An interface like this would allow us to do things like:

Print print{ cout };

for (int idx = 0; idx != argc; ++idx)

print.print("arg: ", argv[idx], "\n");

This works fine, but it could greatly be improved if we could pass print’s invariant arguments to

Print’s constructor. This would simplify print’s prototype (only one argument would need to be

passed rather than three) and we could wrap the above code in a function expecting a Print object:

void allArgs(Print const &print, int argc, char **argv)

{

for (int idx = 0; idx != argc; ++idx)

print.print(argv[idx]);

}

The above is a fairly generic piece of code, at least it is with respect to Print. Since prefix and

suffix don’t change they can be passed to the constructor which could be given the prototype:

Print(ostream &out, string const &prefix = "", string const &suffix = "");

Now allArgs may be used as follows:

Print p1{ cout, "arg: ", "\n" }; // prints to cout

Print p2{ cerr, "err: --", "--\n" };// prints to cerr

allArgs(p1, argc, argv); // prints to cout

allArgs(p2, argc, argv); // prints to cerr

But now we note that p1 and p2 are only used inside the allArgs function. Furthermore, as we can

see from print’s prototype, print doesn’t modify the internal data of the Print object it is using.

In such situations it is actually not necessary to define objects before they are used. Instead anonymous

objects may be used. Anonymous objects can be used:

• to initialize a function parameter which is a const reference to an object;

• if the object is only used inside the function call.

When passing anonymous objects as arguments of const & parameters of functions they are consid-

ered constant as they merely exist for passing the information of (class type) objects to those functions.

This way, they cannot be modified, nor may their non-const member functions be used. Of course, a

const_cast could be used to cast away the const reference’s constness, but that’s considered bad prac-

tice on behalf of the function receiving the anonymous objects. Also, any modification to the anonymous

object is lost once the function returns as the anonymous object ceases to exist after calling the func-

tion. These anonymous objects used to initialize const references should not be confused with passing

anonymous objects to parameters defined as rvalue references (section 3.3.2) which have a completely

different purpose in life. Rvalue references primarily exist to be ‘swallowed’ by functions receiving



which are also anonymous.

Anonymous objects are defined when a constructor is used without providing a name for the constructed

object. Here is the corresponding example:

allArgs(Print{ cout, "arg: ", "\n" }, argc, argv); // prints to cout

allArgs(Print{ cerr, "err: --", "--\n" }, argc, argv);// prints to cerr

In this situation the Print objects are constructed and immediately passed as first arguments to the

allArgs functions, where they are accessible as the function’s print parameter. While the allArgs

function is executing they can be used, but once the function has completed, the anonymous Print

objects are no longer accessible.

7.7.1.1 Subtleties with anonymous objects

Anonymous objects can be used to initialize function parameters that are const references to objects.

These objects are created just before such a function is called, and are destroyed once the function has

terminated. C++’s grammar allows us to use anonymous objects in other situations as well. Consider

the following snippet of code:

int main()

{

// initial statements

Print{ "hello", "world" }; // assume a matching constructor

// is available

// later statements

}

In this example an anonymous Print object is constructed, and it is immediately destroyed thereafter.

So, following the ‘initial statements’ our Print object is constructed. Then it is destroyed again followed

by the execution of the ‘later statements’.

The example illustrates that the standard lifetime rules do not apply to anonymous objects. Their

lifetimes are limited to the statements, rather than to the end of the block in which they are defined.

Plain anonymous object are at least useful in one situation. Assume we want to put markers in our code

producing some output when the program’s execution reaches a certain point. An object’s constructor

could be implemented so as to provide that marker-functionality allowing us to put markers in our code

by defining anonymous, rather than named objects.

C++’s grammar contains another remarkable characteristic illustrated by the next example:

int main(int argc, char **argv)

{

// assume a matching constructor is available:

Print p{ cout, "", "" }; // 1

allArgs(Print{ p }, argc, argv); // 2

}

In this example a non-anonymous object p is constructed in statement 1, which is then used in state-

ment 2 to initialize an anonymous object. The anonymous object, in turn, is then used to initialize

allArgs’s const reference parameter. This use of an existing object to initialize another object is com-

mon practice, and is based on the existence of a so-called copy constructor. A copy constructor creates

an object (as it is a constructor) using an existing object’s characteristics to initialize the data of the

object that’s created. Copy constructors are discussed in depth in chapter 9, but presently only the

concept of a copy constructor is used.



object was then used to initialize a parameter of a function. However, when we try to apply the same

trick (i.e., using an existing object to initialize an anonymous object) to a plain statement, the compiler

generates an error: the object p can’t be redefined (in statement 3, below):

int main(int argc, char *argv[])

{

Print p{ "", "" }; // 1

allArgs(Print(p), argc, argv); // 2

Print(p); // 3 error!

}

Does this mean that using an existing object to initialize an anonymous object that is used as function

argument is OK, while an existing object can’t be used to initialize an anonymous object in a plain

statement?

The compiler actually provides us with the answer to this apparent contradiction. About statement 3

the compiler reports something like:

error: redeclaration of 'Print p'

which solves the problem when realizing that within a compound statement objects and variables may

be defined. Inside a compound statement, a type name followed by a variable name is the gram-

matical form of a variable definition. Parentheses can be used to break priorities, but if there are no

priorities to break, they have no effect, and are simply ignored by the compiler. In statement 3 the

parentheses allowed us to get rid of the blank that’s required between a type name and the variable

name, but to the compiler we wrote

Print (p);

which is, since the parentheses are superfluous, equal to

Print p;

thus producing p’s redeclaration.

As a further example: when we define a variable using a built-in type (e.g., double) using superfluous

parentheses the compiler quietly removes these parentheses for us:

double ((((a)))); // weird, but OK.

To summarize our findings about anonymous variables:

• Anonymous objects are great for initializing const reference parameters.

• The same syntax, however, can also be used in stand-alone statements, in which they are inter-

preted as variable definitions if our intention actually was to initialize an anonymous object using

an existing object.

• Since this may cause confusion, it’s probably best to restrict the use of anonymous objects to the

first (and main) form: initializing function parameters.

7.8 The keyword ‘inline’

Let us take another look at the implementation of the function Person::name():

std::string const &Person::name() const



return d_name;

}

This function is used to retrieve the name field of an object of the class Person. Example:

void showName(Person const &person)

{

cout << person.name();

}

To insert person’s name the following actions are performed:

• The function Person::name() is called.

• This function returns person’s d_name as a reference.

• The referenced name is inserted into cout.

Especially the first part of these actions causes some time loss, since an extra function call is necessary

to retrieve the value of the name field. Sometimes a faster procedure immediately making the d_name

data member available is preferred without ever actually calling a function name. This can be realized

using inline functions. An inline function is a request to the compiler to insert the function’s code

at the location of the function’s call. This may speed up execution by avoiding a function call, which

typically comes with some (stack handling and parameter passing) overhead. Note that inline is a

request to the compiler: the compiler may decide to ignore it, and will probably ignore it when the

function’s body contains much code. Good programming discipline suggests to be aware of this, and to

avoid inline unless the function’s body is fairly small. More on this in section 7.8.2.

7.8.1 Defining members inline

Inline functions may be implemented in the class interface itself. For the class Person this results in

the following implementation of name:

class Person

{

public:

std::string const &name() const

{

return d_name;

}

};

Note that the inline code of the function name now literally occurs inline in the interface of the class

Person. The keyword const is again added to the function’s header.

Although members can be defined in-class (i.e., inside the class interface itself), it is considered bad

practice for the following reasons:

• Defining members inside the interface contaminates the interface with implementations. The in-

terface’s purpose is to document what functionality the class offers. Mixing member declarations

and implementation details complicates understanding the interface. Readers need to skip im-

plementation details which takes time and makes it hard to grab the ‘broad picture’, and thus to

understand at a glance what functionality the class’s objects are offering.

• In-class implementations of private member functions may usually be avoided altogether (as they

are private members). They should be moved to the internal header file (unless inline public

members use such inline private members).



where such inline members migrate from an inline to a non-inline definition. In-class inline

definitions still need editing (sometimes considerable editing) before they can be compiled. This

additional editing is undesirable.

Because of the above considerations inline members should not be defined in-class. Rather, they should

be defined following the class interface. The Person::name member is therefore preferably defined as

follows:

class Person

{

public:

std::string const &name() const;

};

inline std::string const &Person::name() const

{

return d_name;

}

If it is ever necessary to cancel Person::name’s inline implementation, then this becomes its non-

inline implementation:

#include "person.ih"

std::string const &Person::name() const

{

return d_name;

}

Only the inline keyword needs to be removed to obtain the correct non-inline implementation.

Defining members inline has the following effect: whenever an inline-defined function is called, the

compiler may insert the function’s body at the location of the function call. It may be that the function

itself is never actually called.

This construction, where the function code itself is inserted rather than a call to the function, is called

an inline function. Note that using inline functions may result in multiple occurrences of the code of

those functions in a program: one copy for each invocation of the inline function. This is probably OK if

the function is a small one, and needs to be executed fast. It’s not so desirable if the code of the function

is extensive. The compiler knows this too, and handles the use of inline functions as a request rather

than a command. If the compiler considers the function too long, it will not grant the request. Instead

it will treat the function as a normal function.

7.8.2 When to use inline functions

When should inline functions be used, and when not? There are some rules of thumb which may be

followed:

• In general inline functions should not be used. Voilà; that’s simple, isn’t it?

• Consider defining a function inline once a fully developed and tested program runs too slowly

and shows ‘bottlenecks’ in certain functions, and the bottleneck is removed by defining inline

members. A profiler, which runs a program and determines where most of the time is spent, is

necessary to perform such optimizations.

• Defining inline functions may be considered when they consist of one very simple statement (such

as the return statement in the function Person::name).



is used. As a consequence, when the implementation of the inline function changes, all sources

using the inline function must be recompiled. In practice that means that all functions must

be recompiled that include (either directly or indirectly) the header file of the class in which the

inline function is defined. Not a very attractive prospect.

• It is only useful to implement an inline function when the time spent during a function call is long

compared to the time spent by the function’s body. An example of an inline function which hardly

affects the program’s speed is:

inline void Person::printname() const

{

cout << d_name << '\n';

}

This function contains only one statement. However, the statement takes a relatively long time to

execute. In general, functions which perform input and output take lots of time. The effect of the

conversion of this function printname() to inline would therefore lead to an insignificant gain

in execution time.

All inline functions have one disadvantage: the actual code is inserted by the compiler and must there-

fore be known at compile-time. Therefore, as mentioned earlier, an inline function can never be located

in a run-time library. Practically this means that an inline function is found near the interface of a

class, usually in the same header file. The result is a header file which not only shows the declaration

of a class, but also part of its implementation, thus always blurring the distinction between interface

and implementation.

7.8.2.1 A prelude: when NOT to use inline functions

As a prelude to chapter 14 (Polymorphism), there is one situation in which inline functions should

definitely be avoided. At this point in the C++ Annotations it’s a bit too early to expose the full details,

but since the keyword inline is the topic of this section this is considered the appropriate location for

the advice.

There are situations where the compiler is confronted with so-called vague linkage

(cf. http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Vague-Linkage.html). These situa-

tions occur when the compiler does not have a clear indication in what object file to put its compiled

code. This happens, e.g., with inline functions, which are usually encountered in multiple source files.

Since the compiler may insert the code of ordinary inline functions in places where these functions are

called, vague linking is usually no problem with these ordinary functions.

However, as explained in chapter 14, when using polymorphism the compiler must ignore the inline

keyword and define so-called virtual members as true (out-of-line) functions. In this situation the vague

linkage may cause problems, as the compiler must decide in what object s to put their code. Usually

that’s not a big problem as long as the function is at least called once. But virtual functions are special

in the sense that they may very well never be explicitly called. On some architectures (e.g., armel)

the compiler may fail to compile such inline virtual functions. This may result in missing symbols in

programs using them. To make matters slightly more complex: the problem may emerge when shared

libraries are used, but not when static libraries are used.

To avoid all of these problems virtual functions should never be defined inline, but they should always

be defined out-of-line. I.e., they should be defined in source files.

7.8.3 Inline variables

In addition to inline functions, inline variables can be defined (and identically initialized) in multiple

translation units. E.g., a header file could contain



class Demo

{

// static int s_value = 15; // ERROR

static int constexpr s_value = 15; // OK

static int s_inline; // OK: see below: the inline

// definition follows the

// class declaration

};

inline int Demo::s_inline = 20; // OK

7.9 Local classes: classes inside functions

Classes are usually defined at the global or namespace level. However, it is entirely possible to define

a local class, i.e., inside a function. Such classes are called local classes.

Local classes can be very useful in advanced applications involving inheritance or templates (cf. section

13.8). At this point in the C++ Annotations they have limited use, although their main features can be

described. At the end of this section an example is provided.

• Local classes may use almost all characteristics of normal classes. They may have constructors,

destructors, data members, and member functions;

• Local classes cannot define static data members. Static member functions, however, can be de-

fined.

• Since a local class may define static member functions, it is possible to define nested functions in

C++ somewhat comparable to the way programming languages like Pascal allow nested functions

to be defined.

• If a local class needs access to a constant integral value, a local enum can be used. The enum may

be anonymous, exposing only the enum values.

• Local classes cannot directly access the non-static variables of their surrounding context. For

example, in the example shown below the class Local cannot directly access main’s argc param-

eter.

• Local classes may directly access global data and static variables defined by their surrounding

function. This includes variables defined in the anonymous namespace of the source file contain-

ing the local class.

• Local class objects can be defined inside the function body, but they cannot leave the function as

objects of their own type. I.e., a local class name cannot be used for either the return type or for

the parameter types of its surrounding function.

• As a prelude to inheritance (chapter 13): a local class may be derived from an existing class allow-

ing the surrounding function to return a dynamically allocated locally constructed class object,

pointer or reference via a base class pointer or reference.

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char **argv)

{

static size_t staticValue = 0;



class Local

{

int d_argc; // non-static data members OK

public:

enum // enums OK

{

VALUE = 5

};

Local(int argc) // constructors and member functions OK

: // in-class implementation required

d_argc(argc)

{

// global data: accessible

cout << "Local constructor\n";

// static function variables: accessible

staticValue += 5;

}

static void hello() // static member functions: OK

{

cout << "hello world\n";

}

};

Local::hello(); // call Local static member

Local loc{ argc }; // define object of a local class.

}

7.10 The keyword ‘mutable’

Earlier, in section 7.7, the concepts of const member functions and const objects were introduced.

C++ also allows the declaration of data members which may be modified, even by const member func-

tion. Declarations of such data members start with the keyword mutable.

Mutable should be used for those data members that may be modified without logically changing the

object, which might therefore still be considered a constant object.

An example of a situation where mutable is appropriately used is found in the implementation of a

string class. Consider the std::string’s c_str and data members. The actual data returned by the

two members are identical, but c_str must ensure that the returned string is terminated by an 0-byte.

As a string object has both a length and a capacity an easy way to implement c_str is to ensure that

the string’s capacity exceeds its length by at least one character. This invariant allows c_str to be

implemented as follows:

char const *string::c_str() const

{

d_data[d_length] = 0;

return d_data;

}

This implementation logically does not modify the object’s data as the bytes beyond the object’s initial

(length) characters have undefined values. But in order to use this implementation d_data must be

declared mutable:

mutable char *d_data;



implementing reference counting for strings. The object doing the reference counting might be a const

object, but the class may define a copy constructor. Since const objects can’t be modified, how would the

copy constructor be able to increment the reference count? Here the mutable keyword may profitably

be used, as it can be incremented and decremented, even though its object is a const object.

The keyword mutable should sparingly be used. Data modified by const member functions should

never logically modify the object, and it should be easy to demonstrate this. As a rule of thumb: do not

use mutable unless there is a very clear reason (the object is logically not altered) for violating this

rule.

7.11 Header file organization

In section 2.5.10 the requirements for header files when a C++ program also uses C functions were

discussed. Header files containing class interfaces have additional requirements.

First, source files. With the exception of the occasional classless function, source files contain the code

of member functions of classes. Basically, there are two approaches:

• All required header files for a member function are included in each individual source file.

• All required header files (for all member functions of a class) are included in a header file that is

included by each of the source files defining class members.

The first alternative has the advantage of economy for the compiler: it only needs to read the header

files that are necessary for a particular source file. It has the disadvantage that the program devel-

oper must include multiple header files again and again in source files: it both takes time to type the

include-directives and to think about the header files which are needed in a particular source file.

The second alternative has the advantage of economy for the program developer: the header file of

the class accumulates header files, so it tends to become more and more generally useful. It has the

disadvantage that the compiler frequently has to process many header files which aren’t actually used

by the function to compile.

With computers running faster and faster (and compilers getting smarter and smarter) I think the

second alternative is to be preferred over the first alternative. So, as a starting point source files of a

particular class MyClass could be organized according to the following example:

#include <myclass.h>

int MyClass::aMemberFunction()

{}

There is only one include-directive. Note that the directive refers to a header file in a directory men-

tioned in the INCLUDE-file environment variable. Local header files (using #include "myclass.h")

could be used too, but that tends to complicate the organization of the class header file itself somewhat.

The organization of the header file itself requires some attention. Consider the following example, in

which two classes File and String are used.

Assume the File class has a member gets(String &destination), while the class String has a

member function getLine(File &file). The (partial) header file for the class String is then:

#ifndef STRING_H_

#define STRING_H_

#include <project/file.h> // to know about a File



{

public:

void getLine(File &file);

};

#endif

Unfortunately a similar setup is required for the class File:

#ifndef FILE_H_

#define FILE_H_

#include <project/string.h> // to know about a String

class File

{

public:

void gets(String &string);

};

#endif

Now we have created a problem. The compiler, trying to compile the source file of the function

File::gets proceeds as follows:

• The header file project/file.h is opened to be read;

• FILE_H_ is defined

• The header file project/string.h is opened to be read

• STRING_H_ is defined

• The header file project/file.h is (again) opened to be read

• Apparently, FILE_H_ is already defined, so the remainder of project/file.h is skipped.

• The interface of the class String is now parsed.

• In the class interface a reference to a File object is encountered.

• As the class File hasn’t been parsed yet, a File is still an undefined type, and the compiler

quits with an error.

The solution to this problem is to use a forward class reference before the class interface, and to include

the corresponding class header file beyond the class interface. So we get:

#ifndef STRING_H_

#define STRING_H_

class File; // forward reference

class String

{

public:

void getLine(File &file);

};

#include <project/file.h> // to know about a File

#endif



#ifndef FILE_H_

#define FILE_H_

class String; // forward reference

class File

{

public:

void gets(String &string);

};

#include <project/string.h> // to know about a String

#endif

This works well in all situations where either references or pointers to other classes are involved and

with (non-inline) member functions having class-type return values or parameters.

This setup doesn’t work with composition, nor with in-class inline member functions. Assume the

class File has a composed data member of the class String. In that case, the class interface of the

class File must include the header file of the class String before the class interface itself, because

otherwise the compiler can’t tell how big a File object is. A File object contains a String member,

but the compiler can’t determine the size of that String data member and thus, by implication, it can’t

determine the size of a File object.

In cases where classes contain composed objects (or are derived from other classes, see chapter 13) the

header files of the classes of the composed objects must have been read before the class interface itself.

In such a case the class File might be defined as follows:

#ifndef FILE_H_

#define FILE_H_

#include <project/string.h> // to know about a String

class File

{

String d_line; // composition !

public:

void gets(String &string);

};

#endif

The class String can’t declare a File object as a composed member: such a situation would again

result in an undefined class while compiling the sources of these classes.

All remaining header files (appearing below the class interface itself) are required only because they

are used by the class’s source files.

This approach allows us to introduce yet another refinement:

• Header files defining a class interface should declare what can be declared before defining the

class interface itself. So, classes that are mentioned in a class interface should be specified using

forward declarations unless

– They are a base class of the current class (see chapter 13);

– They are the class types of composed data members;



In particular: additional actual header files are not required for:

– class-type return values of functions;

– class-type value parameters of functions.

Class header files of objects that are either composed or inherited or that are used in inline func-

tions, must be known to the compiler before the interface of the current class starts. The informa-

tion in the header file itself is protected by the #ifndef ... #endif construction introduced

in section 2.5.10.

• Program sources in which the class is used only need to include this header file. Lakos, (2001)

refines this process even further. See his book Large-Scale C++ Software Design for further

details. This header file should be made available in a well-known location, such as a directory or

subdirectory of the standard INCLUDE path.

• To implement member functions the class’s header file is required and usually additional header

files (like the string header file) as well. The class header file itself as well as these additional

header files should be included in a separate internal header file (for which the extension .ih

(‘internal header’) is suggested).

The .ih file should be defined in the same directory as the source files of the class. It has the

following characteristics:

– There is no need for a protective #ifndef .. #endif shield, as the header file is never

included by other header files.

– The standard .h header file defining the class interface is included.

– The header files of all classes used as forward references in the standard .h header file are

included.

– Finally, all other header files that are required in the source files of the class are included.

An example of such a header file organization is:

– First part, e.g., /usr/local/include/myheaders/file.h:

#ifndef FILE_H_

#define FILE_H_

#include <fstream> // for composed 'ifstream'

class Buffer; // forward reference

class File // class interface

{

std::ifstream d_instream;

public:

void gets(Buffer &buffer);

};

#endif

– Second part, e.g., ~/myproject/file/file.ih, where all sources of the class File are

stored:

#include <myheaders/file.h> // make the class File known

#include <buffer.h> // make Buffer known to File

#include <string> // used by members of the class

#include <sys/stat.h> // File.



When entities from namespaces are used in header files, no using directive should be specified in

those header files if they are to be used as general header files declaring classes or other entities from

a library. When the using directive is used in a header file then users of such a header file are forced

to accept and use the declarations in all code that includes the particular header file.

For example, if in a namespace special an object Inserter cout is declared, then special::cout

is of course a different object than std::cout. Now, if a class Flaw is constructed, in which the

constructor expects a reference to a special::Inserter, then the class should be constructed as

follows:

class special::Inserter;

class Flaw

{

public:

Flaw(special::Inserter &ins);

};

Now the person designing the class Flaw may be in a lazy mood, and might get bored by continuously

having to prefix special:: before every entity from that namespace. So, the following construction is

used:

using namespace special;

class Inserter;

class Flaw

{

public:

Flaw(Inserter &ins);

};

This works fine, up to the point where somebody wants to include flaw.h in other source files: because

of the using directive, this latter person is now by implication also using namespace special,

which could produce unwanted or unexpected effects:

#include <flaw.h>

#include <iostream>

using std::cout;

int main()

{

cout << "starting\n"; // won't compile

}

The compiler is confronted with two interpretations for cout: first, because of the using directive in

the flaw.h header file, it considers cout a special::Inserter, then, because of the using directive

in the user program, it considers cout a std::ostream. Consequently, the compiler reports an error.

As a rule of thumb, header files intended for general use should not contain using declarations. This

rule does not hold true for header files which are only included by the sources of a class: here the

programmer is free to apply as many using declarations as desired, as these directives never reach

other sources.



7.12 Modules

Since the introduction of header files in the C language header files have been the main tool for declar-

ing elements that are not defined but are used in source files. E.g., when using printf in main the

preprocessor directive #include <stdio.h> had to be specified.

This method still works in C++, but gradually proved to be inefficient. One reason being that header

files have to be processed again for every source file of a set of source files each including that header

file. The drawback of this approach quickly becomes apparent once classes are used, as the compiler will

repeatedly have to process the class’s header file for each source file using that class. Usually it’s not

just that one header file, but header files tend to include other header files, resulting in an avalanche

of header files that must be processed by the compiler again and again for every single source file that

the compiler must compile. If a typical source file includes h header files, and s source files must be

compiled, then that results in a significant compilation load, as the compiler must process s ∗ h header

files.

Precompiled headers offered an initial attempt to reduce this excessive workload. But precompiled

headers have problems of their own: they’re enormously big (a precompiled header file of less than 100

bytes can easily result in a precompiled header of 25 MB or more), and they’re kind of fragile: simply

recompiling a header if it’s younger than its precompiled form may quickly result in much overhead,

e.g., if merely some comment is added to the header.

Another common defense mechanism encountered in traditional headers is the use of include guards,

ensuring that a header file is processed once if it is included by multiple other header files. Such

include guards are macros, and were extensively discussed in section 7.11. Include guards work, but

completely depend on the uniqueness of the guard-identifier, which is usually a long name, written in

capitals using several underscores to increase the probability of their uniqueness.

By offering modules the C++2a standard provides solutions to the problems mentioned above. At the

time of this writing the Gnu g++ compiler doesn’t yet support modules, but the clang++ compiler (cf.

http://clang.llvm.org) does. The current section therefore heavily depends on clang’s documenta-

tion of modules provided in http://clang.llvm.org/docs/Modules.html and is subject to future

changes once the modules definition and implementation of the C++2a standard reaches its final stage.

In this section it is assumed that a fairly recent clang compiler is available.

7.12.1 An minimal demo example

In this section modules are introduced using a simple demo example. More extensive coverage of the

module-definition language is provided in subsequent sections.

To create a module from an existing header file the directory (or its parent directory) must contain a file

module.modulemap. It contains the specifications for creating a module from one or more available

header files.

Assume a directory module contains the following file header file:

• module.h:

struct Data

{

int data;

};

int fun();

int gun();



fact is irrelevant: it could actually be completely empty).

To create a module from this header file define the following minimal module.modulemap and

main.cc files:

1: module minimal

2: {

3: header "module/module.h"

4: }

main.cc:

#include "module/module.h"

int main()

{

}

Here the function main is defined, because that’s a requirement for creating a program, but any other

source including a header that’s mentioned in module.modulemap would also be OK. The above mini-

mal main function’s source file does exactly that: it includes module/module.h.

The file module.modulemap itself has a simple organization:

• Line 1 specifies that a module should be constructed, named ‘minimal’;

• Line 3 specifies that the header file module/module.h defines the module’s content.

• The module’s content specification follows the module’s header (line 1), and is surrounded by a

pair of curly brackets (lines 2 and 4).

To create the module the source file must be compiled using the following command:

clang++-7 -fmodules --std=c++2a -O2 -c main.cc

All options are required:

• -fmodules is required to inform the compiler that modules should be used;

• --std=c++2a is required because modules aren’t available before the C++2a standard;

• -O2 (or at least -O1) is required because using modules implies some form of optimization, and

without any optimization request the compiler won’t create the module;

• -c isn’t really required, but suffices to create the module.

Following this command main.o and the module are created. By default the module is created in a

system-defined cache location (but see also section 7.12.2). In my system this system-defined cache

location is /tmp/org.llvm.clang.frank/ModuleCache/, containing

• modules.timestamp

• the module information itself in the subdirectory 2TA26R6BHQ19F/. It contains:

– minimal-2ORZEBL9H54OZ.pcm (17,992 bytes)

– modules.idx (552 bytes).



recompiled. The module is rebuilt if one of its headers have changed.

Compare these sizes to the size of the precompiled header module.h.gch (created using clang++ -x

c++-header module.h). On my system the compiled header (module.h.gch) is a file of some 195

KB large.

Note that the file module.h doesn’t contain include guards. As modules handle the administration

of which header has already been included, it’s OK if module.h is included multiple times (e.g., add

another #include "module/module.h" line in main.cc) and recompile: compilation succeeds.

7.12.2 Compiler options

Clang offers several options for handling modules. The most important ones are:

• -fmodules enables the use of modules;

• -fmodules-cache-path=directory specifies the location where the modules are stored. When

modules are created they are by default stored (cached) in a system-selected default direc-

tory, e.g., a location in the /tmp directory. This might not be what you want (e.g., maybe the

/tmp directory is cleaned at boot-time) in which case a specific directory can be specified. (e.g.,

~/.cache/C++modules or /usr/local/C++modules-cache);

• -fmodules-prune-interval=seconds defines the minimum delay in seconds between at-

tempts to prune old, unused module files from the module-cache. The default interval is one

week (to turn off pruning use -fmodules-prune-interval=0). What an ‘old unused module

file’ is is defined by the next option;

• -fmodules-prune-after=seconds defines the minimum interval in seconds before it is re-

moved from the cache by a pruning action if that module has not been used during that interval.

The default interval is about a month (31 days);

• -module-file-info module-path writes information about the module module-path (which

is an absolute or relative path to an existing module). Modules have extension .pcm, and the

option writes a local file having the module-path’s base name.

7.12.3 The file ‘module.modulemap’

The module.modulemap file defines the organization of one or more modules. It relates header files

to defined module(s). The name module.modulemap is a predefined name, and module specifications

must use this name. Module.modulemap files may contain comment: standard C and/or end-of-line

comment.

A module specification defines a name and possibly options for a module. The elements of a module

specification are specified inside a curly-braced section (note that when using [xxx] the square brackets

are not optional).

The following description does not cover the full syntax of module.map, as some specifications

apply only to some operating systems. For the full description the reader is referred to the

http://clang.llvm.org/docs/Modules.html document.

The generic layout of a module.modulemap file starts with the module header, defining the

name of the module. This name is used as the first part of the compiled module file (e.g.,

minimal-2ORZEBL9H54OZ.pcm for a module called minimal). Different programs may use identi-

cal module names, as modules receives unique ‘last names’ (in the example: 2ORZEBL9H54OZ).

Inside a module definition headers commonly are included in module specifications of their own. So the

generic syntax looks like this (in the syntax specifications the following conventions are used: blank

lines separate syntax definitions; syntax elements followed by a ∗ may be omitted or may be used once



be used, without the quotes; ’ident’ must be replaced by a standard C++ identifier; double quoted

strings are NTBSs, (their meanings are provided inside the double quoted strings); syntax elements

preceded by opt_ (e.g., ’opt_[extern_c]’) are optional (such elements are either omitted or are

used without the opt_ prefix: ’opt_[extern_c]’ means: [extern_c])):

module-declarations:

module_declaration*

module_declaration:

header

'{'

module_member*
'}'

|

'extern' 'module' 'ident' " TO DO "

header:

'module' 'ident' 'opt_[extern_c]' // [extern_c]: the module holds

// C code that can be used from

// within C++

module_member:

cf_modules_html // refer to clang's Modules.html document

| // for these member declarations

export_declaration

|

header_declaration

|

link_declaration

|

module_declarations // nested declarations are commonly used

|

requires_declaration

|

umbrella_dir_declaration

cf_modules_html:

config_macros_declaration

|

conflict_declaration

|

export_as_declaration

|

submodule_declaration

|

use_declaration

export_declaration: // see below

'export' module_id

feature_list: // see below

feature_list ',' 'ident'

|

'ident'

header_declaration:



link_declaration: // add '-llibraryName' to the linker

'link' "libraryName" // when using the module

requires_declaration

'requires' 'opt_!' feature_list

umbrella_dir_declaration

'umbrella' "directory-specification" // e.g., ".", see below

In this overview,

• export_declaration specifies a module_idwhich is the name of the module that will be visible

from the defined modules. These names refer to headers (without the .h extension) that are made

visible from the current module. Usually everything is made available, for which export ∗ is

commonly used. Refer to the Modules.html document for additional info about using export.

• feature_list is used to specify languages or architectures for which the module is avail-

able. For C++ the relevant features are cplusplus, cplusplus11, cplusplus14, cplusplus17, tls.

A cplusplsus2a feature is not (yet?) available. The tls feature means: thread local storage

must be available.

Example: requires cplusplus.

• umbrella_dir_declaration is used to indicate that all headers in and below the specified

directory must be added to the module. Directory specification "." refers to all headers in and

below the current directory.

Usually when defining a a module its module.modulemap defines the module’s name, and then uses

the headers of its (sub)directories to define submodules for each directory, exporting all their symbols.

E.g., the program ssh-cron (cf. https://fbb-git.gitlab.io/ssh-cron/) defines eight classes,

each in its own subdirectory. To create the module ssh_cron the following module.modulemap can be

used:

module ssh_cron

{

module main {

header "main.ih"

export *
}

module cron {

header "cron/cron.ih"

export *
}

module crondata {

header "crondata/crondata.ih"

export *
}

module cronentry {

header "cronentry/cronentry.ih"

export *
}

module daemon {

header "daemon/daemon.ih"

export *



module ipcfunction {

header "ipcfunction/ipcfunction.ih"

export *
}

module options {

header "options/options.ih"

export *
}

module parser {

header "parser/parser.ih"

export *
}

module parserpre {

header "parser/parserpre.ih"

export *
}

module scanner {

header "scanner/scanner.ih"

export *
}

}

resulting in the module ssh_cron-2D64GM0XFP9U2.pcmwhich is about 11MB large.

7.12.4 Evaluation

As mentioned in the introductory section, modules reduce the compiler’s workload by performing h

+ s instead of h ∗ s header compilations when s sources each including h header files are compiled.

Furthermore, using modules no longer requires the use of include guards or other defensive measures

to avoid repeated inclusion of headers, which is particularly unwelcome in C++ as C++ header files

typically not only declare functions and variables, but also define class interfaces and templates (cf.

chapter 21 and beyond).

So what’s the gain? In this final section about modules we compare the compilation times of a relatively

large program (bisonc++, cf. http://fbb-git.gitlab.io/bisoncpp/), consisting of almost 30

classes.

Compilation is performed by clang++-7, using three variants:

• Plain compilation, using the compiler options

--std=c++2a -Wall -O2 -pthread

• Compilation using a module. The module bisoncpp was first created using the compiler options

-fmodules --std=c++2a -Wall -O2 -pthread

and merely compiling main.cc. The generated module was bisoncpp-2VBAIMWQCR12B.pcm,

whose size was 13 MB. Following the module’s construction the main.o file was removed and the

program was built using the above options (so including -fmodules).



compiled headers were created as part of the compilation process. The total size of all precompiled

headers was MB, which is fairly large, but as the precompiled headers are only used for the com-

pilation they can be removed once the program has been compiled.

Compilating bisonc++ using the plain source files (no module, no precompiled headers) required

slightly more than 7 minutes. The time(1) program reported:

442.894u 25.751s 7:57.73 98.0% 0+0k 6416+14560io 31pf+0w

It took Gnu’s g++ compiler a comparable amount of time to compile the sources:

467.053u 32.818s 8:20.39 99.8% 0+0k 1064+26264io 10pf+0w

This comparison is important, as we’ll see below.

Next, after first constructing the program’s module, and then timing the full program’s construction

time reported:

420.305u 23.804s 7:29.43 98.8% 0+0k 0+39672io 0pf+0w

A somewhat unexpected (and disappointing) result. There is a minimal gain in compilation time, but

it’s marginal. In fact at a second attempt a compilation time of 458 seconds was reported. Some

variation is to be expected, but the compilation times of both methods clearly don’t notably differ.

Finally using precompiled headers. For this test Gnu’s g++ compiler was used, as clang doesn’t au-

tomatically use available precompiled headers (cf. clang’s users manual1). At the start of the

compilation process the headers used by bisonc++’s almost 500 source files were first precompiled

(the time it took to precompile the headers is included in the time reported below). Now time reported:

138.040u 18.447s 2:38.57 98.6% 0+0k 32+2245104io 0pf+0w

The total size of the precompiled headers is definitely exceeding the size of the module

bisoncpp-2VBAIMWQCR12B.pcm: 1.1 GB. But then, the compilation time is reduced to about 1/3rd

of the other two compilation methods.

Considering the above results the added benefit of using modules isn’t immediately clear. Using mod-

ules doesn’t result in an observable gain in compilation time, and so the main advantage appears to

be that include guards are no longer required. Personally, I’ve never experienced problems with using

include guards. Using of long, capitalized preprocessor identifiers has never been a problem, and has

never resulted in colliding identifiers.

On the other hand, modules are a new element of C++ and the clang documentation explicitly states

that the compiler’s implementation and module definition language is subject to future changes. In

that respect, modules are definitely an interesting addition to C++ that is absolutely worth monitoring.

7.13 Sizeof applied to class data members

In C++ the well-known sizeof operator can be applied to data members of classes without the need to

specify an object as well. Consider:

class Data

{

1https://clang.llvm.org/docs/UsersManual.html#using-a-pch-file



...

};

To obtain the size of Data’s d_name member the following expression can be used:

sizeof(Data::d_name);

However, note that the compiler observes data protection here as well. Sizeof(Data::d_name) can

only be used where d_name may be visible as well, i.e., by Data’s member functions and friends.



Chapter 8

Static Data And Functions

In the previous chapters we provided examples of classes where each object had its own set of data

members data. Each of the class’s member functions could access any member of any object of its class.

In some situations it may be desirable to define common data fields, that may be accessed by all objects

of the class. For example, the name of the startup directory, used by a program that recursively scans

the directory tree of a disk. A second example is a variable that indicates whether some specific initial-

ization has occurred. In that case the object that was constructed first would perform the initialization

and would set the flag to ‘done’.

Such situations are also encountered in C, where several functions need to access the same variable.

A common solution in C is to define all these functions in one source file and to define the variable

static: the variable name is invisible outside the scope of the source file. This approach is quite valid,

but violates our philosophy of using only one function per source file. Another C-solution is to give the

variable in question an unusual name, e.g., _6uldv8, hoping that other program parts won’t use this

name by accident. Neither the first, nor the second legacy C solution is elegant.

C++ solves the problem by defining static members: data and functions, common to all objects of a

class and (when defined in the private section) inaccessible outside of the class. These static members

are this chapter’s topic.

Static members cannot be defined as virtual functions. A virtual member function is an ordinary

member in that it has a this pointer. As static member functions have no this pointer, they cannot

be declared virtual.

8.1 Static data

Any data member of a class can be declared static; be it in the public or private section of the

class interface. Such a data member is created and initialized only once, in contrast to non-static data

members which are created again and again for each object of the class.

Static data members are created as soon as the program starts. Even though they’re created at the

very beginning of a program’s execution cycle they are nevertheless true members of their classes.

It is suggested to prefix the names of static member with s_ so they may easily be distinguished (in

class member functions) from the class’s data members (which should preferably start with d_).

Public static data members are global variables. They may be accessed by all of the program’s code,

simply by using their class names, the scope resolution operator and their member names. Example:

class Test

{

static int s_private_int;
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public:

static int s_public_int;

};

int main()

{

Test::s_public_int = 145; // OK

Test::s_private_int = 12; // wrong, don't touch

// the private parts

}

The example does not present an executable program. It merely illustrates the interface, and not the

implementation of static data members, which is discussed next.

8.1.1 Private static data

To illustrate the use of a static data member which is a private variable in a class, consider the follow-

ing:

class Directory

{

static char s_path[];

public:

// constructors, destructors, etc.

};

The data member s_path[] is a private static data member. During the program’s execution only

one Directory::s_path[] exists, even though multiple objects of the class Directory may exist.

This data member could be inspected or altered by the constructor, destructor or by any other member

function of the class Directory.

Since constructors are called for each new object of a class, static data members are not initialized by

constructors. At most they are modified. The reason for this is that static data members exist before

any constructor of the class has been called. Static data members are initialized when they are defined,

outside of any member function, exactly like the initialization of ordinary (non-class) global variables.

The definition and initialization of a static data member usually occurs in one of the source files of

the class functions, preferably in a source file dedicated to the definition of static data members, called

data.cc.

The data member s_path[], used above, could thus be defined and initialized as follows in a file

data.cc:

#include "directory.ih"

char Directory::s_path[200] = "/usr/local";

In the class interface the static member is actually only declared. In its implementation (definition) its

type and class name are explicitly mentioned. Note also that the size specification can be left out of

the interface, as shown above. However, its size is (either explicitly or implicitly) required when it is

defined.

Note that any source file could contain the definition of the static data members of a class. A separate

data.cc source file is advised, but the source file containing, e.g., main() could be used as well. Of

course, any source file defining static data of a class must also include the header file of that class, in

order for the static data member to be known to the compiler.



defines the communication of a program with a graphics-capable device (e.g., a VGA screen). The

initialization of the device, which in this case would be to switch from text mode to graphics mode,

is an action of the constructor and depends on a static flag variable s_nobjects. The variable

s_nobjects simply counts the number of Graphics objects which are present at one time. Similarly,

the destructor of the class may switch back from graphics mode to text mode when the last Graphics

object ceases to exist. The class interface for this Graphics class might be:

class Graphics

{

static int s_nobjects; // counts # of objects

public:

Graphics();

~Graphics(); // other members not shown.

private:

void setgraphicsmode(); // switch to graphics mode

void settextmode(); // switch to text-mode

}

The purpose of the variable s_nobjects is to count the number of objects existing at a particular

moment in time. When the first object is created, the graphics device is initialized. At the destruction

of the last Graphics object, the switch from graphics mode to text mode is made:

int Graphics::s_nobjects = 0; // the static data member

Graphics::Graphics()

{

if (!s_nobjects++)

setgraphicsmode();

}

Graphics::~Graphics()

{

if (!--s_nobjects)

settextmode();

}

Obviously, when the class Graphics would define more than one constructor, each constructor would

need to increase the variable s_nobjects and would possibly have to initialize the graphics mode.

8.1.2 Public static data

Data members could also be declared in the public section of a class. This, however, is deprecated (as

it violates the principle of data hiding). The static data member s_path[] (cf. section 8.1) could be

declared in the public section of the class definition. This would allow all the program’s code to access

this variable directly:

int main()

{

getcwd(Directory::s_path, 199);

}

A declaration is not a definition. Consequently the variable s_path still has to be defined. This implies

that some source file still needs to contain s_path[] array’s definition.



Static const data members should be initialized like any other static data member: in source files

defining these data members.

Usually, if these data members are of integral or built-in primitive data types the compiler accepts

in-class initializations of such data members. However, there is no formal rule requiring the compiler

to do so. Compilations may or may not succeed depending on the optimizations used by the compiler

(e.g., using -O2 may result in a successful compilation, but -O0 (no-optimizations) may fail to compile,

but then maybe only when shared libraries are used...).

In-class initializations of integer constant values (e.g., of types char, int, long, etc, maybe

unsigned) is nevertheless possible using (e.g., anonymous) enums. The following example illustrates

how this can be done:

class X

{

public:

enum { s_x = 34 };

enum: size_t { s_maxWidth = 100 };

};

To avoid confusion caused by different compiler options static data members should always explicitly

be defined and initialized in a source file, whether or not const.

8.1.4 Generalized constant expressions (constexpr)

In C macros are often used to let the preprocessor perform simple calculations. These macro functions

may have arguments, as illustrated in the next example:

#define xabs(x) ((x) < 0 ? -(x) : (x))

The disadvantages of macros are well-known. The main reason for avoiding macros is that they are not

parsed by the compiler, but are processed by the preprocessor resulting in mere text replacements and

thus avoid type-safety or syntactic checks of the macro definition by itself. Furthermore, since macros

are processed by the preprocessor their use is unconditional, without acknowledging the context in

which they are applied. NULL is an infamous example. Ever tried to define an enum symbol NULL? or

EOF? Chances are that, if you did, the compiler threw strange error messages at you.

Generalized const expressions can be used as an alternative.

Generalized const expressions are recognized by the modifier constexpr (a keyword), that is applied

to the expression’s type.

There is a small syntactic difference between the use of the const modifier and the use of the

constexpr modifier. While the const modifier can be applied to definitions and declarations alike,

the constexpr modifier can only be applied to definitions:

extern int const externInt; // OK: declaration of const int

extern int constexpr error; // ERROR: not a definition

Variables defined with the constexpr modifier have constant (immutable) values. But generalized

const expressions are not just used to define constant variables; they have other applications as well.

The constexpr keyword is usually applied to functions, turning the function into a constant-expression

function.

A constant-expression function should not be confused with a function returning a const value (al-

though a constant-expression function does return a (const) value). A constant expression function has

the following characteristics:



• its return type is given the constexpr modifier;

• its body consists of one single return statement (but see also the notes at end of this section)

Such functions are also called named constant expressions with parameters.

These constant expression functions may or may not be called with arguments that have been evaluated

at compile-time (not just ‘const arguments’, as a const parameter value is not evaluated at compile-

time). If they are called with compile-time evaluated arguments then the returned value is considered

a const value as well.

This allows us to encapsulate expressions that can be evaluated at compile-time in functions, and it

allows us to use these functions in situations where previously the expressions themselves had to be

used. The encapsulation reduces the number of occurrences of the expressions to one, simplifying

maintenance and reduces the probability of errors.

If arguments that could not be compile-time evaluated are passed to constant-expression functions,

then these functions act like any other function, in that their return values are no longer considered

constant expressions.

Assume some two-dimensional arrays must be converted to one-dimensional arrays. The one-

dimensional array must have nrows ∗ ncols + nrows + ncols + 1 elements, to store row, col-

umn, and total marginals, as well as the elements of the source array itself. Furthermore assume that

nrows and ncols have been defined as globally available size_t const values (they could be a class’s

static data). The one-dimensional arrays are data members of a class or struct, or they are also defined

as global arrays.

Now that constant-expression functions are available the expression returning the number of the re-

quired elements can be encapsulated in such a function:

size_t const nRows = 45;

size_t const nCols = 10;

size_t constexpr nElements(size_t rows, size_t cols)

{

return rows * cols + rows + cols + 1;

}

....

int intLinear[ nElements(nRows, nCols) ];

struct Linear

{

double d_linear[ nElements(nRows, nCols) ];

};

If another part of the program needs to use a linear array for an array of different sizes then the

constant-expression function can also be used. E.g.,

string stringLinear[ nElements(10, 4) ];

Constant-expression functions can be used in other constant expression functions as well. The following

constant-expression function returns half the value, rounded upwards, that is returned by nElements:

size_t constexpr halfNElements(size_t rows, size_t cols)

{

return (nElements(rows, cols) + 1) >> 1;

}



classes and external software. But if a class defines a static const size_t data member then that

member’s value could very well be used to define entities living outside of the class’s scope, like the

number of elements of an array or to define the value of some enum. In situations like these constant-

expression functions are the perfect tool to maintain proper data hiding:

class Data

{

static size_t const s_size = 7;

public:

static size_t constexpr size();

size_t constexpr mSize();

};

size_t constexpr Data::size()

{

return s_size;

}

size_t constexpr Data::mSize()

{

return size();

}

double data[ Data::size() ]; // OK: 7 elements

short data2[ Data().mSize() ]; // also OK: see below

Please note the following:

• Constant-expression functions are implicitly declared inline;

• Non-static constant-expression member functions are implicitly const, and a const member

modifier for them is optional;

• Constant values (e.g., static constant data members) used by constant-expression functions must

be known by the time the compiler encounters the functions’ definitions. That’s why s_size was

initialized in Data’s class interface.

Since the C++14 standard the requirements of constexpr functions have been relaxed. Starting at

this standard, constexpr functions may

• define any kind of variable except for static or thread_local variables;

• define variables without initializers;

• use conditional statements (if and switch);

• use repetition statements, including the range-based for statement;

• use expressions changing the values of objects that are local to the constexpr function;

In addition, C++14 allows constexpr member functions to be non-const. But note that non-const

constexpr member functions can only modify data members of objects that were defined local to the

constexpr function calling the non-const constexpr member function.



As we’ve seen, (member) functions and variables of primitive data types can be defined using the

constexpr modifier. What about class-type objects?

Objects of classes are values of class type, and like values of primitive types they can be defined with

the constexpr specifier. Constant expression class-type objects must be initialized with constant ex-

pression arguments; the constructor that is actually used must itself have been declared with the

constexpr modifier. Note again that the constexpr constructor’s definition must have been seen by

the compiler before the constexpr object can be constructed:

class ConstExpr

{

public:

constexpr ConstExpr(int x);

};

ConstExpr ok{ 7 }; // OK: not declared as constexpr

constexpr ConstExpr err{ 7 }; // ERROR: constructor's definition

// not yet seen

constexpr ConstExpr::ConstExpr(int x)

{}

constexpr ConstExpr ok{ 7 }; // OK: definition seen

constexpr ConstExpr okToo = ConstExpr{ 7 }; // also OK

A constant-expression constructor has the following characteristics:

• it is declared with the constexpr modifier;

• its member initializers only use constant expressions;

• its body is empty.

An object constructed with a constant-expression constructor is called a user-defined literal. Destructors

and copy constructors of user-defined literals must be trivial.

The constexpr characteristic of user-defined literals may or may not be maintained by its class’s

members. If a member is not declared with a constexpr return value, then using that member does

not result in a constant-expression. If a member does declare a constexpr return value then that

member’s return value is considered a constexpr if it is by itself a constant expression function. To

maintain its constexpr characteristics it can refer to its classes’ data members only if its object has

been defined with the constexpr modifier, as illustrated by the example:

class Data

{

int d_x;

public:

constexpr Data(int x)

:

d_x(x)

{}

int constexpr cMember()

{

return d_x;



int member() const

{

return d_x;

}

};

Data d1{ 0 }; // OK, but not a constant expression

enum e1 {

ERR = d1.cMember() // ERROR: cMember(): no constant

}; // expression anymore

constexpr Data d2{ 0 }; // OK, constant expression

enum e2 {

OK = d2.cMember(), // OK: cMember(): now a constant

// expression

ERR = d2.member(), // ERR: member(): not a constant

}; // expression

8.2 Static member functions

In addition to static data members, C++ allows us to define static member functions. Similar to static

data that are shared by all objects of the class, static member functions also exist without any associ-

ated object of their class.

Static member functions can access all static members of their class, but also the members (private

or public) of objects of their class if they are informed about the existence of these objects (as in the

upcoming example). As static member functions are not associated with any object of their class they do

not have a this pointer. In fact, a static member function is completely comparable to a global function,

not associated with any class (i.e., in practice they are. See the next section (8.2.1) for a subtle note).

Since static member functions do not require an associated object, static member functions declared

in the public section of a class interface may be called without specifying an object of its class. The

following example illustrates this characteristic of static member functions:

class Directory

{

string d_currentPath;

static char s_path[];

public:

static void setpath(char const *newpath);

static void preset(Directory &dir, char const *newpath);

};

inline void Directory::preset(Directory &dir, char const *newpath)

{

// see the text below

dir.d_currentPath = newpath; // 1

}

char Directory::s_path[200] = "/usr/local"; // 2

void Directory::setpath(char const *newpath)

{

if (strlen(newpath) >= 200)



strcpy(s_path, newpath); // 3

}

int main()

{

Directory dir;

Directory::setpath("/etc"); // 4

dir.setpath("/etc"); // 5

Directory::preset(dir, "/usr/local/bin"); // 6

dir.preset(dir, "/usr/local/bin"); // 7

}

• at 1 a static member function modifies a private data member of an object. However, the object

whose member must be modified is given to the member function as a reference parameter.

Note that static member functions can be defined as inline functions.

• at 2 a relatively long array is defined to be able to accommodate long paths. Alternatively, a

string or a pointer to dynamic memory could be used.

• at 3 a (possibly longer, but not too long) new pathname is stored in the static data member

s_path[]. Note that only static members are used.

• at 4, setpath() is called. It is a static member, so no object is required. But the compiler must

know to which class the function belongs, so the class is mentioned using the scope resolution

operator.

• at 5, the same is implemented as in 4. Here dir is used to tell the compiler that we’re talking

about a function in the Directory class. Static member functions can be called as normal mem-

ber functions, but this does not imply that the static member function receives the object’s address

as a this pointer. Here the member-call syntax is used as an alternative for the classname plus

scope resolution operator syntax.

• at 6, currentPath is altered. As in 4, the class and the scope resolution operator are used.

• at 7, the same is implemented as in 6. But here dir is used to tell the compiler that we’re

talking about a function in the Directory class. Here in particular note that this is not using

preset() as an ordinary member function of dir: the function still has no this-pointer, so dir

must be passed as argument to inform the static member function preset about the object whose

currentPath member it should modify.

In the example only public static member functions were used. C++ also allows the definition of private

static member functions. Such functions can only be called by member functions of their class.

8.2.1 Calling conventions

As noted in the previous section, static (public) member functions are comparable to classless functions.

However, formally this statement is not true, as the C++ standard does not prescribe the same calling

conventions for static member functions as for classless global functions.

In practice the calling conventions are identical, implying that the address of a static member function

could be used as an argument of functions having parameters that are pointers to (global) functions.

If unpleasant surprises must be avoided at all cost, it is suggested to create global classless wrapper

functions around static member functions that must be used as call back functions for other functions.



C++ using template algorithms (cf. chapter 19), let’s assume that we have a class Person having data

members representing the person’s name, address, phone and mass. Furthermore, assume we want to

sort an array of pointers to Person objects, by comparing the Person objects these pointers point to.

Keeping things simple, we assume that the following public static member exists:

int Person::compare(Person const *const *p1, Person const *const *p2);

A useful characteristic of this member is that it may directly inspect the required data members of the

two Person objects passed to the member function using pointers to pointers (double pointers).

Most compilers allow us to pass this function’s address as the address of the comparison function for

the standard C qsort() function. E.g.,

qsort

(

personArray, nPersons, sizeof(Person *),

reinterpret_cast<int(*)(void const *, void const *)>(Person::compare)

);

However, if the compiler uses different calling conventions for static members and for classless func-

tions, this might not work. In such a case, a classless wrapper function like the following may be used

profitably:

int compareWrapper(void const *p1, void const *p2)

{

return

Person::compare

(

static_cast<Person const *const *>(p1),

static_cast<Person const *const *>(p2)

);

}

resulting in the following call of the qsort() function:

qsort(personArray, nPersons, sizeof(Person *), compareWrapper);

Note:

• The wrapper function takes care of any mismatch in the calling conventions of static member

functions and classless functions;

• The wrapper function handles the required type casts;

• The wrapper function might perform small additional services (like dereferencing pointers if the

static member function expects references to Person objects rather than double pointers);

• As an aside: in C++ programs functions like qsort(), requiring the specification of call back

functions are seldom used. Instead using existing generic template algorithms is preferred (cf.

chapter 19).



Chapter 9

Classes And Memory Allocation

In contrast to the set of functions that handle memory allocation in C (i.e., malloc etc.), memory

allocation in C++ is handled by the operators new and delete. Important differences between malloc

and new are:

• The function malloc doesn’t ‘know’ what the allocated memory will be used for. E.g., when mem-

ory for ints is allocated, the programmer must supply the correct expression using a multiplica-

tion by sizeof(int). In contrast, new requires a type to be specified; the sizeof expression is

implicitly handled by the compiler. Using new is therefore type safe.

• Memory allocated by malloc is initialized by calloc, initializing the allocated characters to a

configurable initial value. This is not very useful when objects are available. As operator new

knows about the type of the allocated entity it may (and will) call the constructor of an allocated

class type object. This constructor may be also supplied with arguments.

• All C-allocation functions must be inspected for NULL-returns. This is not required anymore

when new is used. In fact, new’s behavior when confronted with failing memory allocation is

configurable through the use of a new_handler (cf. section 9.2.2).

A comparable relationship exists between free and delete: delete makes sure that when an object

is deallocated, its destructor is automatically called.

The automatic calling of constructors and destructors when objects are created and destroyed has con-

sequences which we shall discuss in this chapter. Many problems encountered during C program de-

velopment are caused by incorrect memory allocation or memory leaks: memory is not allocated, not

freed, not initialized, boundaries are overwritten, etc.. C++ does not ‘magically’ solve these problems,

but it does provide us with tools to prevent these kinds of problems.

As a consequence of malloc and friends becoming deprecated the very frequently used str... func-

tions, like strdup, that are all malloc based, should be avoided in C++ programs. Instead, the facili-

ties of the string class and operators new and delete should be used.

Memory allocation procedures influence the way classes dynamically allocating their own memory

should be designed. Therefore, in this chapter these topics are discussed in addition to discussions

about operators new and delete. We’ll first cover the peculiarities of operators new and delete,

followed by a discussion about:

• the destructor: the member function that’s called when an object ceases to exist;

• the assignment operator, allowing us to assign an object to another object of its own class;

• the this pointer, allowing explicit references to the object for which a member function was called;

• the copy constructor: the constructor creating a copy of an object;

• the move constructor: a constructor creating an object from an anonymous temporary object.
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9.1 Operators ‘new’ and ‘delete’

C++ defines two operators to allocate memory and to return it to the ‘common pool’. These operators

are, respectively, new and delete.

Here is a simple example illustrating their use. An int pointer variable points to memory allocated by

operator new. This memory is later released by operator delete.

int *ip = new int;

delete ip;

Here are some characteristics of operators new and delete:

• new and delete are operators and therefore do not require parentheses, as required for functions

like malloc and free;

• new returns a pointer to the kind of memory that’s asked for by its operand (e.g., it returns a

pointer to an int);

• new uses a type as its operand, which has the important benefit that the correct amount of memory,

given the type of the object to be allocated, is made available;

• as a consequence, new is a type safe operator as it always returns a pointer to the type that was

mentioned as its operand. In addition, the type of the receiving pointer must match the type

specified with operator new;

• new may fail, but this is normally of no concern to the programmer. In particular, the program

does not have to test the success of the memory allocation, as is required for malloc and friends.

Section 9.2.2 delves into this aspect of new;

• delete returns void;

• for each call to new a matching delete should eventually be executed, lest a memory leak occurs;

• delete can safely operate on a 0-pointer (doing nothing);

• otherwise delete must only be used to return memory allocated by new. It should not be used to

return memory allocated by malloc and friends.

• in C++ malloc and friends are deprecated and should be avoided.

Operator new can be used to allocate primitive types but also to allocate objects. When a primitive

type or a struct type without a constructor is allocated the allocated memory is not guaranteed to be

initialized to 0, but an initialization expression may be provided:

int *v1 = new int; // not guaranteed to be initialized to 0

int *v1 = new int(); // initialized to 0

int *v2 = new int(3); // initialized to 3

int *v3 = new int(3 * *v2); // initialized to 9

When a class-type object is allocated, the arguments of its constructor (if any) are specified immediately

following the type specification in the new expression and the object is initialized by to the thus specified

constructor. For example, to allocate string objects the following statements could be used:

string *s1 = new string; // uses the default constructor

string *s2 = new string{}; // same

string *s3 = new string(4, ' '); // initializes to 4 blanks.



tion) there also exists a variant allocating raw memory: operator new(sizeInBytes). Raw memory

is returned as a void ∗. Here new allocates a block of memory for unspecified purpose. Although raw

memory may consist of multiple characters it should not be interpreted as an array of characters. Since

raw memory returned by new is returned as a void ∗ its return value can be assigned to a void ∗

variable. More often it is assigned to a char ∗ variable, using a cast. Here is an example:

char *chPtr = static_cast<char *>(operator new(numberOfBytes));

The use of raw memory is frequently encountered in combination with the placement new operator,

discussed in section 9.1.5.

9.1.1 Allocating arrays

Operator new[] is used to allocate arrays. The generic notation new[] is used in the C++ Annotations.

Actually, the number of elements to be allocated must be specified between the square brackets and it

must, in turn, be prefixed by the type of the entities that must be allocated. Example:

int *intarr = new int[20]; // allocates 20 ints

string *stringarr = new string[10]; // allocates 10 strings.

Operator new is a different operator than operator new[]. A consequence of this difference is discussed

in the next section (9.1.2).

Arrays allocated by operator new[] are called dynamic arrays. They are constructed during the execu-

tion of a program, and their lifetime may exceed the lifetime of the function in which they were created.

Dynamically allocated arrays may last for as long as the program runs.

When new[] is used to allocate an array of primitive values or an array of objects, new[] must be spec-

ified with a type and an (unsigned) expression between its square brackets. The type and expression

together are used by the compiler to determine the required size of the block of memory to make avail-

able. When new[] is used the array’s elements are stored consecutively in memory. An array index

expression may thereafter be used to access the array’s individual elements: intarr[0] represents the

first int value, immediately followed by intarr[1], and so on until the last element (intarr[19]).

With non-class types (primitive types, POD types without constructors) the block of memory returned

by operator new[] is not guaranteed to be initialized to 0. Alternatively, adding () to the new expres-

sion will initialize the block of memory to zeroes. E.g.,

struct POD

{

int iVal;

double dVal;

};

new POD[5](); // returns a pointer to 5 0-initialized PODs

new double[9](); // returns a pointer to 9 0-initialized doubles

If there are members of the struct POD that are explicitly initialized in the struct’s interface (e.g., int

iVal = 12), or if the struct uses composition, and the composed data member’s type defines a default

constructor, then initializations in the struct’s interface and initializations performed by the composed

data member’s constructor takes precedence over the 0-initialization. Here is an example:

struct Data

{

int value = 100;

};



{

int iVal = 12;

double dVal;

Data data;

};

POD *pp = new POD[5]();

Here, pp points to five POD objects, each having their iVal data members initialized to 12, their dVal

data members initialized to 0, and their data.value members initialized to 100.

When operator new[] is used to allocate arrays of objects of class types defining default constructors

these constructors are automatically used. Consequently new string[20] results in a block of 20

initialized string objects. A non-default constructor cannot be called, but often it is possible to work

around that (as discussed in section 13.8).

The expression between brackets of operator new[] represents the number of elements of the array to

allocate. The C++ standard allows allocation of 0-sized arrays. The statement new int[0] is correct

C++. However, it is also pointless and confusing and should be avoided. It is pointless as it doesn’t

refer to any element at all, it is confusing as the returned pointer has a useless non-0 value. A pointer

intending to point to an array of values should be initialized (like any pointer that isn’t yet pointing to

memory) to 0, allowing for expressions like if (ptr) ...

Without using operator new[], arrays of variable sizes can also be constructed as local arrays. Such

arrays are not dynamic arrays and their lifetimes are restricted to the lifetime of the block in which

they were defined.

Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++ has

no operator ‘renew’. Section 9.1.3 illustrates how to enlarge arrays.

9.1.2 Deleting arrays

Dynamically allocated arrays are deleted using operator delete[]. It expects a pointer to a block of

memory, previously allocated by operator new[].

When operator delete[]’s operand is a pointer to an array of objects two actions are performed:

• First, the class’s destructor is called for each of the objects in the array. The destructor, as ex-

plained later in this chapter, performs all kinds of cleanup operations that are required by the

time the object ceases to exist.

• Second, the memory pointed at by the pointer is returned to the common pool.

Here is an example showing how to allocate and delete an array of 10 string objects:

std::string *sp = new std::string[10];

delete[] sp;

No special action is performed if a dynamically allocated array of primitive typed values is deleted.

Following int ∗it = new int[10] the statement delete[] it simply returns the memory pointed

at by it. Realize that, as a pointer is a primitive type, deleting a dynamically allocated array of pointers

to objects does not result in the proper destruction of the objects the array’s elements point at. So, the

following example results in a memory leak:

string **sp = new string *[5];

for (size_t idx = 0; idx != 5; ++idx)

sp[idx] = new string;

delete[] sp; // MEMORY LEAK !



strings to the common pool.

Here’s how the destruction in such cases should be performed:

• Call delete for each of the array’s elements;

• Delete the array itself

Example:

for (size_t idx = 0; idx != 5; ++idx)

delete sp[idx];

delete[] sp;

One of the consequences is of course that by the time the memory is going to be returned not only the

pointer must be available but also the number of elements it contains. This can easily be accomplished

by storing pointer and number of elements in a simple class and then using an object of that class.

Operator delete[] is a different operator than operator delete. The rule of thumb is: if new[] was

used, also use delete[].

9.1.3 Enlarging arrays

Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++ has

no renew operator. The basic steps to take when enlarging an array are the following:

• Allocate a new block of memory of larger size;

• Copy the old array content to the new array;

• Delete the old array;

• Let the pointer to the array point to the newly allocated array.

Static and local arrays cannot be resized. Resizing is only possible for dynamically allocated arrays.

Example:

#include <string>

using namespace std;

string *enlarge(string *old, size_t oldsize, size_t newsize)

{

string *tmp = new string[newsize]; // allocate larger array

for (size_t idx = 0; idx != oldsize; ++idx)

tmp[idx] = old[idx]; // copy old to tmp

delete[] old; // delete the old array

return tmp; // return new array

}

int main()

{

string *arr = new string[4]; // initially: array of 4 strings

arr = enlarge(arr, 4, 6); // enlarge arr to 6 elements.

}



• The new array requires newsize constructors to be called;

• Having initialized the strings in the new array, oldsize of them are immediately reassigned to

the corresponding values in the original array;

• All the objects in the old arrays are destroyed.

Depending on the context various solutions exist to improve the efficiency of this rather inefficient

procedure. An array of pointers could be used (requiring only the pointers to be copied, no destruction,

no superfluous initialization) or raw memory in combination with the placement new operator could be

used (an array of objects remains available, no destruction, no superfluous construction).

9.1.4 Managing ‘raw’ memory

As we’ve seen operator new allocates the memory for an object and subsequently initializes that object

by calling one of its constructors. Likewise, operator delete calls an object’s destructor and subse-

quently returns the memory allocated by operator new to the common pool.

In the next section we’ll encounter another use of new, allowing us to initialize objects in so-called raw

memory: memory merely consisting of bytes that have been made available by either static or dynamic

allocation.

Raw memory is made available by operator new(sizeInBytes) and also by operator

new[](sizeInBytes). The returned memory should not be interpreted as an array of any kind but

just a series of memory locations that were dynamically made available. No initialization whatsoever

is performed by these variants of new.

Both variants return void ∗s so (static) casts are required to use the return values as memory of some

type.

Here are two examples:

// room for 5 ints:

int *ip = static_cast<int *>(operator new(5 * sizeof(int)));

// same as the previous example:

int *ip2 = static_cast<int *>(operator new[](5 * sizeof(int)));

// room for 5 strings:

string *sp = static_cast<string *>(operator new(5 * sizeof(string)));

As operator new has no concept of data types the size of the intended data type must be specified

when allocating raw memory for a certain number of objects of an intended type. The use of operator

new therefore somewhat resembles the use of malloc.

The counterpart of operator new is operator delete. Operator delete (or, equivalently,

operator delete[]), expects a void ∗ (so a pointer to any type can be passed to it). The pointer

is interpreted as a pointer to raw memory which is returned to the common pool without any further

action. In particular, no destructors are called by operator delete. The use of operator delete

therefore resembles the use of free. To return the memory pointed at by the abovementioned variables

ip and sp operator delete should be used:

// delete raw memory allocated by operator new

operator delete(ip);

operator delete[](ip2);

operator delete(sp);



A remarkable form of operator new is called the placement new operator. Before using placement new

the <memory> header file must be included.

Placement new is passed an existing block of memory into which new initializes an object or value. The

block of memory should be large enough to contain the object, but apart from that there are no further

requirements. It is easy to determine how much memory is used by en entity (object or variable) of type

Type: the sizeof operator returns the number of bytes used by an Type entity.

Entities may of course dynamically allocate memory for their own use. Dynamically allocated memory,

however, is not part of the entity’s memory ‘footprint’ but it is always made available externally to the

entity itself. This is why sizeof returns the same value when applied to different string objects that

return different length and capacity values.

The placement new operator uses the following syntax (using Type to indicate the used data type):

Type *new(void *memory) Type{ arguments };

Here, memory is a block of memory of at least sizeof(Type) bytes and Type(arguments) is any

constructor of the class Type.

The placement new operator is useful in situations where classes set aside memory to be used later.

This is used, e.g., by std::string to change its capacity. Calling string::reserve may enlarge

that capacity without making memory beyond the string’s length immediately available to the string

object’s users. But the object itself may use its additional memory. E.g, when information is added to

a string object it can draw memory from its capacity rather than performing a reallocation for each

single character that is added to its content.

Let’s apply that philosophy to a class Strings storing std::string objects. The class defines a

string ∗d_memory accessing the memory holding its d_size string objects as well as d_capacity -

d_size reserved memory. Assuming that a default constructor initializes d_capacity to 1, doubling

d_capacity whenever an additional string must be stored, the class must support the following

essential operations:

• doubling its capacity when all its spare memory (e.g., made available by reserve) has been con-

sumed;

• adding another string object

• properly deleting the installed strings and memory when a Strings object ceases to exist.

The private member void Strings::reserve is called when the current capacity must be enlarged

to d_capacity. It operates as follows: First new, raw, memory is allocated (line 1). This memory is in

no way initialized with strings. Then the available strings in the old memory are copied into the newly

allocated raw memory using placement new (line 2). Next, the old memory is deleted (line 3).

void Strings::reserve()

{

using std::string;

string *newMemory = static_cast<string *>( // 1

operator new(d_capacity * sizeof(string)));

for (size_t idx = 0; idx != d_size; ++idx) // 2

new (newMemory + idx) string{ d_memory[idx] };

destroy(); // 3

d_memory = newMemory;

}



reserve(request) (enlarging d_capacity if necessary and if enlarged calling reserve()) ensures

that the String object’s capacity is sufficient. Then placement new is used to install the latest string

into the raw memory’s appropriate location:

void Strings::append(std::string const &next)

{

reserve(d_size + 1);

new (d_memory + d_size) std::string{ next };

++d_size;

}

At the end of the String object’s lifetime, and during enlarging operations all currently used dynam-

ically allocated memory must be returned. This is made the responsibility of the member destroy,

which is called by the class’s destructor and by reserve(). More about the destructor itself in the

next section, but the implementation of the support member destroy is discussed below.

With placement new an interesting situation is encountered. Objects, possibly themselves allocating

memory, are installed in memory that may or may not have been allocated dynamically, but that is

usually not completely filled with such objects. So a simple delete[] can’t be used. On the other

hand, a delete for each of the objects that are available can’t be used either, since those delete

operations would also try to delete the memory of the objects themselves, which wasn’t dynamically

allocated.

This peculiar situation is solved in a peculiar way, only encountered in cases where placement new is

used: memory allocated by objects initialized using placement new is returned by explicitly calling the

object’s destructor. The destructor is declared as a member having as its name the class name preceded

by a tilde, not using any arguments. So, std::string’s destructor is named ~string. An object’s

destructor only returns memory allocated by the object itself and, despite of its name, does not destroy

its object. Any memory allocated by the strings stored in our class Strings is therefore properly

destroyed by explicitly calling their destructors. Following this d_memory is back to its initial status:

it again points to raw memory. This raw memory is then returned to the common pool by operator

delete:

void Strings::destroy()

{

for (std::string *sp = d_memory + d_size; sp-- != d_memory; )

sp->~string();

operator delete(d_memory);

}

So far, so good. All is well as long as we’re using only one object. What about allocating an array of

objects? Initialization is performed as usual. But as with delete, delete[] cannot be called when the

buffer was allocated statically. Instead, when multiple objects were initialized using placement new in

combination with a statically allocated buffer all the objects’ destructors must be called explicitly, as in

the following example:

using std::string;

char buffer[3 * sizeof(string)];

string *sp = new(buffer) string [3];

for (size_t idx = 0; idx < 3; ++idx)

sp[idx].~string();



9.2 The destructor

Comparable to the constructor, classes may define a destructor. This function is the constructor’s coun-

terpart in the sense that it is invoked when an object ceases to exist. A destructor is usually called

automatically, but that’s not always true. The destructors of dynamically allocated objects are not au-

tomatically activated, but in addition to that: when a program is interrupted by an exit call, only

the destructors of already initialized global objects are called. In that situation destructors of objects

defined locally by functions are also not called. This is one (good) reason for avoiding exit in C++

programs.

Destructors obey the following syntactical requirements:

• a destructor’s name is equal to its class name prefixed by a tilde;

• a destructor has no arguments;

• a destructor has no return value.

Destructors are declared in their class interfaces. Example:

class Strings

{

public:

Strings();

~Strings(); // the destructor

};

By convention the constructors are declared first. The destructor is declared next, to be followed by

other member functions.

A destructor’s main task is to ensure that memory allocated by an object is properly returned when the

object ceases to exist. Consider the following interface of the class Strings:

class Strings

{

std::string *d_string;

size_t d_size;

public:

Strings();

Strings(char const *const *cStrings, size_t n);

~Strings();

std::string const &at(size_t idx) const;

size_t size() const;

};

The constructor’s task is to initialize the data fields of the object. E.g, its constructors are defined as

follows:

Strings::Strings()

:

d_string(0),

d_size(0)

{}

Strings::Strings(char const *const *cStrings, size_t size)

:



d_size(size)

{

for (size_t idx = 0; idx != size; ++idx)

d_string[idx] = cStrings[idx];

}

As objects of the class Strings allocate memory a destructor is clearly required. Destructors may or

may not be called automatically, but note that destructors are only called (or, in the case of dynamically

allocated objects: should only be called) for fully constructed objects.

C++ considers objects ‘fully constructed’ once at least one of its constructors could normally complete.

It used to be the constructor, but as C++ supports constructor delegation, multiple constructors can

be activated for a single object; hence ‘at least one constructor’. The remaining rules apply to fully

constructed objects;

• Destructors of local non-static objects are called automatically when the execution flow leaves the

block in which they were defined; the destructors of objects defined somewhere in the outer block

of a function are called just before the function terminates.

• Destructors of static or global objects are called when the program itself terminates.

• The destructor of a dynamically allocated object is called by delete using the object’s address as

its operand;

• The destructors of a dynamically allocated array of objects are called by delete[] using the

address of the array’s first element as its operand;

• The destructor of an object initialized by placement new is activated by explicitly calling the

object’s destructor.

The destructor’s task is to ensure that all memory that is dynamically allocated and controlled only

by the object itself is returned. The task of the Strings’s destructor would therefore be to delete the

memory to which d_string points. Its implementation is:

Strings::~Strings()

{

delete[] d_string;

}

The next example shows Strings at work. In process a Strings store is created, and its data

are displayed. It returns a dynamically allocated Strings object to main. A Strings ∗ receives the

address of the allocated object and deletes the object again. Another Strings object is then created in a

block of memory made available locally in main, and an explicit call to ~Strings is required to return

the memory allocated by that object. In the example only once a Strings object is automatically

destroyed: the local Strings object defined by process. The other two Strings objects require

explicit actions to prevent memory leaks.

#include "strings.h"

#include <iostream>

using namespace std;;

void display(Strings const &store)

{

for (size_t idx = 0; idx != store.size(); ++idx)

cout << store.at(idx) << '\n';

}



{

Strings store{ argv, argc };

display(store);

return new Strings{ argv, argc };

}

int main(int argc, char *argv[])

{

Strings *sp = process(argv, argc);

delete sp;

char buffer[sizeof(Strings)];

sp = new (buffer) Strings{ argv, static_cast<size_t>(argc) };

sp->~Strings();

}

9.2.1 Object pointers revisited

Operators new and delete are used when an object or variable is allocated. One of the advantages of

the operators new and delete over functions like malloc and free is that new and delete call the

corresponding object constructors and destructors.

The allocation of an object by operator new is a two-step process. First the memory for the object itself

is allocated. Then its constructor is called, initializing the object. Analogously to the construction of an

object, the destruction is also a two-step process: first, the destructor of the class is called deleting the

memory controlled by the object. Then the memory used by the object itself is freed.

Dynamically allocated arrays of objects can also be handled by new and delete. When allocating an

array of objects using operator new the default constructor is called for each object in the array. In cases

like this operator delete[] must be used to ensure that the destructor is called for each of the objects

in array.

However, the addresses returned by new Type and new Type[size] are of identical types, in both

cases a Type ∗. Consequently it cannot be determined by the type of the pointer whether a pointer to

dynamically allocated memory points to a single entity or to an array of entities.

What happens if delete rather than delete[] is used? Consider the following situation, in which

the destructor ~Strings is modified so that it tells us that it is called. In a main function an array

of two Strings objects is allocated using new, to be deleted by delete[]. Next, the same actions are

repeated, albeit that the delete operator is called without []:

#include <iostream>

#include "strings.h"

using namespace std;

Strings::~Strings()

{

cout << "Strings destructor called" << '\n';

}

int main()

{

Strings *a = new Strings[2];

cout << "Destruction with []'s" << '\n';

delete[] a;

a = new Strings[2];



cout << "Destruction without []'s" << '\n';

delete a;

}

/*
Generated output:

Destruction with []'s

Strings destructor called

Strings destructor called

Destruction without []'s

Strings destructor called

*/

From the generated output, we see that the destructors of the individual Strings objects are called

when delete[] is used, while only the first object’s destructor is called if the [] is omitted.

Conversely, if delete[] is called in a situation where delete should have been called the results are

unpredictable, and the program will most likely crash. This problematic behavior is caused by the way

the run-time system stores information about the size of the allocated array (usually right before the

array’s first element). If a single object is allocated the array-specific information is not available, but

it is nevertheless assumed present by delete[]. Thus this latter operator encounters bogus values

in the memory locations just before the array’s first element. It then dutifully interprets the value it

encounters there as size information, usually causing the program to fail.

If no destructor is defined, a trivial destructor is defined by the compiler. The trivial destructor ensures

that the destructors of composed objects (as well as the destructors of base classes if a class is a derived

class, cf. chapter 13) are called. This has serious implications: objects allocating memory create memory

leaks unless precautionary measures are taken (by defining an appropriate destructor). Consider the

following program:

#include <iostream>

#include "strings.h"

using namespace std;

Strings::~Strings()

{

cout << "Strings destructor called" << '\n';

}

int main()

{

Strings **ptr = new Strings* [2];

ptr[0] = new Strings[2];

ptr[1] = new Strings[2];

delete[] ptr;

}

This program produces no output at all. Why is this? The variable ptr is defined as a pointer to a

pointer. The dynamically allocated array therefore consists of pointer variables and pointers are of a

primitive type. No destructors exist for primitive typed variables. Consequently only the array itself is

returned, and no Strings destructor is called.

Of course, we don’t want this, but require the Strings objects pointed to by the elements of ptr to be

deleted too. In this case we have two options:

• In a for-statement visit all the elements of the ptr array, calling delete for each of the array’s

elements. This procedure was demonstrated in the previous section.



Rather than using a pointer to a pointer to Strings objects a pointer to an array of wrapper-

class objects is used. As a result delete[] ptr calls the destructor of each of the wrapper class

objects, in turn calling the Strings destructor for their d_strings members. Example:

#include <iostream>

using namespace std;

class Strings // partially implemented

{

public:

~Strings();

};

inline Strings::~Strings()

{

cout << "destructor called\n";

}

class Wrapper

{

Strings *d_strings;

public:

Wrapper();

~Wrapper();

};

inline Wrapper::Wrapper()

:

d_strings(new Strings{})

{}

inline Wrapper::~Wrapper()

{

delete d_strings;

}

int main()

{

auto ptr = new Strings *[4];

// ... code assigning `new Strings' to ptr's elements

delete[] ptr; // memory leak: ~Strings() not called

cout << "===========\n";

delete[] new Wrapper[4]; // OK: 4 x destructor called

}

/*
Generated output:

===========

destructor called

destructor called

destructor called

destructor called

*/



The C++ run-time system ensures that when memory allocation fails an error function is activated.

By default this function throws a bad_alloc exception (see section 10.8), terminating the program.

Therefore it is not necessary to check the return value of operator new. Operator new’s default behavior

may be modified in various ways. One way to modify its behavior is to redefine the function that’s called

when memory allocation fails. Such a function must comply with the following requirements:

• it has no parameters;

• its return type is void.

A redefined error function might, e.g., print a message and terminate the program. The user-written

error function becomes part of the allocation system through the function set_new_handler.

Such an error function is illustrated below1:

#include <iostream>

#include <string>

using namespace std;

void outOfMemory()

{

cout << "Memory exhausted. Program terminates." << '\n';

exit(1);

}

int main()

{

long allocated = 0;

set_new_handler(outOfMemory); // install error function

while (true) // eat up all memory

{

new int [100000]();

allocated += 100000 * sizeof(int);

cout << "Allocated " << allocated << " bytes\n";

}

}

Once the new error function has been installed it is automatically invoked when memory allocation

fails, and the program is terminated. Memory allocation may fail in indirectly called code as well, e.g.,

when constructing or using streams or when strings are duplicated by low-level functions.

So far for the theory. On some systems the ‘out of memory’ condition may actually never be reached,

as the operating system may interfere before the run-time support system gets a chance to stop the

program.

The traditional memory allocation functions (like strdup, malloc, realloc etc.) do not trigger the

new handler when memory allocation fails and should be avoided in C++ programs.

1This implementation applies to the GNU C/C++ requirements. Actually using the program given in the next example is not

advised, as it probably enormously slows down your computer due to the resulting use of the operating system’s swap area.



9.3 The assignment operator

In C++ struct and class type objects can be directly assigned new values in the same way as this is

possible in C. The default action of such an assignment for non-class type data members is a straight

byte-by-byte copy from one data member to another. For now we’ll use the following simple class

Person:

class Person

{

char *d_name;

char *d_address;

char *d_phone;

public:

Person();

Person(char const *name, char const *addr, char const *phone);

~Person();

private:

char *strdupnew(char const *src); // returns a copy of src.

};

// strdupnew is easily implemented, here is its inline implementation:

inline char *Person::strdupnew(char const *src)

{

return strcpy(new char [strlen(src) + 1], src);

}

Person’s data members are initialized to zeroes or to copies of the NTBSs passed to Person’s con-

structor, using some variant of strdup. The allocated memory is eventually returned by Person’s

destructor.

Now consider the consequences of using Person objects in the following example:

void tmpPerson(Person const &person)

{

Person tmp;

tmp = person;

}

Here’s what happens when tmpPerson is called:

• it expects a reference to a Person as its parameter person.

• it defines a local object tmp, whose data members are initialized to zeroes.

• the object referenced by person is copied to tmp: sizeof(Person) number of bytes are copied

from person to tmp.

Now a potentially dangerous situation has been created. The actual values in person are pointers,

pointing to allocated memory. After the assignment this memory is addressed by two objects: person

and tmp.

• The potentially dangerous situation develops into an acutely dangerous situation once the func-

tion tmpPerson terminates: tmp is destroyed. The destructor of the class Person releases the

memory pointed to by the fields d_name, d_address and d_phone: unfortunately, this memory

is also pointed at by person....



Figure 9.1: Private data and public interface functions of the class Person, using byte-by-byte assign-

ment

This problematic assignment is illustrated in Figure 9.1.

Having executed tmpPerson, the object referenced by person now contains pointers to deleted mem-

ory.

This is undoubtedly not a desired effect of using a function like tmpPerson. The deleted memory is

likely to be reused by subsequent allocations. The pointer members of person have effectively become

wild pointers, as they don’t point to allocated memory anymore. In general it can be concluded that

every class containing pointer data members is a potential candidate for trouble.

Fortunately, it is possible to prevent these troubles, as discussed next.

9.3.1 Overloading the assignment operator

Obviously, the right way to assign one Person object to another, is not to copy the content of the

object bytewise. A better way is to make an equivalent object. One having its own allocated memory

containing copies of the original strings.

The way to assign a Person object to another is illustrated in Figure 9.2. There are several ways to

assign a Person object to another. One way would be to define a special member function to handle the

assignment. The purpose of this member function would be to create a copy of an object having its own

name, address and phone strings. Such a member function could be:

void Person::assign(Person const &other)

{

// delete our own previously used memory

delete[] d_name;

delete[] d_address;

delete[] d_phone;

// copy the other Person's data

d_name = strdupnew(other.d_name);



Figure 9.2: Private data and public interface functions of the class Person, using the ‘correct’ assign-

ment.

d_address = strdupnew(other.d_address);

d_phone = strdupnew(other.d_phone);

}

Using assign we could rewrite the offending function tmpPerson:

void tmpPerson(Person const &person)

{

Person tmp;

// tmp (having its own memory) holds a copy of person

tmp.assign(person);

// now it doesn't matter that tmp is destroyed..

}

This solution is valid, although it only tackles a symptom. It requires the programmer to use a specific

member function instead of the assignment operator. The original problem (assignment produces wild

pointers) is still not solved. Since it is hard to ‘strictly adhere to a rule’ a way to solve the original

problem is of course preferred.

Fortunately a solution exists using operator overloading: the possibility C++ offers to redefine the

actions of an operator in a given context. Operator overloading was briefly mentioned earlier, when the

operators << and >> were redefined to be used with streams (like cin, cout and cerr), see section

3.1.4.

Overloading the assignment operator is probably the most common form of operator overloading in

C++. A word of warning is appropriate, though. The fact that C++ allows operator overloading does

not mean that this feature should indiscriminately be used. Here’s what you should keep in mind:

• operator overloading should be used in situations where an operator has a defined action, but

this default action has undesired side effects in a given context. A clear example is the above

assignment operator in the context of the class Person.

• operator overloading can be used in situations where the operator is commonly applied and no



ately used is found in the class std::string: assigning one string object to another provides the

destination string with a copy of the content of the source string. No surprises here.

• in all other cases a member function should be defined instead of redefining an operator.

An operator should simply do what it is designed to do. The phrase that’s often encountered in the

context of operator overloading is do as the ints do. The way operators behave when applied to ints

is what is expected, all other implementations probably cause surprises and confusion. Therefore,

overloading the insertion (<<) and extraction (>>) operators in the context of streams is probably

ill-chosen: the stream operations have nothing in common with bitwise shift operations.

9.3.1.1 The member ’operator=()’

To add operator overloading to a class, the class interface is simply provided with a (usually public)

member function naming the particular operator. That member function is thereupon implemented.

To overload the assignment operator =, a member operator=(Class const &rhs) is added to the

class interface. Note that the function name consists of two parts: the keyword operator, followed

by the operator itself. When we augment a class interface with a member function operator=, then

that operator is redefined for the class, which prevents the default operator from being used. In the

previous section the function assign was provided to solve the problems resulting from using the

default assignment operator. Rather than using an ordinary member function C++ commonly uses a

dedicated operator generalizing the operator’s default behavior to the class in which it is defined.

The assign member mentioned before may be redefined as follows (the member operator= presented

below is a first, rather unsophisticated, version of the overloaded assignment operator. It will shortly

be improved):

class Person

{

public: // extension of the class Person

// earlier members are assumed.

void operator=(Person const &other);

};

Its implementation could be

void Person::operator=(Person const &other)

{

delete[] d_name; // delete old data

delete[] d_address;

delete[] d_phone;

d_name = strdupnew(other.d_name); // duplicate other's data

d_address = strdupnew(other.d_address);

d_phone = strdupnew(other.d_phone);

}

This member’s actions are similar to those of the previously mentioned member assign, but this mem-

ber is automatically called when the assignment operator = is used. Actually there are two ways to call

overloaded operators as shown in the next example:

void tmpPerson(Person const &person)

{

Person tmp;



tmp.operator=(person); // the same thing

}

Overloaded operators are seldom called explicitly, but explicit calls must be used (rather than using

the plain operator syntax) when you explicitly want to call the overloaded operator from a pointer to

an object (it is also possible to dereference the pointer first and then use the plain operator syntax, see

the next example):

void tmpPerson(Person const &person)

{

Person *tmp = new Person;

tmp->operator=(person);

*tmp = person; // yes, also possible...

delete tmp;

}

9.4 The ‘this’ pointer

A member function of a given class is always called in combination with an object of its class. There

is always an implicit ‘substrate’ for the function to act on. C++ defines a keyword, this, to reach this

substrate.

The this keyword is a pointer variable that always contains the address of the object for which the

member function was called. The this pointer is implicitly declared by each member function (whether

public, protected, or private). The this pointer is a constant pointer to an object of the member

function’s class. For example, the members of the class Person implicitly declare:

extern Person *const this;

A member function like Person::name could be implemented in two ways: with or without using the

this pointer:

char const *Person::name() const // implicitly using `this'
{

return d_name;

}

char const *Person::name() const // explicitly using `this'
{

return this->d_name;

}

The this pointer is seldom explicitly used, but situations do exist where the this pointer is actually

required (cf. chapter 16).

9.4.1 Sequential assignments and this

C++’s syntax allows for sequential assignments, with the assignment operator associating from right

to left. In statements like:

a = b = c;



The implementation of the overloaded assignment operator we’ve encountered thus far does not permit

such constructions, as it returns void.

This imperfection can easily be remedied using the this pointer. The overloaded assignment operator

expects a reference to an object of its class. It can also return a reference to an object of its class. This

reference can then be used as an argument in sequential assignments.

The overloaded assignment operator commonly returns a reference to the current object (i.e., ∗this).

The next version of the overloaded assignment operator for the class Person thus becomes:

Person &Person::operator=(Person const &other)

{

delete[] d_address;

delete[] d_name;

delete[] d_phone;

d_address = strdupnew(other.d_address);

d_name = strdupnew(other.d_name);

d_phone = strdupnew(other.d_phone);

// return current object as a reference

return *this;

}

Overloaded operators may themselves be overloaded. Consider the string class, having overloaded

assignment operators operator=(std::string const &rhs), operator=(char const ∗rhs),

and several more overloaded versions. These additional overloaded versions are there to handle differ-

ent situations which are, as usual, recognized by their argument types. These overloaded versions all

follow the same mold: when necessary dynamically allocated memory controlled by the object is deleted;

new values are assigned using the overloaded operator’s parameter values and ∗this is returned.

9.5 The copy constructor: initialization vs. assignment

Consider the class Strings, introduced in section 9.2, once again. As it contains several primitive type

data members as well as a pointer to dynamically allocated memory it needs a constructor, a destructor,

and an overloaded assignment operator. In fact the class offers two constructors: in addition to the

default constructor it offers a constructor expecting a char const ∗const ∗ and a size_t.

Now consider the following code fragment. The statement references are discussed following the exam-

ple:

int main(int argc, char **argv)

{

Strings s1(argv, argc); // (1)

Strings s2; // (2)

Strings s3(s1); // (3)

s2 = s1; // (4)

}

• At 1 we see an initialization. The object s1 is initialized using main’s parameters: Strings’s

second constructor is used.

• At 2 Strings’s default constructor is used, initializing an empty Strings object.



object. This form of initializations has not yet been discussed. It is called a copy construction and

the constructor performing the initialization is called the copy constructor. Copy constructions

are also encountered in the following form:

Strings s3 = s1;

This is a construction and therefore an initialization. It is not an assignment as an assignment

needs a left-hand operand that has already been defined. C++ allows the assignment syntax to be

used for constructors having only one parameter. It is somewhat deprecated, though.

• At 4 we see a plain assignment.

In the above example three objects were defined, each using a different constructor. The actually used

constructor was deduced from the constructor’s argument list.

The copy constructor encountered here is new. It does not result in a compilation error even though it

hasn’t been declared in the class interface. This takes us to the following rule:

A copy constructor is (almost) always available, even if it isn’t declared in the class’s inter-

face.

The reason for the ‘(almost)’ is given in section 9.7.1.

The copy constructor made available by the compiler is also called the trivial copy constructor. Its use

can easily be suppressed (using the = delete idiom). The trivial copy constructor performs a byte-wise

copy operation of the existing object’s primitive data to the newly created object, calls copy constructors

to intialize the object’s class data members from their counterparts in the existing object and, when

inheritance is used, calls the copy constructors of the base class(es) to initialize the new object’s base

classes.

Consequently, in the above example the trivial copy constructor is used. As it performs a byte-by-byte

copy operation of the object’s primitive type data members that is exactly what happens at statement

3. By the time s3 ceases to exist its destructor deletes its array of strings. Unfortunately d_string

is of a primitive data type and so it also deletes s1’s data. Once again we encounter wild pointers as a

result of an object going out of scope.

The remedy is easy: instead of using the trivial copy constructor a copy constructor must explicitly be

added to the class’s interface and its definition must prevent the wild pointers, comparably to the way

this was realized in the overloaded assignment operator. An object’s dynamically allocated memory

is duplicated, so that it contains its own allocated data. But note that if a class also reserves extra

(raw) memory, i.e., if it supports extra memory capacity, then that unused extra capacity is not made

available in the copy-constructed object.

Copy construction can therefore be used to shed excess capacity. The copy constructor is simpler than

the overloaded assignment operator in that it doesn’t have to delete previously allocated memory. Since

the object is going to be created no memory has already been allocated.

Strings’s copy constructor can be implemented as follows:

Strings::Strings(Strings const &other)

:

d_string(new string[other.d_size]),

d_size(other.d_size)

{

for (size_t idx = 0; idx != d_size; ++idx)

d_string[idx] = other.d_string[idx];

}



Apart from the plain copy construction that we encountered thus far, here are other situations where

the copy constructor is used:

• it is used when a function defines a class type value parameter rather than a pointer or a ref-

erence. The function’s argument initializes the function’s parameter using the copy constructor.

Example:

void process(Strings store) // no pointer, no reference

{

store.at(3) = "modified"; // doesn't modify `outer'
}

int main(int argc, char **argv)

{

Strings outer(argv, argc);

process(outer);

}

• it is used when a function defines a class type value return type. Example:

Strings copy(Strings const &store)

{

return store;

}

Here store is used to initialize copy’s return value. The returned Strings object is a temporary,

anonymous object that may be immediately used by code calling copy but no assumptions can be made

about its lifetime thereafter.

9.6 Revising the assignment operator

The overloaded assignment operator has characteristics also encountered with the copy constructor

and the destructor:

• The copying of (private) data occurs (1) in the copy constructor and (2) in the overloaded assign-

ment function.

• Allocated memory is deleted (1) in the overloaded assignment function and (2) in the destructor.

The copy constructor and the destructor clearly are required. If the overloaded assignment operator

also needs to return allocated memory and to assign new values to its data members couldn’t the

destructor and copy constructor be used for that?

As we’ve seen in our discussion of the destructor (section 9.2) the destructor can explicitly be called,

but that doesn’t hold true for the (copy) constructor. But let’s briefly summarize what an overloaded

assignment operator is supposed to do:

• It should delete the dynamically allocated memory controlled by the current object;

• It should reassign the current object’s data members using a provided existing object of its class.

The second part surely looks a lot like copy construction. Copy construction becomes even more at-

tractive after realizing that the copy constructor also initializes any reference data members the class

might have. Realizing the copy construction part is easy: just define a local object and initialize it using

the assignment operator’s const reference parameter, like this:

Strings &operator=(Strings const &other)



Strings tmp(other);

// more to follow

return *this;

}

You may think the optimization operator=(Strings tmp) is attractive, but let’s postpone that for a

little while (at least until section 9.7).

Now that we’ve done the copying part, what about the deleting part? And isn’t there another slight

problem as well? After all we copied all right, but not into our intended (current, ∗this) object.

At this point it’s time to introduce swapping. Swapping two variables means that the two variables

exchange their values. We’ll discuss swapping in detail in the next section, but let’s for now assume

that we’ve added a member swap(Strings &other) to our class Strings. This allows us to complete

String’s operator= implementation:

Strings &operator=(Strings const &other)

{

Strings tmp(other);

swap(tmp);

return *this;

}

This implementation of operator= is generic: it can be applied to every class whose objects are swap-

pable. How does it work?

• The information in the other object is used to initialize a local tmp object. This takes care of the

copying part of the assignment operator;

• Calling swap ensures that the current object receives its new values (with tmp receiving the

current object’s original values);

• When operator= terminates its local tmp object ceases to exist and its destructor is called. As

it by now contains the data previously owned by the current object, the current object’s original

data are now destroyed, effectively completing the destruction part of the assignment operation.

Nice?

9.6.1 Swapping

Many classes (e.g., std::string) offer swap members allowing us to swap two of their objects. The

Standard Template Library (STL, cf. chapter 18) offers various functions related to swapping. There is

even a swap generic algorithm (cf. section 19.1.61), which is commonly implemented using the assign-

ment operator. When implementing a swap member for our class Strings it could be used, provided

that all of String’s data members can be swapped. As this is true (why this is true is discussed shortly)

we can augment class Strings with a swap member:

void Strings::swap(Strings &other)

{

swap(d_string, other.d_string);

swap(d_size, other.d_size);

}

Having added this member to Strings the copy-and-swap implementation of String::operator=

can now be used.
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Figure 9.3: Swapping a linked list

When two variables (e.g., double one and double two) are swapped, each one holds the other one’s

value after the swap. So, if one == 12.50 and two == -3.14 then after swap(one, two) one ==

-3.14 and two == 12.50.

Variables of primitive data types (pointers and the built-in types) can be swapped, class-type objects

can be swapped if their classes offer a swap member.

So should we provide our classes with a swap member, and if so, how should it be implemented?

The above example (Strings::swap) shows the standard way to implement a swap member: each

of its data members are swapped in turn. But there are situations where a class cannot implement a

swap member this way, even if the class only defines data members of primitive data types. Consider

the situation depicted in figure 9.3.

In this figure there are four objects, each object has a pointer pointing to the next object. The basic

organization of such a class looks like this:

class List

{

List *d_next;

...

};

Initially four objects have their d_next pointer set to the next object: 1 to 2, 2 to 3, 3 to 4. This is

shown in the upper half of the figure. At the bottom half it is shown what happens if objects 2 and 3

are swapped: 3’s d_next point is now at object 2, which still points to 4; 2’s d_next pointer points to

3’s address, but 2’s d_next is now at object 3, which is therefore pointing to itself. Bad news!

Another situation where swapping of objects goes wrong happens with classes having data members

pointing or referring to data members of the same object. Such a situation is shown in figure 9.4.

Here, objects have two data members, as in the following class setup:

class SelfRef

{

size_t *d_ownPtr; // initialized to &d_data

size_t d_data;

};

The top-half of figure 9.4 shows two objects; their upper data members pointing to their lower data

members. But if these objects are swapped then the situation shown in the figure’s bottom half is

encountered. Here the values at addresses a and c are swapped, and so, rather than pointing to their

bottom data members they suddenly point to other object’s data members. Again: bad news.
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Figure 9.4: Swapping objects with self-referential data

The common cause of these failing swapping operations is easily recognized: simple swapping opera-

tions must be avoided when data members point or refer to data that is involved in the swapping. If, in

figure 9.4 the a and c data members would point to information outside of the two objects (e.g., if they

would point to dynamically allocated memory) then the simple swapping would succeed.

However, the difficulty encountered with swapping SelfRef objects does not imply that two SelfRef

objects cannot be swapped; it only means that we must be careful when designing swap members. Here

is an implementation of SelfRef::swap:

void SelfRef::swap(SelfRef &other)

{

swap(d_data, other.d_data);

}

In this implementation swapping leaves the self-referential data member as-is, and merely swaps the

remaining data. A similar swap member could be designed for the linked list shown in figure 9.3.

9.6.1.1 Fast swapping

As we’ve seen with placement new objects can be constructed in blocks of memory of sizeof(Class)

bytes large. And so, two objects of the same class each occupy sizeof(Class) bytes.

If objects of our class can be swapped, and if our class’s data members do not refer to data actually

involved in the swapping operation then a very fast swapping method that is based on the fact that we

know how large our objects are can be implemented.

In this fast-swap method we merely swap the content of the sizeof(Class) bytes. This procedure may

be applied to classes whose objects may be swapped using a member-by-member swapping operation

and can (in practice, although this probably overstretches the allowed operations as described by the

C++ ANSI/ISO standard) also be used in classes having reference data members. It simply defines a

buffer of sizeof(Class) bytes and performs a circular memcpy operation. Here is its implementation

for a hypothetical class Class. It results in very fast swapping:

#include <cstring>

void Class::swap(Class &other)



char buffer[sizeof(Class)];

memcpy(buffer, &other, sizeof(Class));

memcpy(static_cast<void *>(&other), this, sizeof(Class));

memcpy(static_cast<void *>(this), buffer, sizeof(Class));

}

The static_cast for memcpy’s destination address is used to prevent a compiler complaint: since

Class is a class-type, the compiler (rightly) warns against bluntly copying bytes. But using memcpy is

fine if you’re Class’s developer and know what you’re doing.

Here is a simple example of a class defining a reference data member and offering a swap member

implemented like the one above. The reference data members are initialized to external streams. After

running the program one contains two hello to 1 lines, two contains two hello to 2 lines (for brevity all

members of Reference are defined inline):

#include <fstream>

#include <cstring>

class Reference

{

std::ostream &d_out;

public:

Reference(std::ostream &out)

:

d_out(out)

{}

void swap(Reference &other)

{

char buffer[sizeof(Reference)];

memcpy(buffer, this, sizeof(Reference));

memcpy(static_cast<void *>(this), &other, sizeof(Reference));

memcpy(static_cast<void *>(&other), buffer,

sizeof(Reference));

}

std::ostream &out()

{

return d_out;

}

};

int main()

{

std::ofstream one{ "one" };

std::ofstream two{ "two" };

Reference ref1{ one }; // ref1/ref2 hold references to

Reference ref2{ two }; // the streams

ref1.out() << "hello to 1\n"; // generate some output

ref2.out() << "hello to 2\n";

ref1.swap(ref2);

ref2.out() << "hello to 1\n"; // more output

ref1.out() << "hello to 2\n";

}



does not corrupt its objects, when swapped.

9.7 Moving data

Traditionally, C++ offered two ways to assign the information pointed to by a data member of a tem-

porary object to an lvalue object. Either a copy constructor or reference counting had to be used. In

addition to these two methods C++ now also supports move semantics, allowing transfer of the data

pointed to by a temporary object to its destination.

Moving information is based on the concept of anonymous (temporary) data. Temporary values are

returned by functions like operator-() and operator+(Type const &lhs, Type const &rhs),

and in general by functions returning their results ‘by value’ instead of returning references or pointers.

Anonymous values are always short-lived. When the returned values are primitive types (int,

double, etc.) nothing special happens, but if a class-type object is returned by value then its de-

structor can be called immediately following the function call that produced the value. In any case, the

value itself becomes inaccessible immediately after the call. Of course, a temporary return value may

be bound to a reference (lvalue or rvalue), but as far as the compiler is concerned the value now has a

name, which by itself ends its status as a temporary value.

In this section we concentrate on anonymous temporary values and show how they can be used to im-

prove the efficiency of object construction and assignment. These special construction and assignment

methods are known as move construction and move assignment. Classes supporting move operations

are called move-aware.

Classes allocating their own memory usually benefit from becoming move-aware. But a class does not

have to use dynamic memory allocation before it can benefit from move operations. Most classes using

composition (or inheritance where the base class uses composition) can benefit from move operations

as well.

Movable parameters for class Class take the form Class &&tmp. The parameter is an rvalue reference,

and a rvalue reference only binds to an anonymous temporary value. The compiler is required to call

functions offering movable parameters whenever possible. This happens when the class defines func-

tions supporting Class && parameters and an anonymous temporary value is passed to such functions.

Once a temporary value has a name (which already happens inside functions defining Class const

& or Class &&tmp parameters as within such functions the names of these parameters are available)

it is no longer an anonymous temporary value, and within such functions the compiler no longer calls

functions expecting anonymous temporary values when the parameters are used as arguments.

The next example (using inline member implementations for brevity) illustrates what happens if a

non-const object, a temporary object and a const object are passed to functions fun for which these

kinds of parameters were defined. Each of these functions call a function gun for which these kinds of

parameters were also defined. The first time fun is called it (as expected) calls gun(Class &). Then

fun(Class &&) is called as its argument is an anonymous (temporary) object. However, inside fun the

anonymous value has received a name, and so it isn’t anonymous anymore. Consequently, gun(Class

&) is called once again. Finally fun(Class const &) is called, and (as expected) gun(Class const

&) is now called.

#include <iostream>

using namespace std;

class Class

{

public:

Class()

{};

void fun(Class const &other)



cout << "fun: Class const &\n";

gun(other);

}

void fun(Class &other)

{

cout << "fun: Class &\n";

gun(other);

}

void fun(Class &&tmp)

{

cout << "fun: Class &&\n";

gun(tmp);

}

void gun(Class const &other)

{

cout << "gun: Class const &\n";

}

void gun(Class &other)

{

cout << "gun: Class &\n";

}

void gun(Class &&tmp)

{

cout << "gun: Class &&\n";

}

};

int main()

{

Class c1;

c1.fun(c1);

c1.fun(Class());

Class const c0;

c1.fun(c0);

}

Generally it is pointless to define a function having an rvalue reference return type. The compiler

decides whether or not to use an overloaded member expecting an rvalue reference on the basis of

the provided argument. If it is an anonymous temporary it calls the function defining the rvalue

reference parameter, if such a function is available. An rvalue reference return type is used, e.g.,

with the std::move call, to keep the rvalue reference nature of its argument, which is known to be a

temporary anonymous object. Such a situation can be exploited also in a situation where a temporary

object is passed to (and returned from) a function which must be able to modify the temporary object.

The alternative, passing a const &, is less attractive as it requires a const_cast before the object

can be modified. Here is an example:

std::string &&doubleString(std::string &&tmp)

{

tmp += tmp;

return std::move(tmp);

}

This allows us to do something like

std::cout << doubleString("hello "s);



The compiler, when selecting a function to call applies a fairly simple algorithm, and also considers

copy elision. This is covered shortly (section 9.8).

9.7.1 The move constructor (dynamic data)

Our class Strings has, among other members, a data member string ∗d_string. Clearly, Strings

should define a copy constructor, a destructor and an overloaded assignment operator.

Now consider the following function loadStrings(std::istream &in) extracting the strings for

a Strings object from in. Next, the Strings object filled by loadStrings is returned by value.

The function loadStrings returns a temporary object, which can then used to initialize an external

Strings object:

Strings loadStrings(std::istream &in)

{

Strings ret;

// load the strings into 'ret'

return ret;

}

// usage:

Strings store(loadStrings(cin));

In this example two full copies of a Strings object are required:

• initializing loadString’s value return type from its local Strings ret object;

• initializing store from loadString’s return value

We can improve the above procedure by defining a move constructor. Here is the declaration of the

Strings class move constructor:

Strings(Strings &&tmp);

Move constructors of classes using dynamic memory allocation are allowed to assign the values of

pointer data members to their own pointer data members without requiring them to make a copy of

the source’s data. Next, the temporary’s pointer value is set to zero to prevent its destructor from

destroying data now owned by the just constructed object. The move constructor has grabbed or stolen

the data from the temporary object. This is OK as the temporary object cannot be referred to again (as

it is anonymous, it cannot be accessed by other code) and the temporary objects cease to exist shortly

after the constructor’s call. Here is the implementation of Strings move constructor:

Strings::Strings(Strings &&tmp)

:

d_string(tmp.d_string),

d_size(tmp.d_size),

d_capacity(tmp.d_capacity)

{

tmp.d_string = 0;

tmp.d_size = 0;

tmp.d_capacity = 0;

}

Move construction (in general: moving) must leave the object from which information was moved in a

valid state. It is not specified in what way that valid state must be realized, but a good rule of thumb



are also set to 0 when its d_string pointer is set to 0.

In section 9.5 it was stated that the copy constructor is almost always available. Almost always as

the declaration of a move constructor suppresses the default availability of the copy constructor. The

default copy constructor is also suppressed if a move assignment operator is declared (cf. section 9.7.3).

The following example shows a simple class Class, declaring a move constructor. In the main function

following the class interface a Class object is defined which is then passed to the constructor of a

second Class object. Compilation fails with the compiler reporting:

error: cannot bind 'Class' lvalue to 'Class&&'

error: initializing argument 1 of 'Class::Class(Class&&)'

class Class

{

public:

Class() = default;

Class(Class &&tmp)

{}

};

int main()

{

Class one;

Class two{ one };

}

The cure is easy: after declaring a (possibly default) copy constructor the error disappears:

class Class

{

public:

Class() = default;

Class(Class const &other) = default;

Class(Class &&tmp)

{}

};

int main()

{

Class one;

Class two{ one };

}

9.7.2 The move constructor (composition)

Classes not using pointer members pointing to memory controlled by its objects (and not having base

classes doing so, see chapter 13) may also benefit from overloaded members expecting rvalue references.

The class benefits from move operations when one or more of the composed data members themselves

support move operations.

Move operations cannot be implemented if the class type of a composed data member does not support

moving or copying. Currently, stream classes fall into this category.

An example of a move-aware class is the class std:string. A class Person could use composition

by defining std::string d_name and std::string d_address. Its move constructor would then

have the following prototype:



However, the following implementation of this move constructor is incorrect:

Person::Person(Person &&tmp)

:

d_name(tmp.d_name),

d_address(tmp.d_address)

{}

It is incorrect as string’s copy constructors rather than string’s move constructors are called. If

you’re wondering why this happens then remember that move operations are only performed for anony-

mous objects. To the compiler anything having a name isn’t anonymous. And so, by implication, having

available a rvalue reference does not mean that we’re referring to an anonymous object. But we know

that the move constructor is only called for anonymous arguments. To use the corresponding string

move operations we have to inform the compiler that we’re talking about anonymous data members

as well. For this a cast could be used (e.g., static_cast<Person &&>(tmp)), but the C++-0x stan-

dard provides the function std::move to anonymize a named object. The correct implementation of

Person’s move construction is, therefore:

Person::Person(Person &&tmp)

:

d_name( std::move(tmp.d_name) ),

d_address( std::move(tmp.d_address) )

{}

The function std::move is (indirectly) declared by many header files. If no header is already declaring

std::move then include utility.

When a class using composition not only contains class type data members but also other types of data

(pointers, references, primitive data types), then these other data types can be initialized as usual.

Primitive data type members can simply be copied; references can be initialized as usual and pointers

may use move operations as discussed in the previous section.

The compiler never calls move operations for variables having names. Let’s consider the implications

of this by looking at the next example, assuming the class Class offers a move constructor and a copy

constructor:

Class factory();

void fun(Class const &other); // a

void fun(Class &&tmp); // b

void callee(Class &&tmp)

{

fun(tmp); // 1

}

int main()

{

callee(factory());

}

• At 1 function a is called. At first sight this might be surprising, but fun’s argument is not an

anonymous temporary object but a named temporary object.

Realizing that fun(tmp) might be called twice the compiler’s choice is understandable. If tmp’s data

would have been grabbed at the first call, the second call would receive tmpwithout any data. But at the



&&) is called. For this, once again, std::move is used:

fun(std::move(tmp)); // last call!

9.7.3 Move-assignment

In addition to the overloaded assignment operator a move assignment operator may be implemented

for classes supporting move operations. In this case, if the class supports swapping the implementation

is surprisingly simple. No copy construction is required and the move assignment operator can simply

be implemented like this:

Class &operator=(Class &&tmp)

{

swap(tmp);

return *this;

}

If swapping is not supported then the assignment can be performed for each of the data members in

turn, using std::move as shown in the previous section with a class Person. Here is an example

showing how to do this with that class Person:

Person &operator=(Person &&tmp)

{

d_name = std::move(tmp.d_name);

d_address = std::move(tmp.d_address);

return *this;

}

As noted previously (section 9.7.1) declaring a move assignment operator suppresses the default avail-

ability of the copy constructor. It is made available again by declaring the copy constructor in the

class’s interface (and of course by providing an explicit implementation or by using the = default

default implementation).

9.7.4 Revising the assignment operator (part II)

Now that we’ve familiarized ourselves with the overloaded assignment operator and the move-

assignment, let’s once again have a look at their implementations for a class Class, supporting swap-

ping through its swap member. Here is the generic implementation of the overloaded assignment

operator:

Class &operator=(Class const &other)

{

Class tmp{ other };

swap(tmp);

return *this;

}

and this is the move-assignment operator:

Class &operator=(Class &&tmp)

{

swap(tmp);

return *this;

}



the move-assignment operator’s code once a copy of the other object is available. Since the overloaded

assignment operator’s tmp object really is nothing but a temporary Class object we can use this fact by

implementing the overloaded assignment operator in terms of the move-assignment. Here is a second

revision of the overloaded assignment operator:

Class &operator=(Class const &other)

{

Class tmp{ other };

return *this = std::move(tmp);

}

9.7.5 Moving and the destructor

Once a class becomes a move-aware class one should realize that its destructor still performs its job as

implemented. Consequently, when moving pointer values from a temporary source to a destination the

move constructor should make sure that the temporary’s pointer value is set to zero, to prevent doubly

freeing memory.

If a class defines pointers to pointer data members there usually is not only a pointer that is moved,

but also a size_t defining the number of elements in the array of pointers.

Once again, consider the class Strings. Its destructor is implemented like this:

Strings::~Strings()

{

for (string **end = d_string + d_size; end-- != d_string; )

delete *end;

delete[] d_string;

}

The move constructor (and other move operations!) must realize that the destructor not only deletes

d_string, but also considers d_size. A member implementing move operations should therefore not

only set d_string to zero but also d_size. The previously shown move constructor for Strings is

therefore incorrect. Its improved implementation is:

Strings::Strings(Strings &&tmp)

:

d_string(tmp.d_string),

d_size(tmp.d_size),

d_capacity(tmp.d_capacity)

{

tmp.d_string = 0;

tmp.d_size = 0;

}

If operations by the destructor all depend on d_string having a non-zero value then variations of the

above approach are possible. The move operations could merely set d_string to 0, testing whether

d_string == 0 in the destructor (and if so, end the destructor’s actions). In the latter variant the

d_size assignment can be omitted.

9.7.6 Move-only classes

Classes may very well allow move semantics without offering copy semantics. Most stream classes

belong to this category. Extending their definition with move semantics greatly enhances their us-



returning an object constructed by the function) can easily be implemented. E.g.,

// assume char *filename

ifstream inStream(openIstream(filename));

For this example to work an ifstream constructor must offer a move constructor. This ensures that

only one object refers to the open istream.

Once classes offer move semantics their objects can also safely be stored in standard containers (cf.

chapter 12). When such containers perform reallocations (e.g., when their sizes are enlarged) they use

the object’s move constructors rather than their copy constructors. As move-only classes suppress copy

semantics containers storing objects of move-only classes implement the correct behavior in that it is

impossible to assign such containers to each other.

9.7.7 Default move constructors and assignment operators

As we’ve seen, classes by default offer a copy constructor and assignment operator. These class mem-

bers are implemented so as to provide basic support: data members of primitive data types are copied

byte-by-byte, but for class type data members their corresponding copy constructors c.q. assignment

operators are called. The compiler also attempts to provide default implementations for move con-

structors and move assignment operators. However, the default constructors and assignment operators

cannot always be provided.

These are the rules the compiler applies when deciding what to provide or not to provide:

• If the copy constructor or the copy assignment operator is declared, then the default move con-

structor and move assignment operator are suppressed; their use is replaced by the corresponding

copy operation (constructor or assignment operator);

• If the move constructor or the move assignment operator is declared then the copy constructor

and the copy assignment operator are implicitly declared as deleted, and can therefore not be

used anymore;

• If either the move constructor or the move assignment operator is declared, then (in addition to

suppressing the copy operations) the default implementation of the other move-member is also

suppressed;

• In all other cases the default copy and move constructors and the default copy and assignment

operators are provided.

If default implementations of copy or move constructors or assignment operators are suppressed, but

they should be available, then it’s easy to provide the default implementations by specifying the re-

quired signatures, to which the specification ‘= default’ is added.

Here is an example of a class offering all defaults: constructor, copy constructor, move constructor, copy

assignment operator and move assignment operator:

class Defaults

{

int d_x;

Mov d_mov;

};

Assuming that Mov is a class offering move operations in addition to the standard copy operations, then

the following actions are performed on the destination’s d_mov and d_x:

Defaults factory();



int main()

{ Mov operation: d_x:

---------------------------

Defaults one; Mov(), undefined

Defaults two(one); Mov(Mov const &), one.d_x

Defaults three(factory()); Mov(Mov &&tmp), tmp.d_x

one = two; Mov::operator=( two.d_x

Mov const &),

one = factory(); Mov::operator=( tmp.d_x

Mov &&tmp)

}

If, Defaults declares at least one constructor (not being the copy- or move constructor) as well as the

copy assignment operators then only the default copy- and declared assignment operator are available.

E.g.:

class Defaults

{

int d_x;

Mov d_mov;

public:

Defaults(int x);

Defaults &operator=(Default const &rhs);

};

Defaults factory();

int main()

{ Mov operation: resulting d_x:

--------------------------------

Defaults one; ERROR: not available

Defaults two(one); Mov(Mov const &), one.d_x

Defaults three(factory()); Mov(Mov const &), one.d_x

one = two; Mov::operatpr=( two.d_x

Mov const &)

one = factory(); Mov::operator=( tmp.d_x

Mov const &)

}

To reestablish the defaults, append = default to the appropriate declarations:

class Defaults

{

int d_x;

Mov d_mov;

public:

Defaults() = default;

Defaults(int x);

// Defaults(Default const &) remains available (by default)

Defaults(Defaults &&tmp) = default;



Defaults &operator=(Defaults &&tmp) = default;

};

Be cautious declaring defaults, as default implementations copy data members of primitive types byte-

by-byte from the source object to the destination object. This is likely to cause problems with pointer

type data members.

The = default suffix can only be used when declaring constructors or assignment operators in the

class’s public section.

9.7.8 Moving: implications for class design

Here are some general rules to apply when designing classes offering value semantics (i.e., classes

whose objects can be used to initialize other objects of their class and that can be asssigned to other

objects of their class):

• Classes using pointers to dynamically allocated memory, owned by the class’s objects must be

provided with a copy constructor, an overloaded copy assignment operator and a destructor;

• Classes using pointers to dynamically allocated memory, owned by the class’s objects, should be

provided with a move constructor and a move assignment operator;

• Classes using composition may benefit from move constructors and move assignment operators

as well. Some classes support neither move nor copy construction and assignment (for example:

stream classes don’t). If your class contains data members of such class types then defining move

operations is pointless.

In the previous sections we’ve also encountered an important design principle that can be applied to

move-aware classes:

Whenever a member of a class receives a const & to an object of its own class and creates a

copy of that object to perform its actual actions on, then that function’s implementation can

be implemented by an overloaded function expecting an rvalue reference.

The former function can now call the latter by passing std::move(tmp) to it. The advantages of this

design principle should be clear: there is only one implementation of the actual actions, and the class

automatically becomes move-aware with respect to the involved function.

We’ve seen an initial example of the use of this principle in section 9.7.4. Of course, the principle cannot

be applied to the copy constructor itself, as you need a copy constructor to make a copy. The copy- and

move constructors must always be implemented independently from each other.

9.8 Copy Elision and Return Value Optimization

When the compiler selects a member function (or constructor) it applies a simple set of rules, matching

arguments with parameter types.

Below two tables are shown. The first table should be used in cases where a function argument has a

name, the second table should be used in cases where the argument is anonymous. In each table select

the const or non-const column and then use the topmost overloaded function that is available having

the specified parameter type.

The tables do not handle functions defining value parameters. If a function has overloads expecting,

respectively, a value parameter and some form of reference parameter the compiler reports an ambigu-

ity when such a function is called. In the following selection procedure we may assume, without loss of

generality, that this ambiguity does not occur and that all parameter types are reference parameters.



• a named argument (an lvalue or a named rvalue)

the argument is:

non-const const

Use the topmost (T &)

available function (T const &) (T const &)

Example: for an int x argument a function fun(int &) is selected rather than a function

fun(int const &). If no fun(int &) is available the fun(int const &) function is used.

If neither is available (and fun(int) hasn’t been defined instead) the compiler reports an error.

• an anonymous argument (an anonymous temporary or a literal value)

the argument is:

non-const const

Use the topmost (T &&)

available function (T const &) (T const &)

Example: when the return value of an int arg() function is passed to a function fun for which

various overloaded versions are available fun(int &&) is selected. If this function is unavailable

but fun(int const &) is, then the latter function is used. If none of these two functions is

available the compiler reports an error.

The tables show that eventually all arguments can be used with a function specifying a T const &

parameter. For anonymous arguments a similar catch all is available having a higher priority: T const

&& matches all anonymous arguments. Functions having this signature are normally not defined as

their implementations are (should be) identical to the implementations of the functions expecting a

T const & parameter. Since the temporary can apparently not be modified a function defining a T

const && parameter has no alternative but to copy the temporary’s resources. As this task is already

performed by functions expecting a T const &, there is no need for implementing functions expecting

T const && parameters, and it’s considered bad style if you do.

As we’ve seen the move constructor grabs the information from a temporary for its own use. That is

OK as the temporary is going to be destroyed after that anyway. It also means that the temporary’s

data members are modified.

Having defined appropriate copy and/or move constructors it may be somewhat surprising to learn that

the compiler may decide to stay clear of a copy or move operation. After all making no copy and not

moving is more efficient than copying or moving.

The option the compiler has to avoid making copies (or perform move operations) is called copy elision

or return value optimization. In all situations where copy or move constructions are appropriate the

compiler may apply copy elision. Here are the rules. In sequence the compiler considers the following

options, stopping once an option can be selected:

• if a copy or move constructor exists, try copy elision

• if a move constructor exists, move.

• if a copy constructor exists, copy.

• report an error

All modern compilers apply copy elision. Here are some examples where it may be encountered:

class Elide;

Elide fun() // 1



Elide ret;

return ret;

}

void gun(Elide par);

Elide elide(fun()); // 2

gun(fun()); // 3

• At 1 ret may never exist. Instead of using ret and copying ret eventually to fun’s return value

it may directly use the area used to contain fun’s return value.

• At 2 fun’s return value may never exist. Instead of defining an area containing fun’s return

value and copying that return value to elide the compiler may decide to use elide to create

fun’s return value in.

• At 3 the compiler may decide to do the same for gun’s par parameter: fun’s return value is

directly created in par’s area, thus eliding the copy operation from fun’s return value to par.

9.9 Unrestricted Unions

We end this chapter about abstract containers with a small detour, introducing extensions to the union

concept. Although unions themselves aren’t ‘abstract containers’, having covered containers puts us in

a good position to introduce and illustrate unrestricted unions.

Whereas traditional unions can only contain primitive data, unrestricted unions allow addition of data

fields of types for which non-trivial constructors were defined. Such data fields commonly are of class-

types. Here is an example of such an unrestricted union:

union Union

{

int u_int;

std::string u_string;

};

One of its fields is defined as a std::string (having a constructor), turning this union into an unre-

stricted union. As an unrestricted union defines at least one field of a type having a constructor the

question becomes how these unions can be constructed and destroyed.

The destructor of a union consisting of, e.g. a std::string and an int should of course not call

the string’s destructor if the union’s last (or only) use referred to its int field. Likewise, when

the std::string field is used, and processing switches from the std::string to the int field,

std::string’s destructor should be called before any assignment to the int field takes place.

The compiler does not solve the issue for us, and in fact does not at all implement default constructors

or destructors for unrestricted unions. If we try to define an unrestricted union like the one shown

above, an error message is issued. E.g.,

error: use of deleted function 'Union::Union()'

error: 'Union::Union()' is implicitly deleted because the default

definition would be ill-formed:

error: union member 'Union::u_string' with non-trivial

'std::basic_string<...>::basic_string() ...'



Although the compiler won’t provide (default) implementations for constructors and destructors of un-

restricted unions, we can (and must). The task isn’t difficult, but there are some caveats.

Consider our unrestricted union’s destructor. It clearly should destroy u_string’s data if that is its

currently active field; but it should do nothing if u_int is its currently active field. But how does the

destructor know what field to destroy? It doesn’t, as the unrestricted union contains no information

about what field is currently active.

This problem is tackled by embedding the unrestricted union in a larger aggregate (like a class or a

struct) where it becomes a regular data member. We still consider the unrestricted union a data type

by itself, but its use requires caution. The surrounding class is provided with a d_field data member

keeping track of the currently active union-field. The d_field value is an enumeration value which is

defined by the union. The actual use of the unrestricted union is completely controlled by the aggregate,

freeing the aggregate’s users from any administration related to the unrestricted union.

Using this design we start out with an explicit and empty implementation of the destructor, as there’s

no way to tell the destructor itself what field to destroy:

Data::Union::~Union()

{};

Nevertheless, unrestricted unions must properly destroy their class-type fields. Since an unrestricted

union itself doesn’t know what its active field is, it must be informed about that by its surrounding

class. To simplify the generalization to other types a static array of pointers to functions destroying the

current field’s value is used. This array is defined in the union’s private section as

static void (Union::*s_destroy[])();

and it is initialized as:

void (Union::*Union::s_destroy[])() =

{

&Union::destroyText,

&Union::destroyValue

};

Primitive data types normally don’t need any special attention when they go out of scope, so

destroyValue can be defined as an empty function:

void Union::destroyValue()

{}

On the other hand, the member destroyText must explicitly call u_text’s destructor:

void Union::destroyText()

{

u_text.std::string::~string();

}

Proper destruction can now be realized by a single function void destroy(Field field) which

simply calls the appropriate function:

void Union::destroy(Field type)

{

(this->*s_destroy[type])();

}



destructor is responsible for the proper destruction of its unrestricted union. As the surrounding class

keeps track of the currently active unrestricted union’s field its implementation is easy:

Data::~Data()

{

d_union.destroy(d_field);

}

9.9.2 Embedding an unrestricted union in a surrounding class

The unrestricted union becomes a data member of the surrounding aggregate (e.g., class Data). The

class Data is provided with a data member Union::Field d_field and Data’s users might query

the currently active field from, e.g., an accessor field:

class Data

{

Union::Field d_field;

Union d_union;

public:

Data(int value = 0);

Data(Data const &other);

Data(Data &&tmp);

Data(std::string const &text);

~Data(); // empty body

Union::Field field() const;

...

};

Data’s constructors receive int or string values. To pass these values to d_union, we need Union

constructors for the various union fields.

The unrestricted union itself starts out like this:

union Union

{

enum Field

{

TEXT,

VALUE

};

private:

std::string u_text;

int u_value;

public:

Union(Union const &other) = delete;

~Union(); // empty

Union(int value);

Union(std::string const &text);

Union(Union const &other, Field type);



...

};

The last two Union constructors are comparable to the standard copy- and move constructors. With

unrestricted unions, however, the existing union’s actual type needs to be specified so that the correct

field is initialized. To simplify the generalization to other types we apply a procedure that is comparable

to the procedure we followed for destroying an understricted union: we define a static array of pointers

to copy-functions. This array is declared in the union’s private section as

static void (Union::*s_copy[])(Union const &other);

and it is defined as:

void (Union::*Union::s_copy[])(Union const &other) =

{

&Union::copyText,

&Union::copyValue

};

The copyText and copyValue private members are responsible for copying other’s data fields. How-

ever, there is a little snag. Although basic types can directly be assigned, class-type fields cannot. Des-

tination fields cannot be initialized using member initializers as the field to initialize depends on the

Field type that’s passed to the constructor. Because of that the initialization must be performed inside

the constructors’ bodies. At that point the data fields are merely a series of uninitialized bytes, and so

placement new is used to copy-construct class-type fields. Here are the implementations of the copy

functions:

void Union::copyValue(Union const &other)

{

u_value = other.u_value;

}

void Union::copyText(Union const &other)

{

new(&u_text) string{ other.u_text };

}

When implementing the union’s move constructor other considerations must be taken into account.

Since we’re free to do whatever we want with the move constructor’s Union &&tmp object, we can sim-

ply grab its current field, and store a VALUE type of value into tmp. For that we use the Union’s

swap facility, the current object’s field, another Union object, and the other Union’s field type (swap-

ping is discussed in the next section). Of course, if there isn’t any primitive typed field this doesn’t

work. In that case field-specific move functions must be used, comparable to the ones used when copy-

constructing a Union object.

Now we’re ready for the constructors’ implementations:

Union::Union(std::string const &text)

:

u_text(text)

{}

Union::Union(int value)

:

u_value(value)

{}



Union::Union(Union &&tmp, Field type)

{

swap(VALUE, tmp, type);

}

Union::Union(Union const &other, Field type)

{

(this->*s_copy[type])(other);

}

Data::Data(Data const &other)

:

d_field(other.d_field),

d_union(other.d_union, d_field)

{}

Data::Data(int value)

:

d_field(Union::VALUE),

d_union(value)

{}

Data::Data(Data const &other)

:

d_field(other.d_field),

d_union(other.d_union, d_field)

{}

9.9.3 Swapping unrestricted unions

Unrestricted unions should define a non-throwing swapmember. It needs three arguments: the current

object’s field, another union object, and that union’s field. The prototype of our unrestricted union’s

swap member, therefore, is:

void swap(Field current, Union &other, Field next);

To implement it similar considerations as encountered with the copy constructor apply. An unrestricted

union having k fields must support k ∗ k different swap situations. Representing these in a k ∗ k

matrix we note that the diagonal elements refer to swapping identical elements for which no special

considerations apply (assuming swapping of identical data types is supported). The lower-triangle

elements are identical to their transposed upper-triangle elements, and so they can use those elements

after reverting the current and other union objects. All field-specific swap functions can be organized

in a k x k static matrix of pointers to swapping members. For Union the declaration of that matrix is

static void (Union::*s_swap[][2])(Union &other);

and its definition is

void (Union::*Union::s_swap[][2])(Union &other) =

{

{ &Union::swap2Text, &Union::swapTextValue},

{ &Union::swapValueText, &Union::swap2Value},

};

The diagonal and lower-triangle elements are straightforwardly implemented. E.g.,



{

u_text.swap(other.u_text);

}

void Union::swapValueText(Union &other)

{

other.swapTextValue(*this);

}

but implementing the upper-triangle elements requires some thought. To install a class-type field

placement new must again be used. But this time we’re not copying but moving, as the current ob-

ject is going to lose its content. Like swapping, moving should always succeed. Following the move

construction the other object has received the current object’s data. As the current object keeps its

valid state after the move, it must also explicitly be destroyed to properly end its lifetime. Here is the

implementation of swapTextValue:

void Union::swapTextValue(Union &other)

{

int value = other.u_value; // save the int value

// install string at other

new(&other.u_text) string{ std::move(u_text) };

u_text.~string(); // remove the old field's union

u_value = value; // store current's new value

}

When an unrestricted union has multiple class-type fields then when swapping move construction

must be applied to both unrestricted unions. This requires a temporary. Assume an unrestricted union

supports fields of classes This and That then to swap unrestricted unions using, respectively the This

and That fields we do as follows:

void ThisThat::swapThisThat(ThisThat &other)

{

This tmp{ std::move(u_this) }; // save the current object

u_this.~This(); // properly destroy it

// install the other object at

// this object

new(&u_that) That{ std::move(other.u_that) };

other.u_that.~That(); // properly destroy the other

// object

// install this object's original

// value at the other object

new(&other.u_this) This{ std::move(tmp) };

} // tmp is automatically destroyed

Now that unrestricted unions can be swapped, their swap member can be used by swap members of

surrounding classes. E.g.,

void Data::swap(Data &other)

{

d_union.swap(d_field, other.d_union, other.d_field);

Union::Field field = d_field; // swap the fields



other.d_field = field;

}

9.9.4 Assignment

There are two ways to assign a Data object to another one: copy assignment and move assignment.

Their implementations are standard:

Data &Data::operator=(Data const &other) // copy-assignment

{

Data tmp{ other };

swap(tmp);

return *this;

}

Data &Data::operator=(Data &&tmp) // move-assignment

{

swap(tmp);

return *this;

}

Since swap has already been defined the assignment operators need no further attention: they are

implemented using their standard implementations.

When unrestricted unions are used outside of surrounding classes a situation may arise where two

unrestricted unions are directly assigned to each other. In that case the unions’ active fields must

somehow be available. Since operator= can only be defined having one parameter, simply passing an

unrestricted union as its rvalue would lack information about the lvalue’s and rvalue’s active fields.

Instead two members are suggested: copy, doing copy assignment and move, doing move assignment.

Their implementations closely resemble those of the standard assignment operators:

void Union::copy(Field type, Union const &other, Field next)

{

Union tmp{ other, next }; // create a copy

swap(type, tmp, next); // swap *this and tmp

tmp.destroy(type); // destroy tmp

}

void Union::move(Field type, Union &&tmp, Field next)

{

swap(type, tmp, next);

}

In the source distribution you’ll find a directory yo/memory/examples/unions. It contains a small

demo-program in which Union and Data are used.

9.10 Aggregate Data Types

C++ inherited the struct concept from C and extended it with the class concept. Structs are still used

in C++, mainly to store and pass around aggregates of different data types. A commonly used term for

these structs is aggregate (in some languages known as plain old data (pod)). Aggregates are commonly

used in C++ programs to merely combine data in dedicated (struct) types. E.g., when a function must

return a double, a bool and std::string these three different data types may be aggregated using

a struct that merely exists to pass along values. Data protection and functionality is hardly ever an



access rights some members (constructors, destructor, overloaded assignment operator) may implicitly

be defined. The aggregates capitalizes on this concept by requiring that its definition remains as simple

as possible. Aggregates show the following characteristics:

• there are no user provided constructors or user provided inherited constructors (cf. chapter 13);

• its non-static data members have public access rights;

• no virtual members;

• when using inheritance, the base classes aren’t virtual and only public inheritance is used.

Aggregates can also be arrays, in which case the array elements are the aggregate’s elements. If an

aggregate is a struct its direct base classes are its elements (if any), followed by the struct’s data

members, in their declaration order. Here is an example:

struct Outer

{

struct Inner

{

int d_int;

double d_double;

};

std::string d_string;

Inner d_inner;

};

Outer out{ "hello", { 1, 12.5} };

Outer out’s d_string is initialized with hello", its d_inner member has two data members:

d_int is initialized to 1, d_double to 12.5.

(Designated) initializer lists can also be used (cf. section 3.3.5). Also, often structured binding declara-

tions (cf. section 3.3.7.1) can be used to avoid explicitly defining an aggregate data type.

9.11 Conclusion

Four important extensions to classes were introduced in this chapter: the destructor, the copy con-

structor, the move constructor and the overloaded assignment operator. In addition the importance of

swapping, especially in combination with the overloaded assignment operator, was stressed.

Classes having pointer data members, pointing to dynamically allocated memory controlled by the

objects of those classes, are potential sources of memory leaks. The extensions introduced in this

chapter implement the standard defense against such memory leaks.

Encapsulation (data hiding) allows us to ensure that the object’s data integrity is maintained. The

automatic activation of constructors and destructors greatly enhance our capabilities to ensure the

data integrity of objects doing dynamic memory allocation.

A simple conclusion is therefore that classes whose objects allocate memory controlled by themselves

must at least implement a destructor, an overloaded assignment operator and a copy constructor. Im-

plementing a move constructor remains optional, but it allows us to use factory functions with classes

not allowing copy construction and/or assignment.

In the end, assuming the availability of at least a copy or move constructor, the compiler might avoid

them using copy elision. The compiler is free to use copy elision wherever possible; it is, however, never



where otherwise a copy or move constructor would have been used the compiler may consider to use

copy elision.



Chapter 10

Exceptions

C supports several ways for a program to react to situations breaking the normal unhampered flow of

a program:

• The function may notice the abnormality and issue a message. This is probably the least disas-

trous reaction a program may show.

• The function in which the abnormality is observed may decide to stop its intended task, returning

an error code to its caller. This is a great example of postponing decisions: now the calling function

is faced with a problem. Of course the calling function may act similarly, by passing the error code

up to its caller.

• The function may decide that things are going out of hand, and may call exit to terminate the

program completely. A tough way to handle a problem if only because the destructors of local

objects aren’t activated.

• The function may use a combination of the functions setjmp and longjmp to enforce non-local

exits. This mechanism implements a kind of goto jump, allowing the program to continue at an

outer level, skipping the intermediate levels which would have to be visited if a series of returns

from nested functions would have been used.

In C++ all these flow-breaking methods are still available. However, of the mentioned alternatives,

setjmp and longjmp isn’t frequently encountered in C++ (or even in C) programs, due to the fact that

the program flow is completely disrupted.

C++ offers exceptions as the preferred alternative to, e.g., setjmp and longjmp. Exceptions allow C++

programs to perform a controlled non-local return, without the disadvantages of longjmp and setjmp.

Exceptions are the proper way to bail out of a situation which cannot be handled easily by a function

itself, but which is not disastrous enough for a program to terminate completely. Also, exceptions

provide a flexible layer of control between the short-range return and the crude exit.

In this chapter exceptions are covered. First an example is given of the different impact exceptions

and the setjmp/longjmp combination have on programs. This example is followed by a discussion

of the formal aspects of exceptions. In this part the guarantees our software should be able to offer

when confronted with exceptions are presented. Exceptions and their guarantees have consequences

for constructors and destructors. We’ll encounter these consequences at the end of this chapter.

10.1 Exception syntax

Before contrasting the traditional C way of handling non-local gotos with exceptions let’s introduce the

syntactic elements that are involved when using exceptions.
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of a certain type, throws the expression value as an exception. In C++ anything having value

semantics may be thrown as an exception: an int, a bool, a string, etc. However, there also

exists a standard exception type (cf. section 10.8) that may be used as base class (cf. chapter 13)

when defining new exception types.

• Exceptions are generated within a well-defined local environment, called a try-block. The run-

time support system ensures that all of the program’s code is itself surrounded by a global try

block. Thus, every exception generated by our code will always reach the boundary of at least

one try-block. A program terminates when an exception reaches the boundary of the global try

block, and when this happens destructors of local and global objects that were alive at the point

where the exception was generated are not called. This is not a desirable situation and therefore

all exceptions should be generated within a try-block explicitly defined by the program. Here is

an example of a string exception thrown from within a try-block:

try

{

// any code can be defined here

if (someConditionIsTrue)

throw "this is the std::string exception"s;

// any code can be defined here

}

• catch: Immediately following the try-block, one or more catch-clauses must be defined. A

catch-clause consists of a catch-header defining the type of the exception it can catch followed by

a compound statement defining what to do with the caught exception:

catch (string const &msg)

{

// statements in which the caught string object are handled

}

Multiple catch clauses may appear underneath each other, one for each exception type that has

to be caught. In general the catch clauses may appear in any order, but there are exceptions

requiring a specific order. To avoid confusion it’s best to put a catch clause for the most general

exception last. At most one exception clause will be activated. C++ does not support a Java-style

finally-clause activated after completing a catch clause.

10.2 An example using exceptions

In the following examples the same basic program is used. The program uses two classes, Outer and

Inner.

First, an Outer object is defined in main, and its member Outer::fun is called. Then, in Outer::fun

an Inner object is defined. Having defined the Inner object, its member Inner::fun is called.

That’s about it. The function Outer::fun terminates calling inner’s destructor. Then the program

terminates, activating outer’s destructor. Here is the basic program:

#include <iostream>

using namespace std;

class Inner

{

public:

Inner();

~Inner();

void fun();



Inner::Inner()

{

cout << "Inner constructor\n";

}

Inner::~Inner()

{

cout << "Inner destructor\n";

}

void Inner::fun()

{

cout << "Inner fun\n";

}

class Outer

{

public:

Outer();

~Outer();

void fun();

};

Outer::Outer()

{

cout << "Outer constructor\n";

}

Outer::~Outer()

{

cout << "Outer destructor\n";

}

void Outer::fun()

{

Inner in;

cout << "Outer fun\n";

in.fun();

}

int main()

{

Outer out;

out.fun();

}

/*
Generated output:

Outer constructor

Inner constructor

Outer fun

Inner fun

Inner destructor

Outer destructor

*/

After compiling and running, the program’s output is entirely as expected: the destructors are called

in their correct order (reversing the calling sequence of the constructors).

Now let’s focus our attention on two variants in which we simulate a non-fatal disastrous event in the

Inner::fun function. This event must supposedly be handled near main’s end.

We’ll consider two variants. In the first variant the event is handled by setjmp and longjmp; in the



10.2.1 Anachronisms: ‘setjmp’ and ‘longjmp’

The basic program from the previous section is slightly modified to contain a variable jmp_buf jmpBuf

used by setjmp and longjmp.

The function Inner::fun calls longjmp, simulating a disastrous event, to be handled near main’s

end. In main a target location for the long jump is defined through the function setjmp. Setjmp’s zero

return indicates the initialization of the jmp_buf variable, in which case Outer::fun is called. This

situation represents the ‘normal flow’.

The program’s return value is zero only if Outer::fun terminates normally. The program, however, is

designed in such a way that this won’t happen: Inner::fun calls longjmp. As a result the execution

flow returns to the setjmp function. In this case it does not return a zero return value. Consequently,

after calling Inner::fun from Outer::fun main’s if-statement is entered and the program termi-

nates with return value 1. Try to follow these steps when studying the following program source, which

is a direct modification of the basic program given in section 10.2:

#include <iostream>

#include <setjmp.h>

#include <cstdlib>

using namespace std;

jmp_buf jmpBuf;

class Inner

{

public:

Inner();

~Inner();

void fun();

};

Inner::Inner()

{

cout << "Inner constructor\n";

}

void Inner::fun()

{

cout << "Inner fun\n";

longjmp(jmpBuf, 0);

}

Inner::~Inner()

{

cout << "Inner destructor\n";

}

class Outer

{

public:

Outer();

~Outer();

void fun();

};

Outer::Outer()



cout << "Outer constructor\n";

}

Outer::~Outer()

{

cout << "Outer destructor\n";

}

void Outer::fun()

{

Inner in;

cout << "Outer fun\n";

in.fun();

}

int main()

{

Outer out;

if (setjmp(jmpBuf) != 0)

return 1;

out.fun();

}

/*
Generated output:

Outer constructor

Inner constructor

Outer fun

Inner fun

Outer destructor

*/

This program’s output clearly shows that inner’s destructor is not called. This is a direct consequence

of the non-local jump performed by longjmp. Processing proceeds immediately from the longjmp

call inside Inner::fun to setjmp in main. There, its return value is unequal zero, and the program

terminates with return value 1. Because of the non-local jump Inner::~Inner is never executed:

upon return to main’s setjmp the existing stack is simply broken down disregarding any destructors

waiting to be called.

This example illustrates that the destructors of objects can easily be skipped when longjmp and

setjmp are used and C++ programs should therefore avoid those functions like the plague.

10.2.2 Exceptions: the preferred alternative

Exceptions are C++’s answer to the problems caused by setjmp and longjmp. Here is an example

using exceptions. The program is once again derived from the basic program of section 10.2:

#include <iostream>

using namespace std;

class Inner

{

public:

Inner();

~Inner();

void fun();

};

Inner::Inner()



cout << "Inner constructor\n";

}

Inner::~Inner()

{

cout << "Inner destructor\n";

}

void Inner::fun()

{

cout << "Inner fun\n";

throw 1;

cout << "This statement is not executed\n";

}

class Outer

{

public:

Outer();

~Outer();

void fun();

};

Outer::Outer()

{

cout << "Outer constructor\n";

}

Outer::~Outer()

{

cout << "Outer destructor\n";

}

void Outer::fun()

{

Inner in;

cout << "Outer fun\n";

in.fun();

}

int main()

{

Outer out;

try

{

out.fun();

}

catch (int x)

{}

}

/*
Generated output:

Outer constructor

Inner constructor

Outer fun

Inner fun

Inner destructor

Outer destructor

*/

Inner::fun now throws an int exception where a longjmp was previously used. Since in.fun is

called by out.fun, the exception is generated within the try block surrounding the out.fun call. As



Now Inner::fun terminates by throwing an exception instead of calling longjmp. The exception is

caught in main, and the program terminates. Now we see that inner’s destructor is properly called.

It is interesting to note that Inner::fun’s execution really terminates at the throw statement: The

cout statement, placed just beyond the throw statement, isn’t executed.

What did this example teach us?

• Exceptions provide a means to break a function’s (and program’s) normal flow without having to

use a cascade of return-statements, and without the need to terminate the program using blunt

tools like the function exit.

• Exceptions do not disrupt the proper activation of destructors. Since setjmp and longjmp do

distrupt the proper activation of destructors their use is strongly deprecated in C++.

10.3 Throwing exceptions

Exceptions are generated by throw statements. The throw keyword is followed by an expression,

defining the thrown exception value. Example:

throw "Hello world"; // throws a char *
throw 18; // throws an int

throw string{ "hello" }; // throws a string

Local objects cease to exist when a function terminates. This is no different for exceptions.

Objects defined locally in functions are automatically destroyed once exceptions thrown by these func-

tions leave these functions. This also happens to objects thrown as exceptions. However, just before

leaving the function context the object is copied and it is this copy that eventually reaches the appro-

priate catch clause.

The following examples illustrates this process. Object::fun defines a local Object toThrow, that

is thrown as an exception. The exception is caught in main. But by then the object originally thrown

doesn’t exist anymore, and main received a copy:

#include <iostream>

#include <string>

using namespace std;

class Object

{

string d_name;

public:

Object(string name)

:

d_name(name)

{

cout << "Constructor of " << d_name << "\n";

}

Object(Object const &other)

:

d_name(other.d_name + " (copy)")

{

cout << "Copy constructor for " << d_name << "\n";

}



{

cout << "Destructor of " << d_name << "\n";

}

void fun()

{

Object toThrow("'local object'");

cout << "Calling fun of " << d_name << "\n";

throw toThrow;

}

void hello()

{

cout << "Hello by " << d_name << "\n";

}

};

int main()

{

Object out{ "'main object'" };

try

{

out.fun();

}

catch (Object o)

{

cout << "Caught exception\n";

o.hello();

}

}

Object’s copy constructor is special in that it defines its name as the other object’s name to which the

string " (copy)" is appended. This allow us to monitor the construction and destruction of objects

more closely. Object::fun generates an exception, and throws its locally defined object. Just before

throwing the exception the program has produced the following output:

Constructor of 'main object'

Constructor of 'local object'

Calling fun of 'main object'

When the exception is generated the next line of output is produced:

Copy constructor for 'local object' (copy)

The local object is passed to throw where it is treated as a value argument, creating a copy of toThrow.

This copy is thrown as the exception, and the local toThrow object ceases to exist. The thrown excep-

tion is now caught by the catch clause, defining an Object value parameter. Since this is a value

parameter yet another copy is created. Thus, the program writes the following text:

Destructor of 'local object'

Copy constructor for 'local object' (copy) (copy)

The catch block now displays:

Caught exception

Following this o’s hello member is called, showing us that we indeed received a copy of the copy of the

original toThrow object:



Then the program terminates and its remaining objects are now destroyed, reversing their order of

creation:

Destructor of 'local object' (copy) (copy)

Destructor of 'local object' (copy)

Destructor of 'main object'

The copy created by the catch clause clearly is superfluous. It can be avoided by defining object ref-

erence parameters in catch clauses: ‘catch (Object &o)’. The program now produces the following

output:

Constructor of 'main object'

Constructor of 'local object'

Calling fun of 'main object'

Copy constructor for 'local object' (copy)

Destructor of 'local object'

Caught exception

Hello by 'local object' (copy)

Destructor of 'local object' (copy)

Destructor of 'main object'

Only a single copy of toThrow was created.

It’s a bad idea to throw a pointer to a locally defined object. The pointer is thrown, but the object

to which the pointer refers ceases to exist once the exception is thrown. The catcher receives a wild

pointer. Bad news....

Let’s summarize the above findings:

• Local objects are thrown as copied objects;

• Don’t throw pointers to local objects;

• It is possible to throw pointers to dynamically generated objects. In this case one must take care

that the generated object is properly deleted by the exception handler to prevent a memory leak.

Exceptions are thrown in situations where a function can’t complete its assigned task, but the program

is still able to continue. Imagine a program offering an interactive calculator. The program expects

numeric expressions, which are evaluated. Expressions may show syntactic errors or it may be math-

ematically impossible to evaluate them. Maybe the calculator allows us to define and use variables

and the user might refer to non-existing variables: plenty of reasons for the expression evaluation to

fail, and so many reasons for exceptions to be thrown. None of those should terminate the program.

Instead, the program’s user is informed about the nature of the problem and is invited to enter another

expression. Example:

if (!parse(expressionBuffer)) // parsing failed

throw "Syntax error in expression";

if (!lookup(variableName)) // variable not found

throw "Variable not defined";

if (divisionByZero()) // unable to do division

throw "Division by zero is not defined";

Where these throw statements are located is irrelevant: they may be found deeply nested inside the

program, or at a more superficial level. Furthermore, functions may be used to generate the exception



e.g.,

if (!lookup(variableName))

throw Exception() << "Undefined variable '" << variableName << "';

10.3.1 The empty ‘throw’ statement

Sometimes it is required to inspect a thrown exception. An exception catcher may decide to ignore the

exception, to process the exception, to rethrow it after inspection or to change it into another kind of

exception. For example, in a server-client application the client may submit requests to the server by

entering them into a queue. Normally every request is eventually answered by the server. The server

may reply that the request was successfully processed, or that some sort of error has occurred. On the

other hand, the server may have died, and the client should be able to discover this calamity, by not

waiting indefinitely for the server to reply.

In this situation an intermediate exception handler is called for. A thrown exception is first inspected

at the middle level. If possible it is processed there. If it is not possible to process the exception at the

middle level, it is passed on, unaltered, to a more superficial level, where the really tough exceptions

are handled.

By placing an empty throw statement in the exception handler’s code the received exception is passed

on to the next level that might be able to process that particular type of exception. The rethrown

exception is never handled by one of its neighboring exception handlers; it is always transferred to an

exception handler at a more superficial level.

In our server-client situation a function

initialExceptionHandler(string &exception)

could be designed to handle the string exception. The received message is inspected. If it’s

a simple message it’s processed, otherwise the exception is passed on to an outer level. In

initialExceptionHandler’s implementation the empty throw statement is used:

void initialExceptionHandler(string &exception)

{

if (!plainMessage(exception))

throw;

handleTheMessage(exception);

}

Below (section 10.5), the empty throw statement is used to pass on the exception received by a catch-

block. Therefore, a function like initialExceptionHandler can be used for a variety of thrown

exceptions, as long as their types match initialExceptionHandler’s parameter, which is a string.

The next example jumps slightly ahead, using some of the topics covered in chapter 14. The example

may be skipped, though, without loss of continuity.

A basic exception handling class can be constructed from which specific exception types are

derived. Suppose we have a class Exception, having a member function ExceptionType

Exception::severity. This member function tells us (little wonder!) the severity of a thrown

exception. It might be Info, Notice, Warning, Error or Fatal. The information contained in

the exception depends on its severity and is processed by a function handle. In addition, all excep-

tions support a member function like textMsg, returning textual information about the exception in a

string.

By defining a polymorphic function handle it can be made to behave differently, depending on the

nature of a thrown exception, when called from a basic Exception pointer or reference.



and Warning were derived from the class Exception, then the handle function matching the excep-

tion type will automatically be called by the following exception catcher:

//

catch(Exception &ex)

{

cout << e.textMsg() << '\n';

if

(

ex.severity() != ExceptionType::Warning

&&

ex.severity() != ExceptionType::Message

)

throw; // Pass on other types of Exceptions

ex.handle(); // Process a message or a warning

}

Now anywhere in the try block preceding the exception handler Exception objects or objects of one

of its derived classes may be thrown. All those exceptions will be caught by the above handler. E.g.,

throw Info{};

throw Warning{};

throw Notice{};

throw Error{};

throw Fatal{};

10.4 The try block

The try-block surrounds throw statements. Remember that a program is always surrounded by a

global try block, so throw statements may appear anywhere in your code. More often, though, throw

statements are used in function bodies and such functions may be called from within try blocks.

A try block is defined by the keyword try followed by a compound statement. This block, in turn, must

be followed by at least one catch handler:

try

{

// any statements here

}

catch(...) // at least one catch clause here

{}

Try-blocks are commonly nested, creating exception levels. For example, main’s code is surrounded by

a try-block, forming an outer level handling exceptions. Within main’s try-block functions are called

which may also contain try-blocks, forming the next exception level. As we have seen (section 10.3.1),

exceptions thrown in inner level try-blocks may or may not be processed at that level. By placing an

empty throw statement in an exception handler, the thrown exception is passed on to the next (outer)

level.



10.5 Catching exceptions

A catch clause consists of the keyword catch followed by a parameter list defining one parameter

specifying type and (parameter) name of the exception caught by that particular catch handler. This

name may then be used as a variable in the compound statement following the catch clause. Example:

catch (string &message)

{

// code to handle the message

}

Primitive types and objects may be thrown as exceptions. It’s a bad idea to throw a pointer or reference

to a local object, but a pointer to a dynamically allocated object may be thrown if the exception handler

deletes the allocated memory to prevent a memory leak. Nevertheless, throwing such a pointer is

dangerous as the exception handler won’t be able to distinguish dynamically allocated memory from

non-dynamically allocated memory, as illustrated by the next example:

try

{

static int x;

int *xp = &x;

if (condition1)

throw xp;

xp = new int(0);

if (condition2)

throw xp;

}

catch (int *ptr)

{

// delete ptr or not?

}

Close attention should be paid to the nature of the parameter of the exception handler, to make sure

that when pointers to dynamically allocated memory are thrown the memory is returned once the han-

dler has processed the pointer. In general pointers should not be thrown as exceptions. If dynamically

allocated memory must be passed to an exception handler then the pointer should be wrapped in a

smart pointer, like unique_ptr or shared_ptr (cf. sections 18.3 and 18.4).

Multiple catch handlers may follow a try block, each handler defining its own exception type. The

order of the exception handlers is important. When an exception is thrown, the first exception handler

matching the type of the thrown exception is used and remaining exception handlers are ignored.

Eventually at most one exception handler following a try-block is activated. Normally this is of no

concern as each exception has its own unique type.

Example: if exception handlers are defined for char ∗s and void ∗s then NTBSs are caught by the

former handler. Note that a char ∗ can also be considered a void ∗, but the exception type matching

procedure is smart enough to use the char ∗ handler with the thrown NTBS. Handlers should be

designed very type specific to catch the correspondingly typed exception. For example, int-exceptions

are not caught by double-catchers, char-exceptions are not caught by int-catchers. Here is a little

example illustrating that the order of the catchers is not important for types not having any hierarchal

relationship to each other (i.e., int is not derived from double; string is not derived from an NTBS):

#include <iostream>

using namespace std;

int main()



while (true)

{

try

{

string s;

cout << "Enter a,c,i,s for ascii-z, char, int, string "

"exception\n";

getline(cin, s);

switch (s[0])

{

case 'a':

throw "ascii-z";

case 'c':

throw 'c';

case 'i':

throw 12;

case 's':

throw string{};

}

}

catch (string const &)

{

cout << "string caught\n";

}

catch (char const *)

{

cout << "ASCII-Z string caught\n";

}

catch (double)

{

cout << "isn't caught at all\n";

}

catch (int)

{

cout << "int caught\n";

}

catch (char)

{

cout << "char caught\n";

}

}

}

Rather than defining specific exception handlers a specific class can be designed whose objects contain

information about the exception. Such an approach was mentioned earlier, in section 10.3.1. Using this

approach, there’s only one handler required, since we know we don’t throw other types of exceptions:

try

{

// code throws only Exception objects

}

catch (Exception &ex)

{

ex.handle();

}

When the code of an exception handler has been processed, execution continues beyond the last excep-

tion handler directly following the matching try-block (assuming the handler doesn’t itself use flow



can be distinguished:

• If no exception was thrown within the try-block no exception handler is activated, and execution

continues from the last statement in the try-block to the first statement beyond the last catch-

block.

• If an exception was thrown within the try-block but neither the current level nor another level

contains an appropriate exception handler, the program’s default exception handler is called,

aborting the program.

• If an exception was thrown from the try-block and an appropriate exception handler is available,

then the code of that exception handler is executed. Following that, the program’s execution

continues at the first statement beyond the last catch-block.

All statements in a try block following an executed throw-statement are ignored. However, objects

that were successfully constructed within the try block before executing the throw statement are

destroyed before any exception handler’s code is executed.

10.5.1 The default catcher

At a certain level of the program only a limited set of handlers may actually be required. Exceptions

whose types belong to that limited set are processed, all other exceptions are passed on to exception

handlers of an outer level try block.

An intermediate type of exception handling may be implemented using the default exception handler,

which must be (due to the hierarchal nature of exception catchers, discussed in section 10.5) placed

beyond all other, more specific exception handlers.

This default exception handler cannot determine the actual type of the thrown exception and cannot

determine the exception’s value but it may execute some statements, and thus do some default process-

ing. Moreover, the caught exception is not lost, and the default exception handler may use the empty

throw statement (see section 10.3.1) to pass the exception on to an outer level, where it’s actually

processed. Here is an example showing this use of a default exception handler:

#include <iostream>

using namespace std;

int main()

{

try

{

try

{

throw 12.25; // no specific handler for doubles

}

catch (int value)

{

cout << "Inner level: caught int\n";

}

catch (...)

{

cout << "Inner level: generic handling of exceptions\n";

throw;

}

}

catch(double d)

{



}

}

/*
Generated output:

Inner level: generic handling of exceptions

Outer level may use the thrown double: 12.25

*/

The program’s output illustrates that an empty throw statement in a default exception handler throws

the received exception to the next (outer) level of exception catchers, keeping type and value of the

thrown exception.

Thus, basic or generic exception handling can be accomplished at an inner level, while specific han-

dling, based on the type of the thrown expression, can be provided at an outer level. Additionally, par-

ticularly in multi-threaded programs (cf. chapter 20), thrown exceptions can be transferred between

threads after converting std::exception objects to std::exception_ptr objects. This proceduce

can even be used from inside the default catcher. Refer to section 20.12.1 for further coverage of the

class std::exception_ptr.

10.6 Declaring (deprecated) exception throwers

Once a function has been defined it’s commonly called from other functions. If called functions are not

defined in the same source file as calling functions the called functions must be declared, for which

header files are commonly used.

The called functions may throw exceptions. When such functions are declared their declarations may

specify a (now deprecated, see also section 23.8) function throw list or exception specification list spec-

ifying the types of the exceptions that can be thrown by the called function. For example, a function

that may throw ‘char ∗’ and ‘int’ exceptions can be declared as

void exceptionThrower() throw(char *, int);

Function throw lists immediately follow the function header (and their specifications also follow pos-

sible const specifiers). Throw lists specify zero or more, comma separated, types, using the following

syntax:

throw ()

throw (type)

throw (type1, type2, type3 ...)

where the ellipsis indicates any number of additional, comma separated, type specifications.

To indicate that a function is guaranteed not to throw exceptions an empty function throw list can be

used. E.g.,

void noExceptions() throw ();

In all cases, the function header used in the function definition must exactly match the function header

used in the declaration, including a possibly empty function throw list.

Once a function throw list has been specified its function may only throw exceptions of the types men-

tioned in its throw list. A run-time error occurs if such a function throws exceptions of types not speci-

fied in its function throw list. Example: the function charPintThrower shown below clearly throws a

char const ∗ exception. Since, according to its function throw list, intThrower may throw an int

exception, the function throw list of charPintThrower must also contain int.



using namespace std;

void charPintThrower() throw(char const *, int);

class Thrower

{

public:

void intThrower(int) const throw(int);

};

void Thrower::intThrower(int x) const throw(int)

{

if (x)

throw x;

}

void charPintThrower() throw(char const *, int)

{

int x;

cerr << "Enter an int: ";

cin >> x;

Thrower().intThrower(x);

throw "this text is thrown if 0 was entered";

}

void runTimeError() throw(int)

{

throw 12.5;

}

int main()

{

try

{

charPintThrower();

}

catch (char const *message)

{

cerr << "Text exception: " << message << '\n';

}

catch (int value)

{

cerr << "Int exception: " << value << '\n';

}

try

{

cerr << "Generating a run-time error\n";

runTimeError();

}

catch(...)

{

cerr << "not reached\n";

}

}

A function without a throw list may throw any kind of exception. Without a function throw list the



For various reasons declaring exception throwers is now deprecated. Declaring exception throwers does

not imply that the compiler checks whether an improper exception is thrown. Rather, the function for

which a function throw list has been specified is surrounded by additional code in which the actually

thrown exception is inspected: if the exception is of a type that is listed in the function’s throw list then

that exception is rethrown; otherwise a run-time error is thrown. Instead of compile-time checks you

get run-time overhead, resulting in additional code (and execution time) that is added to the function’s

code. One could write, e.g.,

void fun() throw (int)

{

// code of this function, throwing exceptions

}

but the function would be compiled to something like this (cf. section 10.11 for the use of try immedi-

ately following the function’s header and section 10.8 for a description of bad_exception):

void fun()

try // this code resulting from throw(int)

{

// the function's code, throwing all kinds of exceptions

}

catch (int) // remaining code resulting from throw(int)

{

throw; // rethrow the exception, so it can be caught by the

// `intended' handler

}

catch (...) // catch any other exception

{

throw bad_exception{};

}

Run-time overhead results because the number of thrown and caught exceptions are doubled. If no

function throw list is specified then a thrown int is simply caught by its intended handler; if a function

throw list has been specified the thrown int is first caught by the ‘safeguarding’ handler added to the

function. In there it is rethrown whereafter it is caught by its intended handler.

10.6.1 noexcept

Although function throw lists are deprecated, its younger cousin noexcept is not. The noexcept

keyword is used where previously empty function throw lists were used (cf. section 10.9 for examples

where noexcept is used). Like empty function throw lists you incur some run-time overhead, but

noexcept is more strict than empty function throw lists when violations are observed. When violating

function throw list specifications a std::unexpected exception is thrown, when violating noexcept

it results in std::terminate, ending the program.

In addition, noexcept can be given an argument that is evaluated compile-time: if the evaluation

returns true then the noexcept requirement is used; if the evaluation returns false, then the

noexcept requirement is ignored. Examples of this advanced use of noexcept are provided in section

23.8.

10.7 Iostreams and exceptions

The C++ I/O library was used well before exceptions were available in C++. Hence, normally the classes

of the iostream library do not throw exceptions. However, it is possible to modify that behavior using



• ios::iostate exceptions():

this member returns the state flags for which the stream will throw exceptions;

• void exceptions(ios::iostate state)

this member causes the stream to throw an exception when state state is observed.

In the I/O library, exceptions are objects of the class ios::failure, derived from ios::exception. A

std::string const &message may be specified when defining a failure object. Its message may

then be retrieved using its virtual char const ∗what() const member.

Exceptions should be used in exceptional circumstances. Therefore, we think it is questionable to

have stream objects throw exceptions for fairly normal situations like EOF. Using exceptions to handle

input errors might be defensible (e.g., in situations where input errors should not occur and imply a

corrupted file) but often aborting the program with an appropriate error message would probably be the

more appropriate action. As an example consider the following interactive program using exceptions to

catch incorrect input:

#include <iostream>

#include <climits>

using namespace::std;

int main()

{

cin.exceptions(ios::failbit); // throw exception on fail

while (true)

{

try

{

cout << "enter a number: ";

int value;

cin >> value;

cout << "you entered " << value << '\n';

}

catch (ios::failure const &problem)

{

cout << problem.what() << '\n';

cin.clear();

cin.ignore(INT_MAX, '\n'); // ignore the faulty line

}

}

}

By default, exceptions raised from within ostream objects are caught by these objects, which set their

ios::badbit as a result. See also the paragraph on this issue in section 14.8.

10.8 Standard exceptions

All data types may be thrown as exceptions. Several additional exception classes are now defined by

the C++ standard. Before using those additional exception classes the <stdexcept> header file must

be included.

All of these standard exceptions are class types by themselves, but also offer all facilities of the

std::exception class and objects of the standard exception classes may also be considered objects

of the std::exception class.



char const *what() const;

describing in a short textual message the nature of the exception.

C++ defines the following standard exception classes:

• std::bad_alloc (this requires the <new> header file): thrown when operator new fails;

• std::bad_array_new_length (this requires the <new> header file): thrown when an illegal

array size is requested when using new Type[...]. Illegal sizes are negative values, values

that exceed an implementation defined maximum, the number of initializer clauses exceeds the

specified number of array elements (e.g., new int[2]{ 1, 2, 3 });

• std::bad_cast (this requires the <typeinfo> header file): thrown in the context of polymor-

phism (see section 14.6.1);

• std::bad_exception (this requires the <exception> header file): thrown when a function

tries to generate another type of exception than declared in its function throw list;

• std::bad_typeid (this requires the <typeinfo> header file): also thrown in the context of

polymorphism (see section 14.6.2);

All additional exception classes were derived from std::exception. The constructors of all these

additional classes accept std::string const & arguments summarizing the reason for the exception

(retrieved by the exception::what member). The additionally defined exception classes are:

• std::domain_error: a (mathematical) domain error is detected;

• std::invalid_argument: the argument of a function has an invalid value;

• std::length_error: thrown when an object would have exceeded its maximum permitted

length;

• std::logic_error: a logic error should be thrown when a problem is detected in the internal

logic of the program. Example: a function like C’s printf is called with more arguments than

there are format specifiers in its format string;

• std::out_of_range: thrown when an argument exceeds its permitted range. Example: thrown

by at members when their arguments exceed the range of admissible index values;

• std::overflow_error: an overflow error should be thrown when an arithmetic overflow is

detected. Example: dividing a value by a very small value;

• std::range_error: a range error should be thrown when an internal computation results in a

value exceeding a permissible range;

• std::runtime_error: a runtime error should be thrown when a problem is encountered that

can only be detected while the program is being executed. Example: a non-integral is entered

when the program’s input expects an integral value.

• std::underflow_error: an underflow error should be thrown when an arithmetic underflow is

detected. Example: dividing a very small value by a very large value.

• std::tx_exception<Type>: derived from std::runtime_error. This exception can be

thrown from an atomic_cancel compound statement (cf. section 20.14) to undo statements

executed so far.



Since values of any type may be thrown as exceptions, you may wonder when to throw values of stan-

dard exception types and (if ever) when to throw values of other types.

Current practice in the C++ community is to throw exceptions only in exceptional situations. In that

respect C++’s philosophy about using exceptions differs markedly from the way exceptions are used

in, e.g., Java, where exceptions are often encountered in situations C++ doesn’t consider exceptional.

Another common practice is to follow a ‘conceptual’ style when designing software. A nice characteristic

of exceptions is that exceptions can be thrown at a point where your source shows what’s happening:

throwing an std::out_of_range exception is nice for the software maintainer, as the reason for the

exception is immediately recognized.

At the catch-clause the semantical context usually isn’t very relevant anymore and by catching a

std::exception and showing its what() content the program’s user is informed about what happened.

But throwing values of other types can also be useful. What about a situation where you want to throw

an exception and catch it at some shallow level? In between there may be various levels of software

provided by external software libraries over which the software engineer has no control. At those levels

exceptions (std::exceptions) could be generated too, and those exceptions might also be caught by the

library’s code. When throwing a standard exception type it may be hard to convince yourself that that

exception isn’t caught by the externally provided software. Assuming that no catch-alls are used (i.e.,

catch (...)) then throwing an exception from the std::exception family might not be a very good

idea. In such cases throwing a value from a simple, maybe empty, enum works fine:

enum HorribleEvent

{};

... at some deep level:

throw HorribleEvent{};

... at some shallow level:

catch (HorribleEvent hs)

{

...

}

Other examples can easily be found: design a class holding a message and an error (exit) code: where

necessary throw an object of that class, catch it in the catch clause of main’s try block and you can be

sure that all objects defined at intermediate levels are neatly destroyed, and at the end you show the

error message and return the exit code embedded in your non-exception object.

So, the advice is to use std::exception types when available, and clearly do the required job. But if

an exception is used to simply bail out of an unpleasant situation, or if there’s a chance that externally

provided code might catch std:exceptions then consider throwing objects or values of other types.

10.9 System error, error_category, and error_condition

The class std::system_error is derived from std::runtime_error, which in turn is derived from

std::exception

Before using the class system_error or related classes the <system_error> header file must be

included.

System_error exceptions can be thrown when errors occur having associated (system) error values.

Such errors are typically associated with low-level (like operating system) functions, but other types of

errors (e.g., bad user input, non-existing requests) can also be handled.
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Figure 10.1: System_error: associated components

In addition to error codes (cf. section 4.3.2) and error categories (covered below) error conditions are

distinguished. Error conditions specify platform independent types of errors like syntax errors or non-

existing requests.

When constructing system_error objects error codes and error categories may be specified. First we’ll

look at the classes error_condition and error_category, then system_error itself is covered in

more detail.

Figure 10.1 illustrates how the various components interact.

As shown in figure 10.1 the class error_category uses the class error_condition and the class

error_condition uses the class error_category. As a consequence of this circular dependency

between these two classes these classes should be approached as one single class: when covering

error_category the class error_condition should be known and vice versa. This circular de-

pendency among these classes is unfortunate and an example of bad class design.

As system_error is eventually derived from exception it offers the standard what member. It also

contains an error_code.

In POSIX systems the errno variable is associated with many, often rather cryptic, symbols. The pre-

defined enum class errc attempts to provide intuitively more appealing symbols. Since its symbols

are defined in a strongly typed enumeration, they cannot directly be used when defining a matching

error_code. Instead, a make_error_code function converts enum class errc values and values

of newly defined error code enumerations (called ErrorCodeEnum below) to error_code objects.

The enum class errc defined in the std namespace defines symbols whose values are equal to the



enum class errc

{

address_family_not_supported, // EAFNOSUPPORT

address_in_use, // EADDRINUSE

address_not_available, // EADDRNOTAVAIL

already_connected, // EISCONN

argument_list_too_long, // E2BIG

argument_out_of_domain, // EDOM

bad_address, // EFAULT

...

};

Values of ErrorCodeEnums can be passed to matching make_error_code functions. Defining your

own ErrorCodeEnum enumeration is covered in section 23.7.

Now that the general outline has been presented, it’s time to have a closer look at the various compo-

nents shown in figure 10.1.

10.9.1 The class ‘std::error_category’

Objects of the class std::error_category identify sources of sets of error codes. New error categories

for new error code enumerations can also be defined (cf. section 23.7).

Error categories are designed as singletons: only one object of each class can exist. Because of this

error_categories are equal when the addresses of error_category objects are equal. Error cate-

gory objects are returned by functions (see below) or by static instance() members of error category

classes.

Error category classes define several members. Most are declared virtual (cf. chapter 14), meaning that

those members may be redefined in error category classes we ourselves design:

• virtual error_condition default_error_condition(int ev) const noexcept:

returns an error_condition object (cf. section 10.9.2) initialized with error value ev and the

current (i.e., ∗this) error_category;

• virtual bool equivalent(error_code const &code, int condition) const

noexcept:

returns true if the equivalence between the error condition that is associated with the

error_code object and the error_condition_enum value that is specified (as an int value)

as the function’s second argument could be establisted;

• virtual bool equivalent(int ev, error_condition const &condition) const

noexcept:

returns true if the equivalence of an error_condition object that is constructed from the

ErrorConditionEnum value that is associated with the ErrorCategoryEnum value that was

passed (as int) to the function and the error_condition object that was passed to the function

as its second argument could be established;

• virtual string message(int ev) const:

This member returns a string describing the error condition denoted by ev, which should be a

(cast to int) value of the category’s error condition enumeration;

• virtual char const ∗name() const noexcept:

This member returns the name of the error category as NTBS (like generic);

• bool operator<(error_category const &rhs) const noexcept:

returns less<const error_category∗>()(this, &rhs).



The functions returning predefined error categories are:

• error_category const &generic_category() noexcept:

returns a reference to the generic error_category object. The returned object’s name member

returns a pointer to the string "generic";

• error_category const &system_category() noexcept:

returns a reference to the operating system error_category object: it is used for errors reported

by the operating system. The object’s name member returns a pointer to the string "system";

• error_category const &iostream_category() noexcept:

returns a reference to the iostream error_category object: it is used for errors reported by

stream objects. The object’s name member returns a pointer to the string "iostream";

• error_category const &future_category() noexcept:

returns a reference to the future error_category object: it is used for errors reported by ‘future’

objects (cf. section 20.8). The object’s name member returns a pointer to the string "future";

10.9.2 The class ‘std::error_condition’

Error_condition objects contain information about ‘higher level’ types of errors. They are supposed

to be platform independent like syntax errors or non-existing requests.

Error condition objects are returned by the member default_error_condition of the classes

error_code and error_category, and they are returned by the function std::error_condition

make_error_condition(ErrorConditionEnum ec). The type name ErrorConditionEnum is a

formal name for an enum class that enumerates the ‘higher level’ error types. The error_condition

objects returned by make_error_condition are initialized with ec and the error_category that

uses the ErrorConditionEnum. Defining your own ErrorConditionEnum is covered in section 23.7.

Constructors:

• error_condition() noexcept:

the object’s value is initialized to ‘no error’ (i.e., 0) and a system_category error category;

• The copy constructor is available;

• error_condition(int ec, error_category const &cat) noexcept:

the object’s value is initialized to ec and error category cat. It is the responsibility of the caller

to ensure that ec represents a (cast to int) value of cat’s error condition enumeration;

• error_condition(ErrorConditionEnum value) noexcept:

this is a member template (cf. section 22.1.3), using template header template

<class ErrorConditionEnum>. It initializes the object with the return value of

make_error_condition(value);

Members:

• The copy assignment operator and an assignment operator accepting an ErrorConditionEnum

are available;

• void assign(int val, error_category const &cat):

assigns new values to the current object’s value and category data members;

• error_category const &category() const noexcept:

returns a reference to the object’s error category (note that this is a reference to the category’s

singleton object);



after calling this member value is set to 0 and the object’s error category set to

generic_category;

• string message() const:

returns category().message(value());

• explicit operator bool() const noexcept:

returns true if value() returns a non-zero value (so its semantic meaning is ‘the object repre-

sents an error’);

• int value() const noexcept:

returns the object’s error value.

Two error_condition objects can be compared for (in)equality, and can be ordered using operator<.

Ordering is pointless if the two objects refer to different error categories. If the categories of two objects

are different they are considered different.

10.9.3 The class system_error

System_error objects can be constructed from error_codes or from error values (ints) and match-

ing error category objects, optionally followed by a standard textual description of the nature of the

encountered error.

Here is the class’s public interface:

class system_error: public runtime_error

{

public:

system_error(error_code ec);

system_error(error_code ec, string const &what_arg);

system_error(error_code ec, char const *what_arg);

system_error(int ev, error_category const &ecat);

system_error(int ev, error_category const &ecat,

char const *what_arg);

system_error(int ev, error_category const &ecat,

string const &what_arg);

error_code const &code() const noexcept;

char const *what() const noexcept;

}

The ev values often are the values of the errno variable as set upon failure by system level functions

like chmod(2).

Note that the first three constructors shown in the interface receive an error_code object as their first

arguments. As one of the error_code constructors also expects an int and and error_category

argument, the second set of three constructors could also be used instead of the first set of three con-

structors. E.g.,

system_error(errno, system_category(), "context of the error");

// identical to:

system_error(error_code(errno, system_category()),

"context of the error");

The second set of three constructors are primarily used when an existing function already returns an

error_code. E.g.,



"context of the error");

// or maybe:

system_error(make_error_code(static_cast<errc>(errno)),

"context of the error");

In addition to the standard what member, the system_error class also offers a member code return-

ing a const reference to the exception’s error code.

The NTBS returned by system_error’s what member may be formatted by a system_error object:

what_arg + ": " + code().message()

Note that, although system_error was derived from runtime_error, you’ll lose the code member

when catching a std::exception object. Of course, downcasting is possible, but that’s a stopgap.

Therefore, if a system_error is thrown, a matching catch(system_error const &) clause must

be provided to retrieve the value returned by the code member. This, and the rather complex organi-

zation of the classes that are involved when using system_error result in a very complex, and hard

to generalize exception handling. In essence, what you obtain at the cost of high complexity is a facility

for categorizing int or enum error values. Additional coverage of the involved complexities is provided

in chapter 23, in particular section 23.7 (for a flexible alternative, see the class FBB::Exception in

the author’s Bobcat library1).

10.10 Exception guarantees

Software should be exception safe: the program should continue to work according to its specifications

in the face of exceptions. It is not always easy to realize exception safety. In this section some guidelines

and terminology is introduced when discussing exception safety.

Since exceptions may be generated from within all C++ functions, exceptions may be generated in many

situations. Not all of these situations are immediately and intuitively recognized as situations where

exceptions can be thrown. Consider the following function and ask yourself at which points exceptions

may be thrown:

void fun()

{

X x;

cout << x;

X *xp = new X{ x };

cout << (x + *xp);

delete xp;

}

If it can be assumed that cout as used above does not throw an exception there are at least 13 oppor-

tunities for exceptions to be thrown:

• X x: the default constructor could throw an exception (#1)

• cout << x: the overloaded insertion operator could throw an exception (#2), but its rhs argu-

ment might not be an X but, e.g., an int, and so X::operator int() const could be called

which offers yet another opportunity for an exception (#3).

• ∗xp = new X{ x }: the copy constructor may throw an exception (#4) and operator new (#5a)

too. But did you realize that this latter exception might not be thrown from ::new, but from, e.g.,

X’s own overload of operator new? (#5b)

1http://fbb-git.gitlab.io/bobcat/



∗

But it doesn’t have to be that way. A separate class Y might exist and X may have

a conversion operator operator Y() const, and operator+(Y const &lhs, X const

&rhs), operator+(X const &lhs, Y const &rhs), and operator+(X const &lhs, X

const &rhs) might all exist. So, if the conversion operator exists, then depending on the kind

of overload of operator+ that is defined either the addition’s left-hand side operand (#6), right-

hand side operand (#7), or operator+ itself (#8) may throw an exception. The resulting value

may again be of any type and so the overloaded cout << return-type-of-operator+ oper-

ator may throw an exception (#9). Since operator+ returns a temporary object it is destroyed

shortly after its use. X’s destructor could throw an exception (#10).

• delete xp: whenever operator new is overloaded operator delete should be overloaded

as well and may throw an exception (#11). And of course, X’s destructor might again throw an

exception (#12).

• }: when the function terminates the local x object is destroyed: again an exception could be

thrown (#13).

It is stressed here (and further discussed in section 10.12) that although it is possible for exceptions

to leave destructors this would violate the C++ standard and so it must be prevented in well-behaving

C++ programs.

How can we expect to create working programs when exceptions might be thrown in so many situa-

tions?

Exceptions may be generated in a great many situations, but serious problems are prevented when

we’re able to provide at least one of the following exception guarantees:

• The basic guarantee: no resources are leaked. In practice this means: all allocated memory is

properly returned when exceptions are thrown.

• The strong guarantee: the program’s state remains unaltered when an exception is thrown (as an

example: the canonical form of the overloaded assignment operator provides this guarantee)

• The nothrow guarantee: this applies to code for which it can be proven that no exception can be

thrown from it.

10.10.1 The basic guarantee

The basic guarantee dictates that functions that fail to complete their assigned tasks must return all

allocated resources, usually memory, before terminating. Since practically all functions and operators

may throw exceptions and since a function may repeatedly allocate resources the blueprint of a function

allocating resources shown below defines a try block to catch all exceptions that might be thrown. The

catch handler’s task is to return all allocated resources and then rethrow the exception.

void allocator(X **xDest, Y **yDest)

{

X *xp = 0; // non-throwing preamble

Y *yp = 0;

try // this part might throw

{

xp = new X[nX]; // alternatively: allocate one object

yp = new Y[nY];

}

catch(...)

{

delete xp;

throw;



delete[] *xDest; // non-throwing postamble

*xDest = xp;

delete[] *yDest;

*yDest = yp;

}

In the pre-try code the pointers to receive the addresses returned by the operator new calls are ini-

tialized to 0. Since the catch handler must be able to return allocated memory they must be available

outside of the try block. If the allocation succeeds the memory pointed to by the destination pointers

is returned and then the pointers are given new values.

Allocation and or initialization might fail. If allocation fails new throws a std::bad_alloc exception

and the catch handler simply deletes 0-pointers which is OK.

If allocation succeeds but the construction of (some) of the objects fails by throwing an exception then

the following is guaranteed to happen:

• The destructors of all successfully allocated objects are called;

• The dynamically allocated memory to contain the objects is returned

Consequently, there is no memory leak when new fails. Inside the above try block new X may fail: this

does not affect the 0-pointers and so the catch handler merely deletes 0 pointers. When new Y fails xp

points to allocated memory and so it must be returned. This happens inside the catch handler. The

final pointer (here: yp) will only be unequal zero when new Y properly completes, so there’s no need

for the catch handler to return the memory pointed at by yp.

10.10.2 The strong guarantee

The strong guarantee dictates that an object’s state should not change in the face of exceptions. This

is realized by performing all operations that might throw on a separate copy of the data. If all this

succeeds then the current object and its (now successfully modified) copy are swapped. An example of

this approach can be observed in the canonical overloaded assignment operator:

Class &operator=(Class const &other)

{

Class tmp(other);

swap(tmp);

return *this;

}

The copy construction might throw an exception, but this keeps the current object’s state intact. If the

copy construction succeeds swap swaps the current object’s content with tmp’s content and returns a

reference to the current object. For this to succeed it must be guaranteed that swap won’t throw an

exception. Returning a reference (or a value of a primitive data type) is also guaranteed not to throw ex-

ceptions. The canonical form of the overloaded assignment operator therefore meets the requirements

of the strong guarantee.

Some rules of thumb were formulated that relate to the strong guarantee (cf. Sutter, H., Exceptional

C++, Addison-Wesley, 2000). E.g.,

• All the code that might throw an exception affecting the current state of an object should perform

its tasks separately from the data controlled by the object. Once this code has performed its tasks

without throwing an exception replace the object’s data by the new data.



value.

The canonical assignment operator is a good example of the first rule of thumb. Another example is

found in classes storing objects. Consider a class PersonDb storing multiple Person objects. Such

a class might offer a member void add(Person const &next). A plain implementation of this

function (merely intended to show the application of the first rule of thumb, but otherwise completely

disregarding efficiency considerations) might be:

Person *PersonDb::newAppend(Person const &next)

{

Person *tmp = 0;

try

{

tmp = new Person[d_size + 1];

for (size_t idx = 0; idx < d_size; ++idx)

tmp[idx] = d_data[idx];

tmp[d_size] = next;

return tmp;

}

catch (...)

{

delete[] tmp;

throw;

}

}

void PersonDb::add(Person const &next)

{

Person *tmp = newAppend(next);

delete[] d_data;

d_data = tmp;

++d_size;

}

The (private) newAppend member’s task is to create a copy of the currently allocated Person objects,

including the data of the next Person object. Its catch handler catches any exception that might

be thrown during the allocation or copy process and returns all memory allocated so far, rethrowing

the exception at the end. The function is exception neutral as it propagates all its exceptions to its

caller. The function also doesn’t modify the PersonDb object’s data, so it meets the strong exception

guarantee. Returning from newAppend the member add may now modify its data. Its existing data

are returned and its d_data pointer is made to point to the newly created array of Person objects.

Finally its d_size is incremented. As these three steps don’t throw exceptions add too meets the

strong guarantee.

The second rule of thumb (member functions modifying their object’s data should not return original

(contained) objects by value) may be illustrated using a member PersonDb::erase(size_t idx).

Here is an implementation attempting to return the original d_data[idx] object:

Person PersonData::erase(size_t idx)

{

if (idx >= d_size)

throw "Array bounds exceeded"s;

Person ret(d_data[idx]);

Person *tmp = copyAllBut(idx);

delete[] d_data;

d_data = tmp;

--d_size;



}

Although copy elision usually prevents the use of the copy constructor when returning ret, this is not

guaranteed to happen. Furthermore, a copy constructor may throw an exception. If that happens the

function has irrevocably mutated the PersonDb’s data, thus losing the strong guarantee.

Rather than returning d_data[idx] by value it might be assigned to an external Person object before

mutating PersonDb’s data:

void PersonData::erase(Person *dest, size_t idx)

{

if (idx >= d_size)

throw "Array bounds exceeded"s;

*dest = d_data[idx];

Person *tmp = copyAllBut(idx);

delete[] d_data;

d_data = tmp;

--d_size;

}

This modification works, but changes the original assignment of creating a member returning the

original object. However, both functions suffer from a task overload as they modify PersonDb’s data

and also return an original object. In situations like these the one-function-one-responsibility rule of

thumb should be kept in mind: a function should have a single, well defined responsibility.

The preferred approach is to retrieve PersonDb’s objects using a member like Person

const &at(size_t idx) const and to erase an object using a member like void

PersonData::erase(size_t idx).

10.10.3 The nothrow guarantee

Exception safety can only be realized if some functions and operations are guaranteed not to throw

exceptions. This is called the nothrow guarantee. An example of a function that must offer the nothrow

guarantee is the swap function. Consider once again the canonical overloaded assignment operator:

Class &operator=(Class const &other)

{

Class tmp(other);

swap(tmp);

return *this;

}

If swapwere allowed to throw exceptions then it would most likely leave the current object in a partially

swapped state. As a result the current object’s state would most likely have been changed. As tmp has

been destroyed by the time a catch handler receives the thrown exception it becomes very difficult (as

in: impossible) to retrieve the object’s original state. Losing the strong guarantee as a consequence.

The swap function must therefore offer the nothrow guarantee. It must have been designed as if using

the following prototype (see also section 23.8):

void Class::swap(Class &other) noexcept;

Likewise, operator delete and operator delete[] offer the nothrow guarantee, and according

to the C++ standard destructors may themselves not throw exceptions (if they do their behavior is

formally undefined, see also section 10.12 below).



library offer the nothrow guarantee by implication. This allowed us to define the generic swap function

in section 9.6 using memcpy.

Operations on primitive types offer the nothrow guarantee. Pointers may be reassigned, references

may be returned etc. etc. without having to worry about exceptions that might be thrown.

10.11 Function try blocks

Exceptions may be generated from inside constructors. How can exceptions generated in such situa-

tions be caught by the constructor itself, rather than outside the constructor? The intuitive solution,

nesting the object construction in a try block does not solve the problem. The exception by then has

left the constructor and the object we intended to construct isn’t visible anymore.

Using a nested try block is illustrated in the next example, where main defines an object of class

PersonDb. Assuming that PersonDb’s constructor throws an exception, there is no way we can access

the resources that might have been allocated by PersonDb’s constructor from the catch handler as the

pdb object is out of scope:

int main(int argc, char **argv)

{

try

{

PersonDb pdb{ argc, argv }; // may throw exceptions

... // main()'s other code

}

catch(...) // and/or other handlers

{

... // pdb is inaccessible from here

}

}

Although all objects and variables defined inside a try block are inaccessible from its associated catch

handlers, object data members were available before starting the try block and so they may be accessed

from a catch handler. In the following example the catch handler in PersonDb’s constructor is able to

access its d_data member:

PersonDb::PersonDb(int argc, char **argv)

:

d_data(0),

d_size(0)

{

try

{

initialize(argc, argv);

}

catch(...)

{

// d_data, d_size: accessible

}

}

Unfortunately, this does not help us much. The initialize member is unable to reassign d_data

and d_size if PersonDb const pdb was defined; the initialize member should at least offer the

basic exception guarantee and return any resources it has acquired before terminating due to a thrown

exception; and although d_data and d_size offer the nothrow guarantee as they are of primitive data



guarantee.

In the next implementation of PersonDb assume that constructor receives a pointer to an already

allocated block of Person objects. The PersonDb object takes ownership of the allocated memory

and it is therefore responsible for the allocated memory’s eventual destruction. Moreover, d_data

and d_size are also used by a composed object PersonDbSupport, having a constructor expecting a

Person const ∗ and size_t argument. Our next implementation may then look something like this:

PersonDb::PersonDb(Person *pData, size_t size)

:

d_data(pData),

d_size(size),

d_support(d_data, d_size)

{

// no further actions

}

This setup allows us to define a PersonDb const &pdb. Unfortunately, PersonDb cannot offer the ba-

sic guarantee. If PersonDbSupport’s constructor throws an exception it isn’t caught although d_data

already points to allocated memory.

The function try block offers a solution for this problem. A function try block consists of a try block

and its associated handlers. The function try block starts immediately after the function header, and

its block defines the function body. With constructors base class and data member initializers may

be placed between the try keyword and the opening curly brace. Here is our final implementation of

PersonDb, now offering the basic guarantee:

PersonDb::PersonDb(Person *pData, size_t size)

try

:

d_data(pData),

d_size(size),

d_support(d_data, d_size)

{}

catch (...)

{

delete[] d_data;

}

Let’s have a look at a stripped-down example. A constructor defines a function try block. The exception

thrown by the Throw object is initially caught by the object itself. Then it is rethrown. The surrounding

Composer’s constructor also defines a function try block, Throw’s rethrown exception is properly caught

by Composer’s exception handler, even though the exception was generated from within its member

initializer list:

#include <iostream>

class Throw

{

public:

Throw(int value)

try

{

throw value;

}

catch(...)

{



throw;

}

};

class Composer

{

Throw d_t;

public:

Composer()

try // NOTE: try precedes initializer list

:

d_t(5)

{}

catch(...)

{

std::cout << "Composer() caught exception as well\n";

}

};

int main()

{

Composer c;

}

When running this example, we’re in for a nasty surprise: the program runs and then breaks with an

abort exception. Here is the output it produces, the last two lines being added by the system’s final

catch-all handler, catching all remaining uncaught exceptions:

Throw's exception handled locally by Throw()

Composer() caught exception as well

terminate called after throwing an instance of 'int'

Abort

The reason for this is documented in the C++ standard: at the end of a catch-handler belonging to a

constructor or destructor function try block, the original exception is automatically rethrown.

The exception is not rethrown if the handler itself throws another exception, offering the constructor

or destructor a way to replace a thrown exception by another one. The exception is only rethrown if

it reaches the end of the catch handler of a constructor or destructor function try block. Exceptions

caught by nested catch handlers are not automatically rethrown.

As only constructors and destructors rethrow exceptions caught by their function try block catch han-

dlers the run-time error encountered in the above example may simply be repaired by providing main

with its own function try block:

int main()

try

{

Composer c;

}

catch (...)

{}

Now the program runs as planned, producing the following output:

Throw's exception handled locally by Throw()

Composer() caught exception as well



the types of rethrown exceptions must match the types mentioned in the throw list.

10.12 Exceptions in constructors and destructors

Object destructors are only activated for completely constructed objects. Although this may sound like

a truism, there is a subtlety here. If the construction of an object fails for some reason, the object’s

destructor is not called when the object goes out of scope. This could happen if an exception that is

generated by the constructor is not caught by the constructor. If the exception is thrown when the

object has already allocated some memory, then that memory is not returned: its destructor isn’t called

as the object’s construction wasn’t successfully completed.

The following example illustrates this situation in its prototypical form. The constructor of the class

Incomplete first displays a message and then throws an exception. Its destructor also displays a

message:

class Incomplete

{

public:

Incomplete()

{

cerr << "Allocated some memory\n";

throw 0;

}

~Incomplete()

{

cerr << "Destroying the allocated memory\n";

}

};

Next, main() creates an Incomplete object inside a try block. Any exception that may be generated

is subsequently caught:

int main()

{

try

{

cerr << "Creating `Incomplete' object\n";

Incomplete{};

cerr << "Object constructed\n";

}

catch(...)

{

cerr << "Caught exception\n";

}

}

When this program is run, it produces the following output:

Creating `Incomplete' object

Allocated some memory

Caught exception

Thus, if Incomplete’s constructor would actually have allocated some memory, the program would

suffer from a memory leak. To prevent this from happening, the following counter measures are avail-

able:



If part of the constructor’s body may generate exceptions, then this part may be surrounded by

a try block, allowing the exception to be caught by the constructor itself. This approach is de-

fensible when the constructor is able to repair the cause of the exception and to complete its

construction as a valid object.

• If an exception is generated by a base class constructor or by a member initializing constructor

then a try block within the constructor’s body won’t be able to catch the thrown exception. This

always results in the exception leaving the constructor and the object is not considered to have

been properly constructed. A try block may include the member initializers, and the try block’s

compound statement becomes the constructor’s body as in the following example:

class Incomplete2

{

Composed d_composed;

public:

Incomplete2()

try

:

d_composed(/* arguments */)

{

// body

}

catch (...)

{}

};

An exception thrown by either the member initializers or the body results in the execution never

reaching the body’s closing curly brace. Instead the catch clause is reached. Since the constructor’s

body isn’t properly completed the object is not considered properly constructed and eventually the

object’s destructor won’t be called.

The catch clause of a constructor’s function try block behaves slightly different than a catch clause of

an ordinary function try block. An exception reaching a constructor’s function try block may be trans-

formed into another exception (which is thrown from the catch clause) but if no exception is explicitly

thrown from the catch clause the exception originally reaching the catch clause is always rethrown.

Consequently, there’s no way to confine an exception thrown from a base class constructor or from a

member initializer to the constructor: such an exception always propagates to a more shallow block

and in that case the object’s construction is always considered incomplete.

Consequently, if incompletely constructed objects throw exceptions then the constructor’s catch clause

is responsible for preventing memory (generally: resource) leaks. There are several ways to realize

this:

• When multiple inheritance is used: if initial base classes have properly been constructed and a

later base class throws, then the initial base class objects are automatically destroyed (as they are

themselves fully constructed objects)

• When composition is used: already constructed composed objects are automatically destroyed (as

they are fully constructed objects)

• Instead of using plain pointers smart pointers (cf. section 18.4) should be used to manage dynam-

ically allocated memory. In this case, if the constructor throws either before or after the allocation

of the dynamic memory, then allocated memory is properly returned as shared_ptr objects are,

after all, objects.

• If plain pointer data members must be used then the constructor’s body should first, in its member

initialization section, initialize its plain pointer data members. Then, in its body it can dynam-

ically allocate memory, reassigning the plain pointer data members. The constructor must be



the class’s plain pointer data members. Example:

class Incomplete2

{

Composed d_composed;

char *d_cp; // plain pointers

int *d_ip;

public:

Incomplete2(size_t nChars, size_t nInts)

try

:

d_composed(/* arguments */), // might throw

d_cp(0),

d_ip(0)

{

preamble(); // might throw

d_cp = new char[nChars]; // might throw

d_ip = new int[nChars]; // might throw

postamble(); // might throw

}

catch (...)

{

delete[] d_cp; // clean up

delete[] d_ip;

}

};

On the other hand, since C++ supports constructor delegation an object may have been completely con-

structed according to the C++ run-time system, but yet its constructor may have thrown an exception.

This happens if a delegated constructor successfully completes (after which the object is considered

‘completely constructed’), but the constructor itself throws an exception, as illustrated by the next ex-

ample:

class Delegate

{

public:

Delegate()

:

Delegate(0)

{

throw 12; // throws but completely constructed

}

Delegate(int x) // completes OK

{}

};

int main()

try

{

Delegate del; // throws

} // del's destructor is called here

catch (...)

{}

In this example it is the responsibility of Delegate’s designer to ensure that the throwing default

constructor does not invalidate the actions performed by Delegate’s destructor. E.g., if the delegated



leave the memory as-is, or it can delete the memory and set the corresponding pointer to zero thereafter.

In any case, it is Delegate’s responsibility to ensure that the object remains in a valid state, even

though it throws an exception.

According to the C++ standard exceptions thrown by destructors may not leave their bodies. Providing

a destructor with a function try block is therefore a violation of the standard: exceptions caught by a

function try block’s catch clause have already left the destructor’s body. If --in violation of the standard-

- the destructor is provided with a function try block and an exception is caught by the try block then

that exception is rethrown, similar to what happens in catch clauses of constructor functions’ try

blocks.

The consequences of an exception leaving the destructor’s body is not defined, and may result in unex-

pected behavior. Consider the following example:

Assume a carpenter builds a cupboard having a single drawer. The cupboard is finished, and a cus-

tomer, buying the cupboard, finds that the cupboard can be used as expected. Satisfied with the cup-

board, the customer asks the carpenter to build another cupboard, this time having two drawers. When

the second cupboard is finished, the customer takes it home and is utterly amazed when the second

cupboard completely collapses immediately after it is used for the first time.

Weird story? Then consider the following program:

int main()

{

try

{

cerr << "Creating Cupboard1\n";

Cupboard1{};

cerr << "Beyond Cupboard1 object\n";

}

catch (...)

{

cerr << "Cupboard1 behaves as expected\n";

}

try

{

cerr << "Creating Cupboard2\n";

Cupboard2{};

cerr << "Beyond Cupboard2 object\n";

}

catch (...)

{

cerr << "Cupboard2 behaves as expected\n";

}

}

When this program is run it produces the following output:

Creating Cupboard1

Drawer 1 used

Cupboard1 behaves as expected

Creating Cupboard2

Drawer 2 used

Drawer 1 used

terminate called after throwing an instance of 'int'

Abort

The final Abort indicates that the program has aborted instead of displaying a message like

Cupboard2 behaves as expected.



except that its destructor throws an exception:

class Drawer

{

size_t d_nr;

public:

Drawer(size_t nr)

:

d_nr(nr)

{}

~Drawer()

{

cerr << "Drawer " << d_nr << " used\n";

throw 0;

}

};

The class Cupboard1 has no special characteristics at all. It merely has a single composed Drawer

object:

class Cupboard1

{

Drawer left;

public:

Cupboard1()

:

left(1)

{}

};

The class Cupboard2 is constructed comparably, but it has two composed Drawer objects:

class Cupboard2

{

Drawer left;

Drawer right;

public:

Cupboard2()

:

left(1),

right(2)

{}

};

When Cupboard1’s destructor is called Drawer’s destructor is eventually called to destroy its composed

object. This destructor throws an exception, which is caught beyond the program’s first try block. This

behavior is completely as expected.

A subtlety here is that Cupboard1’s destructor (and hence Drawer’s destructor) is activated immedi-

ately subsequent to its construction. Its destructor is called immediately subsequent to its construction

as Cupboard1() defines an anonymous object. As a result the Beyond Cupboard1 object text is

never inserted into std::cerr.

Because of Drawer’s destructor throwing an exception a problem occurs when Cupboard2’s destructor

is called. Of its two composed objects, the second Drawer’s destructor is called first. This destructor

throws an exception, which ought to be caught beyond the program’s second try block. However,

although the flow of control by then has left the context of Cupboard2’s destructor, that object hasn’t

completely been destroyed yet as the destructor of its other (left) Drawer still has to be called.



any remaining actions would simply be ignored, albeit that (as both drawers are properly constructed

objects) left’s destructor would still have to be called.

This happens here too and left’s destructor also needs to throw an exception. But as we’ve already

left the context of the second try block, the current flow control is now thoroughly mixed up, and

the program has no other option but to abort. It does so by calling terminate(), which in turn calls

abort(). Here we have our collapsing cupboard having two drawers, even though the cupboard having

one drawer behaves perfectly.

The program aborts since there are multiple composed objects whose destructors throw exceptions

leaving the destructors. In this situation one of the composed objects would throw an exception by the

time the program’s flow control has already left its proper context causing the program to abort.

The C++ standard therefore understandably stipulates that exceptions may never leave destructors.

Here is the skeleton of a destructor whose code might throw exceptions. No function try block but all

the destructor’s actions are encapsulated in a try block nested under the destructor’s body.

Class::~Class()

{

try

{

maybe_throw_exceptions();

}

catch (...)

{}

}



Chapter 11

More Operator Overloading

Having covered the overloaded assignment operator in chapter 9, and having shown several examples

of other overloaded operators as well (i.e., the insertion and extraction operators in chapters 3 and 6),

we now take a look at operator overloading in general.

11.1 Overloading ‘operator[]()’

As our next example of operator overloading, we introduce a class IntArray encapsulating an array of

ints. Indexing the array elements is possible using the standard array index operator [], but addition-

ally checks for array bounds overflow are performed. Furthermore, the index operator (operator[])

is interesting in that it can be used in expressions as both lvalue and as rvalue.

Here is an example showing the basic use of the class:

int main()

{

IntArray x{ 20 }; // 20 ints

for (int i = 0; i < 20; i++)

x[i] = i * 2; // assign the elements

for (int i = 0; i <= 20; i++) // produces boundary overflow

cout << "At index " << i << ": value is " << x[i] << '\n';

}

First, the constructor is used to create an object containing 20 ints. The elements stored in the object

can be assigned or retrieved. The first for-loop assigns values to the elements using the index operator,

the second for-loop retrieves the values but also results in a run-time error once the non-existing value

x[20] is addressed. The IntArray class interface is:

#include <cstddef>

class IntArray

{

int *d_data;

size_t d_size;

public:

IntArray(size_t size = 1);

IntArray(IntArray const &other);

285



IntArray &operator=(IntArray const &other);

// overloaded index operators:

int &operator[](size_t index); // first

int operator[](size_t index) const; // second

void swap(IntArray &other); // trivial

private:

void boundary(size_t index) const;

int &operatorIndex(size_t index) const;

};

This class has the following characteristics:

• One of its constructors has a size_t parameter having a default argument value, specifying the

number of int elements in the object.

• The class internally uses a pointer to reach allocated memory. Hence, the necessary tools are

provided: a copy constructor, an overloaded assignment operator and a destructor.

• Note that there are two overloaded index operators. Why are there two?

The first overloaded index operator allows us to reach and modify the elements of non-constant

IntArray objects. This overloaded operator’s prototype is a function returning a reference to an

int. This allows us to use expressions like x[10] as rvalues or lvalues.

With non-const IntArray objects operator[] can therefore be used to retrieve and to assign

values. The return value of the non-const operator[] member is not an int const &, but an

int &. In this situation we don’t use const, as we must be able to modify the element we want

to access when the operator is used as lvalue.

This whole scheme fails if there’s nothing to assign. Consider the situation where we have an

IntArray const stable(5). Such an object is an immutable const object. The compiler detects

this and refuses to compile this object definition if only the non-const operator[] is available.

Hence the second overloaded index operator is added to the class’s interface. Here the return value

is an int, rather than an int &, and the member function itself is a const member function.

This second form of the overloaded index operator is automatically used by the compiler with

const objects. It is used for value retrieval instead of value assignment. That, of course, is

precisely what we want when using const objects. In this situation members are overloaded only

by their const attribute. This form of function overloading was introduced earlier in the C++

Annotations (sections 2.5.4 and 7.7).

Note the difference between the return types of the two overloaded index operators: int & and

int. Here, using a value return type for the const-index operator is OK, because the return type

is a simple built-in type: returning a copy of the requested value is likely more efficient than

returning a const reference, which must be dereferenced whenever it is used. However, for more

complex return types (generally: objects) value return types should be avoided and the const index

operator should define a Type const & return type instead of a Type value return type.

Since IntArray stores values of a primitive type IntArray’s operator[] const could also

have defined a value return type. However, with objects one usually doesn’t want the extra copy-

ing that’s implied with value return types. In those cases const & return values are preferred for

const member functions. So, in the IntArray class an int return value could have been used

as well, resulting in the following prototype:

int IntArray::operator[](size_t index) const;

• As there is only one pointer data member, the destruction of the memory allocated by the object

is a simple delete[] data.



are:

#include "intarray.ih"

IntArray::IntArray(size_t size)

:

d_size(size)

{

if (d_size < 1)

throw "IntArray: size of array must be >= 1"s;

d_data = new int[d_size];

}

IntArray::IntArray(IntArray const &other)

:

d_size(other.d_size),

d_data(new int[d_size])

{

memcpy(d_data, other.d_data, d_size * sizeof(int));

}

IntArray::~IntArray()

{

delete[] d_data;

}

IntArray &IntArray::operator=(IntArray const &other)

{

IntArray tmp(other);

swap(tmp);

return *this;

}

int &IntArray::operatorIndex(size_t index) const

{

boundary(index);

return d_data[index];

}

int &IntArray::operator[](size_t index)

{

return operatorIndex(index);

}

int IntArray::operator[](size_t index) const

{

return operatorIndex(index);

}

void IntArray::boundary(size_t index) const

{

if (index < d_size)

return;

ostringstream out;

out << "IntArray: boundary overflow, index = " <<

index << ", should be < " << d_size << '\n';

throw out.str();



Note how the operator[] members were implemented: as non-const members may call const mem-

ber functions and as the implementation of the const member function is identical to the non-const

member function’s implementation both operator[] members could be defined inline using an auxil-

iary function int &operatorIndex(size_t index) const. A const member function may return

a non-const reference (or pointer) return value, referring to one of the data members of its object. Of

course, this is a potentially dangerous backdoor that may break data hiding. However, the members in

the public interface prevent this breach and so the two public operator[] members may themselves

safely call the same int &operatorIndex() const member, that defines a private backdoor.

11.2 Overloading insertion and extraction operators

Classes may be adapted in such a way that their objects may be inserted into and extracted from,

respectively, a std::ostream and std::istream.

The class std::ostream defines insertion operators for primitive types, such as int, char ∗, etc.. In

this section we learn how to extend the existing functionality of classes (in particular std::istream

and std::ostream) in such a way that they can be used also in combination with classes developed

much later in history.

In particular we will show how the insertion operator can be overloaded allowing the insertion of any

type of object, say Person (see chapter 9), into an ostream. Having defined such an overloaded opera-

tor we’re able to use the following code:

Person kr("Kernighan and Ritchie", "unknown", "unknown");

cout << "Name, address and phone number of Person kr:\n" << kr << '\n';

The statement cout << kr uses operator<<. This member function has two operands: an ostream

& and a Person &. The required action is defined in an overloaded free function operator<< expect-

ing two arguments:

// declared in `person.h'
std::ostream &operator<<(std::ostream &out, Person const &person);

// defined in some source file

ostream &operator<<(ostream &out, Person const &person)

{

return

out <<

"Name: " << person.name() << ", "

"Address: " << person.address() << ", "

"Phone: " << person.phone();

}

The free function operator<< has the following noteworthy characteristics:

• The function returns a reference to an ostream object, to enable ‘chaining’ of the insertion oper-

ator.

• The two operands of operator<< are passed to the free function as its arguments. In the exam-

ple, the parameter out was initialized by cout, the parameter person by kr.

In order to overload the extraction operator for, e.g., the Person class, members are needed modifying

the class’s private data members. Such modifiers are normally offered by the class interface. For the

Person class these members could be the following:



void setAddress(char const *address);

void setPhone(char const *phone);

These members may easily be implemented: the memory pointed to by the corresponding data member

must be deleted, and the data member should point to a copy of the text pointed to by the parameter.

E.g.,

void Person::setAddress(char const *address)

{

delete[] d_address;

d_address = strdupnew(address);

}

A more elaborate function should check the reasonableness of the new address (address also shouldn’t

be a 0-pointer). This however, is not further pursued here. Instead, let’s have a look at the final

operator>>. A simple implementation is:

istream &operator>>(istream &in, Person &person)

{

string name;

string address;

string phone;

if (in >> name >> address >> phone) // extract three strings

{

person.setName(name.c_str());

person.setAddress(address.c_str());

person.setPhone(phone.c_str());

}

return in;

}

Note the stepwise approach that is followed here. First, the required information is extracted using

available extraction operators. Then, if that succeeds, modifiers are used to modify the data members

of the object to be extracted. Finally, the stream object itself is returned as a reference.

11.3 Conversion operators

A class may be constructed around a built-in type. E.g., a class String, constructed around the char

∗ type. Such a class may define all kinds of operations, like assignments. Take a look at the following

class interface, designed after the string class:

class String

{

char *d_string;

public:

String();

String(char const *arg);

~String();

String(String const &other);

String &operator=(String const &rvalue);

String &operator=(char const *rvalue);

};



∗

an overloaded assignment operator, allowing the assignment from a String object and from a char

const ∗
1.

Usually, in classes that are less directly linked to their data than this String class, there will be

an accessor member function, like a member char const ∗String::c_str() const. However, the

need to use this latter member doesn’t appeal to our intuition when an array of String objects is

defined by, e.g., a class StringArray. If this latter class provides the operator[] to access individual

String members, it would most likely offer at least the following class interface:

class StringArray

{

String *d_store;

size_t d_n;

public:

StringArray(size_t size);

StringArray(StringArray const &other);

StringArray &operator=(StringArray const &rvalue);

~StringArray();

String &operator[](size_t index);

};

This interface allows us to assign String elements to each other:

StringArray sa{ 10 };

sa[4] = sa[3]; // String to String assignment

But it is also possible to assign a char const ∗ to an element of sa:

sa[3] = "hello world";

Here, the following steps are taken:

• First, sa[3] is evaluated. This results in a String reference.

• Next, the String class is inspected for an overloaded assignment, expecting a char const ∗ to

its right-hand side. This operator is found, and the string object sa[3] receives its new value.

Now we try to do it the other way around: how to access the char const ∗ that’s stored in sa[3]?

The following attempt fails:

char const *cp = sa[3];

It fails since we would need an overloaded assignment operator for the ’class’ char const ∗. Unfor-

tunately, there isn’t such a class, and therefore we can’t build that overloaded assignment operator

(see also section 11.14). Furthermore, casting won’t work as the compiler doesn’t know how to cast a

String to a char const ∗. How to proceed?

One possibility is to define an accessor member function c_str():

char const *cp = sa[3].c_str()

1Note that the assignment from a char const ∗ also allows the null-pointer. An assignment like stringObject = 0 is

perfectly in order.



A conversion operator is a kind of overloaded operator, but this time the overloading is used to cast the

object to another type. In class interfaces, the general form of a conversion operator is:

operator <type>() const;

Conversion operators usually are const member functions: they are automatically called when their

objects are used as rvalues in expressions having a type lvalue. Using a conversion operator a String

object may be interpreted as a char const ∗ rvalue, allowing us to perform the above assignment.

Conversion operators are somewhat dangerous. The conversion is automatically performed by the

compiler and unless its use is perfectly transparent it may confuse those who read code in which con-

version operators are used. E.g., novice C++ programmers are frequently confused by statements like

‘if (cin) ...’.

As a rule of thumb: classes should define at most one conversion operator. Multiple conversion op-

erators may be defined but frequently result in ambiguous code. E.g., if a class defines operator

bool() const and operator int() const then passing an object of this class to a function expect-

ing a size_t argument results in an ambiguity as an int and a bool may both be used to initialize a

size_t.

In the current example, the class String could define the following conversion operator for char

const ∗:

String::operator char const *() const

{

return d_string;

}

Notes:

• Conversion operators do not define return types. The conversion operator returns a value of the

type specified beyond the operator keyword.

• In certain situations (e.g., when a String argument is passed to a function specifying an ellipsis

parameter) the compiler needs a hand to disambiguate our intentions. A static_cast solves the

problem.

• With template functions conversion operators may not work immediately as expected. For exam-

ple, when defining a conversion operator X::operator std::string const() const then

cout << X() won’t compile. The reason for this is explained in section 21.9, but a shortcut

allowing the conversion operator to work is to define the following overloaded operator<< func-

tion:

std::ostream &operator<<(std::ostream &out, std::string const &str)

{

return out.write(str.data(), str.length());

}

Conversion operators are also used when objects of classes defining conversion operators are inserted

into streams. Realize that the right hand sides of insertion operators are function parameters that are

initialized by the operator’s right hand side arguments. The rules are simple:

• If a class X defining a conversion operator also defines an insertion operator accepting an X object

the insertion operator is used;

• Otherwise, if the type returned by the conversion operator is insertable then the conversion oper-

ator is used;



sion operator itself defines a conversion operator to a type that may be inserted into a stream.

In the following example an object of class Insertable is directly inserted; an object of the class

Convertor uses the conversion operator; an object of the class Error cannot be inserted since it does

not define an insertion operator and the type returned by its conversion operator cannot be inserted

either (Text does define an operator int() const, but the fact that a Text itself cannot be inserted

causes the error):

#include <iostream>

#include <string>

using namespace std;

struct Insertable

{

operator int() const

{

cout << "op int()\n";

return 0;

}

};

ostream &operator<<(ostream &out, Insertable const &ins)

{

return out << "insertion operator";

}

struct Convertor

{

operator Insertable() const

{

return Insertable();

}

};

struct Text

{

operator int() const

{

return 1;

}

};

struct Error

{

operator Text() const

{

return Text{};

}

};

int main()

{

Insertable insertable;

cout << insertable << '\n';

Convertor convertor;

cout << convertor << '\n';

Error error;

cout << error << '\n';

}

Some final remarks regarding conversion operators:



the stream classes define operator bool(), allowing constructions like if (cin).

• A conversion operator should return an rvalue. It should do so to enforce data-hiding and because

it is the intended use of the conversion operator. Defining a conversion operator as an lvalue (e.g.,

defining an operator int &() conversion operator) opens up a back door, and the operator can

only be used as lvalue when explicitly called (as in: x.operator int&() = 5). Don’t use it.

• Conversion operators should be defined as const member functions as they don’t modify their

object’s data members.

• Conversion operators returning composed objects should return const references to these objects

whenever possible to avoid calling the composed object’s copy constructor.

11.4 The keyword ‘explicit’

Conversions are not only performed by conversion operators, but also by constructors accepting one

argument (i.e., constructors having one or multiple parameters, specifying default argument values for

all parameters or for all but the first parameter).

Assume a data base class DataBase is defined in which Person objects can be stored. It defines a

Person ∗d_data pointer, and so it offers a copy constructor and an overloaded assignment operator.

In addition to the copy constructor DataBase offers a default constructor and several additional con-

structors:

• DataBase(Person const &): the DataBase initially contains a single Person object;

• DataBase(istream &in): the data about multiple persons are read from in.

• DataBase(size_t count, istream &in = cin): the data of count persons are read from

in, by default the standard input stream.

The above constructors all are perfectly reasonable. But they also allow the compiler to compile the

following code without producing any warning at all:

DataBase db;

DataBase db2;

Person person;

db2 = db; // 1

db2 = person; // 2

db2 = 10; // 3

db2 = cin; // 4

Statement 1 is perfectly reasonable: db is used to redefine db2. Statement 2 might be understandable

since we designed DataBase to contain Person objects. Nevertheless, we might question the logic

that’s used here as a Person is not some kind of DataBase. The logic becomes even more opaque when

looking at statements 3 and 4. Statement 3 in effect waits for the data of 10 persons to appear at the

standard input stream. Nothing like that is suggested by db2 = 10.

Implicit promotions are used with statements 2 through 4. Since constructors accepting, respectively

a Person, an istream, and a size_t and an istream have been defined for DataBase and since the

assignment operator expects a DataBase right-hand side (rhs) argument the compiler first converts

the rhs arguments to anonymous DataBase objects which are then assigned to db2.

It is good practice to prevent implicit promotions by using the explicit modifier when declaring a

constructor. Constructors using the explicit modifier can only be used to construct objects explicitly.



declared using explicit. E.g.,

explicit DataBase(Person const &person);

explicit DataBase(size_t count, std:istream &in);

Having declared all constructors accepting one argument as explicit the above assignments would

have required the explicit specification of the appropriate constructors, thus clarifying the program-

mer’s intent:

DataBase db;

DataBase db2;

Person person;

db2 = db; // 1

db2 = DataBase{ person }; // 2

db2 = DataBase{ 10 }; // 3

db2 = DataBase{ cin }; // 4

As a rule of thumb prefix one argument constructors with the explicit keyword unless implicit pro-

motions are perfectly natural (string’s char const ∗ accepting constructor is a case in point).

11.4.1 Explicit conversion operators

In addition to explicit constructors, C++ supports explicit conversion operators.

For example, a class might define operator bool() const returning true if an object of that class

is in a usable state and false if not. Since the type bool is an arithmetic type this could result in

unexpected or unintended behavior. Consider:

void process(bool value);

class StreamHandler

{

public:

operator bool() const; // true: object is fit for use

...

};

int fun(StreamHandler &sh)

{

int sx;

if (sh) // intended use of operator bool()

... use sh as usual; also use `sx'

process(sh); // typo: `sx' was intended

}

In this example process unintentionally receives the value returned by operator bool using the

implicit conversion from bool to int.

When defining explicit conversion operators implicit conversions like the one shown in the example

are prevented. Such conversion operators can only be used in situations where the converted type is ex-

plicitly required (as in the condition clauses of if or while statements), or is explicitly requested using

a static_cast. To declare an explicit bool conversion operator in class StreamHandler’s interface

replace the above declaration by:



Since the C++14 standard istreams define an explicit operator bool() const. As a conse-

quence:

while (cin.get(ch)) // compiles OK

;

bool fun1()

{

return cin; // 'bool = istream' won't compile as

} // istream defines 'explicit operator bool'

bool fun1()

{

return static_cast<bool>(cin); // compiles OK

}

11.5 Overloading increment and decrement operators

Overloading the increment operator (operator++) and decrement operator ( operator--) introduces

a small problem: there are two versions of each operator, as they may be used as postfix operator (e.g.,

x++) or as prefix operator (e.g., ++x).

Used as postfix operator, the value’s object is returned as an rvalue, temporary const object and the post-

incremented variable itself disappears from view. Used as prefix operator, the variable is incremented,

and its value is returned as lvalue and it may be altered again by modifying the prefix operator’s return

value. Whereas these characteristics are not required when the operator is overloaded, it is strongly

advised to implement these characteristics in any overloaded increment or decrement operator.

Suppose we define a wrapper class around the size_t value type. Such a class could offer the following

(partially shown) interface:

class Unsigned

{

size_t d_value;

public:

Unsigned();

explicit Unsigned(size_t init);

Unsigned &operator++();

}

The class’s last member declares the prefix overloaded increment operator. The returned lvalue is

Unsigned &. The member is easily implemented:

Unsigned &Unsigned::operator++()

{

++d_value;

return *this;

}

To define the postfix operator, an overloaded version of the operator is defined, expecting a (dummy)

int argument. This might be considered a kludge, or an acceptable application of function overloading.

Whatever your opinion in this matter, the following can be concluded:



should return references to the current object.

• Overloaded increment and decrement operators having an int parameter are postfix operators,

and should return a value which is a copy of the object at the point where its postfix operator is

used.

The postfix increment operator is declared as follows in the class Unsigned’s interface:

Unsigned operator++(int);

It may be implemented as follows:

Unsigned Unsigned::operator++(int)

{

Unsigned tmp{ *this };

++d_value;

return tmp;

}

Note that the operator’s parameter is not used. It is only part of the implementation to disambiguate

the prefix- and postfix operators in implementations and declarations.

In the above example the statement incrementing the current object offers the nothrow guarantee

as it only involves an operation on a primitive type. If the initial copy construction throws then the

original object is not modified, if the return statement throws the object has safely been modified. But

incrementing an object could itself throw exceptions. How to implement the increment operators in

that case? Once again, swap is our friend. Here are the pre- and postfix operators offering the strong

guarantee when the member increment performing the increment operation may throw:

Unsigned &Unsigned::operator++()

{

Unsigned tmp{ *this };

tmp.increment();

swap(tmp);

return *this;

}

Unsigned Unsigned::operator++(int)

{

Unsigned tmp{ *this };

tmp.increment();

swap(tmp);

return tmp;

}

Both operators first create copies of the current objects. These copies are incremented and then

swapped with the current objects. If increment throws the current objects remain unaltered; the

swap operations ensure that the correct objects are returned (the incremented object for the prefix op-

erator, the original object for the postfix operator) and that the current objects become the incremented

objects.

When calling the increment or decrement operator using its full member function name then any int

argument passed to the function results in calling the postfix operator. Omitting the argument results

in calling the prefix operator. Example:

Unsigned uns{ 13 };

uns.operator++(); // prefix-incrementing uns

uns.operator++(0); // postfix-incrementing uns



type of variables. In situations where a postfix increment operator could be useful the std::exchange

(cf. section 19.1.11) should be used.

11.6 Overloading binary operators

In various classes overloading binary operators (like operator+) can be a very natural extension of

the class’s functionality. For example, the std::string class has various overloaded operator+

members.

Most binary operators come in two flavors: the plain binary operator (like the + operator) and the

compound binary assignment operator (like operator+=). Whereas the plain binary operators return

values, the compound binary assignment operators usually return references to the objects for which

the operators were called. For example, with std::string objects the following code (annotations

below the example) may be used:

std::string s1;

std::string s2;

std::string s3;

s1 = s2 += s3; // 1

(s2 += s3) + " postfix"; // 2

s1 = "prefix " + s3; // 3

"prefix " + s3 + "postfix"; // 4

• at // 1 the content of s3 is added to s2. Next, s2 is returned, and its new content is assigned to

s1. Note that += returns s2.

• at // 2 the content of s3 is also added to s2, but as += returns s2 itself, it’s possible to add some

more to s2

• at // 3 the + operator returns a std::string containing the concatenation of the text prefix

and the content of s3. This string returned by the + operator is thereupon assigned to s1.

• at // 4 the + operator is applied twice. The effect is:

1. The first + returns a std::string containing the concatenation of the text prefix and the

content of s3.

2. The second + operator takes this returned string as its left hand value, and returns a string

containing the concatenated text of its left and right hand operands.

3. The string returned by the second + operator represents the value of the expression.

Now consider the following code, in which a class Binary supports an overloaded operator+:

class Binary

{

public:

Binary();

Binary(int value);

Binary operator+(Binary const &rhs);

};

int main()

{

Binary b1;

Binary b2{ 5 };



b1 = b2 + 3; // 1

b1 = 3 + b2; // 2

}

Compilation of this little program fails for statement // 2, with the compiler reporting an error like:

error: no match for 'operator+' in '3 + b2'

Why is statement // 1 compiled correctly whereas statement // 2 won’t compile?

In order to understand this remember promotions. As we have seen in section 11.4, constructors ex-

pecting single arguments may implicitly be activated when an argument of an appropriate type is

provided. We’ve already encountered this with std::string objects, where NTBSs may be used to

initialize std::string objects.

Analogously, in statement // 1, operator+ is called, using b2 as its left-hand side operand. This

operator expects another Binary object as its right-hand side operand. However, an int is provided.

But as a constructor Binary(int) exists, the int value can be promoted to a Binary object. Next,

this Binary object is passed as argument to the operator+ member.

Unfortunately, in statement // 2 promotions are not available: here the + operator is applied to an

int-type lvalue. An int is a primitive type and primitive types have no knowledge of ‘constructors’,

‘member functions’ or ‘promotions’.

How, then, are promotions of left-hand operands implemented in statements like "prefix " + s3?

Since promotions can be applied to function arguments, we must make sure that both operands of

binary operators are arguments. This implies that plain binary operators supporting promotions for

either their left-hand side operand or right-hand side operand should be declared as free operators, also

called free functions.

Functions like the plain binary operators conceptually belong to the class for which they implement

these operators. Consequently they should be declared in the class’s header file. We cover their imple-

mentations shortly, but here is our first revision of the declaration of the class Binary, declaring an

overloaded + operator as a free function:

class Binary

{

public:

Binary();

Binary(int value);

};

Binary operator+(Binary const &lhs, Binary const &rhs);

After defining binary operators as free functions, several promotions are available:

• If the left-hand operand is of the intended class type, the right hand argument is promoted when-

ever possible;

• If the right-hand operand is of the intended class type, the left hand argument is promoted when-

ever possible;

• No promotions occur when neither operand is of the intended class type;

• An ambiguity occurs when promotions to different classes are possible for the two operands. For

example:

class A;



{

public:

B(A const &a);

};

class A

{

public:

A();

A(B const &b);

};

A operator+(A const &a, B const &b);

B operator+(B const &b, A const &a);

int main()

{

A a;

a + a;

};

Here, both overloaded + operators are possible candidates when compiling the statement a +

a. The ambiguity must be solved by explicitly promoting one of the arguments, e.g., a + B{a},

which enables the compiler to resolve the ambiguity to the first overloaded + operator.

The next step consists of implementing the required overloaded binary compound assignment oper-

ators, having the form @=, where @ represents a binary operator. As these operators always have

left-hand side operands which are object of their own classes, they are implemented as genuine mem-

ber functions. Compound assignment operators usually return references to the objects for which the

binary compound assignment operators were requested, as these objects might be modified in the same

statement. E.g., (s2 += s3) + " postfix".

Here is our second revision of the class Binary, showing the declaration of the plain binary operator

as well as the corresponding compound assignment operator:

class Binary

{

public:

Binary();

Binary(int value);

Binary &operator+=(Binary const &rhs);

};

Binary operator+(Binary const &lhs, Binary const &rhs);

How should the compound addition assignment operator be implemented? When implementing com-

pound binary assignment operators the strong guarantee should always be kept in mind: if the op-

eration might throw use a temporary object and swap. Here is our implementation of the compound

assignment operator:

Binary &Binary::operator+=(Binary const &rhs)

{

Binary tmp{ *this };

tmp.add(rhs); // this might throw

swap(tmp);



}

It’s easy to implement the free binary operator: the lhs argument is copied into a Binary tmp to

which the rhs operand is added. Then tmp is returned, using copy elision. The class Binary declares

the free binary operator as a friend (cf. chapter 15), so it can call Binary’s add member:

class Binary

{

friend Binary operator+(Binary const &lhs, Binary const &rhs);

public:

Binary();

Binary(int value);

Binary &operator+=(Binary const &other);

private:

void add(Binary const &other);

};

The binary operator’s implementation becomes:

Binary operator+(Binary const &lhs, Binary const &rhs)

{

Binary tmp{ lhs };

tmp.add(rhs);

return tmp;

}

If the class Binary is move-aware then it’s attractive to add move-aware binary operators. In this

case we also need operators whose left-hand side operands are rvalue references. When a class is move

aware various interesting implementations are suddenly possible, which we encounter below, and in

the next (sub)section. First have a look at the signature of such a binary operator (which should also

be declared as a friend in the class interface):

Binary operator+(Binary &&lhs, Binary const &rhs);

Since the lhs operand is an rvalue reference, we can modify it ad lib. Binary operators are commonly

designed as factory functions, returning objects created by those operators. However, the (modified)

object referred to by lhs should itself not be returned. As stated in the C++ standard,

A temporary object bound to a reference parameter in a function call persists until the com-

pletion of the full-expression containing the call.

and furthermore:

The lifetime of a temporary bound to the returned value in a function return statement

is not extended; the temporary is destroyed at the end of the full-expression in the return

statement.

In other words, a temporary object cannot itself be returned as the function’s return value: a Binary

&& return type should therefore not be used. Therefore functions implementing binary operators are

factory functions (note, however, that the returned object may be constructed using the class’s move

constructor whenever a temporary object has to be returned).



lhs operand, performing the binary operation on that object and the operator’s rhs operand, and then

return the modified object (allowing the compiler to apply copy elision). It’s a matter of taste which one

is preferred.

Here are the two implementations. Because of copy elision the explicitly defined ret object is created

in the location of the return value. Both implementations, although they appear to be different, show

identical run-time behavior:

// first implementation: modify lhs

Binary operator+(Binary &&lhs, Binary const &rhs)

{

lhs.add(rhs);

return std::move(lhs);

}

// second implementation: move construct ret from lhs

Binary operator+(Binary &&lhs, Binary const &rhs)

{

Binary ret{ std::move(lhs) };

ret.add(rhs);

return ret;

}

Now, when executing expressions like (all Binary objects) b1 + b2 + b3 the following functions are

called:

copy operator+ = b1 + b2

Copy constructor = tmp(b1)

adding = tmp.add(b2)

copy elision : tmp is returned from b1 + b2

move operator+ = tmp + b3

adding = tmp.add(b3)

Move construction = tmp2(move(tmp)) is returned

But we’re not there yet: in the next section we encounter possibilities for several more interesting

implementations, in the context of compound assignment operators.

11.6.1 Member function reference bindings (& and &&)

We’ve seen that binary operators (like operator+) can be implemented very efficiently, but require at

least move constructors.

An expression like

Binary{} + varB + varC + varD

therefore returns a move constructed object representing Binary{} + varB, then another move con-

structed object receiving the first return value and varC, and finally yet another move constructed

object receiving the second returned object and varD as its arguments.

Now consider the situation where we have a function defining a Binary && parameter, and a second

Binary const & parameter. Inside that function these values need to be added, and their sum is then

passed as argument to two other functions. We could do this:

void fun1(Binary &&lhs, Binary const &rhs)



lhs += rhs;

fun2(lhs);

fun3(lhs);

}

But realize that when using operator+= we first construct a copy of the current object, so a temporary

object is available to perform the addition on, and then swap the temporary object with the current

object to commit the results. But wait! Our lhs operand already is a temporary object. So why create

another?

In this example another temporary object is indeed not required: lhs remains in existence until fun1

ends. But different from the binary operators the binary compound assignment operators don’t have

explicitly defined left-hand side operands. But we still can inform the compiler that a particular mem-

ber (so, not merely compound assignment operators) should only be used when the objects calling those

members is an anonymous temporary object, or a non-anonymous (modifiable or non-modifiable) object.

For this we use reference bindings a.k.a. reference qualifiers.

Reference bindings consist of a reference token (&), optionally preceded by const, or an rvalue reference

token (&&). Such reference qualifiers are immediately affixed to the function’s head (this applies to the

declaration and the implementation alike). Functions provided with rvalue reference bindings are

selected by the compiler when used by anonymous temporary objects, whereas functions provided with

lvalue reference bindings are selected by the compiler when used by other types of objects.

Reference qualifiers allow us to fine-tune our implementations of compund assignment operators like

operator+=. If we know that the object calling the compound assignment operator is itself a tempo-

rary, then there’s no need for a separate temporary object. The operator may directly perform its oper-

ation and could then return itself as an rvalue reference. Here is the implementation of operator+=

tailored to being used by temporary objects:

Binary &&Binary::operator+=(Binary const &rhs) &&

{

add(rhs); // directly add rhs to *this,

return std::move(*this); // return the temporary object itself

}

This implementation is about as fast as it gets. But be careful: in the previous section we learned

that a temporary is destroyed at the end of the full expression of a return stattement. In this case,

however, the temporary already exists, and so (also see the previous section) it should persist until the

expression containing the (operator++) function call is completed. As a consequence,

cout << (Binary{} += existingBinary) << '\n';

is OK, but

Binary &&rref = (Binary{} += existingBinary);

cout << rref << '\n';

is not, since rref becomes a dangling reference immediately after its initialization.

A full-proof alternative implementation of the rvalue-reference bound operator+= returns a move-

constructed copy:

Binary Binary::operator+=(Binary const &rhs) &&

{

add(rhs); // directly add rhs to *this,

return std::move(*this); // return a move constructed copy

}



previous example (using rref), operator+= returns a copy of the Binary{} temporary, which is still

a temporary object which can safely be referred to by rref.

Which implementation to use may be a matter of choice: if users of Binary know what they’re doing

then the former implementation can be used, since these users will never use the above rref initial-

ization. If you’re not so sure about your users, use the latter implementation: formally your users will

do something they shouldn’t do, but there’s no penalty for that.

For the compound assignment operator called by an lvalue reference (i.e., a named object) we use the

implementation for operator+= from the previous section (note the reference qualifier):

Binary &Binary::operator+=(Binary const &other) &

{

Binary tmp(*this);

tmp.add(other); // this might throw

swap(tmp);

return *this;

}

With this implementation adding Binary objects to each other (e.g., b1 += b2 += b3) boils down to

operator+= (&) = b2 += b3

Copy constructor = tmp(b2)

adding = tmp.add(b3)

swap = b2 <-> tmp

return = b2

operator+= (&) = b1 += b2

Copy constructor = tmp(b1)

adding = tmp.add(b2)

swap = b1 <-> tmp

return = b1

When the leftmost object is a temporary then a copy construction and swap call are replaced by the

construction of an anonymous object. E.g., with Binary{} += b2 += b3 we observe:

operator+= (&) = b2 += b3

Copy constructor = tmp(b2)

adding = tmp.add(b3)

swap = b2 <-> tmp

Anonymous object = Binary{}

operator+= (&&) = Binary{} += b2

adding = add(b2)

return = move(Binary{})

For Binary &Binary::operator+=(Binary const &other) & an alternative implementation ex-

ists, merely using a single return statement, but in fact requiring two extra function calls. It’s a matter

of taste whether you prefer writing less code or executing fewer function calls:

Binary &Binary::operator+=(Binary const &other) &

{

return *this = Binary{ *this } += rhs;

}



nition of the class Binary. Adding standard binary operators to a class (i.e., operators operating on

arguments of their own class types) can therefore easily be realized.

11.6.2 The three-way comparison operator ‘<=>’

The C++2a standard added the three-way comparison operator <=>, also known as the spaceship oper-

ator, to the language.

This operator is closely related to comparison classes, covered in section 18.7. At this point we focus

on using the std::strong_ordering class: the examples of the spaceship operator presented in this

section all return strong_ordering objects. These objects are

• strong_ordering::equal if both operands are equal;

• strong_ordering::less if the left-hand side operand is smaller than the right-hand side

operand;

• strong_ordering::greater if the left-hand side operand is greater than the right-hand side

operand.

Standard operand conversions are handled by the compiler. Note that

• if one of the operands is of type bool, then the other operand must also be of type bool;

• narrowing conversions, except from integral types to floating point types, are not allowed;

• when the operands are of identical enumeration types their values are converted to the underlying

numeric integral type, which values are then compared.

Other standard conversions, like lvalue transformations and qualification conversions (cf. section 21.4),

are automatically performed.

Now about the spaceship operator itself. Why would you want it? Of course, if it’s defined then you can

use it. As it’s available for integral numeric types the following correctly compiles:

auto isp = 3 <=> 4;

whereafter isp’s value can be compared to available outcome-values:

cout << ( isp == strong_ordering::less ? "less\n" : "not less\n" );

But that by itself doesn’t make the spaceship operator all too interesting. What does make it interesting

is that, in combination with operator==, it handles all comparison operators. So after providing a

class with operator== and operator<=> its objects can be compared for equality, inequality, and

they can be ordered by <, <=, >, and >=. As an example consider books. To book owners the

titles and author names are the books’ important characterstics. To sort them on book shelfs we must

use operator<, to find a particular book we use operator==, to determine whether two books are

different we use operator!= and if you want to order them in an country where Arabic is the main

language you might want to sort them using operator> considering that the prevalent reading order

in those countries is from right to left. Ignoring constructors, destructors and other members, then

this is the interface of our class Book (note the inclusion of the <compare> header file, containing the

declarations of the comparison classes):

#include <string>

#include <compare>



{

friend bool operator==(Book const &lhs, Book const &rhs);

friend std::strong_ordering operator<=>(Book const &lhs,

Book const &rhs);

std::string d_author;

std::string d_title;

// ...

};

Both friend-functions are easy to implement:

bool operator==(Book const &lhs, Book const &rhs)

{

return lhs.d_author == rhs.d_author and lhs.d_title == rhs.d_title;

}

strong_ordering operator<=>(Book const &lhs, Book const &rhs)

{

return lhs.d_author < rhs.d_author ? strong_ordering::less :

lhs.d_author > rhs.d_author ? strong_ordering::greater :

lhs.d_title < rhs.d_title ? strong_ordering::less :

lhs.d_title > rhs.d_title ? strong_ordering::greater :

strong_ordering::equal;

}

And that’s it! Now all comparison operators (and of course the spaceship operator itself) are available.

The following now compiles flawlessly:

void books(Book const &b1, Book const &b2)

{

cout << (b1 == b2) << (b1 != b2) << (b1 < b2) <<

(b1 <= b2) << (b1 > b2) << (b1 >= b2) << '\n';

}

calling books for two identical books inserts 100101 into cout.

The spaceship operator is available for integral numeric types and may have been defined for class

types. E.g., it is defined for std::string. It is not automatically available for floating point types.

11.7 Overloading ‘operator new(size_t)’

When operator new is overloaded, it must define a void ∗ return type, and its first parameter must

be of type size_t. The default operator new defines only one parameter, but overloaded versions

may define multiple parameters. The first one is not explicitly specified but is deduced from the size of

objects of the class for which operator new is overloaded. In this section overloading operator new

is discussed. Overloading new[] is discussed in section 11.9.

It is possible to define multiple versions of the operator new, as long as each version defines its

own unique set of arguments. When overloaded operator new members must dynamically allocate

memory they can do so using the global operator new, applying the scope resolution operator ::.

In the next example the overloaded operator new of the class String initializes the substrate of

dynamically allocated String objects to 0-bytes:

#include <cstring>



class String

{

std::string *d_data;

public:

void *operator new(size_t size)

{

return memset(::operator new(size), 0, size);

}

bool empty() const

{

return d_data == 0;

}

};

The above operator new is used in the following program, illustrating that even though String’s

default constructor does nothing the object’s data member d_data is initialized to zero:

#include "string.h"

#include <iostream>

using namespace std;

int main()

{

String *sp = new String;

cout << boolalpha << sp->empty() << '\n'; // shows: true

}

At new String the following took place:

• First, String::operator new was called, allocating and initializing a block of memory, the size

of a String object.

• Next, a pointer to this block of memory was passed to the (default) String constructor. Since no

constructor was defined, the constructor itself didn’t do anything at all.

As String::operator new initialized the allocated memory to zero bytes the allocated String ob-

ject’s d_data member had already been initialized to a 0-pointer by the time it started to exist.

All member functions (including constructors and destructors) we’ve encountered so far define a (hid-

den) pointer to the object on which they should operate. This hidden pointer becomes the function’s

this pointer.

In the next example of pseudo C++ code, the pointer is explicitly shown to illustrate what’s happening

when operator new is used. In the first part a String object str is directly defined, in the second

part of the example the (overloaded) operator new is used:

String::String(String *const this); // real prototype of the default

// constructor

String *sp = new String; // This statement is implemented

// as follows:

String *sp = static_cast<String *>( // allocation

String::operator new(sizeof(String))



String::String{ sp }; // initialization

In the above fragment the member functions were treated as object-less member functions of the class

String. Such members are called static member functions (cf. chapter 8). Actually, operator new is

such a static member function. Since it has no this pointer it cannot reach data members of the object

for which it is expected to make memory available. It can only allocate and initialize the allocated

memory, but cannot reach the object’s data members by name as there is as yet no data object layout

defined.

Following the allocation, the memory is passed (as the this pointer) to the constructor for further

processing.

Operator new can have multiple parameters. The first parameter is initialized as an implicit ar-

gument and is always a size_t parameter. Additional overloaded operators may define additional

parameters. An interesting additional operator new is the placement new operator. With the place-

ment new operator a block of memory has already been set aside and one of the class’s constructors

is used to initialize that memory. Overloading placement new requires an operator new having two

parameters: size_t and char ∗, pointing to the memory that was already available. The size_t

parameter is implicitly initialized, but the remaining parameters must explicitly be initialized using

arguments to operator new. Hence we reach the familiar syntactical form of the placement new

operator in use:

char buffer[sizeof(String)]; // predefined memory

String *sp = new(buffer) String; // placement new call

The declaration of the placement new operator in our class String looks like this:

void *operator new(size_t size, char *memory);

It could be implemented like this (also initializing the String’s memory to 0-bytes):

void *String::operator new(size_t size, char *memory)

{

return memset(memory, 0, size);

}

Any other overloaded version of operator new could also be defined. Here is an example showing

the use and definition of an overloaded operator new storing the object’s address immediately in an

existing array of pointers to String objects (assuming the array is large enough):

// use:

String *next(String **pointers, size_t *idx)

{

return new(pointers, (*idx)++) String;

}

// implementation:

void *String::operator new(size_t size, String **pointers, size_t idx)

{

return pointers[idx] = ::operator new(size);

}

11.8 Overloading ‘operator delete(void ∗)’

The delete operator may also be overloaded. In fact it’s good practice to overload operator delete

whenever operator new is also overloaded.



∗

parameter of type size_t is related to overloading operator new[] and is discussed in section 11.9.

Overloaded operator delete members return void.

The ‘home-made’ operator delete is called when deleting a dynamically allocated object after exe-

cuting the destructor of the associated class. So, the statement

delete ptr;

with ptr being a pointer to an object of the class String for which the operator deletewas overloaded,

is a shorthand for the following statements:

ptr->~String(); // call the class's destructor

// and do things with the memory pointed to by ptr

String::operator delete(ptr);

The overloaded operator delete may do whatever it wants to do with the memory pointed to by

ptr. It could, e.g., simply delete it. If that would be the preferred thing to do, then the default delete

operator can be called using the :: scope resolution operator. For example:

void String::operator delete(void *ptr)

{

// any operation considered necessary, then, maybe:

::delete ptr;

}

To declare the above overloaded operator delete simply add the following line to the class’s inter-

face:

void operator delete(void *ptr);

Like operator new operator delete is a static member function (see also chapter 8).

11.9 Operators ‘new[]’ and ‘delete[]’

In sections 9.1.1, 9.1.2 and 9.2.1 operator new[] and operator delete[] were introduced. Like

operator new and operator delete the operators new[] and delete[] may be overloaded.

As it is possible to overload new[] and delete[] as well as operator new and operator delete,

one should be careful in selecting the appropriate set of operators. The following rule of thumb should

always be applied:

If new is used to allocate memory, delete should be used to deallocate memory. If new[] is

used to allocate memory, delete[] should be used to deallocate memory.

By default these operators act as follows:

• operator new is used to allocate a single object or primitive value. With an object, the object’s

constructor is called.

• operator delete is used to return the memory allocated by operator new. Again, with class-

type objects, the class’s destructor is called.



allocated, the class’s default constructor is called to initialize each object individually.

• operator delete[] is used to delete the memory previously allocated by new[]. If objects were

previously allocated, then the destructor is called for each individual object. Be careful, though,

when pointers to objects were allocated. If pointers to objects were allocated the destructors of the

objects to which the allocated pointers point won’t automatically be called. A pointer is a primitive

type and so no further action is taken when it is returned to the common pool.

11.9.1 Overloading ‘new[]’

To overload operator new[] in a class (e.g., in the class String) add the following line to the class’s

interface:

void *operator new[](size_t size);

The member’s size parameter is implicitly provided and is initialized by C++’s run-time system to

the amount of memory that must be allocated. Like the simple one-object operator new it should

return a void ∗. The number of objects that must be initialized can easily be computed from size /

sizeof(String) (and of course replacing String by the appropriate class name when overloading

operator new[] for another class). The overloaded new[] member may allocate raw memory using

e.g., the default operator new[] or the default operator new:

void *operator new[](size_t size)

{

return ::operator new[](size);

// alternatively:

// return ::operator new(size);

}

Before returning the allocated memory the overloaded operator new[] has a chance to do something

special. It could, e.g., initialize the memory to zero-bytes.

Once the overloaded operator new[] has been defined, it is automatically used in statements like:

String *op = new String[12];

Like operator new additional overloads of operator new[] may be defined. One opportunity for

an operator new[] overload is overloading placement new specifically for arrays of objects. This

operator is available by default but becomes unavailable once at least one overloaded operator new[]

is defined. Implementing placement new is not difficult. Here is an example, initializing the available

memory to 0-bytes before returning:

void *String::operator new[](size_t size, char *memory)

{

return memset(memory, 0, size);

}

To use this overloaded operator, the second parameter must again be provided, as in:

char buffer[12 * sizeof(String)];

String *sp = new(buffer) String[12];



To overload operator delete[] in a class String add the following line to the class’s interface:

void operator delete[](void *memory);

Its parameter is initialized to the address of a block of memory previously allocated by String::new[].

There are some subtleties to be aware of when implementing operator delete[]. Although the

addresses returned by new and new[] point to the allocated object(s), there is an additional size_t

value available immediately before the address returned by new and new[]. This size_t value is part

of the allocated block and contains the actual size of the block. This of course does not hold true for the

placement new operator.

When a class defines a destructor the size_t value preceding the address returned by new[] does not

contain the size of the allocated block, but the number of objects specified when calling new[]. Normally

that is of no interest, but when overloading operator delete[] it might become a useful piece of

information. In those cases operator delete[] does not receive the address returned by new[] but

rather the address of the initial size_t value. Whether this is at all useful is not clear. By the time

delete[]’s code is executed all objects have already been destroyed, so operator delete[] is only

to determine how many objects were destroyed but the objects themselves cannot be used anymore.

Here is an example showing this behavior of operator delete[] for a minimal Demo class:

struct Demo

{

size_t idx;

Demo()

{

cout << "default cons\n";

}

~Demo()

{

cout << "destructor\n";

}

void *operator new[](size_t size)

{

return ::operator new(size);

}

void operator delete[](void *vp)

{

cout << "delete[] for: " << vp << '\n';

::operator delete[](vp);

}

};

int main()

{

Demo *xp;

cout << ((int *)(xp = new Demo[3]))[-1] << '\n';

cout << xp << '\n';

cout << "==================\n";

delete[] xp;

}

// This program displays (your 0x?????? addresses might differ, but

// the difference between the two should be sizeof(size_t)):

// default cons

// default cons

// default cons



// 0x8bdd00c

// ==================

// destructor

// destructor

// destructor

// delete[] for: 0x8bdd008

Having overloaded operator delete[] for a class String, it will be used automatically in state-

ments like:

delete[] new String[5];

Operator delete[] may also be overloaded using an additional size_t parameter:

void operator delete[](void *p, size_t size);

Here size is automatically initialized to the size (in bytes) of the block of memory to which void

∗p points. If this form is defined, then void operator[](void ∗) should not be defined, to avoid

ambiguities. An example of this latter form of operator delete[] is:

void String::operator delete[](void *p, size_t size)

{

cout << "deleting " << size << " bytes\n";

::operator delete[](ptr);

}

Additional overloads of operator delete[] may be defined, but to use them they must explicitly be

called as static member functions (cf. chapter 8). Example:

// declaration:

void String::operator delete[](void *p, ostream &out);

// usage:

String *xp = new String[3];

String::operator delete[](xp, cout);

11.9.3 The ‘operator delete(void ∗, size_t)’ family

As we’ve seen classes may overload their operator delete and operator delete[] members.

Since the C++14 standard the global void operator delete(void ∗, size_t size) and void

operator delete[](void ∗, size_t size) functions can also be overloaded.

When a global sized deallocation function is defined, it is automatically used

instead of the default, non-sized deallocation function. The performance

of programs may improve if a sized deallocation function is available (cf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3663.html).

11.9.4 ‘new[]’, ‘delete[]’ and exceptions

When an exception is thrown while executing a new[] expression, what will happen? In this section

we’ll show that new[] is exception safe even when only some of the objects were properly constructed.

To begin, new[] might throw while trying to allocate the required memory. In this case a bad_alloc

is thrown and we don’t leak as nothing was allocated.



objects in turn. At some point a constructor might throw. What happens next is defined by the C++

standard: the destructors of the already constructed objects are called and the memory allocated for

the objects themselves is returned to the common pool. Assuming that the failing constructor offers the

basic guarantee new[] is therefore exception safe even if a constructor may throw.

The following example illustrates this behavior. A request to allocate and initialize five objects is made,

but after constructing two objects construction fails by throwing an exception. The output shows that

the destructors of properly constructed objects are called and that the allocated substrate memory is

properly returned:

#include <iostream>

using namespace std;

static size_t count = 0;

class X

{

int x;

public:

X()

{

if (count == 2)

throw 1;

cout << "Object " << ++count << '\n';

}

~X()

{

cout << "Destroyed " << this << "\n";

}

void *operator new[](size_t size)

{

cout << "Allocating objects: " << size << " bytes\n";

return ::operator new(size);

}

void operator delete[](void *mem)

{

cout << "Deleting memory at " << mem << ", containing: " <<

*static_cast<int *>(mem) << "\n";

::operator delete(mem);

}

};

int main()

try

{

X *xp = new X[5];

cout << "Memory at " << xp << '\n';

delete[] xp;

}

catch (...)

{

cout << "Caught exception.\n";

}

// Output from this program (your 0x??? addresses might differ)

// Allocating objects: 24 bytes

// Object 1

// Object 2



// Destroyed 0x842800c

// Deleting memory at 0x8428008, containing: 5

// Caught exception.

11.10 Function Objects

Function Objects are created by overloading the function call operator operator(). By defining the

function call operator an object masquerades as a function, hence the term function objects. Function

objects are also known as functors.

Function objects are important when using generic algorithms. The use of function objects is preferred

over alternatives like pointers to functions. The fact that they are important in the context of generic

algorithms leaves us with a didactic dilemma. At this point in the C++ Annotations it would have

been nice if generic algorithms would already have been covered, but for the discussion of the generic

algorithms knowledge of function objects is required. This bootstrapping problem is solved in a well

known way: by ignoring the dependency for the time being, for now concentrating on the function object

concept.

Function objects are objects for which operator() has been defined. Function objects are not just used

in combination with generic algorithms, but also as a (preferred) alternative to pointers to functions.

Function objects are frequently used to implement predicate functions. Predicate functions return

boolean values. Predicate functions and predicate function objects are commonly referred to as ‘pred-

icates’. Predicates are frequently used by generic algorithms such as the count_if generic algorithm,

covered in chapter 19, returning the number of times its function object has returned true. In the

standard template library two kinds of predicates are used: unary predicates receive one argument,

binary predicates receive two arguments.

Assume we have a class Person and an array of Person objects. Further assume that the array is

not sorted. A well known procedure for finding a particular Person object in the array is to use the

function lsearch, which performs a linear search in an array. Example:

Person &target = targetPerson(); // determine the person to find

Person *pArray;

size_t n = fillPerson(&pArray);

cout << "The target person is";

if (!lsearch(&target, pArray, &n, sizeof(Person), compareFunction))

cout << " not";

cout << "found\n";

The function targetPerson determines the person we’re looking for, and fillPerson is called to fill

the array. Then lsearch is used to locate the target person.

The comparison function must be available, as its address is one of the arguments of lsearch. It must

be a real function having an address. If it is defined inline then the compiler has no choice but to ignore

that request as inline functions don’t have addresses. CompareFunction could be implemented like

this:

int compareFunction(void const *p1, void const *p2)

{

return *static_cast<Person const *>(p1) // lsearch wants 0

!= // for equal objects

*static_cast<Person const *>(p2);

}



ing operator!= is no big deal, so let’s assume that that operator is actually available.

On average n / 2 times at least the following actions take place:

1. The two arguments of the compare function are pushed on the stack;

2. The value of the final parameter of lsearch is determined, producing compareFunction’s ad-

dress;

3. The compare function is called;

4. Then, inside the compare function the address of the right-hand argument of the

Person::operator!= argument is pushed on the stack;

5. Person::operator!= is evaluated;

6. The argument of the Person::operator!= function is popped off the stack;

7. The two arguments of the compare function are popped off the stack.

Using function objects results in a different picture. Assume we have constructed a function

PersonSearch, having the following prototype (this, however, is not the preferred approach. Normally

a generic algorithm is preferred over a home-made function. But for now we focus on PersonSearch

to illustrate the use and implementation of a function object):

Person const *PersonSearch(Person *base, size_t nmemb,

Person const &target);

This function can be used as follows:

Person &target = targetPerson();

Person *pArray;

size_t n = fillPerson(&pArray);

cout << "The target person is";

if (!PersonSearch(pArray, n, target))

cout << " not";

cout << "found\n";

So far, not much has been changed. We’ve replaced the call to lsearch with a call to another function:

PersonSearch. Now look at PersonSearch itself:

Person const *PersonSearch(Person *base, size_t nmemb,

Person const &target)

{

for (int idx = 0; idx < nmemb; ++idx)

if (target(base[idx]))

return base + idx;

return 0;

}

PersonSearch implements a plain linear search. However, in the for-loop we see

target(base[idx]). Here target is used as a function object. Its implementation is simple:

bool Person::operator()(Person const &other) const

{

return *this == other;

}



is overloaded: the function call operator. The second set of parentheses define the parameters that are

required for this overloaded operator. In the class header file this overloaded operator is declared as:

bool operator()(Person const &other) const;

Clearly Person::operator() is a simple function. It contains but one statement, and we could con-

sider defining it inline. Assuming we do, then this is what happens when operator() is called:

1. The address of the right-hand argument of the Person::operator== argument is pushed on the

stack;

2. The operator== function is evaluated (which probably also is a semantic improvement over

calling operator!= when looking for an object equal to a specified target object);

3. The argument of Person::operator== argument is popped off the stack.

Due to the fact that operator() is an inline function, it is not actually called. Instead operator== is

called immediately. Moreover, the required stack operations are fairly modest.

Function objects may truly be defined inline. Functions that are called indirectly (i.e., using pointers to

functions) can never be defined inline as their addresses must be known. Therefore, even if the function

object needs to do very little work it is defined as an ordinary function if it is going to be called through

pointers. The overhead of performing the indirect call may annihilate the advantage of the flexibility

of calling functions indirectly. In these cases using inline function objects can result in an increase of a

program’s efficiency.

An added benefit of function objects is that they may access the private data of their objects. In a

search algorithm where a compare function is used (as with lsearch) the target and array elements

are passed to the compare function using pointers, involving extra stack handling. Using function

objects, the target person doesn’t vary within a single search task. Therefore, the target person could

be passed to the function object’s class constructor. This is in fact what happens in the expression

target(base[idx]) receiving as its only argument the subsequent elements of the array to search.

11.10.1 Constructing manipulators

In chapter 6 we saw constructions like cout << hex << 13 << to display the value 13 in hexadecimal

format. One may wonder by what magic the hex manipulator accomplishes this. In this section the

construction of manipulators like hex is covered.

Actually the construction of a manipulator is rather simple. To start, a definition of the manipulator

is needed. Let’s assume we want to create a manipulator w10 which sets the field width of the next

field to be written by the ostream object to 10. This manipulator is constructed as a function. The w10

function needs to know about the ostream object in which the width must be set. By providing the

function with an ostream & parameter, it obtains this knowledge. Now that the function knows about

the ostream object we’re referring to, it can set the width in that object.

Next, it must be possible to use the manipulator in an insertion sequence. This implies that the return

value of the manipulator must be a reference to an ostream object also.

From the above considerations we’re now able to construct our w10 function:

#include <ostream>

#include <iomanip>

std::ostream &w10(std::ostream &str)

{

return str << std::setw(10);

}



E.g.,

#include <iostream>

#include <iomanip>

using namespace std;

extern ostream &w10(ostream &str);

int main()

{

w10(cout) << 3 << " ships sailed to America\n";

cout << "And " << w10 << 3 << " more ships sailed too.\n";

}

The w10 function can be used as a manipulator because the class ostream has an overloaded

operator<< accepting a pointer to a function expecting an ostream & and returning an ostream

&. Its definition is:

ostream& operator<<(ostream &(*func)(ostream &str))

{

return (*func)(*this);

}

In addition to the above overloaded operator<< another one is defined

ios_base &operator<<(ios_base &(*func)(ios_base &base))

{

(*func)(*this);

return *this;

}

This latter function is used when inserting, e.g., hex or internal.

The above procedure does not work for manipulators requiring arguments. It is of course possible

to overload operator<< to accept an ostream reference and the address of a function expecting an

ostream & and, e.g., an int, but while the address of such a function may be specified with the <<-

operator, the arguments itself cannot be specified. So, one wonders how the following construction has

been implemented:

cout << setprecision(3)

In this case the manipulator is defined as a macro. Macro’s, however, are the realm of the preprocessor,

and may easily suffer from unwelcome side-effects. In C++ programs they should be avoided when-

ever possible. The following section introduces a way to implement manipulators requiring arguments

without resorting to macros, but using anonymous objects.

11.10.1.1 Manipulators requiring arguments

Manipulators taking arguments are implemented as macros: they are handled by the preprocessor, and

are not available beyond the preprocessing stage.

Manipulators, maybe requiring arguments, can also be defined without using macros. One solution,

suitable for modifying globally available objects (like cin, or cout) is based on using anonymous ob-

jects:



required manipulation. In our example representing, respectively, a field width and an alignment

type.

• The class also supports an overloaded insertion (or extraction) operator. E.g.,

ostream &operator<<(ostream &ostr, Align const &align)

• Next, the (anonymous) object is inserted into a stream. The insertion operator passes the stream

to Align::align, allowing that member to configure (and return) the provided stream.

Here is an example of a little program using such a home-made manipulator expecting multiple argu-

ments:

#include <iostream>

#include <iomanip>

class Align

{

unsigned d_width;

std::ios::fmtflags d_alignment;

public:

Align(unsigned width, std::ios::fmtflags alignment);

std::ostream &operator()(std::ostream &ostr) const;

};

Align::Align(unsigned width, std::ios::fmtflags alignment)

:

d_width(width),

d_alignment(alignment)

{}

std::ostream &Align::operator()(std::ostream &ostr) const

{

ostr.setf(d_alignment, std::ios::adjustfield);

return ostr << std::setw(d_width);

}

std::ostream &operator<<(std::ostream &ostr, Align &&align)

{

return align(ostr);

}

using namespace std;

int main()

{

cout

<< "`" << Align{ 5, ios::left } << "hi" << "'"

<< "`" << Align{ 10, ios::right } << "there" << "'\n";

}

/*
Generated output:

`hi '` there'

*/



function call operators receiving the required arguments. E.g., consider a class Matrix that should

allow its users to specify the value and line separators when inserting the matrix into an ostream.

Two data members (e.g., char const ∗d_valueSep and char const ∗d_lineSep) are defined (and

initialized to acceptable values). The insertion function inserts d_valueSep between values, and

d_lineSep at the end of inserted rows. The member operator()(char const ∗valueSep, char

const ∗lineSep) simply assigns values to the corresponding data members.

Given an object Matrix matrix, then at this point matrix(" ", "\n") can be called. The func-

tion call operator should probably not insert the matrix, as the responsibility of manipulators is to

manipulate, not to insert. So, to insert a matrix a statement like

cout << matrix(" ", "\n") << matrix << '\n';

should probably be used. The manipulator (i.e., function call operator) assigns the proper values to

d_valueSep and d_lineSep, which are then used during the actual insertion.

The return value of the function call operator remains to be specified. The return value should be

insertable, but in fact should not insert anything at all. An empty NTBS could be returned, but that’s

a bit kludge-like. Instead the address of a manipulator function, not performing any action, can be

returned. Here’s the implementation of such an empty manipulator:

// static (alternatively a free function could be used)

std::ostream &Matrix::nop(std::ostream &out)

{

return out;

}

Thus, the implementation of the Matrix’s manipulator becomes:

std::ostream &(

*Matrix::operator()(char const *valueSep, char const *lineSep) )

(std::ostream &)

{

d_valueSep = valueSep;

d_lineSep = lineSep;

return nop;

}

Instead (probably a matter of taste) of returning the address of an empty function the manipulator

could first set the required insertion-specific values and could then return itself: the Matrix would be

inserted according to the just assigned values to the insertion variables:

Matrix const &Matrix::operator()

(char const *valueSep, char const *lineSep)

{

d_valueSep = valueSep;

d_lineSep = lineSep;

return *this;

}

In this case the insertion statement is simplified to

cout << matrix(" ", "\n") << '\n';



11.11 Lambda expressions

C++ supports lambda expressions. As we’ll see in chapter 19 generic algorithms often accept arguments

that can either be function objects or plain functions. Examples are the sort (cf. section 19.1.58) and

find_if (cf. section 19.1.17) generic algorithms. As a rule of thumb: when a called function must

remember its state a function object is appropriate, otherwise a plain function can be used.

Frequently the function or function object is not readily available, and it must be defined in or near the

location where it is used. This is commonly realized by defining a class or function in the anonymous

namespace (say: class or function A), passing an A to the code needing A. If that code is itself a member

function of the class B, then A’s implementation might benefit from having access to the members of

class B.

This scheme usually results in a significant amount of code (defining the class), or it results in complex

code (to make available software elements that aren’t automatically accessible to A’s code). It may also

result in code that is irrelevant at the current level of specification. Nested classes don’t solve these

problems either. Moreover, nested classes can’t be used in templates.

lambda expressions solve these problems. A lambda expression defines an anonymous function object

which may immediately be passed to functions expecting function object arguments, as explained in

the next few sections.

According to the C++ standard, lambda expressions provide a concise way to create simple function

objects. The emphasis here is on simple: a lambda expression’s size should be comparable to the size of

inline-functions: just one or maybe two statements. If you need more code, then encapsulate that code

in a separate function which is then called from inside the lambda expression’s compound statement,

or consider designing a separate function object.

11.11.1 Lambda expressions: syntax

A lambda expression defines an anonymous function object, also called a closure object or simply a

closure.

When a lambda expression is evaluated it results in a temporary function object (the closure object).

This temporary function object is of a unique anonymous class type, called its closure type.

Lambda expressions are used inside blocks, classes or namespaces (i.e., pretty much anywhere you

like). Their implied closure type is defined in the smallest block, class or namespace scope containing

the lambda expression. The closure object’s visibility starts at its point of definition and ends where its

closure type ends (i.e., their visibility is identical to the visibility of plain variables).

The closure type defines a const public inline function call operator. Here is an example of a lambda

expression:

[] // the `lambda-introducer'
(int x, int y) // the `lambda-declarator'
{ // a normal compound-statement

return x * y;

}

The function (formally: the function call operator of the closure type created by this lambda expression)

expects two int arguments and returns their product. This function is an inline const member of its

closure type. Its const attribute is removed if the lambda expression specifies mutable. E.g.,

[](int x, int y) mutable

...

The lambda-declarator may be omitted if no parameters are defined, but when specifying mutable (or



The parameters in a lambda declarator cannot be given default arguments.

Declarator specifiers can be mutable, constexpr, or both. A constexpr lambda-expression is itself

a constexpr, which may be compile-time evaluated if its arguments qualify as const-expressions. By

implication, if a lambda-expression is defined inside a constexpr function then the lambda-expression

itself is a constexpr, and the constexpr declarator specifier is not required. Thus, the following

function definitions are identical:

int constexpr change10(int n)

{

return [n]

{

return n > 10 ? n - 10 : n + 10;

}();

}

int constexpr change10(int n)

{

return [n] () constexpr

{

return n > 10 ? n - 10 : n + 10;

}();

}

A closure object as defined by the previous lambda expression could for example be used in combination

with the accumulate generic algorithm (cf. section 19.1.1) to compute the product of a series of int

values stored in a vector:

cout << accumulate(vi.begin(), vi.end(), 1,

[] (int x, int y)

{

return x * y;

}

);

This lambda expression implicitly defines its return type as decltype(x ∗ y). Implicit return types

can be used in these cases:

• the lambda expression does not contain a return statement (i.e., it’s a void lambda expression);

• the lambda expression contains a single return statement; or

• the lambda expression contains multiple return statements returning values of identical types

(e.g., all int values).

If there are multiple return statements returning values of different types then the lambda expres-

sion’s return type must explicitly be specified using a late-specified return type, (cf. section 3.3.7):

[](bool neg, double y) -> int

{

return neg ? -y : y;

}

Variables visible at the location of a lambda expression may be accessible from inside the lambda

expression’s compound statement. Which variables and how they are accessed depends on the content

of the lambda-introducer.



contain this or ∗this; where used in the following overview this class-context is assumed.

Global variables are always accessible, and can be modified if their definitions allow so (this in general

holds true in the following overview: when stated that ‘variables can be modified’ then that only applies

to variables that themselves allow modifications).

Local variables of the lambda expression’s surrounding function may also be specified inside the

lambda-introducer. The specification local is used to refer to any comma-separated list of local vari-

ables of the surrounding function that are visible at the lambda expression’s point of definition. There

is no required ordering of the this, ∗this and local specifications.

Finally, where in the following overview mutable is mentioned it must be specified, where

mutable_opt is specified it is optional.

Access globals, maybe data members and local variables:

• [] mutable_opt limits access to merely global variables;

• [this] mutable_opt allows access to all the object’s data members, which can be modified.

• [∗this] provides access to all the object’s members, which cannot be modified.

• [∗this] mutable is like [∗this] but modifiable copies are used inside the lambda expression

without affecting the object’s own data.

• [local] [this, local] [∗this, local]: like the previous [...] specifications, but local

is immutably accessed.

• [local] mutable, [this, local] mutable, [∗this, local] mutable: like the previ-

ous [...] specifications, but local is available as a local copy, which can be modified without

affecting the surrounding function’s local variable.

• [&local] mutable_opt, [this, &local] mutable_opt, [∗this, &local]

mutable_opt: like the previous [...] specifications, but local is available by modifiable

reference of the surrounding function’s local variable.

The following specifications must use = as the first element of the lambda-introducer. It allows access-

ing local variables by value, unless...:

• [=], [=, this], [=, ∗this]: the ‘local const’ specifier: local variables are visible, but cannot

be modified.

• [=] mutable, [=, this] mutable, [=, ∗this] mutable: local variables are visible as

modifiable copies. The original local variables themselves are not affected.

• [=, &local] mutable_opt: like the previous [= ...] specifications, but local is accessed

by modifiable reference.

The following specifications must use & as the first element of the lambda-introducer. It allows access-

ing local variables by reference, unless...:

• [&] mutable_opt, [&, this], mutable_opt: the ‘local reference specifier: local variables

are visible as modifiable references. When the lambda expression is defined inside a class member

function the object’s members are accessible and modifiable.

• [&, ∗this] mutable_opt: local variables are visible as modifiable references, data members

are visible but cannot be modified.

• [&, local] mutable_opt, [&, this, local] mutable_opt, [&, ∗this, local]

mutable_opt: like the previous [& ...] specifications, but local is accessed as a modi-

fiable copy, not affecting the surrounding function’s local variable.



are always accessed relative to this. But when members are called asynchronously (cf. chapter 20)

a problem may arise, because the asynchronously called lambda function may refer to members of an

object whose lifetime ended shortly after asynchronously calling the lambda function. This potential

problem is solved by using ‘∗this’ in the lambda-capture if it starts with =, e.g., [=, ∗this] (in

addition, variables may still also be captured, as usual). When specifying ‘∗this’ the object to which

this refers is explicitly captured: if the object’s scope ends it is not immediately destroyed, but its

lifetime is extended by the lambda-expression for the duration of that expression. In order to use the

‘∗this’ specification, the object must be available. Consider the following example:

struct S2

{

double ohseven = .007;

auto f()

{

return [this] // (1, see below)

{

return [*this] // (2)

{

return ohseven; // OK

};

}(); // (3)

}

auto g()

{

return []

{

return [*this]

{

// error: *this not captured by

// the outer lambda-expression

};

}();

}

};

Although lambda expressions are anonymous function objects, they can be assigned to variables. Often,

the variable is defined using the keyword auto. E.g.,

auto sqr = [](int x)

{

return x * x;

};

The lifetime of such lambda expressions is equal to the lifetime of the variable receiving the lambda

expression as its value.

Note also that defining a lambda expression is different from calling its function operator. The func-

tion S2::f() returns what the lamba expression (1)’s function call operator returns: its function call

operator is called by using () (at (3)). What it in fact returns is another anonymous function object

(defined at (2)). As that’s just a function object, to retrieve its value it must still be called from f’s

return value using something like this:

S2 s2;

s2.f()();



the parentheses been omitted at (3) then S2::f() would have returned a mere anonymous function

object (defined at (1)), in which case it would require three sets of parentheses to retrieve ohseven’s

value: s2.f()()().

11.11.2 Using lambda expressions

Now that the syntax of lambda expressions have been covered let’s see how they can be used in various

situations.

First we consider named lambda expressions. Named lambda expressions nicely fit in the niche of local

functions: when a function needs to perform computations which are at a conceptually lower level than

the function’s task itself, then it’s attractive to encapsulate these computations in a separate support

function and call the support function where needed. Although support functions can be defined in

anonymous namespaces, that quickly becomes awkward when the requiring function is a class member

and the support function also must access the class’s members.

In that case a named lambda expression can be used: it can be defined inside a requiring function,

and it may be given full access to the surrounding class. The name to which the lambda expression

is assigned becomes the name of a function which can be called from the surrounding function. Here

is an example, converting a numeric IP address to a dotted decimal string, which can also be accessed

directly from an Dotted object (all implementations in-class to conserve space):

class Dotted

{

std::string d_dotted;

public:

std::string const &dotted() const

{

return d_dotted;

}

std::string const &dotted(size_t ip)

{

auto octet =

[](size_t idx, size_t numeric)

{

return to_string(numeric >> idx * 8 & 0xff);

};

d_dotted =

octet(3, ip) + '.' + octet(2, ip) + '.' +

octet(1, ip) + '.' + octet(0, ip);

return d_dotted;

}

};

Next we consider the use of generic algorithms, like the for_each (cf. section 19.1.18):

void showSum(vector<int> const &vi)

{

int total = 0;

for_each(

vi.begin(), vi.end(),

[&](int x)

{



}

);

std::cout << total << '\n';

}

Here the variable int total is passed to the lambda expression by reference and is directly accessed

by the function. Its parameter list merely defines an int x, which is initialized in sequence by each

of the values stored in vi. Once the generic algorithm has completed showSum’s variable total has

received a value that is equal to the sum of all the vector’s values. It has outlived the lambda expression

and its value is displayed.

But although generic algorithms are extremely useful, there may not always be one that fits the task

at hand. Furthermore, an algorithm like for_each looks a bit unwieldy, now that the language offers

range-based for-loops. So let’s try this, instead of the above implementation:

void showSum(vector<int> const &vi)

{

int total = 0;

for (auto el: vi)

[&](int x)

{

total += x;

};

std::cout << total << '\n';

}

But when showSum is now called, its cout statement consistently reports 0. What’s happening here?

When a generic algorithm is given a lambda function, its implementation instantiates a reference to

a function. The referenced function is thereupon called from within the generic algorithm. But, in

the above example the range-based for-loop’s nested statement merely represents the definition of a

lambda function. Nothing is actually called, and hence total remains equal to 0.

Thus, to make the above example work we not only must define the lambda expression, but we must

also call the lambda function. We can do this by giving the lambda function a name, and then call the

lambda function by its given name:

void showSum(vector<int> const &vi)

{

int total = 0;

for (auto el: vi)

{

auto lambda = [&](int x)

{

total += x;

};

lambda(el);

}

std::cout << total << '\n';

}

In fact, there is no need to give the lambda function a name: the auto lambda definition represents

the lambda function, which could also directly be called. The syntax for doing this may look a bit weird,

but there’s nothing wrong with it, and it allows us to drop the compound statement, required in the

last example, completely. Here goes:



{

int total = 0;

for (auto el: vi)

[&](int x)

{

total += x;

}(el); // immediately append the

// argument list to the lambda

// function's definition

std::cout << total << '\n';

}

Lambda expressions can also be used to prevent spurious returns from condition_variable’s wait

calls (cf. section 20.4.3).

The class condition_variable allows us to do so by offering wait members expecting a lock and

a predicate. The predicate checks the data’s state, and returns true if the data’s state allows the

data’s processing. Here is an alternative implementation of the down member shown in section 20.4.3,

checking for the data’s actual availability:

void down()

{

unique_lock<mutex> lock(sem_mutex);

condition.wait(lock,

[&]()

{

return semaphore != 0

}

);

--semaphore;

}

The lambda expression ensures that wait only returns once semaphore has been incremented.

Lambda expression are primarily used to obtain functors that are used in a very localized section of a

program. Since they are used inside an existing function we should realize that once we use lambda

functions multiple aggregation levels are mixed. Normally a function implements a task which can be

described at its own aggregation level using just a few sentences. E.g., “the function std::sort sorts

a data structure by comparing its elements in a way that is appropriate to the context where sort is

called”. By using an existing comparison method the aggregation level is kept, and the statement is

clear by itself. E.g.,

sort(data.begin(), data.end(), greater<DataType>());

If an existing comparison method is not available, a tailor-made function object must be created. This

could be realized using a lambda expression. E.g.,

sort(data.begin(), data.end(),

[&](DataType const &lhs, DataType const &rhs)

{

return lhs.greater(rhs);

}

);

Looking at the latter example, we should realize that here two different aggregation levels are mixed:

at the top level the intent is to sort the elements in data, but at the nested level (inside the lambda

expression) something completely different happens. Inside the lambda expression we define how a the



levels is hard to read, and should be avoided.

On the other hand: lambda expressions also simplify code because the overhead of defining tailor-made

functors is avoided. The advice, therefore, is to use lambda expressions sparingly. When they are used

make sure that their sizes remain small. As a rule of thumb: lambda expressions should be treated

like in-line functions, and should merely consist of one, or maybe occasionally two expressions.

A special group of lambda expressions is known as generic lambda expressions. As generic lambda

expressions are in fact class templates, their coverage is postponed until chapter 22.

11.12 The case of [io]fstream::open()

Earlier, in section 6.4.2.1, it was noted that the [io]fstream::open members expect an

ios::openmode value as their final argument. E.g., to open an fstream object for writing you could

do as follows:

fstream out;

out.open("/tmp/out", ios::out);

Combinations are also possible. To open an fstream object for both reading and writing the following

stanza is often seen:

fstream out;

out.open("/tmp/out", ios::in | ios::out);

When trying to combine enum values using a ‘home made’ enum we may run into problems. Consider

the following:

enum Permission

{

READ = 1 << 0,

WRITE = 1 << 1,

EXECUTE = 1 << 2

};

void setPermission(Permission permission);

int main()

{

setPermission(READ | WRITE);

}

When offering this little program to the compiler it replies with an error message like this:

invalid conversion from ’int’ to ’Permission’

The question is of course: why is it OK to combine ios::openmode values passing these combined

values to the stream’s open member, but not OK to combine Permission values.

Combining enum values using arithmetic operators results in int-typed values. Conceptually this

never was our intention. Conceptually it can be considered correct to combine enum values if the re-

sulting value conceptually makes sense as a value that is still within the original enumeration domain.

Note that after adding a value READWRITE = READ | WRITE to the above enum we’re still not allowed

to specify READ | WRITE as an argument to setPermission.



domain we turn to operator overloading. Up to this point operator overloading has been applied to class

types. Free functions like operator<< have been overloaded, and those overloads are conceptually

within the domain of their class.

As C++ is a strongly typed language realize that defining an enum is really something beyond the mere

association of int-values with symbolic names. An enumeration type is really a type of its own, and as

with any type its operators can be overloaded. When writing READ | WRITE the compiler performs the

default conversion from enum values to int values and applies the operator to ints. It does so when

it has no alternative.

But it is also possible to overload the enum type’s operators. Thus we may ensure that we’ll remain

within the enum’s domain even though the resulting value wasn’t defined by the enum. The advantage

of type-safety and conceptual clarity is considered to outweigh the somewhat peculiar introduction of

values hitherto not defined by the enum.

Here is an example of such an overloaded operator:

Permission operator|(Permission left, Permission right)

{

return static_cast<Permission>(static_cast<int>(left) | right);

}

Other operators can easily and analogously be constructed.

Operators like the above were defined for the ios::openmode enumeration type, allowing us to spec-

ify ios::in | ios::out as argument to open while specifying the corresponding parameter as

ios::openmode as well. Clearly, operator overloading can be used in many situations, not necessarily

only involving class-types.

11.13 User-defined literals

In addition to the well-known literals, like numerical constants (with or without suffixes), character

constants and string (textual) literals, C++ also supports user-defined literals, also known as extensible

literals.

A user-defined literal is defined by a function (see also section 23.3) that must be defined at namespace

scope. Such a function is called a literal operator. A literal operator cannot be a class member function.

The names of a literal operator must start with an underscore, and a literal operator is used (called)

by suffixing its name (including the underscore) to the argument that must be passed to it . Assuming

_NM2km (nautical mile to km) is the name of a literal operator, then it could be called as 100_NM2km,

producing, e.g., the value 185.2.

Using Type to represent the return type of the literal operator its generic declaration looks like this:

Type operator "" _identifier(parameter-list);

The blank space trailing the empty string is required. The parameter lists of literal operators can be:

• unsigned long long int. It is used as, e.g., 123_identifier. The argument to this literal

operator can be decimal constants, binary constants (initial 0b), octal constants (initial 0) and

hexadecimal constants (initial 0x);

• long double. It is used as, e.g., 12.25_NM2km;

• char const ∗text. The text argument is an NTBS. It is used as, e.g., 1234_pental. The ar-

gument must not be given double quotes, and must represent a numeric constant, as also expected

by literal operators defining unsigned long long int parameters.



∗

strlen(text). It is used as, e.g., "hello"_nVowels;

• wchar_t const ∗text, size_t len, same as the previous one, but accepting a string of

wchar_t characters. It is used as, e.g., L"1234"_charSum;

• char16_t const ∗text, size_t len, same as the previous one, but accepting a string of

char16_t characters. It is used as, e.g., u"utf 16"_uc;

• char32_t const ∗text, size_t len, same as the previous one, but accepting a string of

char32_t characters. It is used as, e.g., U"UTF 32"_lc;

If literal operators are overloaded the compiler will pick the literal operator requiring the least ‘effort’.

E.g., 120 is processed by a literal operator defining an unsigned long long int parameter and

not by its overloaded version, defining a char const ∗ parameter. But if overloaded literal operators

exist defining char const ∗ and long double parameters then the operator defining a char const

∗ parameter is used when the argument 120 is provided, while the operator defining a long double

parameter is used with the argument 120.3.

A literator operator can define any return type. Here is an example of a definition of the _NM2km literal

operator:

double operator "" _NM2km(char const *nm)

{

return std::stod(nm) * 1.852;

}

double value = 120_NM2km; // example of use

Of course, the argument could also have been a long double constant. Here’s an alternative imple-

mentation, explicitly expecting a long double:

double constexpr operator "" _NM2km(long double nm)

{

return nm * 1.852;

}

double value = 450.5_NM2km; // example of use

A numeric constant can also be processed completely at compile-time. Section 23.3 provides the details

of this type of literal operator.

Arguments to literal operators are themselves always constants. A literal operator like _NM2km cannot

be used to convert, e.g., the value of a variable. A literal operator, although it is defined as a function,

cannot be called like a function. The following examples therefore result in compilation errors:

double speed;

speed_NM2km; // no identifier 'speed_NM2km'

_NM2km(speed); // no function _NM2km

_NM2km(120.3); // no function _NM2km

11.14 Overloadable operators

The following operators can be overloaded:

+ - * / % ^ & |



>= ++ -- << >> == != &&

|| += -= *= /= %= ^= &=

|= <<= >>= [] () -> ->* new

new[] delete delete[]

Several operators have textual alternatives:

textual alternative operator

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

‘Textual’ alternatives of operators are also overloadable (e.g., operator and). However, note that tex-

tual alternatives are not additional operators. So, within the same context operator&& and operator

and can not both be overloaded.

Several of these operators may only be overloaded as member functions within a class. This holds true

for the ’=’, the ’[]’, the ’()’ and the ’->’ operators. Consequently, it isn’t possible to redefine, e.g.,

the assignment operator globally in such a way that it accepts a char const ∗ as an lvalue and a

String & as an rvalue. Fortunately, that isn’t necessary either, as we have seen in section 11.3.

Finally, the following operators cannot be overloaded:

. .* :: ?: sizeof typeid





Chapter 12

Abstract Containers

C++ offers several predefined datatypes, all part of the Standard Template Library, which can be used

to implement solutions to frequently occurring problems. The datatypes discussed in this chapter are

all containers: you can put stuff inside them, and you can retrieve the stored information from them.

The interesting part is that the kind of data that can be stored inside these containers has been left

unspecified at the time the containers were constructed. That’s why they are spoken of as abstract

containers.

Abstract containers rely heavily on templates, covered in chapter 21 and beyond. To use abstract

containers, only a minimal grasp of the template concept is required. In C++ a template is in fact

a recipe for constructing a function or a complete class. The recipe tries to abstract the functionality

of the class or function as much as possible from the data on which the class or function operates. As

the data types on which the templates operate were not known when the template was implemented,

the datatypes are either inferred from the context in which a function template is used, or they are

mentioned explicitly when a class template is used (the term that’s used here is instantiated). In

situations where the types are explicitly mentioned, the angle bracket notation is used to indicate

which data types are required. For example, below (in section 12.2) we’ll encounter the pair container,

which requires the explicit mentioning of two data types. Here is a pair object containing both an int

and a string:

pair<int, string> myPair;

The object myPair is defined as an object holding both an int and a string.

The angle bracket notation is used intensively in the upcoming discussion of abstract containers. Ac-

tually, understanding this part of templates is the only real requirement for using abstract containers.

Now that we’ve introduced this notation, we can postpone the more thorough discussion of templates

to chapter 21, and concentrate on their use in this chapter.

Most abstract containers are sequential containers: they contain data that can be stored and retrieved

in some sequential way. Examples are the array, implementing a fixed-sized array; a vector, im-

plementing an extendable array; the list, implementing a data structure that allows for the easy

insertion or deletion of data; the queue, also called a FIFO (first in, first out) structure, in which the

first element that is entered is the first element to be retrieved again; and the stack, which is a first

in, last out (FILO or LIFO) structure.

In addition to sequential containers several special containers are available. The pair is a basic con-

tainer in which a pair of values (of types that are left open for further specification) can be stored, like

two strings, two ints, a string and a double, etc.. Pairs are often used to return data elements that nat-

urally come in pairs. For example, the map is an abstract container storing keys and their associated

values. Elements of these maps are returned as pairs.

A variant of the pair is the complex container, implementing operations that are defined on complex

numbers.

331



number of different data types.

All abstract containers described in this chapter as well as the string and stream datatypes (cf. chap-

ters 5 and 6) are part of the Standard Template Library.

All but the unordered containers support the following basic set of operators:

• The overloaded assignment operator, so we can assign two containers of the same types to each

other. If the container’s data type supports move assignment, then assignment of an anonymous

temporary container to a destination container will use move assignment when assigning new

values to the destination container’s element. Overloaded assignment is also supported by the

unordered containers;

• Tests for equality: == and != The equality operator applied to two containers returns true if

the two containers have the same number of elements, which are pairwise equal according to the

equality operator of the contained data type. The inequality operator does the opposite;

• Ordering operators: <, <=, > and >=. The < operator returns true if each element in the left-

hand side container is less than each corresponding element in the right-hand side container.

Additional elements in either the left-hand side container or the right-hand side container are

ignored.

container left;

container right;

left = {0, 2, 4};

right = {1, 3}; // left < right

right = {1, 3, 6, 1, 2}; // left < right

Note that before a user-defined type (usually a class-type) can be stored in a container, the user-

defined type should at least support:

• A default value (e.g., a default constructor)

• The equality operator (==)

• The less-than operator (<)

Sequential containers can also be initialized using initializer lists.

Most containers (exceptions are the stack (section 12.4.11), priority_queue (section 12.4.5), and queue

(section 12.4.4) containers) support members to determine their maximum sizes (through their member

function max_size).

Virtually all containers support copy construction. If the container supports copy construction and the

container’s data type supports move construction, then move construction is automatically used for the

container’s data elements when a container is initialized with an anonymous temporary container.

Closely linked to the standard template library are the generic algorithms. These algorithms may be

used to perform frequently occurring tasks or more complex tasks than is possible with the containers

themselves, like counting, filling, merging, filtering etc.. An overview of generic algorithms and their

applications is given in chapter 19. Generic algorithms usually rely on the availability of iterators,

representing begin and end-points for processing data stored inside containers. The abstract containers

usually support constructors and members expecting iterators, and they often have members returning

iterators (comparable to the string::begin and string::endmembers). In this chapter the iterator

concept is not further investigated. Refer to chapter 18 for this.

The url https://www.sgi.com/tech/stl/ is worth visiting as it offers more extensive coverage of

abstract containers and the standard template library than can be provided by the C++ Annotations.



tries to destroy its data elements. This only succeeds if the data elements themselves are stored inside

the container. If the data elements of containers are pointers to dynamically allocated memory then

the memory pointed to by these pointers is not destroyed, resulting in a memory leak. A consequence

of this scheme is that the data stored in a container should often be considered the ‘property’ of the

container: the container should be able to destroy its data elements when the container’s destructor

is called. So, normally containers should not contain pointers to data. Also, a container should not be

required to contain const data, as const data prevent the use of many of the container’s members,

like the assignment operator.

12.1 Notations used in this chapter

In this chapter about containers, the following notational conventions are used:

• Containers live in the standard namespace. In code examples this will be clearly visible, but in

the text std:: is usually omitted.

• A container without angle brackets represents any container of that type. Mentally add the re-

quired type in angle bracket notation. E.g., pair may represent pair<string, int>.

• The notation Type represents the generic type. Type could be int, string, etc.

• Identifiers object and container represent objects of the container type under discussion.

• The identifier value represents a value of the type that is stored in the container.

• Simple, one-letter identifiers, like n represent unsigned values.

• Longer identifiers represent iteratoriterators. Examples are pos, from, beyond

Some containers, e.g., the map container, contain pairs of values, usually called ‘keys’ and ‘values’. For

such containers the following notational convention is used in addition:

• The identifier key indicates a value of the used key-type

• The identifier keyvalue indicates a value of the ‘value_type’ used with the particular container.

12.2 The ‘pair’ container

The pair container is a rather basic container. It is used to store two elements, called first and

second, and that’s about it. Before using pair containers the header file <utility> must be in-

cluded.

The pair’s data types are specified when the pair object is defined (or declared) using the template’s

angle bracket notation (cf. chapter 21). Examples:

pair<string, string> piper("PA28", "PH-ANI");

pair<string, string> cessna("C172", "PH-ANG");

here, the variables piper and cessna are defined as pair variables containing two strings. Both

strings can be retrieved using the first and second fields of the pair type:

cout << piper.first << '\n' << // shows 'PA28'

cessna.second << '\n'; // shows 'PH-ANG'



cessna.first = "C152";

cessna.second = "PH-ANW";

If a pair object must be completely reassigned, an anonymous pair object can be used as the right-hand

operand of the assignment. An anonymous variable defines a temporary variable (which receives no

name) solely for the purpose of (re)assigning another variable of the same type. Its generic form is

type(initializer list)

Note that when a pair object is used the type specification is not completed by just mentioning the

containername pair. It also requires the specification of the data types which are stored within the

pair. For this the (template) angle bracket notation is used again. E.g., the reassignment of the cessna

pair variable could have been accomplished as follows:

cessna = pair<string, string>("C152", "PH-ANW");

In cases like these, the type specification can become quite elaborate, which has caused a revival of

interest in the possibilities offered by the typedef keyword. If many pair<type1, type2> clauses

are used in a source, the typing effort may be reduced and readability might be improved by first

defining a name for the clause, and then using the defined name later. E.g.,

typedef pair<string, string> pairStrStr;

cessna = pairStrStr("C152", "PH-ANW");

All abstract containers are class templates, and the types for which class templates are initialized

are commonly specified between pointed brackets following the class template’s name. However, the

compiler may be able to deduce the container’s types from the types of arguments that are specified

when constructing the container. E.g., when defining

pair values{ 1, 1.5 };

the compiler deduces that values.first is an int and values.second is a double. Sometimes the

class template’s types cannot be deduced. In those cases the intended types must explicitly be specified:

pair<int, double> values;

Although the compiler will deduce types whenever it can, it might not deduce the types we had in mind.

Had we defined

pair cessna{ "C172", "PH-BVL" };

then the compilation would succeed, but an expression like cout << cessna.first.length()

would not compile, as "C172" is a NTBS, and hence cessna.first is a char ∗. In this case simply

appending an s to the NTBSs fixes the problem, but such a simple fix might not always be available.

Section 12.4.2 has contains more information about deducing template parameter types.

Apart from this (and the basic set of operations (assignment and comparisons)) the pair offers no

further functionality. It is, however, a basic ingredient of the upcoming abstract containers map,

multimap and hash_map.

C++ also offers a generalized pair container: the tuple, covered in section 22.6.



12.3 Allocators

Most containers use a special object for allocating the memory that is managed by them. This object

is called an allocator, and it’s type is (usually by default) specified when a container is constructed. A

container’s allocator can be obtained using the container’s get_allocator member, which returns a

copy of the allocator used by the container. Allocators offer the following members:

• value_type ∗address(value_type &object)

returns the address of object.

• value_type ∗allocate(size_t count)

allocates raw memory for holding count values of the container’s value_type.

• void construct(value_type ∗object, Arg &&...args)

using placement new, uses the arguments following object to install a value at object.

• void destroy(value_type ∗object)

calls object’s destructor (but doesn’t deallocate object’s own memory).

• void deallocate(value_type ∗object, size_t count)

calls operator delete to delete object’s memory, previously allocated by allocate.

• size_t max_size()

returns the maximum number of elements that allocate can allocate.

Here is an example, using the allocator of a vector of strings (see section 12.4.2 below for a description

of the vector container):

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int main()

{

vector<string> vs;

auto allocator = vs.get_allocator(); // get the allocator

string *sp = allocator.allocate(3); // alloc. space for 3 strings

allocator.construct(&sp[0], "hello world"); // initialize 1st string

allocator.construct(&sp[1], sp[0]); // use the copy constructor

allocator.construct(&sp[2], 12, '='); // string of 12 = chars

cout << sp[0] << '\n' << // show the strings

sp[1] << '\n' <<

sp[2] << '\n' <<

"could have allocated " << allocator.max_size() << " strings\n";

for (size_t idx = 0; idx != 3; ++idx)

allocator.destroy(sp + idx); // delete the string's

// contents

allocator.deallocate(sp, 3); // and delete sp itself again.

}



12.4 Available Containers

12.4.1 The ‘array’ container

The array class implements a fixed-size array. Before using the array container the <array> header

file must be included.

To define a std::array both the data type of its elements and its size must be specified: the data type

is given after an opening angle bracket, immediately following the ‘array’ container name. The array’s

size is provided after the data type specification. Finally, a closing angle bracket completes the array’s

type. Specifications like this are common practice with containers. The combination of array, type and

size defines a type. As a result, array<string, 4> defines another type than array<string, 5>,

and a function explicitly defining an array<Type, N> parameter will not accept an array<Type,

M> argument if N and M are unequal.

The array’s size may may be defined as 0 (although such an array probably has little use as it cannot

store any element). The elements of an array are stored contiguously. If array<Type, N> arr has

been defined, then &arr[n] + m == &arr[n + m], assuming than 0 <= n < N and 0 <= n + m

< N.

The following constructors, operators, and member functions are available:

• Constructors:

– The copy and move constructors are available;

– An array may be constructed with a fixed number N of default elements:

array<string, N> object;

– An initial subset of the elements of an array may be initialized using a brace delimited ini-

tializer list:

array<double, 4> dArr = {1.2, 2.4};

Here dArr is defined as an array of 4 element, with dArr[0] and dArr[1] initialized to,

respectively 1.2 and 2.4, and dArr[2] and dArr[3] initialized to 0. An attractive character-

istic of arrays (and other containers) is that containers initialize their data elements to the

data type’s default value. The data type’s default constructor is used for this initialization.

With non-class data types the value 0 is used. So, for an array<double, 4> array we know

that all but its explicitly initialized elements are initialized to zero.

• In addition to the standard operators for containers, the array supports the index operator, which

can be used to retrieve or reassign individual elements of the array. Note that the elements which

are indexed must exist. For example, having defined an empty array a statement like iarr[0]

= 18 produces an error, as the array is empty. Note that operator[] does not respect its array

bounds. If you want run-time array bound checking, use the array’s at member.

• The array class offers the following member functions:

– Type &at(size_t idx):

returns a reference to the array’s element at index position idx. If idx exceeds the array’s

size a std::out_of_range exception is thrown.

– Type &back():

returns a reference to the last element in the array. It is the responsibility of the programmer

to use the member only if the array is not empty.

– array::iterator begin():

returns an iterator pointing to the first element in the array, returning end if the array is

empty.

– array::const_iterator cbegin():

returns a const_iterator pointing to the first element in the array, returning cend if the array

is empty.



returns a const_iterator pointing just beyond the array’s last element.

– array::const_reverse_iterator crbegin():

returns a const_reverse_iterator pointing to the last element in the array, returning crend

if the array is empty.

– array::const_reverse_iterator crend():

returns a const_reverse_iterator pointing just before the array’s first element.

– value_type ∗data():

returns a pointer to the array’s first data element. With a const array a value_type const

∗ is returned.

– bool empty():

returns true if the array contains no elements.

– array::iterator end():

returns an iterator pointing beyond the last element in the array.

– void fill(Type const &item):

fills all the array’s elements with a copy of item

– Type &front():

returns a reference to the first element in the array. It is the responsibility of the programmer

to use the member only if the array is not empty.

– array::reverse_iterator rbegin():

this member returns a reverse_iterator pointing to the last element in the array.

– array::reverse_iterator rend():

returns a reverse_iterator pointing before the first element in the array.

– constexpr size_t size():

returns the number of elements the array contains.

– void swap(<array<Type, N> &other):

swaps the content of the current and other array. The array other’s data type and size must

be equal to the data type and size of the object calling swap.

Using an array rather than a standard C style array offers several advantages:

• All its elements are immediately initialized;

• Introspection is possible (e.g., size can be used);

• The array container can be used in the context of templates, there code is developed that operates

on data types that become available only after the code itself has been developed;

• Since array supports reverse iterators, it can be immediately be used with generic algorithms

performing ‘reversed’ operations (e.g., to perform a descending rather than ascending sort (cf.

section 19.1.58))

In general, when looking for a sequential data structure, the array or vector (introduced in the next

section) should be your ‘weapon of choice’. Only if these containers demonstrably do not fit the problem

at hand you should use another type of container.

12.4.2 The ‘vector’ container

The vector class implements an expandable array. Before using the vector container the <vector>

header file must be included.

The following constructors, operators, and member functions are available:

• Constructors:

– The copy and move constructors are available;



vector<string> object;

– A vector may be initialized to a certain number of elements:

vector<string> object(5, "Hello"s); // initialize to 5 Hello's,

vector<string> container(10); // and to 10 empty strings

vector<string> names = {"george", "frank", "tony", "karel"};

Note the difference between vector<int> first(5) and vector<int> second{ 5 }.

The vector first contains five elements, initialized to 0, while the vector second contains

one element, initialized to 5. Referring back to section 12.2: with the latter definition the

compiler is able to deduce the vector’s template parameter type (int), so the latter definition

could also have been written as vector second{ 5 }.

An ambiguity might be observed when looking at

vector object{ vector{ 1 } };

Did we define a vector<int> or a vector<vector<int>>? The standard considers

this a vector<int>: it is initialized using the vector’s move constructor from an abstract

vector<int>.

– A vector may be initialized using iterators. To initialize a vector with elements 5 until 10

(including the last one) of an existing vector<string> the following construction may be

used:

extern vector<string> container;

vector<string> object(&container[5], &container[11]);

Note here that the last element pointed to by the second iterator (&container[11]) is not

stored in object. This is a simple example of the use of iterators, in which the used range of

values starts at the first value, and includes all elements up to but not including the element

to which the second iterator refers. The standard notation for this is [begin, end).

• In addition to the standard operators for containers, the vector supports the index operator,

which can be used to retrieve or reassign individual elements of the vector. Note that the elements

which are indexed must exist. For example, having defined an empty vector a statement like

ivect[0] = 18 produces an error, as the vector is empty. So, the vector is not automatically

expanded, and operator[] does not respect its array bounds. In this case the vector should be

resized first, or ivect.push_back(18) should be used (see below). If you need run-time array

bound checking, use the vector’s at member.

• The vector class offers the following member functions:

– void assign(...):

assigns new content to the vector:

* assign(iterator begin, iterator end) assigns the values at the iterator range

[begin, end) to the vector;

* assign(size_type n, value_type const &val) assigns n copies of val to the vec-

tor;

* assign(initializer_list<value_type> values) assigns the values in the ini-

tializer list to the vector.

– Type &at(size_t idx):

returns a reference to the vector’s element at index position idx. If idx exceeds the vector’s

size a std::out_of_range exception is thrown.

– Type &back():

returns a reference to the last element in the vector. It is the responsibility of the programmer

to use the member only if the vector is not empty.

– vector::iterator begin():

returns an iterator pointing to the first element in the vector, returning end if the vector is

empty.



Number of elements for which memory has been allocated. It returns at least the value

returned by size

– vector::const_iterator cbegin():

returns a const_iterator pointing to the first element in the vector, returning cend if the

vector is empty.

– vector::const_iterator cend():

returns a const_iterator pointing just beyond the vector’s last element.

– void clear():

erases all the vector’s elements.

– vector::const_reverse_iterator crbegin():

returns a const_reverse_iterator pointing to the last element in the vector, returning crend

if the vector is empty.

– vector::const_reverse_iterator crend():

returns a const_reverse_iterator pointing just before the vector’s first element.

– value_type ∗data():

returns a pointer to the vector’s first data element.

– iterator emplace(const_iterator position, Args &&...args):

a value_type object is constructed from the arguments specified after position, and the

newly created element is inserted at position. Different from insert, which expects an

existing object of the container’s value type (and inserts the provided argument into the con-

tainer) using copy or move construction or assignment, emplace uses its arguments to con-

struct such an object immediately at the intended location of the container, without requiring

copy or move construction or assignment.

– void emplace_back(Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly created

element is inserted beyond the vector’s last element.

– bool empty():

returns true if the vector contains no elements.

– vector::iterator end():

returns an iterator pointing beyond the last element in the vector.

– vector::iterator erase():

erases a specific range of elements in the vector:

* erase(pos) erases the element pointed to by the iterator pos. The iterator ++pos is

returned.

* erase(first, beyond) erases elements indicated by the iterator range [first,

beyond), returning beyond.

– Type &front():

returns a reference to the first element in the vector. It is the responsibility of the program-

mer to use the member only if the vector is not empty.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the vector object.

– ... insert():

elements may be inserted starting at a certain position. The return value depends on the

version of insert() that is called:

* vector::iterator insert(pos) inserts a default value of type Type at pos, pos is

returned.

* vector::iterator insert(pos, value) inserts value at pos, pos is returned.

* void insert(pos, first, beyond) inserts the elements in the iterator range

[first, beyond).

* void insert(pos, n, value) inserts n elements having value value at position

pos.

– size_t max_size():

returns the maximum number of elements this vector may contain.



removes the last element from the vector. With an empty vector nothing happens.

– void push_back(value):

adds value to the end of the vector.

– vector::reverse_iterator rbegin():

this member returns a reverse_iterator pointing to the last element in the vector.

– vector::reverse_iterator rend():

returns an iterator pointing before the first element in the vector.

– void reserve(size_t request):

if request is less than or equal to capacity, this call has no effect. Otherwise, it is a

request to allocate additional memory. If the call is successful, then capacity returns a

value of at least request. Otherwise, capacity is unchanged. In either case, size’s return

value won’t change, until a function like resize is called, actually changing the number of

accessible elements.

– void resize():

can be used to alter the number of elements that are currently stored in the vector:

* resize(n, value) may be used to resize the vector to a size of n. Value is optional. If

the vector is expanded and value is not provided, the additional elements are initialized

to the default value of the used data type, otherwise value is used to initialize extra

elements.

– void shrink_to_fit():

optionally reduces the amount of memory allocated by a vector to its current size. The imple-

mentor is free to ignore or otherwise optimize this request. In order to guarantee a ‘shrink

to fit’ operation the

vector<Type>(vectorObject).swap(vectorObject)

idiom can be used.

– size_t size():

returns the number of elements in the vector.

– void swap():

swaps two vectors using identical data types. Example:

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<int> v1(7);

vector<int> v2(10);

v1.swap(v2);

cout << v1.size() << " " << v2.size() << '\n';

}

/*
Produced output:

10 7

*/

12.4.3 The ‘list’ container

The list container implements a list data structure. Before using a list container the header file

<list> must be included.

The organization of a list is shown in figure 12.1. Figure 12.1 shows that a list consists of separate

list-elements, connected by pointers. The list can be traversed in two directions: starting at Front the



Figure 12.1: A list data-structure

list may be traversed from left to right, until the 0-pointer is reached at the end of the rightmost list-

element. The list can also be traversed from right to left: starting at Back, the list is traversed from

right to left, until eventually the 0-pointer emanating from the leftmost list-element is reached.

As a subtlety note that the representation given in figure 12.1 is not necessarily used in actual imple-

mentations of the list. For example, consider the following little program:

int main()

{

list<int> l;

cout << "size: " << l.size() << ", first element: " <<

l.front() << '\n';

}

When this program is run it might actually produce the output:

size: 0, first element: 0

Its front element can even be assigned a value. In this case the implementor has chosen to provide

the list with a hidden element. The list actually is a circular list, where the hidden element serves as

terminating element, replacing the 0-pointers in figure 12.1. As noted, this is a subtlety, which doesn’t

affect the conceptual notion of a list as a data structure ending in 0-pointers. Note also that it is well

known that various implementations of list-structures are possible (cf. Aho, A.V., Hopcroft J.E. and

Ullman, J.D., (1983) Data Structures and Algorithms (Addison-Wesley)).

Both lists and vectors are often appropriate data structures in situations where an unknown number

of data elements must be stored. However, there are some rules of thumb to follow when selecting the

appropriate data structure.

• When most accesses are random, a vector is the preferred data structure. Example: in a pro-

gram counting character frequencies in a textfile, a vector<int> frequencies(256) is the

datastructure of choice, as the values of the received characters can be used as indices into the

frequencies vector.

• The previous example illustrates a second rule of thumb, also favoring the vector: if the number

of elements is known in advance (and does not notably change during the lifetime of the program),

the vector is also preferred over the list.

• In cases where insertions or deletions prevail and the data structure is large the list is generally

preferred.

At present lists aren’t as useful anymore as they used to be (when computers were much slower and

more memory-constrained). Except maybe for some rare cases, a vector should be the preferred con-

tainer; even when implementing algorithms traditionally using lists.

Other considerations related to the choice between lists and vectors should also be given some thought.

Although it is true that the vector is able to grow dynamically, the dynamic growth requires data-

copying. Clearly, copying a million large data structures takes a considerable amount of time, even on



Figure 12.2: Adding a new element to a list

Figure 12.3: Removing an element from a list

fast computers. On the other hand, inserting a large number of elements in a list doesn’t require us to

copy non-involved data. Inserting a new element in a list merely requires us to juggle some pointers.

In figure 12.2 this is shown: a new element is inserted between the second and third element, creating

a new list of four elements. Removing an element from a list is also fairly easy. Starting again from the

situation shown in figure 12.1, figure 12.3 shows what happens if element two is removed from our list.

Again: only pointers need to be juggled. In this case it’s even simpler than adding an element: only

two pointers need to be rerouted. To summarize the comparison between lists and vectors: it’s probably

best to conclude that there is no clear-cut answer to the question what data structure to prefer. There

are rules of thumb, which may be adhered to. But if worse comes to worst, a profiler may be required

to find out what’s best.

The list container offers the following constructors, operators, and member functions:

• Constructors:

– The copy and move constructors are available;

– A list may be constructed empty:

list<string> object;

As with the vector, it is an error to refer to an element of an empty list.

– A list may be initialized to a certain number of elements. By default, if the initialization

value is not explicitly mentioned, the default value or default constructor for the actual data

type is used. For example:

list<string> object(5, "Hello"s); // initialize to 5 Hello's

list<string> container(10); // and to 10 empty strings

– A list may be initialized using a two iterators. To initialize a list with elements 5 until 10

(including the last one) of a vector<string> the following construction may be used:

extern vector<string> container;

list<string> object(&container[5], &container[11]);

• The list does not offer specialized operators, apart from the standard operators for containers.



– void assign(...):

assigns new content to the list:

* assign(iterator begin, iterator end) assigns the values at the iterator range

[begin, end) to the list;

* assign(size_type n, value_type const &val) assigns n copies of val to the list;

– Type &back():

returns a reference to the last element in the list. It is the responsibility of the programmer

to use this member only if the list is not empty.

– list::iterator begin():

returns an iterator pointing to the first element in the list, returning end if the list is empty.

– void clear():

erases all elements from the list.

– bool empty():

returns true if the list contains no elements.

– list::iterator end():

returns an iterator pointing beyond the last element in the list.

– list::iterator erase():

erases a specific range of elements in the list:

* erase(pos) erases the element pointed to by pos. The iterator ++pos is returned.

* erase(first, beyond) erases elements indicated by the iterator range [first,

beyond). Beyond is returned.

– Type &front():

returns a reference to the first element in the list. It is the responsibility of the programmer

to use this member only if the list is not empty.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the list object.

– ... insert():

inserts elements into the list. The return value depends on the version of insert that is

called:

* list::iterator insert(pos) inserts a default value of type Type at pos, pos is

returned.

* list::iterator insert(pos, value) inserts value at pos, pos is returned.

* void insert(pos, first, beyond) inserts the elements in the iterator range

[first, beyond).

* void insert(pos, n, value) inserts n elements having value value at position

pos.

– size_t max_size():

returns the maximum number of elements this list may contain.

– void merge(list<Type> other):

this member function assumes that the current and other lists are sorted (see below, the

member sort). Based on that assumption, it inserts the elements of other into the current

list in such a way that the modified list remains sorted. If both list are not sorted, the

resulting list will be ordered ‘as much as possible’, given the initial ordering of the elements

in the two lists. list<Type>::merge uses Type::operator< to sort the data in the list,

which operator must therefore be available. The next example illustrates the use of the

merge member: the list ‘object’ is not sorted, so the resulting list is ordered ’as much as

possible’.

#include <iostream>

#include <string>

#include <list>

using namespace std;



void showlist(list<string> &target)

{

for

(

list<string>::iterator from = target.begin();

from != target.end();

++from

)

cout << *from << " ";

cout << '\n';

}

int main()

{

list<string> first;

list<string> second;

first.push_back("alpha"s);

first.push_back("bravo"s);

first.push_back("golf"s);

first.push_back("quebec"s);

second.push_back("oscar"s);

second.push_back("mike"s);

second.push_back("november"s);

second.push_back("zulu"s);

first.merge(second);

showlist(first);

}

A subtlety is that merge doesn’t alter the list if the list itself is used as argument:

object.merge(object) won’t change the list ‘object’.

– void pop_back():

removes the last element from the list. With an empty list nothing happens.

– void pop_front():

removes the first element from the list. With an empty list nothing happens.

– void push_back(value):

adds value to the end of the list.

– void push_front(value):

adds value before the first element of the list.

– list::reverse_iterator rbegin():

returns a reverse_iterator pointing to the last element in the list.

– void remove(value):

removes all occurrences of value from the list. In the following example, the two strings

‘Hello’ are removed from the list object:

#include <iostream>

#include <string>

#include <list>

using namespace std;

int main()

{

list<string> object;



object.push_back("World"s);

object.push_back("Hello"s);

object.push_back("World"s);

object.remove("Hello"s);

while (object.size())

{

cout << object.front() << '\n';

object.pop_front();

}

}

/*
Generated output:

World

World

*/

– void remove_if(Predicate pred):

removes all occurrences from the list for which the predicate function or function object

pred returns true. For each of the objects stored in the list the predicate is called as

pred(∗iter), where iter represents the iterator used internally by remove_if. If a func-

tion pred is used, its prototype should be bool pred(value_type const &object).

– list::reverse_iterator rend():

this member returns a reverse_iterator pointing before the first element in the list.

– void resize():

alters the number of elements that are currently stored in the list:

* resize(n, value) may be used to resize the list to a size of n. Value is optional. If

the list is expanded and value is not provided, the extra elements are initialized to the

default value of the used data type, otherwise value is used to initialize extra elements.

– void reverse():

reverses the order of the elements in the list. The element back becomes front and vice

versa.

– size_t size():

returns the number of elements in the list.

– void sort():

sorts the list. An example of its use is given at the description of the uniquemember function

below. list<Type>::sort uses Type::operator< to sort the data in the list, which must

therefore be available.

– void splice(pos, object):

transfers the content of object to the current list, starting the insertion at the iterator

position pos of the object using the splice member. Following splice, object is empty.

For example:

#include <iostream>

#include <string>

#include <list>

using namespace std;

int main()

{

list<string> object;

object.push_front("Hello"s);

object.push_back("World"s);

list<string> argument(object);



object.splice(++object.begin(), argument);

cout << "Object contains " << object.size() << " elements, " <<

"Argument contains " << argument.size() <<

" elements,\n";

while (object.size())

{

cout << object.front() << '\n';

object.pop_front();

}

}

Alternatively, argument may be followed by an iterator of argument, indicating the first

element of argument that should be spliced, or by two iterators begin and end defining the

iterator-range [begin, end) on argument that should be spliced into object.

– void swap():

swaps two lists using identical data types.

– void unique():

operating on a sorted list, this member function removes all consecutively identical elements

from the list. list<Type>::unique uses Type::operator== to identify identical data el-

ements, which operator must therefore be available. Here’s an example removing all multiply

occurring words from the list:

#include <iostream>

#include <string>

#include <list>

using namespace std;

// see the merge() example

void showlist(list<string> &target)

{

for

(

list<string>::iterator from = target.begin();

from != target.end();

++from

)

cout << *from << " ";

cout << '\n';

}

int main()

{

string

array[] =

{

"charlie",

"alpha",

"bravo",

"alpha"

};

list<string>

target

(

array, array + sizeof(array)

/ sizeof(string)



Figure 12.4: A queue data-structure

);

cout << "Initially we have:\n";

showlist(target);

target.sort();

cout << "After sort() we have:\n";

showlist(target);

target.unique();

cout << "After unique() we have:\n";

showlist(target);

}

/*
Generated output:

Initially we have:

charlie alpha bravo alpha

After sort() we have:

alpha alpha bravo charlie

After unique() we have:

alpha bravo charlie

*/

12.4.4 The ‘queue’ container

The queue class implements a queue data structure. Before using a queue container the header file

<queue> must be included.

A queue is depicted in figure 12.4. In figure 12.4 it is shown that a queue has one point (the back) where

items can be added to the queue, and one point (the front) where items can be removed (read) from the

queue. A queue is therefore also called a FIFO data structure, for first in, first out. It is most often

used in situations where events should be handled in the same order as they are generated.

The following constructors, operators, and member functions are available for the queue container:

• Constructors:

– The copy and move constructors are available;

– A queue may be constructed empty:

queue<string> object;

As with the vector, it is an error to refer to an element of an empty queue.

• The queue container only supports the basic container operators.

• The following member functions are available for queues:



returns a reference to the last element in the queue. It is the responsibility of the program-

mer to use the member only if the queue is not empty.

– bool empty():

returns true if the queue contains no elements.

– Type &front():

returns a reference to the first element in the queue. It is the responsibility of the program-

mer to use the member only if the queue is not empty.

– void pop():

removes the element at the front of the queue. Note that the element is not returned by this

member. Nothing happens if the member is called for an empty queue. One might wonder

why pop returns void, instead of a value of type Type (cf. front). One reason is found

in the principles of good software design: functions should perform one task. Combining

the removal and return of the removed element breaks this principle. Moreover, when this

principle is abandoned pop’s implementation is always flawed. Consider the prototypical

implementation of a pop member that is supposed to return the just popped value:

Type queue::pop()

{

Type ret{ front() };

erase_front();

return ret;

}

The venom, as usual, is in the tail: since queue has no control over Type’s behavior the

final statement (return ret) might throw. By that time the queue’s front element has

already been removed from the queue and so it is lost. Thus, a Type returning pop member

cannot offer the strong guarantee and consequently pop should not return the former front

element. Because of all this, we must first use front and then pop to obtain and remove the

queue’s front element.

– void push(value):

this member adds value to the back of the queue.

– size_t size():

returns the number of elements in the queue.

Note that the queue does not support iterators or an index operator. The only elements that can be

accessed are its front and back element. A queue can be emptied by:

• repeatedly removing its front element;

• assigning an empty queue using the same data type to it;

• having its destructor called.

12.4.5 The ‘priority_queue’ container

The priority_queue class implements a priority queue data structure. Before using a

priority_queue container the <queue> header file must have been included.

A priority queue is identical to a queue, but allows the entry of data elements according to priority

rules. A real-life priority queue is found, e.g., at airport check-in terminals. At a terminal the passen-

gers normally stand in line to wait for their turn to check in, but late passengers are usually allowed to

jump the queue: they receive a higher priority than other passengers.

The priority queue uses operator< of the data type stored in the priority queue to decide about the

priority of the data elements. The smaller the value, the lower the priority. So, the priority queue could



following program: it reads words from cin and writes a sorted list of words to cout:

#include <iostream>

#include <string>

#include <queue>

using namespace std;

int main()

{

priority_queue<string> q;

string word;

while (cin >> word)

q.push(word);

while (q.size())

{

cout << q.top() << '\n';

q.pop();

}

}

Unfortunately, the words are listed in reversed order: because of the underlying <-operator the words

appearing later in the ASCII-sequence appear first in the priority queue. A solution to that problem

is to define a wrapper class around the string datatype, reversing string’s operator<. Here is the

modified program:

#include <iostream>

#include <string>

#include <queue>

class Text

{

std::string d_s;

public:

Text(std::string const &str)

:

d_s(str)

{}

operator std::string const &() const

{

return d_s;

}

bool operator<(Text const &right) const

{

return d_s > right.d_s;

}

};

using namespace std;

int main()

{

priority_queue<Text> q;

string word;



q.push(word);

while (q.size())

{

word = q.top();

cout << word << '\n';

q.pop();

}

}

Other possibilities to achieve the same exist. One would be to store the content of the priority queue

in, e.g., a vector, from which the elements can be read in reversed order.

The following constructors, operators, and member functions are available for the priority_queue

container:

• Constructors:

– The copy and move constructors are available;

– A priority_queue may be constructed empty:

priority_queue<string> object;

As with the vector, it is an error to refer to an element of an empty priority queue.

• The priority_queue only supports the basic operators of containers.

• The following member functions are available for priority queues:

– bool empty():

returns true if the priority queue contains no elements.

– void pop():

removes the element at the top of the priority queue. Note that the element is not returned

by this member. Nothing happens if this member is called for an empty priority queue. See

section 12.4.4 for a discussion about the reason why pop has return type void.

– void push(value):

inserts value at the appropriate position in the priority queue.

– size_t size():

returns the number of elements in the priority queue.

– Type &top():

returns a reference to the first element of the priority queue. It is the responsibility of the

programmer to use the member only if the priority queue is not empty.

Note that the priority queue does not support iterators or an index operator. The only element that can

be accessed is its top element. A priority queue can be emptied by:

• repeatedly removing its top element;

• assigning an empty queue using the same data type to it;

• having its destructor called.

12.4.6 The ‘deque’ container

The deque (pronounce: ‘deck’) class implements a doubly ended queue data structure (deque). Before

using a deque container the header file <deque> must be included.



deque data type supports a lot more functionality than the queue, as illustrated by the following

overview of available member functions. A deque is a combination of a vector and two queues, oper-

ating at both ends of the vector. In situations where random insertions and the addition and/or removal

of elements at one or both sides of the vector occurs frequently using a deque should be considered.

The following constructors, operators, and member functions are available for deques:

• Constructors:

– The copy and move constructors are available;

– A deque may be constructed empty:

deque<string> object;

As with the vector, it is an error to refer to an element of an empty deque.

– A deque may be initialized to a certain number of elements. By default, if the initialization

value is not explicitly mentioned, the default value or default constructor for the actual data

type is used. For example:

deque<string> object(5, "Hello"s), // initialize to 5 Hello's

deque<string> container(10); // and to 10 empty strings

– A deque may be initialized using two iterators. To initialize a deque with elements 5 until 10

(including the last one) of a vector<string> the following construction may be used:

extern vector<string> container;

deque<string> object(&container[5], &container[11]);

• In addition to the standard operators for containers, the deque supports the index operator, which

may be used to retrieve or reassign random elements of the deque. Note that the indexed elements

must exist.

• The following member functions are available for deques:

– void assign(...):

assigns new content to the deque:

* assign(iterator begin, iterator end) assigns the values at the iterator range

[begin, end) to the deque;

* assign(size_type n, value_type const &val) assigns n copies of val to the

deque;

– Type &at(size_t idx):

returns a reference to the deque’s element at index position idx. If idx exceeds the

deque’s size a std::out_of_range exception is thrown.

– Type &back():

returns a reference to the last element in the deque. It is the responsibility of the programmer

to use the member only if the deque is not empty.

– deque::iterator begin():

returns an iterator pointing to the first element in the deque.

– deque::const_iterator cbegin():

returns a const_iterator pointing to the first element in the deque, returning cend if

the deque is empty.

– deque::const_iterator cend():

returns a const_iterator pointing just beyond the deque’s last element.

– void clear():

erases all elements in the deque.

– deque::const_reverse_iterator crbegin():

returns a const_reverse_iterator pointing to the last element in the deque, returning

crend if the deque is empty.



returns a const_reverse_iterator pointing just before the deque’s first element.

– iterator emplace(const_iterator position, Args &&...args)

a value_type object is constructed from the arguments specified after position,

and the newly created element is inserted at position.

– void emplace_back(Args &&...args)

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted beyond the deque’s last element.

– void emplace_front(Args &&...args)

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted before the deque’s first element.

– bool empty():

returns true if the deque contains no elements.

– deque::iterator end():

returns an iterator pointing beyond the last element in the deque.

– deque::iterator erase():

the member can be used to erase a specific range of elements in the deque:

* erase(pos) erases the element pointed to by pos. The iterator ++pos is returned.

* erase(first, beyond) erases elements indicated by the iterator range [first,

beyond). Beyond is returned.

– Type &front():

returns a reference to the first element in the deque. It is the responsibility of the program-

mer to use the member only if the deque is not empty.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the deque object.

– ... insert():

inserts elements starting at a certain position. The return value depends on the version of

insert that is called:

* deque::iterator insert(pos) inserts a default value of type Type at pos, pos is

returned.

* deque::iterator insert(pos, value) inserts value at pos, pos is returned.

* void insert(pos, first, beyond) inserts the elements in the iterator range

[first, beyond).

* void insert(pos, n, value) inserts n elements having value value starting at it-

erator position pos.

– size_t max_size():

returns the maximum number of elements this deque may contain.

– void pop_back():

removes the last element from the deque. With an empty deque nothing happens.

– void pop_front():

removes the first element from the deque. With an empty deque nothing happens.

– void push_back(value):

adds value to the end of the deque.

– void push_front(value):

adds value before the first element of the deque.

– deque::reverse_iterator rbegin():

returns a reverse_iterator pointing to the last element in the deque.

– deque::reverse_iterator rend():

this member returns a reverse_iterator pointing before the first element in the deque.



alters the number of elements that are currently stored in the deque:

* resize(n, value) may be used to resize the deque to a size of n. Value is optional. If

the deque is expanded and value is not provided, the additional elements are initialized

to the default value of the used data type, otherwise value is used to initialize extra

elements.

– void shrink_to_fit():

optionally reduces the amount of memory allocated by a deque to its current size. The imple-

mentor is free to ignore or otherwise optimize this request. In order to guarantee a ‘shrink

to fit’ operation deque<Type>(dequeObject).swap(dequeObject) idiom can be used.

– size_t size():

returns the number of elements in the deque.

– void swap(argument):

swaps two deques using identical data types.

12.4.7 The ‘map’ container

The map class offers a (sorted) associative array. Before using a map container the <map> header file

must be included.

A map is filled with key, value pairs, which may be of any container-accepted type. Since types are

associated with both the key and the value, we must specify two types in the angle bracket notation,

comparable to the specification we’ve seen with the pair container (cf. section 12.2). The first type

represents the key’s type, the second type represents the value’s type. For example, a map in which the

key is a string and the value is a double can be defined as follows:

map<string, double> object;

The key is used to access its associated information. That information is called the value. For example,

a phone book uses the names of people as the key, and uses the telephone number and maybe other

information (e.g., the zip-code, the address, the profession) as value. Since a map sorts its keys, the

key’s operator< must be defined, and it must be sensible to use it. For example, it is generally a bad

idea to use pointers for keys, as sorting pointers is something different than sorting the values pointed

at by those pointers. In addition to the key, value types, a third type defines the comparison class, used

to compare two keys. By default, the comparison class is std::less<KeyType (cf. section 18.1.2),

using the key type’s operator< to compare two key values. For key type KeyType and value type

ValueType the map’s type definition, therefore, looks like this:

map<KeyType, ValueType, std::less<KeyType>>

The two fundamental operations on maps are the storage of key, value combinations, and the retrieval

of values, given their keys. The index operator using a key as the index, can be used for both. If the

index operator is used as lvalue, the expression’s rvalue is inserted into the map. If it is used as

rvalue, the key’s associated value is retrieved. Each key can be stored only once in a map. If the same

key is entered again, the new value replaces the formerly stored value, which is lost.

A specific key, value combination can implicitly or explicitly be inserted into a map. If explicit inser-

tion is required, the key, value combination must be constructed first. For this, every map defines a

value_type which may be used to create values that can be stored in the map. For example, a value

for a map<string, int> can be constructed as follows:

map<string, int>::value_type siValue{ "Hello", 1 };

The value_type is associated with the map<string, int>: the type of the key is string, the type

of the value is int. Anonymous value_type objects are also often used. E.g.,

map<string, int>::value_type{ "Hello", 1 };



is frequently used to reduce typing and to improve readability:

typedef map<string, int>::value_type StringIntValue

Using this typedef, values for the map<string, int> may now be constructed using:

StringIntValue{ "Hello", 1 };

Alternatively, pairs may be used to represent key, value combinations used by maps:

pair<string, int>{ "Hello", 1 };

12.4.7.1 The ‘map’ constructors

The following constructors are available for the map container:

• The copy and move constructors are available;

• A map may be constructed empty:

map<string, int> object;

Note that the values stored in maps may be containers themselves. For example, the following

defines a map in which the value is a pair: a container nested under another container:

map<string, pair<string, string>> object;

Note the use of the two consecutive closing angle brackets, which does not result in ambiguities

as their syntactical context differs from their use as binary operators in expressions.

• A map may be initialized using two iterators. The iterators may either point to value_type

values for the map to be constructed, or to plain pair objects. If pairs are used, their first

element represents the type of the keys, and their second element represents the type of the

values. Example:

pair<string, int> pa[] =

{

pair<string,int>("one", 1),

pair<string,int>("two", 2),

pair<string,int>("three", 3),

};

map<string, int> object(&pa[0], &pa[3]);

In this example, map<string, int>::value_type could have been written instead of

pair<string, int> as well.

If begin represents the first iterator that is used to construct a map and if end represents the

second iterator, [begin, end) will be used to initialize the map. Maybe contrary to intuition,

the map constructor only enters new keys. If the last element of pa would have been "one", 3,

only two elements would have entered the map: "one", 1 and "two", 2. The value "one", 3

would silently have been ignored.

The map receives its own copies of the data to which the iterators point as illustrated by the

following example:

#include <iostream>



using namespace std;

class MyClass

{

public:

MyClass()

{

cout << "MyClass constructor\n";

}

MyClass(MyClass const &other)

{

cout << "MyClass copy constructor\n";

}

~MyClass()

{

cout << "MyClass destructor\n";

}

};

int main()

{

pair<string, MyClass> pairs[] =

{

pair<string, MyClass>{ "one", MyClass{} }

};

cout << "pairs constructed\n";

map<string, MyClass> mapsm{ &pairs[0], &pairs[1] };

cout << "mapsm constructed\n";

}

/*
Generated output:

MyClass constructor

MyClass copy constructor

MyClass destructor

pairs constructed

MyClass copy constructor

mapsm constructed

MyClass destructor

MyClass destructor

*/

When tracing the output of this program, we see that, first, the constructor of a MyClass object is

called to initialize the anonymous element of the array pairs. This object is then copied into the

first element of the array pairs by the copy constructor. Next, the original element is not required

anymore and is destroyed. At that point the array pairs has been constructed. Thereupon, the

map constructs a temporary pair object, which is used to construct the map element. Having

constructed the map element, the temporary pair object is destroyed. Eventually, when the

program terminates, the pair element stored in the map is destroyed too.

12.4.7.2 The ‘map’ operators

The map supports, in addition to the standard operators for containers, the index operator.

The index operator may be used to retrieve or reassign individual elements of the map. The argument

of the index operator is called a key.

If the provided key is not available in the map, a new data element is automatically added to the map



default value is returned if the index operator is used as an rvalue.

When initializing a new or reassigning another element of the map, the type of the right-hand side of

the assignment operator must be equal to (or promotable to) the type of the map’s value part. E.g., to

add or change the value of element "two" in a map, the following statement can be used:

mapsm["two"] = MyClass{};

12.4.7.3 The ‘map’ public members

The following member functions are available for the map container:

• mapped_type &at(key_type const &key):

returns a reference to the map’s mapped_type associated with key. If the key is not stored in the

map an std::out_of_range exception is thrown.

• map::iterator begin():

returns an iterator pointing to the first element of the map.

• map::const_iterator cbegin():

returns a const_iterator pointing to the first element in the map, returning cend if the map is

empty.

• map::const_iterator cend():

returns a const_iterator pointing just beyond the map’s last element.

• void clear():

erases all elements from the map.

• size_t count(key):

returns 1 if the provided key is available in the map, otherwise 0 is returned.

• map::reverse_iterator crbegin() const:

reverse_iterator returns a reverse_iterator pointing to the last element of the map.

• map::reverse_iterator crend():

returns an iterator pointing before the first element of the map.

• pair<iterator, bool> emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. If the map already contained

an object using the same key_type value, then a std::pair is returned containing an iter-

ator pointing to the object using the same key_type value and the value false. If no such

key_type value was found, the newly constructed object is inserted into the map, and the re-

turned std::pair contains an iterator pointing to the newly inserted inserted value_type as

well as the value true.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly created element

is inserted into the map, unless the (at args) provided key already exists. The implementation

may or may not use position as a hint to start looking for an insertion point. The returned

iterator points to the value_type using the provided key. It may refer to an already existing

value_type or to a newly added value_type; an existing value_type is not replaced. If a new

value was added, then the container’s size has been incremented when emplace_hint returns.

• bool empty():

returns true if the map contains no elements.

• map::iterator end():

returns an iterator pointing beyond the last element of the map.



this member returns a pair of iterators, being respectively the return values of the member func-

tions lower_bound and upper_bound, introduced below. An example illustrating these member

functions is given at the discussion of the member function upper_bound.

• ... erase():

erases a specific element or range of elements from the map:

– bool erase(key) erases the element having the given key from the map. True is returned

if the value was removed, false if the map did not contain an element using the given key.

– void erase(pos) erases the element pointed to by the iterator pos.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,

beyond).

• map::iterator find(key):

returns an iterator to the element having the given key. If the element isn’t available, end is

returned. The following example illustrates the use of the find member function:

#include <iostream>

#include <map>

using namespace std;

int main()

{

map<string, int> object;

object["one"] = 1;

map<string, int>::iterator it = object.find("one");

cout << "`one' " <<

(it == object.end() ? "not " : "") << "found\n";

it = object.find("three");

cout << "`three' " <<

(it == object.end() ? "not " : "") << "found\n";

}

/*
Generated output:

`one' found

`three' not found

*/

• allocator_type get_allocator() const:

returns a copy of the allocator object used by the map object.

• ... insert():

inserts elements into the map. Values associated with already existing keys, however, are not

replaced by new values. Its return value depends on the version of insert that is called:

– pair<map::iterator, bool> insert(keyvalue) inserts a new value_type into the

map. The return value is a pair<map::iterator, bool>. If the returned bool field is

true, keyvaluewas inserted into the map. The value false indicates that the key that was

specified in keyvalue was already available in the map, and so keyvalue was not inserted

into the map. In both cases the map::iterator field points to the data element having the

key that was specified in keyvalue. The use of this variant of insert is illustrated by the

following example:

#include <iostream>

#include <string>



using namespace std;

int main()

{

pair<string, int> pa[] =

{

pair<string,int>("one", 10),

pair<string,int>("two", 20),

pair<string,int>("three", 30),

};

map<string, int> object(&pa[0], &pa[3]);

// {four, 40} and `true' is returned

pair<map<string, int>::iterator, bool>

ret = object.insert

(

map<string, int>::value_type

("four", 40)

);

cout << boolalpha;

cout << ret.first->first << " " <<

ret.first->second << " " <<

ret.second << " " << object["four"] << '\n';

// {four, 40} and `false' is returned

ret = object.insert

(

map<string, int>::value_type

("four", 0)

);

cout << ret.first->first << " " <<

ret.first->second << " " <<

ret.second << " " << object["four"] << '\n';

}

/*
Generated output:

four 40 true 40

four 40 false 40

*/

Note the somewhat peculiar constructions like

cout << ret.first->first << " " << ret.first->second << ...

Note that ‘ret’ is equal to the pair returned by the insert member function. Its ‘first’

field is an iterator into the map<string, int>, so it can be considered a pointer to a

map<string, int>::value_type. These value types themselves are pairs too, having

‘first’ and ‘second’ fields. Consequently, ‘ret.first->first’ is the key of the map value

(a string), and ‘ret.first->second’ is the value (an int).

– map::iterator insert(pos, keyvalue). This way a map::value_type may also be

inserted into the map. pos is ignored, and an iterator to the inserted element is returned.

– void insert(first, beyond) inserts the (map::value_type) elements pointed to by

the iterator range [first, beyond).

• key_compare key_comp():

returns a copy of the object used by the map to compare keys. The type map<KeyType,



have types KeyType const &. The comparison function returns true if the first key argument

should be ordered before the second key argument. To compare keys and values, use value_comp,

listed below.

• map::iterator lower_bound(key):

returns an iterator pointing to the first keyvalue element of which the key is at least equal to

the specified key. If no such element exists, the function returns end.

• size_t max_size():

returns the maximum number of elements this map may contain.

• map::reverse_iterator rbegin():

returns a reverse_iterator pointing to the last element of the map.

• map::reverse_iterator rend():

returns an iterator pointing before the first element of the map.

• size_t size():

returns the number of elements in the map.

• void swap(argument):

swaps two maps using identical key/value types.

• map::iterator upper_bound(key):

returns an iterator pointing to the first keyvalue element having a key exceeding the specified

key. If no such element exists, the function returns end. The following example illustrates the

member functions equal_range, lower_bound and upper_bound:

#include <iostream>

#include <map>

using namespace std;

int main()

{

pair<string, int> pa[] =

{

pair<string,int>("one", 10),

pair<string,int>("two", 20),

pair<string,int>("three", 30),

};

map<string, int> object(&pa[0], &pa[3]);

map<string, int>::iterator it;

if ((it = object.lower_bound("tw")) != object.end())

cout << "lower-bound `tw' is available, it is: " <<

it->first << '\n';

if (object.lower_bound("twoo") == object.end())

cout << "lower-bound `twoo' not available" << '\n';

cout << "lower-bound two: " <<

object.lower_bound("two")->first <<

" is available\n";

if ((it = object.upper_bound("tw")) != object.end())

cout << "upper-bound `tw' is available, it is: " <<

it->first << '\n';

if (object.upper_bound("twoo") == object.end())

cout << "upper-bound `twoo' not available" << '\n';



cout << "upper-bound `two' not available" << '\n';

pair

<

map<string, int>::iterator,

map<string, int>::iterator

>

p = object.equal_range("two");

cout << "equal range: `first' points to " <<

p.first->first << ", `second' is " <<

(

p.second == object.end() ?

"not available"

:

p.second->first

) <<

'\n';

}

/*
Generated output:

lower-bound `tw' is available, it is: two

lower-bound `twoo' not available

lower-bound two: two is available

upper-bound `tw' is available, it is: two

upper-bound `twoo' not available

upper-bound `two' not available

equal range: `first' points to two, `second' is not available

*/

• value_compare value_comp():

returns a copy of the object used by the map to compare keys. The type map<KeyType,

ValueType>::value_compare is defined by the map container and value_compare’s param-

eters have types value_type const &. The comparison function returns true if the first key

argument should be ordered before the second key argument. The Value_Type elements of the

value_type objects passed to this member are not used by the returned function.

12.4.7.4 The ‘map’: a simple example

As mentioned at the beginning of section 12.4.7, the map represents a sorted associative array. In a

map the keys are sorted. If an application must visit all elements in a map the begin and end iterators

must be used.

The following example illustrates how to make a simple table listing all keys and values found in a

map:

#include <iostream>

#include <iomanip>

#include <map>

using namespace std;

int main()

{

pair<string, int>

pa[] =



pair<string,int>("one", 10),

pair<string,int>("two", 20),

pair<string,int>("three", 30),

};

map<string, int>

object(&pa[0], &pa[3]);

for

(

map<string, int>::iterator it = object.begin();

it != object.end();

++it

)

cout << setw(5) << it->first.c_str() <<

setw(5) << it->second << '\n';

}

/*
Generated output:

one 10

three 30

two 20

*/

12.4.8 The ‘multimap’ container

Like the map, the multimap class implements a (sorted) associative array. Before using a multimap

container the header file <map> must be included.

The main difference between the map and the multimap is that the multimap supports multiple values

associated with the same key, whereas the map contains single-valued keys. Note that the multimap

also accepts multiple identical values associated with identical keys.

The map and the multimap have the same set of constructors and member functions, with the exception

of the index operator which is not supported with the multimap. This is understandable: if multiple

entries of the same key are allowed, which of the possible values should be returned for object[key]?

Refer to section 12.4.7 for an overview of the multimap member functions. Some member functions,

however, deserve additional attention when used in the context of the multimap container. These

members are discussed below.

• size_t map::count(key):

returns the number of entries in the multimap associated with the given key.

• ... erase():

erases elements from the map:

– size_t erase(key) erases all elements having the given key. The number of erased ele-

ments is returned.

– void erase(pos) erases the single element pointed to by pos. Other elements possibly

having the same keys are not erased.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,

beyond).

• pair<multimap::iterator, multimap::iterator> equal_range(key):

returns a pair of iterators, being respectively the return values of lower_bound and

upper_bound, introduced below. The function provides a simple means to determine all elements

in the multimap that have the same keys. An example illustrating the use of these member func-

tions is given at the end of this section.



this member returns an iterator pointing to the first value whose key is key. If the element isn’t

available, end is returned. The iterator could be incremented to visit all elements having the

same key until it is either end, or the iterator’s first member is not equal to key anymore.

• multimap::iterator insert():

this member function normally succeeds, and so a multimap::iterator is returned, instead of a

pair<multimap::iterator, bool> as returned with the map container. The returned itera-

tor points to the newly added element.

Although the functions lower_bound and upper_bound act identically in the map and multimap

containers, their operation in a multimap deserves some additional attention. The next example illus-

trates lower_bound, upper_bound and equal_range applied to a multimap:

#include <iostream>

#include <map>

using namespace std;

int main()

{

pair<string, int> pa[] =

{

pair<string,int>("alpha", 1),

pair<string,int>("bravo", 2),

pair<string,int>("charlie", 3),

pair<string,int>("bravo", 6), // unordered `bravo' values

pair<string,int>("delta", 5),

pair<string,int>("bravo", 4),

};

multimap<string, int> object(&pa[0], &pa[6]);

typedef multimap<string, int>::iterator msiIterator;

msiIterator it = object.lower_bound("brava");

cout << "Lower bound for `brava': " <<

it->first << ", " << it->second << '\n';

it = object.upper_bound("bravu");

cout << "Upper bound for `bravu': " <<

it->first << ", " << it->second << '\n';

pair<msiIterator, msiIterator>

itPair = object.equal_range("bravo");

cout << "Equal range for `bravo':\n";
for (it = itPair.first; it != itPair.second; ++it)

cout << it->first << ", " << it->second << '\n';

cout << "Upper bound: " << it->first << ", " << it->second << '\n';

cout << "Equal range for `brav':\n";
itPair = object.equal_range("brav");

for (it = itPair.first; it != itPair.second; ++it)

cout << it->first << ", " << it->second << '\n';

cout << "Upper bound: " << it->first << ", " << it->second << '\n';

}

/*
Generated output:



Lower bound for `brava': bravo, 2

Upper bound for `bravu': charlie, 3

Equal range for `bravo':
bravo, 2

bravo, 6

bravo, 4

Upper bound: charlie, 3

Equal range for `brav':
Upper bound: bravo, 2

*/

In particular note the following characteristics:

• lower_bound and upper_bound produce the same result for non-existing keys: they both return

the first element having a key that exceeds the provided key.

• Although the keys are ordered in the multimap, the values for equal keys are not ordered: they

are retrieved in the order in which they were entered.

12.4.9 The ‘set’ container

The set class implements a sorted collection of values. Before using set containers the <set> header

file must be included.

A set contains unique values (of a container-acceptable type). Each value is stored only once.

A specific value can be explicitly created: Every set defines a value_typewhich may be used to create

values that can be stored in the set. For example, a value for a set<string> can be constructed as

follows:

set<string>::value_type setValue{ "Hello" };

Like the std::map container, the std::set also has an additional parameter declaring the class that

is used for comparing values in the set. For value type ValueType the set’s type definition, therefore,

looks like this:

set<ValueType, std::less<ValueType>>

The value_type is associated with the set<string>. Anonymous value_type objects are also often

used. E.g.,

set<string>::value_type{ "Hello" };

Instead of using the line set<string>::value_type(...) over and over again, a typedef is often

used to reduce typing and to improve readability:

typedef set<string>::value_type StringSetValue

Using this typedef, values for the set<string> may be constructed as follows:

StringSetValue{ "Hello" };

Alternatively, values of the set’s type may be used immediately. In that case the value of type Type is

implicitly converted to a set<Type>::value_type.



• Constructors:

– The copy and move constructors are available;

– A set may be constructed empty:

set<int> object;

– A set may be initialized using two iterators. For example:

int intarr[] = {1, 2, 3, 4, 5};

set<int> object{ &intarr[0], &intarr[5] };

Note that all values in the set must be different: it is not possible to store the same value repeat-

edly when the set is constructed. If the same value occurs repeatedly, only the first instance of

the value is entered into the set; the remaining values are silently ignored.

Like the map, the set receives its own copy of the data it contains.

• The set container only supports the standard set of operators that are available for containers.

• The set class has the following member functions:

– set::iterator begin():

returns an iterator pointing to the first element of the set. If the set is empty end is returned.

– void clear():

erases all elements from the set.

– size_t count(value):

returns 1 if the specified value is available in the set, otherwise 0 is returned.

– bool empty():

returns true if the set contains no elements.

– set::iterator end():

returns an iterator pointing beyond the last element of the set.

– pair<set::iterator, set::iterator> equal_range(value):

this member returns a pair of iterators, being respectively the return values of the member

functions lower_bound and upper_bound, introduced below.

– ... erase():

erases a specific element or range of elements from the set:

* bool erase(value) erases the element having the given value from the set. True is

returned if the value was removed, false if the set did not contain an element ‘value’.

* void erase(pos) erases the element pointed to by the iterator pos.

* void erase(first, beyond) erases all elements indicated by the iterator range

[first, beyond).

– set::iterator find(value):

returns an iterator to the element having the given value. If the element isn’t available, end

is returned.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the set object.

– ... insert():

inserts elements into the set. If the element already exists, the existing element is left

untouched and the element to be inserted is ignored. The return value depends on the version

of insert that is called:

* pair<set::iterator, bool> insert(value) inserts a new set::value_type

into the set. The return value is a pair<set::iterator, bool>. If the returned

bool field is true, value was inserted into the set. The value false indicates that

the value that was specified was already available in the set, and so the provided value

was not inserted into the set. In both cases the set::iterator field points to the data

element in the set having the specified value.



*
inserted into the set. pos is ignored, and an iterator to the inserted element is returned.

* void insert(first, beyond) inserts the (set::value_type) elements pointed to

by the iterator range [first, beyond) into the set.

– key_compare key_comp():

returns a copy of the object used by the set to compare keys. The type

set<ValueType>::key_compare is defined by the set container and key_compare’s pa-

rameters have types ValueType const &. The comparison function returns true if its first

argument should be ordered before its second argument.

– set::iterator lower_bound(value):

returns an iterator pointing to the first value element of which the value is at least equal

to the specified value. If no such element exists, the function returns end.

– size_t max_size():

returns the maximum number of elements this set may contain.

– set::reverse_iterator rbegin():

returns a reverse_iterator pointing to the last element of the set.

– set::reverse_iterator rend:

returns a reverse_iterator pointing before the first element of the set.

– size_t size():

returns the number of elements in the set.

– void swap(argument):

swaps two sets (argument being the second set) that use identical data types.

– set::iterator upper_bound(value):

returns an iterator pointing to the first value element having a value exceeding the speci-

fied value. If no such element exists, the function returns end.

– value_compare value_comp():

returns a copy of the object used by the set to compare values. The type

set<ValueType>::value_compare is defined by the set container and value_compare’s

parameters have types ValueType const &. The comparison function returns true if its

first argument should be ordered before its second argument. Its operation is identical to

that of a key_compare object, returned by key_comp.

12.4.10 The ‘multiset’ container

Like the set, the multiset class implements a sorted collection of values. Before using multiset

containers the header file <set> must be included.

The main difference between the set and the multiset is that the multiset supports multiple entries

of the same value, whereas the set contains unique values.

The set and the multiset have the same set of constructors and member functions. Refer to section

12.4.9 for an overview of the member functions that can be used with the multiset. Some mem-

ber functions, however, behave slightly different than their counterparts of the set container. Those

members are:

• size_t count(value):

returns the number of entries in the multiset associated with the given value.

• ... erase():

erases elements from the set:

– size_t erase(value) erases all elements having the given value. The number of erased

elements is returned.

– void erase(pos) erases the element pointed to by the iterator pos. Other elements possi-

bly having the same values are not erased.



beyond).

• pair<multiset::iterator, multiset::iterator> equal_range(value):

returns a pair of iterators, being respectively the return values of lower_bound and

upper_bound, introduced below. The function provides a simple means to determine all elements

in the multiset that have the same values.

• multiset::iterator find(value):

returns an iterator pointing to the first element having the specified value. If the element isn’t

available, end is returned. The iterator could be incremented to visit all elements having the

given value until it is either end, or the iterator doesn’t point to ‘value’ anymore.

• ... insert():

this member function normally succeeds and returns a multiset::iterator rather than a

pair<multiset::iterator, bool> as returned with the set container. The returned iter-

ator points to the newly added element.

Although the functions lower_bound and upper_bound act identically in the set and multiset con-

tainers, their operation in a multiset deserves some additional attention. With a multiset container

lower_bound and upper_bound produce the same result for non-existing keys: they both return the

first element having a key exceeding the provided key.

Here is an example showing the use of various member functions of a multiset:

#include <iostream>

#include <set>

using namespace std;

int main()

{

string

sa[] =

{

"alpha",

"echo",

"hotel",

"mike",

"romeo"

};

multiset<string>

object(&sa[0], &sa[5]);

object.insert("echo");

object.insert("echo");

multiset<string>::iterator

it = object.find("echo");

for (; it != object.end(); ++it)

cout << *it << " ";

cout << '\n';

cout << "Multiset::equal_range(\"ech\")\n";

pair

<

multiset<string>::iterator,

multiset<string>::iterator



itpair = object.equal_range("ech");

if (itpair.first != object.end())

cout << "lower_bound() points at " << *itpair.first << '\n';

for (; itpair.first != itpair.second; ++itpair.first)

cout << *itpair.first << " ";

cout << '\n' <<

object.count("ech") << " occurrences of 'ech'" << '\n';

cout << "Multiset::equal_range(\"echo\")\n";

itpair = object.equal_range("echo");

for (; itpair.first != itpair.second; ++itpair.first)

cout << *itpair.first << " ";

cout << '\n' <<

object.count("echo") << " occurrences of 'echo'" << '\n';

cout << "Multiset::equal_range(\"echoo\")\n";

itpair = object.equal_range("echoo");

for (; itpair.first != itpair.second; ++itpair.first)

cout << *itpair.first << " ";

cout << '\n' <<

object.count("echoo") << " occurrences of 'echoo'" << '\n';

}

/*
Generated output:

echo echo echo hotel mike romeo

Multiset::equal_range("ech")

lower_bound() points at echo

0 occurrences of 'ech'

Multiset::equal_range("echo")

echo echo echo

3 occurrences of 'echo'

Multiset::equal_range("echoo")

0 occurrences of 'echoo'

*/

12.4.11 The ‘stack’ container

The stack class implements a stack data structure. Before using stack containers the header file

<stack> must be included.

A stack is also called a first in, last out (FILO or LIFO) data structure as the first item to enter the

stack is the last item to leave. A stack is an extremely useful data structure in situations where data

must temporarily remain available. For example, programs maintain a stack to store local variables of

functions: the lifetime of these variables is determined by the time these functions are active, contrary

to global (or static local) variables, which live for as long as the program itself lives. Another example

is found in calculators using the Reverse Polish Notation (RPN), in which the operands of operators are

kept in a stack, whereas operators pop their operands off the stack and push the results of their work

back onto the stack.



Figure 12.5: The content of a stack while evaluating 3 4 + 2 ∗

As an example of the use of a stack, consider figure 12.5, in which the content of the stack is shown

while the expression (3 + 4) ∗ 2 is evaluated. In the RPN this expression becomes 3 4 + 2 ∗, and

figure 12.5 shows the stack content after each token (i.e., the operands and the operators) is read from

the input. Notice that each operand is indeed pushed on the stack, while each operator changes the

content of the stack. The expression is evaluated in five steps. The caret between the tokens in the

expressions shown on the first line of figure 12.5 shows what token has just been read. The next line

shows the actual stack-content, and the final line shows the steps for referential purposes. Note that

at step 2, two numbers have been pushed on the stack. The first number (3) is now at the bottom of

the stack. Next, in step 3, the + operator is read. The operator pops two operands (so that the stack is

empty at that moment), calculates their sum, and pushes the resulting value (7) on the stack. Then, in

step 4, the number 2 is read, which is dutifully pushed on the stack again. Finally, in step 5 the final

operator ∗ is read, which pops the values 2 and 7 from the stack, computes their product, and pushes

the result back on the stack. This result (14) could then be popped to be displayed on some medium.

From figure 12.5 we see that a stack has one location (the top) where items can be pushed onto and

popped off the stack. This top element is the stack’s only immediately visible element. It may be

accessed and modified directly.

Bearing this model of the stack in mind, let’s see what we formally can do with the stack container.

For the stack, the following constructors, operators, and member functions are available:

• Constructors:

– The copy and move constructors are available;

– A stack may be constructed empty:

stack<string> object;

• Only the basic set of container operators are supported by the stack

• The following member functions are available for stacks:

– bool empty():

this member returns true if the stack contains no elements.

– void pop():

removes the element at the top of the stack. Note that the popped element is not returned by

this member, and refer to section 12.4.4 for a discussion about the reason why pop has return

type void. Furthermore, it is the responsibility of the stack’s user to assure that pop is not

called when the stack is empty. If pop is called for an empty stack, its internal administration

breaks, resulting, e.g., in a negative size (showing itself as a very large stacksize due to its

size member returning a size_t, and other operations (like push) fail and may crash your

program. Of course, with a well designed algorithm requests to pop from empty stacks do not

occur (which is probably why this implementation was used for the stack container).



places value at the top of the stack, hiding the other elements from view.

– size_t size():

this member returns the number of elements in the stack.

– Type &top():

this member returns a reference to the stack’s top (and only visible) element. It is the re-

sponsibility of the programmer to use this member only if the stack is not empty. )

The stack does not support iterators or an index operator. The only elements that can be accessed

is its top element. To empty a stack:

– repeatedly remove its front element;

– assign an empty stack to it;

– have its destructor called (e.g., by ending its lifetime).

12.4.12 The ‘unordered_map’ container (‘hash table’)

In C++ hash tables are available as objects of the class unordered_map.

Before using unordered_map or unordered_multimap containers the header file

<unordered_map> must be included.

The unordered_map class implements an associative array in which the elements are stored according

to some hashing scheme. As discussed, the map is a sorted data structure. The keys in maps are sorted

using the operator< of the key’s data type. Generally, this is not the fastest way to either store or

retrieve data. The main benefit of sorting is that a listing of sorted keys appeals more to humans than

an unsorted list. However, a by far faster way to store and retrieve data is to use hashing.

Hashing uses a function (called the hash function) to compute an (unsigned) number from the key,

which number is thereupon used as an index in the table storing the keys and their values. This

number is called the bucket number. Retrieval of a key is as simple as computing the hash value of the

provided key, and looking in the table at the computed index location: if the key is present, it is stored

in the table, at the computed bucket location and its value can be returned. If it’s not present, the key

is not currently stored in the container.

Collisions occur when a computed index position is already occupied by another element. For these sit-

uations the abstract containers have solutions available. A simple solution, used by unordered_maps,

consists of using linear chaining, which uses linked list to store colliding table elements.

The term unordered_map is used rather than hash to avoid name collisions with hash tables developed

before they were added to the language.

Because of the hashing method, the efficiency of a unordered_map in terms of speed should greatly

exceed the efficiency of the map. Comparable conclusions may be drawn for the unordered_set, the

unordered_multimap and the unordered_multiset.

12.4.12.1 The ‘unordered_map’ constructors

When defining an unordered_map type five template arguments must be specified :

• a KeyType (becoming unordered_map::key_type),

• a ValueType (becoming unordered_map::mapped_type),

• the type of an object computing a hash value from a key value (becoming

unordered_map::hasher), and

• the type of an object that can compare two keys for equality (becoming

unordered_map::key_equal).



the implementor.

The generic definition of an unordered_map container looks like this:

std::unordered_map <KeyType, ValueType, hash type, predicate type,

allocator type>

When KeyType is std::string or a built-in type then default types are available for the hash type

and the predicate type. In practice the allocator type is not specified, as the default allocator suffices.

In these cases an unordered_map object can be defined by merely specifying the key- and value types,

like this:

std::unordered_map<std::string, ValueType> hash(size_t size = implSize);

Here, implSize is the container’s default initial size, which is specified by the implementor. The map’s

size is automatically enlarged by the unordered_map when necessary, in which case the container

rehashes all its elements. In practice the default size argument provided by the implementor is com-

pletely satisfactory.

The KeyType frequently consists of text. So, a unordered_map using a std::string KeyType is

frequently used. Be careful not to use a plain char const ∗ key_type as two char const ∗ values

pointing to equal C-strings stored at different locations are considered to be different keys, as their

pointer values rather than their textual content are compared. Here is an example showing how a

char const ∗ KeyType can be used. Note that in the example no arguments are specified when

constructing months, since default values and constructors are available:

#include <unordered_map>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

struct EqualCp

{

bool operator()(char const *l, char const *r) const

{

return strcmp(l, r) == 0;

}

};

struct HashCp

{

size_t operator()(char const *str) const

{

return std::hash<std::string>()(str);

}

};

int main()

{

unordered_map<char const *, int, HashCp, EqualCp> months;

// or explicitly:

unordered_map<char const *, int, HashCp, EqualCp>

monthsTwo(61, HashCp(), EqualCp());

months["april"] = 30;

months["november"] = 31;



cout << "april -> " << months["april"] << '\n' <<

"april -> " << months[apr.c_str()] << '\n';

}

If other KeyTypes must be used, then the unordered_map’s constructor requires (constant references

to) a hash function object, computing a hash value from a key value, and a predicate function object,

returning true if two unordered_map::key_type objects are identical. A generic algorithm (see

chapter 19) exists performing tests of equality (i.e., equal_to). These tests can be used if the key’s data

type supports the equality operator. Alternatively, an overloaded operator== or specialized function

object could be constructed returning true if two keys are equal and false otherwise.

Constructors

The unordered_map supports the following constructors:

• The copy and move constructors are available;

• explicit unordered_map(size_type n = implSize, hasher const &hf =

hasher(),

key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): this constructor can also be used

as default constructor;

• unordered_map(const_iterator begin, const_iterator end, size_type n =

implSize, hasher const &hf = hasher(), key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): this constructor expects two

iterators specifying a range of unordered_map::value_type const objects, and

• unordered_map(initializer_list<value_type> initList, size_type n =

implSize, hasher const &hf = hasher(), key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): a constructor expecting an

initializer_list of unordered_map::value_type values.

The following example shows a program using an unordered_map containing the names of the months

of the year and the number of days these months (usually) have. Then, using the subscript op-

erator the days in several months are displayed (the predicate used here is the generic algorithm

equal_to<string>, which is provided by the compiler as the default fourth argument of the

unordered_map constructor):

#include <unordered_map>

#include <iostream>

#include <string>

using namespace std;

int main()

{

unordered_map<string, int> months;

months["january"] = 31;

months["february"] = 28;

months["march"] = 31;

months["april"] = 30;

months["may"] = 31;

months["june"] = 30;

months["july"] = 31;

months["august"] = 31;

months["september"] = 30;

months["october"] = 31;



months["december"] = 31;

cout << "september -> " << months["september"] << '\n' <<

"april -> " << months["april"] << '\n' <<

"june -> " << months["june"] << '\n' <<

"november -> " << months["november"] << '\n';

}

/*
Generated output:

september -> 30

april -> 30

june -> 30

november -> 30

*/

12.4.12.2 The ‘unordered_map’ public members

The unordered_map supports the index operator operating identically to the map’s index operator: a

(const) reference to the ValueType associated with the provided KeyType’s value is returned. If not

yet available, the key is added to the unordered_map, and a default ValueType value is returned. In

addition, it supports operator==.

The unordered_map provides the following member functions (key_type, value_type etc. refer to

the types defined by the unordered_map):

• mapped_type &at(key_type const &key):

returns a reference to the unordered_map’s mapped_type associated with key. If the key is not

stored in the unordered_map a std::out_of_range exception is thrown.

• unordered_map::iterator begin():

returns an iterator pointing to the first element in the unordered_map, returning end if the un-

ordered_map is empty.

• size_t bucket(key_type const &key):

returns the index location where key is stored. If key wasn’t stored yet bucket adds

value_type(key, Value()) before returning its index position.

• size_t bucket_count():

returns the number of slots used by the containers. Each slot may contain one (or more, in case of

collisions) value_type objects.

• size_t bucket_size(size_t index):

returns the number of value_type objects stored at bucket position index.

• unordered_map::const_iterator cbegin():

returns a const_iterator pointing to the first element in the unordered_map, returning cend if the

unordered_map is empty.

• unordered_map::const_iterator cend():

returns a const_iterator pointing just beyond the unordered_map’s last element.

• void clear():

erases all the unordered_map’s elements.

• size_t count(key_type const &key):

returns the number of times a value_type object using key_type key is stored in the

unordered_map (which is either one or zero).



a value_type object is constructed from emplace’s arguments. If the unordered_map al-

ready contained an object using the same key_type value, then a std::pair is returned

containing an iterator pointing to the object using the same key_type value and the value

false. If no such key_type value was found, the newly constructed object is inserted into

the unordered_map, and the returned std::pair contains an iterator pointing to the newly

inserted inserted value_type as well as the value true.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly created element

is inserted into the unordered_map, unless the (at args) provided key already exists. The im-

plementation may or may not use position as a hint to start looking for an insertion point. The

returned iterator points to the value_type using the provided key. It may refer to an already

existing value_type or to a newly added value_type; an existing value_type is not replaced.

If a new value was added, then the container’s size has been incremented when emplace_hint

returns.

• bool empty():

returns true if the unordered_map contains no elements.

• unordered_map::iterator end():

returns an iterator pointing beyond the last element in the unordered_map.

• pair<iterator, iterator> equal_range(key):

this member returns a pair of iterators defining the range of elements having a key that is equal

to key. With the unordered_map this range includes at most one element.

• unordered_map::iterator erase():

erases a specific range of elements in the unordered_map:

– erase(pos) erases the element pointed to by the iterator pos. The iterator ++pos is re-

turned.

– erase(first, beyond) erases elements indicated by the iterator range [first,

beyond), returning beyond.

• iterator find(key):

returns an iterator to the element having the given key. If the element isn’t available, end is

returned.

• allocator_type get_allocator() const:

returns a copy of the allocator object used by the unordered_map object.

• hasher hash_function() const:

returns a copy of the hash function object used by the unordered_map object.

• ... insert():

elements may be inserted starting at a certain position. No insertion is performed if the

provided key is already in use. The return value depends on the version of insert()

that is called. When a pair<iterator, bool> is returned, then the pair’s first

member is an iterator pointing to the element having a key that is equal to the key of

the provided value_type, the pair’s second member is true if value was actually

inserted into the container, and false if not.

– pair<iterator, bool> insert(value_type const &value) attempts to insert

value.

– pair<iterator, bool> insert(value_type &&tmp) attempts to insert value using

value_type’s move constructor.

– pair<iterator, bool> insert(const_iterator hint, value_type const

&value) attempts to insert value, possibly using hint as a starting point when try-

ing to insert value.



tempts to insert a value using value_type’s move constructor, and possibly using hint as

a starting point when trying to insert value.

– void insert(first, beyond) tries to insert the elements in the iterator range [first,

beyond).

– void insert(initializer_list <value_type> iniList) attempts to insert the ele-

ments in iniList into the container.

• hasher key_eq() const:

returns a copy of the key_equal function object used by the unordered_map object.

• float load_factor() const:

returns the container’s current load factor, i.e. size / bucket_count.

• size_t max_bucket_count():

returns the maximum number of buckets this unordered_map may contain.

• float max_load_factor() const:

identical to load_factor.

• void max_load_factor(float max):

changes the current maximum load factor to max. When a load factor of max is reached, the

container will enlarge its bucket_count, followed by a rehash of its elements. Note that the

container’s default maximum load factor equals 1.0

• size_t max_size():

returns the maximum number of elements this unordered_map may contain.

• void rehash(size_t size):

if size exceeds the current bucket count, then the bucket count is increased to size, followed by

a rehash of its elements.

• void reserve(size_t request):

if request is less than or equal to the current bucket count, this call has no effect. Otherwise, the

bucket count is increased to a value of at least request, followed by a rehash of the container’s

elements.

• size_t size():

returns the number of elements in the unordered_map.

• void swap(unordered_map &other):

swaps the content of the current and the other unordered_map.

12.4.12.3 The ‘unordered_multimap’ container

The unordered_multimap allows multiple objects using the same keys to be stored in an unordered

map. The unordered_multimap container offers the same set of members and constructors as the

unordered_map, but without the unique-key restriction imposed upon the unordered_map.

The unordered_multimap does not offer operator[] and does not offer at members.

Below all members are described whose behavior differs from the behavior of the corresponding

unordered_map members:

• at

not supported by the unordered_multimap container

• size_t count(key_type const &key):

returns the number of times a value_type object using key_type key is stored in the

unordered_map. This member is commonly used to verify whether key is available in the

unordered_multimap.



a value_type object is constructed from emplace’s arguments. The returned iterator points

to the newly inserted inserted value_type.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly created element

is inserted into the unordered_multimap. The implementation may or may not use position

as a hint to start looking for an insertion point. The returned iterator points to the value_type

using the provided key.

• pair<iterator, iterator> equal_range(key):

this member returns a pair of iterators defining the range of elements having a key that is equal

to key.

• terator find(key):

returns an iterator to an element having the given key. If no such element is available, end is

returned.

• ... insert():

elements may be inserted starting at a certain position. The return value depends on

the version of insert() that is called. When an iterator is returned, then it points

to the element that was inserted.

– iterator insert(value_type const &value) inserts value.

– iterator insert(value_type &&tmp) inserts value using value_type’s move con-

structor.

– iterator insert(const_iterator hint, value_type const &value) inserts

value, possibly using hint as a starting point when trying to insert value.

– iterator insert(const_iterator hint, value_type &&tmp) inserts value using

value_type’s move constructor, and possibly using hint as a starting point when trying

to insert value.

– void insert(first, beyond) inserts the elements in the iterator range [first,

beyond).

– void insert(initializer_list <value_type> iniList) inserts the elements in

iniList into the container.

12.4.13 The ‘unordered_set’ container

The set container, like the map container, orders its elements. If ordering is not an issue, but fast

lookups are, then a hash-based set and/or multi-set may be preferred. C++ provides such hash-based

sets and multi-sets: the unordered_set and unordered_multiset.

Before using these hash-based set containers the header file <unordered_set> must be included.

Elements stored in the unordered_set are immutable, but they can be inserted and removed from

the container. Different from the unordered_map, the unordered_set does not use a ValueType.

The set merely stores elements, and the stored element itself is its own key.

The unordered_set has the same constructors as the unordered_map, but the set’s value_type is

equal to its key_type.

When defining an unordered_set type four template arguments must be specified :

• a KeyType (becoming unordered_set::key_type),

• the type of an object computing a hash value from a key value (becoming

unordered_set::hasher), and



unordered_set::key_equal).

• the type of its allocator. This is usually left unspecified, using the allocator provided by default by

the implementor.

The generic definition of an unordered_set container looks like this:

std::unordered_set <KeyType, hash type, predicate type, allocator type>

When KeyType is std::string or a built-in type then default types are available for the hash type

and the predicate type. In practice the allocator type is not specified, as the default allocator suffices.

In these cases an unordered_set object can be defined by merely specifying the key- and value types,

like this:

std::unordered_set<std::string> rawSet(size_t size = implSize);

Here, implSize is the container’s default initial size, which is specified by the implementor. The set’s

size is automatically enlarged when necessary, in which case the container rehashes all its elements.

In practice the default size argument provided by the implementor is completely satisfactory.

The unordered_set supports the following constructors:

• The copy and move constructors are available;

• explicit unordered_set(size_type n = implSize, hasher const &hf =

hasher(),

key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): this constructor can also be used

as default constructor;

• unordered_set(const_iterator begin, const_iterator end, size_type n =

implSize, hasher const &hf = hasher(), key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): this constructor expects two

iterators specifying a range of unordered_set::value_type const objects, and

• unordered_set(initializer_list<value_type> initList, size_type n =

implSize, hasher const &hf = hasher(), key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): a constructor expecting an

initializer_list of unordered_set::value_type values.

The unordered_set does not offer an index operator, and it does not offer an at member. Other than

those, it offers the same members as the unordered_map. Below the members whose behavior differs

from the behavior of the unordered_map are discussed. For a description of the remaining members,

please refer to section 12.4.12.2.

• iterator emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. It is added to the set if it is

unique, and an iterator to the value_type is returned.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and if the newly created ele-

ment is unique it is inserted into the unordered_set. The implementation may or may not use

position as a hint to start looking for an insertion point. The returned iterator points to the

value_type.

• unordered_set::iterator erase():

erases a specific range of elements in the unordered_set:

– erase(key_type const &key) erases key from the set. An iterator pointing to the next

element is returned.



turned.

– erase(first, beyond) erases elements indicated by the iterator range [first,

beyond), returning beyond.

12.4.13.1 The ‘unordered_multiset’ container

The unordered_multiset allows multiple objects using the same keys to be stored in an unordered

set. The unordered_multiset container offers the same set of members and constructors as the

unordered_set, but without the unique-key restriction imposed upon the unordered_set.

Below all members are described whose behavior differs from the behavior of the corresponding

unordered_set members:

• size_t count(key_type const &key):

returns the number of times a value_type object using key_type key is stored in the

unordered_set. This member is commonly used to verify whether key is available in the

unordered_multiset.

• iterator emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. The returned iterator points

to the newly inserted inserted value_type.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly created element

is inserted into the unordered_multiset. The implementation may or may not use position

as a hint to start looking for an insertion point. The returned iterator points to the value_type

using the provided key.

• pair<iterator, iterator> equal_range(key):

this member returns a pair of iterators defining the range of elements having a key that is equal

to key.

• iterator find(key):

returns an iterator to an element having the given key. If no such element is available, end is

returned.

• ... insert():

elements may be inserted starting at a certain position. The return value depends on

the version of insert() that is called. When an iterator is returned, then it points

to the element that was inserted.

– iterator insert(value_type const &value) inserts value.

– iterator insert(value_type &&tmp) inserts value using value_type’s move con-

structor.

– iterator insert(const_iterator hint, value_type const &value) inserts

value, possibly using hint as a starting point when trying to insert value.

– iterator insert(const_iterator hint, value_type &&tmp) inserts value using

value_type’s move constructor, and possibly using hint as a starting point when trying

to insert value.

– void insert(first, beyond) inserts the elements in the iterator range [first,

beyond).

– void insert(initializer_list <value_type> iniList) inserts the elements in

iniList into the container.



The associative containers offered by C++ allow us to find a value (or values) matching a given key.

Traditionally, the type of the key used for the lookup must match the container’s key type.

Since the C++14 standard arbitrary lookup key types can be used provided a comparison operator is

available to compare that type with the container’s key type. Thus, a char const ∗ key (or any other

type for which an operator< overload for std::string is available) can be used to lookup values in

a map<std::string, ValueType>. This is called heterogeneous lookup.

Heterogeneous lookup is allowed when the comparator given to the associative container does allow

this. The standard library classes std::less and std::greater were augmented to allow heteroge-

neous lookup.

12.5 The ‘complex’ container

The complex container defines the standard operations that can be performed on complex numbers.

Before using complex containers the header file <complex> must be included.

The complex number’s real and imaginary types are specified as the container’s data type. Examples:

complex<double>

complex<int>

complex<float>

Note that the real and imaginary parts of complex numbers have the same datatypes.

When initializing (or assigning) a complex object, the imaginary part may be omitted from the initial-

ization or assignment resulting in its value being 0 (zero). By default, both parts are zero.

Below it is silently assumed that the used complex type is complex<double>. Given this assump-

tion, complex numbers may be initialized as follows:

• target: A default initialization: real and imaginary parts are 0.

• target(1): The real part is 1, imaginary part is 0

• target(0, 3.5): The real part is 0, imaginary part is 3.5

• target(source): target is initialized with the values of source.

Anonymous complex values may also be used. In the next example two anonymous complex values are

pushed on a stack of complex numbers, to be popped again thereafter:

#include <iostream>

#include <complex>

#include <stack>

using namespace std;

int main()

{

stack<complex<double>>

cstack;

cstack.push(complex<double>(3.14, 2.71));

cstack.push(complex<double>(-3.14, -2.71));



{

cout << cstack.top().real() << ", " <<

cstack.top().imag() << "i" << '\n';

cstack.pop();

}

}

/*
Generated output:

-3.14, -2.71i

3.14, 2.71i

*/

The following member functions and operators are defined for complex numbers (below, value may be

either a primitive scalar type or a complex object):

• Apart from the standard container operators, the following operators are supported from the

complex container.

– complex operator+(value):

this member returns the sum of the current complex container and value.

– complex operator-(value):

this member returns the difference between the current complex container and value.

– complex operator∗(value):

this member returns the product of the current complex container and value.

– complex operator/(value):

this member returns the quotient of the current complex container and value.

– complex operator+=(value):

this member adds value to the current complex container, returning the new value.

– complex operator-=(value):

this member subtracts value from the current complex container, returning the new value.

– complex operator∗=(value):

this member multiplies the current complex container by value, returning the new value

– complex operator/=(value):

this member divides the current complex container by value, returning the new value.

• Type real():

returns the real part of a complex number.

• Type imag():

returns the imaginary part of a complex number.

• Several mathematical functions are available for the complex container, such as abs, arg, conj,

cos, cosh, exp, log, norm, polar, pow, sin, sinh and sqrt. All these functions are free func-

tions, not member functions, accepting complex numbers as their arguments. For example,

abs(complex<double>(3, -5));

pow(target, complex<int>(2, 3));

• Complex numbers may be extracted from istream objects and inserted into ostream objects.

The insertion results in an ordered pair (x, y), in which x represents the real part and y the

imaginary part of the complex number. The same form may also be used when extracting a

complex number from an istream object. However, simpler forms are also allowed. E.g., when

extracting 1.2345 the imaginary part is set to 0.





Chapter 13

Inheritance

When programming in C, programming problems are commonly approached using a top-down struc-

tured approach: functions and actions of the program are defined in terms of sub-functions, which again

are defined in sub-sub-functions, etc.. This yields a hierarchy of code: main at the top, followed by a

level of functions which are called from main, etc..

In C++ the relationship between code and data is also frequently defined in terms of dependencies

among classes. This looks like composition (see section 7.3), where objects of a class contain objects of

another class as their data. But the relation described here is of a different kind: a class can be defined

in terms of an older, pre-existing, class. This produces a new class having all the functionality of

the older class, and additionally defining its own specific functionality. Instead of composition, where a

given class contains another class, we here refer to derivation, where a given class is or is-implemented-

in-terms-of another class.

Another term for derivation is inheritance: the new class inherits the functionality of an existing class,

while the existing class does not appear as a data member in the interface of the new class. When

discussing inheritance the existing class is called the base class, while the new class is called the

derived class.

Derivation of classes is often used when the methodology of C++ program development is fully ex-

ploited. In this chapter we first address the syntactic possibilities offered by C++ for deriving classes.

Following this we address some of the specific possibilities offered by class derivation (inheritance).

As we have seen in the introductory chapter (see section 2.4), in the object-oriented approach to problem

solving classes are identified during the problem analysis. Under this approach objects of the defined

classes represent entities that can be observed in the problem at hand. The classes are placed in a

hierarchy, with the top-level class containing limited functionality. Each new derivation (and hence

descent in the class hierarchy) adds new functionality compared to yet existing classes.

In this chapter we shall use a simple vehicle classification system to build a hierarchy of classes. The

first class is Vehicle, which implements as its functionality the possibility to set or retrieve the mass

of a vehicle. The next level in the object hierarchy are land-, water- and air vehicles.

The initial object hierarchy is illustrated in Figure 13.1.

This chapter mainly focuses on the technicalities of class derivation. The distinction between inheri-

tance used to create derived classes whose objects should be considered objects of the base class and

inheritance used to implement derived classes in-terms-of their base classes is postponed until the next

chapter (14).

Inheritance (and polymorphism, cf. chapter 14) can be used with classes and structs. It is not defined

for unions.
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Vehicle

Land Water Air

Car

Figure 13.1: Initial object hierarchy of vehicles.

13.1 Related types

The relationship between the proposed classes representing different kinds of vehicles is further inves-

tigated here. The figure shows the object hierarchy: a Car is a special case of a Land vehicle, which in

turn is a special case of a Vehicle.

The class Vehicle represents the ‘greatest common divisor’ in the classification system. Vehicle is

given limited functionality: it can store and retrieve a vehicle’s mass:

class Vehicle

{

size_t d_mass;

public:

Vehicle();

Vehicle(size_t mass);

size_t mass() const;

void setMass(size_t mass);

};

Using this class, the vehicle’s mass can be defined as soon as the corresponding object has been created.

At a later stage the mass can be changed or retrieved.

To represent vehicles traveling over land, a new class Land can be defined offering Vehicle’s function-

ality and adding its own specific functionality. Assume we are interested in the speed of land vehicles

and in their mass. The relationship between Vehicles and Lands could of course be represented by

composition but that would be awkward: composition suggests that a Land vehicle is-implemented-in-

terms-of, i.e., contains, a Vehicle, while the natural relationship clearly is that the Land vehicle is a

kind of Vehicle.

A relationship in terms of composition would also somewhat complicate our Land class’s design. Con-

sider the following example showing a class Land using composition (only the setMass functionality is

shown):

class Land

{

Vehicle d_v; // composed Vehicle

public:

void setMass(size_t mass);

};

void Land::setMass(size_t mass)

{



}

Using composition, the Land::setMass function only passes its argument on to Vehicle::setMass.

Thus, as far as mass handling is concerned, Land::setMass introduces no extra functionality, just

extra code. Clearly this code duplication is superfluous: a Land object is a Vehicle; to state that a

Land object contains a Vehicle is at least somewhat peculiar.

The intended relationship is represented better by inheritance. A rule of thumb for choosing between

inheritance and composition distinguishes between is-a and has-a relationships. A truck is a vehicle, so

Truck should probably derive from Vehicle. On the other hand, a truck has an engine; if you need to

model engines in your system, you should probably express this by composing an Engine class inside

the Truck class.

Following the above rule of thumb, Land is derived from the base class Vehicle:

class Land: public Vehicle

{

size_t d_speed;

public:

Land();

Land(size_t mass, size_t speed);

void setSpeed(size_t speed);

size_t speed() const;

};

To derive a class (e.g., Land) from another class (e.g., Vehicle) postfix the class name Land in its

interface by : public Vehicle:

class Land: public Vehicle

The class Land now contains all the functionality of its base class Vehicle as well as its own features.

Here those features are a constructor expecting two arguments and member functions to access the

d_speed data member. Here is an example showing the possibilities of the derived class Land:

Land veh{ 1200, 145 };

int main()

{

cout << "Vehicle weighs " << veh.mass() << ";\n"

"its speed is " << veh.speed() << '\n';

}

This example illustrates two features of derivation.

• First, mass is not mentioned as a member in Land’s interface. Nevertheless it is used in

veh.mass. This member function is an implicit part of the class, inherited from its ‘parent’

vehicle.

• Second, although the derived class Land contains the functionality of Vehicle, the Vehicle’s

private members remain private: they can only be accessed by Vehicle’s own member functions.

This means that Land’s member functions must use Vehicle’s member functions (like mass and

setMass) to address the mass field. Here there’s no difference between the access rights granted

to Land and the access rights granted to other code outside of the class Vehicle. The class

Vehicle encapsulates the specific Vehicle characteristics, and data hiding is one way to realize

encapsulation.



classes improving the maintainability and testability of classes and allowing us to modify classes with-

out the need to modify depending code. By strictly complying with the principle of data hiding a class’s

internal data organization may change without requiring depending code to be changed as well. E.g.,

a class Lines originally storing C-strings could at some point have its data organization changed. It

could abandon its char ∗∗ storage in favor of a vector<string> based storage. When Lines uses

perfect data hiding depending source code may use the new Lines class without requiring any modifi-

cation at all.

As a rule of thumb, derived classes must be fully recompiled (but don’t have to be modified) when the

data organization (i.e., the data members) of their base classes change. Adding new member functions

to the base class doesn’t alter the data organization so no recompilation is needed when new member

functions are added.

There is one subtle exception to this rule of thumb: if a new member function is added to a base class

and that function happens to be declared as the first virtual member function of the base class (cf.

chapter 14 for a discussion of the virtual member function concept) then that also changes the data

organization of the base class.

Now that Land has been derived from Vehicle we’re ready for our next class derivation. We’ll define

a class Car to represent automobiles. Agreeing that a Car object is a Land vehicle, and that a Car has

a brand name it’s easy to design the class Car:

class Car: public Land

{

std::string d_brandName;

public:

Car();

Car(size_t mass, size_t speed, std::string const &name);

std::string const &brandName() const;

};

In the above class definition, Car was derived from Land, which in turn is derived from Vehicle. This

is called nested derivation: Land is called Car’s direct base class, while Vehicle is called Car’s indirect

base class.

13.1.1 Inheritance depth: desirable?

Now that Car has been derived from Land and Land has been derived from Vehicle we might easily

be seduced into thinking that these class hierarchies are the way to go when designing classes. But

maybe we should temper our enthusiasm.

Repeatedly deriving classes from classes quickly results in big, complex class hierarchies that are hard

to understand, hard to use and hard to maintain. Hard to understand and use as users of our derived

class now also have to learn all its (indirect) base class features as well. Hard to maintain because

all those classes are very closely coupled. While it may be true that when data hiding is meticulously

adhered to derived classes do not have to be modified when their base classes alter their data organi-

zation, it also quickly becomes practically infeasible to change those base classes once more and more

(derived) classes depend on their current organization.

What initially looks like a big gain, inheriting the base class’s interface, thus becomes a liability. The

base class’s interface is hardly ever completely required and in the end a class may benefit from explic-

itly defining its own member functions rather than obtaining them through inheritance.

Often classes can be defined in-terms-of existing classes: some of their features are used, but others

need to be shielded off. Consider the stack container: it is commonly implemented in-terms-of a

deque, returning deque::back’s value as stack::top’s value.



inheritance aiming at implementing an is-a relationship should focus on the base class: the base class

facilities aren’t there to be used by the derived class, but the derived class facilities should redefine

(reimplement) the base class facilities using polymorphism (which is the topic of the next chapter),

allowing code to use the derived class facilities polymorphically through the base class. We’ve seen this

approach when studying streams: the base class (e.g., ostream) is used time and again. The facilities

defined by classes derived from ostream (like ofstream and ostringstream) are then used by code

only relying on the facilities offered by the ostream class, never using the derived classes directly.

When designing classes always aim at the lowest possible coupling. Big class hierarchies usually indi-

cate poor understanding of robust class design. When a class’s interface is only partially used and if the

derived class is implemented in terms of another class consider using composition rather than inheri-

tance and define the appropriate interface members in terms of the members offered by the composed

objects.

13.2 Access rights: public, private, protected

Early in the C++ Annotations (cf. section 3.2.1) we encountered two important design principles when

developing classes: data hiding and encapsulation. Data hiding restricts control over an object’s data

to the members of its class, encapsulation is used to restrict access to the functionality of objects. Both

principles are invaluable tools for maintaining data integrity.

The keyword private starts sections in class interfaces in which members are declared which can only

be accessed by members of the class itself. This is our main tool for realizing data hiding. According

to established good practices of class design the public sections are populated with member functions

offering a clean interface to the class’s functionality. These members allow users to communicate with

objects; leaving it to the objects how requests sent to objects are handled. In a well-designed class its

objects are in full control of their data.

Inheritance doesn’t change these principles, nor does it change the way the ‘private’ and ‘protected’

keywords operate. A derived class does not have access to a base class’s private section.

Sometimes this is a bit too restrictive. Consider a class implementing a random number generating

streambuf (cf. chapter 6). Such a streambuf can be used to construct an istream irand, after

which extractions from irand produces series of random numbers, like in the next example in which

10 random numbers are generated using stream I/O:

RandBuf buffer;

istream irand(&buffer);

for (size_t idx = 0; idx != 10; ++idx)

{

size_t next;

irand >> next;

cout << "next random number: " << next << '\n';

}

The question is, how many random numbers should irand be able to generate? Fortunately, there’s

no need to answer this question, as RandBuf can be made responsible for generating the next random

number. RandBuf, therefore, operates as follows:

• It generates a random number;

• It is passed in textual form to its base class streambuf;

• The istream object extracts this random number, merely using streambuf’s interface;

(this process is repeated for subsequent random numbers).



its base class (streambuf) where to find the random number’s characters. For this streambuf offers

a member setg, expecting the location and size of the buffer holding the random number’s characters.

The member setg clearly cannot be declared in streambuf’s private section, as RandBuf must use

it to prepare for the extraction of the next random number. But it should also not be in streambuf’s

public section, as that could easily result in unexpected behavior by irand. Consider the following

hypothetical example:

RandBuf randBuf;

istream irand(&randBuf);

char buffer[] = "12";

randBuf.setg(buffer, ...); // setg public: buffer now contains 12

size_t next;

irand >> next; // not a *random* value, but 12.

Clearly there is a close connection between streambuf and its derived class RandBuf. By allowing

RandBuf to specify the buffer from which streambuf reads characters RandBuf remains in control,

denying other parts of the program to break its well-defined behavior.

This close connection between base- and derived-classes is realized by a third keyword related to the

accessibility of class members: protected. Here is how the member setg could have been be declared

in a class streambuf:

class streambuf

{

// private data here (as usual)

protected:

void setg(... parameters ...); // available to derived classes

public:

// public members here

};

Protected members are members that can be accessed by derived classes, but are not part of a class’s

public interface.

Avoid the temptation to declare data members in a class’s protected section: it’s a sure sign of bad

class design as it needlessly results in tight coupling of base and derived classes. The principle of data

hiding should not be abandoned now that the keyword protected has been introduced. If a derived

class (but not other parts of the software) should be given access to its base class’s data, use member

functions: accessors and modifiers declared in the base class’s protected section. This enforces the

intended restricted access without resulting in tightly coupled classes.

13.2.1 Public, protected and private derivation

With inheritance public derivation is frequently used. When public derivation is used the access rights

of the base class’s interface remains unaltered in the derived class. But the type of inheritance may

also be defined as private or protected.

Protected derivation is used when the keyword protected is put in front of the derived class’s base

class:

class Derived: protected Base



members in the derived class. The derived class may access all the base class’s public and protected

members. Classes that are in turn derived from the derived class view the base class’s members as

protected. Any other code (outside of the inheritance tree) is unable to access the base class’s members.

Private derivation is used when the keyword private is put in front of the derived class’s base class:

class Derived: private Base

When private derivation is used all the base class’s members turn into private members in the derived

class. The derived class members may access all base class public and protected members but base

class members cannot be used elsewhere.

Public derivation should be used to define an is-a relationship between a derived class and a base

class: the derived class object is-a base class object allowing the derived class object to be used poly-

morphically as a base class object in code expecting a base class object. Private inheritance is used

in situations where a derived class object is defined in-terms-of the base class where composition can-

not be used. There’s little documented use for protected inheritance, but one could maybe encounter

protected inheritance when defining a base class that is itself a derived class making its base class

members available to classes derived from it.

Combinations of inheritance types do occur. For example, when designing a stream-class it is usu-

ally derived from std::istream or std::ostream. However, before a stream can be constructed, a

std::streambuf must be available. Taking advantage of the fact that the inheritance order is de-

fined in the class interface, we use multiple inheritance (see section 13.6) to derive the class from both

std::streambuf and (then) from std::ostream. To the class’s users it is a std::ostream and not

a std::streambuf. So private derivation is used for the latter, and public derivation for the former

class:

class Derived: private std::streambuf, public std::ostream

13.2.2 Promoting access rights

When private or protected derivation is used, users of derived class objects are denied access to the

base class members. Private derivation denies access to all base class members to users of the derived

class, protected derivation does the same, but allows classes that are in turn derived from the derived

class to access the base class’s public and protected members.

In some situations this scheme is too restrictive. Consider a class RandStream derived privately from

a class RandBuf which is itself derived from std::streambuf and also publicly from istream:

class RandBuf: public std::streambuf

{

// implements a buffer for random numbers

};

class RandStream: private RandBuf, public std::istream

{

// implements a stream to extract random values from

};

Such a class could be used to extract, e.g., random numbers using the standard istream interface.

Although the RandStream class is constructed with the functionality of istream objects in mind,

some of the members of the class std::streambuf may be considered useful by themselves. E.g., the

function streambuf::in_avail returns a lower bound to the number of characters that can be read

immediately. The standard way to make this function available is to define a shadow member calling

the base class’s member:



{

// implements a stream to extract random values from

public:

std::streamsize in_avail();

};

inline std::streamsize RandStream::in_avail()

{

return std::streambuf::in_avail();

}

This looks like a lot of work for just making available a member from the protected or private base

classes. If the intent is to make available the in_avail member access promotion can be used. Access

promotion allows us to specify which members of private (or protected) base classes become available

in the protected (or public) interface of the derived class. Here is the above example, now using access

promotion:

class RandStream: private RandBuf, public std::istream

{

// implements a stream to extract random values from

public:

using std::streambuf::in_avail;

};

It should be noted that access promotion makes available all overloaded versions of the declared base

class member. So, if streambuf would offer not only in_avail but also, e.g., in_avail(size_t ∗)

both members would become part of the public interface.

13.3 The constructor of a derived class

A derived class inherits functionality from its base class (or base classes, as C++ supports multiple

inheritance, cf. section 13.6). When a derived class object is constructed it is built on top of its base

class object. As a consequence the base class must have been constructed before the actual derived class

elements can be initialized. This results in some requirements that must be observed when defining

derived class constructors.

A constructor exists to initialize the object’s data members. A derived class constructor is also responsi-

ble for the proper initialization of its base class. Looking at the definition of the class Land introduced

earlier (section 13.1), its constructor could simply be defined as follows:

Land::Land(size_t mass, size_t speed)

{

setMass(mass);

setSpeed(speed);

}

However, this implementation has several disadvantages.

• When constructing a derived class object a base class constructor is always called before any action

is performed on the derived class object itself. By default the base class’s default constructor is

going to be called.

• Using the base class constructor only to reassign new values to its data members in the derived

class constructor’s body usually is inefficient, but sometimes sheer impossible as in situations

where base class reference or const data members must be initialized. In those cases a special-

ized base class constructor must be used instead of the base class default constructor.



base class constructor in the derived class constructor’s initializer clause. Calling a base class construc-

tor in a constructor’s initializer clause is called a base class initializer. The base class initializer must

be called before initializing any of the derived class’s data members and when using the base class

initializer none of the derived class data members may be used. When constructing a derived class

object the base class is constructed first and only after that construction has successfully completed

the derived class data members are available for initialization. Land’s constructor may therefore be

improved:

Land::Land(size_t mass, size_t speed)

:

Vehicle(mass),

d_speed(speed)

{}

Derived class constructors always by default call their base class’s default constructor. This is of course

not correct for a derived class’s copy constructor. Assuming that the class Land must be provided with

a copy constructor its Land const &other parameter also represents the other object’s base class:

Land::Land(Land const &other) // assume a copy constructor is needed

:

Vehicle(other), // copy-construct the base class part.

d_speed(other.d_speed) // copy-construct Land's data members

{}

13.3.1 Move construction

As with classes using composition derived classes may benefit from defining a move constructor. A

derived class may offer a move constructor for two reasons:

• it supports move construction for its data members

• its base class is move-aware

The design of move constructors moving data members was covered in section 9.7. A move constructor

for a derived class whose base class is move-aware must anonymize the rvalue reference before passing

it to the base class move constructor. The std::move function should be used when implementing the

move constructor to move the information in base classes or composed objects to their new destination

object.

The first example shows the move constructor for the class Car, assuming it has a movable char

∗d_brandName data member and assuming that Land is a move-aware class. The second example

shows the move constructor for the class Land, assuming that it does not itself have movable data

members, but that its Vehicle base class is move-aware:

Car::Car(Car &&tmp)

:

Land(std::move(tmp)), // anonymize `tmp'
d_brandName(tmp.d_brandName) // move the char *'s value

{

tmp.d_brandName = 0;

}

Land(Land &&tmp)

:

Vehicle(std::move(tmp)), // move-aware Vehicle

d_speed(tmp.d_speed) // plain copying of plain data

{}



Derived classes may also benefit from move assignment operations. If the derived class and its base

class support swapping then the implementation is simple, following the standard shown earlier in

section 9.7.3. For the class Car this could boil down to:

Car &Car::operator=(Car &&tmp)

{

swap(tmp);

return *this;

}

If swapping is not supported then std::move can be used to call the base class’s move assignment

operator:

Car &Car::operator=(Car &&tmp)

{

static_cast<Land &>(*this) = std::move(tmp);

// move Car's own data members next

return *this;

}

13.3.3 Inheriting constructors

Derived classes can be constructed without explicitly defining derived class constructors. In those cases

the available base class constructors are called.

This feature is either used or not. It is not possible to omit some of the derived class constructors,

using the corresponding base class constructors instead. To use this feature for classes that are derived

from multiple base classes (cf. section 13.6) all the base class constructors must have different signa-

tures. Considering the complexities that are involved here it’s probably best to avoid using base class

constructors for classes using multiple inheritance.

The construction of derived class objects can be delegated to base class constructor(s) using the follow-

ing syntax:

class BaseClass

{

public:

// BaseClass constructor(s)

};

class DerivedClass: public BaseClass

{

public:

using BaseClass::BaseClass; // No DerivedClass constructors

// are defined

};

13.3.4 Aggregate Initializations

Aggregates (e.g., structs) can be initialized using the familiar curly-brace notation. Curly brace nota-

tions can also be used when initializing base-structs of derived-structs. Each base-level struct receives

its own set of curly braces while initializing the derived-level struct. Here is an example:

struct Base



int value;

};

struct Derived: public Base

{

string text;

};

// Initializiation of a Derived object:

Derived der{{value}, "hello world"};

// -------

// initialization of Derived's base struct.

13.4 The destructor of a derived class

Destructors of classes are automatically called when an object is destroyed. This also holds true for

objects of classes derived from other classes. Assume we have the following situation:

class Base

{

public:

~Base();

};

class Derived: public Base

{

public:

~Derived();

};

int main()

{

Derived derived;

}

At the end of main, the derived object ceases to exists. Hence, its destructor (~Derived) is called.

However, since derived is also a Base object, the ~Base destructor is called as well. The base class

destructor is never explicitly called from the derived class destructor.

Constructors and destructors are called in a stack-like fashion: when derived is constructed, the ap-

propriate base class constructor is called first, then the appropriate derived class constructor is called.

When the object derived is destroyed, its destructor is called first, automatically followed by the ac-

tivation of the Base class destructor. A derived class destructor is always called before its base class

destructor is called.

When the construction of a derived class object did not successfully complete (i.e., the constructor threw

an exception) then its destructor is not called. However, the destructors of properly constructed base

classes will be called if a derived class constructor throws an exception. This, of course, is it should be:

a properly constructed object should also be destroyed, eventually. Example:

#include <iostream>

struct Base

{

~Base()

{

std::cout << "Base destructor\n";



};

struct Derived: public Base

{

Derived()

{

throw 1; // at this time Base has been constructed

}

};

int main()

{

try

{

Derived d;

}

catch(...)

{}

}

/*
This program displays `Base destructor'

*/

13.5 Redefining member functions

Derived classes may redefine base class members. Let’s assume that a vehicle classification system

must also cover trucks, consisting of two parts: the front part, the tractor, pulls the rear part, the

trailer. Both the tractor and the trailer have their own mass, and the mass function should return the

combined mass.

The definition of a Truck starts with a class definition. Our initial Truck class is derived from Car but

it is then expanded to hold one more size_t field representing the additional mass information. Here

we choose to represent the mass of the tractor in the Car class and to store the mass of a full truck

(tractor + trailer) in its own d_mass data member:

class Truck: public Car

{

size_t d_mass;

public:

Truck();

Truck(size_t tractor_mass, size_t speed, char const *name,

size_t trailer_mass);

void setMass(size_t tractor_mass, size_t trailer_mass);

size_t mass() const;

};

Truck::Truck(size_t tractor_mass, size_t speed, char const *name,

size_t trailer_mass)

:

Car(tractor_mass, speed, name),

d_mass(tractor_mass + trailer_mass)

{}

Note that the class Truck now contains two functions already present in the base class Car: setMass

and mass.



tions which are specific to a Truck object.

• Redefining setMass, however, hides Car::setMass. For a Truck only the setMass function

having two size_t arguments can be used.

• The Vehicle’s setMass function remains available for a Truck, but it must now be called ex-

plicitly, as Car::setMass is hidden from view. This latter function is hidden, even though

Car::setMass has only one size_t argument. To implement Truck::setMass we could write:

void Truck::setMass(size_t tractor_mass, size_t trailer_mass)

{

d_mass = tractor_mass + trailer_mass;

Car::setMass(tractor_mass); // note: Car:: is required

}

• Outside of the class Car::setMass is accessed using the scope resolution operator. So, if a Truck

truck needs to set its Car mass, it must use

truck.Car::setMass(x);

• An alternative to using the scope resolution operator is to add a member having the same function

prototype as the base class member to the derived class’s interface. This derived class member

could be implemented inline to call the base class member. E.g., we add the following member to

the class Truck:

// in the interface:

void setMass(size_t tractor_mass);

// below the interface:

inline void Truck::setMass(size_t tractor_mass)

{

(d_mass -= Car::mass()) += tractor_mass;

Car::setMass(tractor_mass);

}

Now the single argument setMass member function can be used by Truck objects without using

the scope resolution operator. As the function is defined inline, no overhead of an additional

function call is involved.

• To prevent hiding the base class members a using declaration may be added to the derived class

interface. The relevant section of Truck’s class interface then becomes:

class Truck: public Car

{

public:

using Car::setMass;

void setMass(size_t tractor_mass, size_t trailer_mass);

};

A using declaration imports (all overloaded versions of) the mentioned member function di-

rectly into the derived class’s interface. If a base class member has a signature that is iden-

tical to a derived class member then compilation fails (a using Car::mass declaration can-

not be added to Truck’s interface). Now code may use truck.setMass(5000) as well as

truck.setMass(5000, 2000).

Using declarations obey access rights. To prevent non-class members from using setMass(5000)

without a scope resolution operator but allowing derived class members to do so the using

Car::setMass declaration should be put in the class Truck’s private section.



the class Truck redefines this member function to return the truck’s full mass:

size_t Truck::mass() const

{

return d_mass;

}

Example:

int main()

{

Land vehicle{ 1200, 145 };

Truck lorry{ 3000, 120, "Juggernaut", 2500 };

lorry.Vehicle::setMass(4000);

cout << '\n' << "Tractor weighs " <<

lorry.Vehicle::mass() << '\n' <<

"Truck + trailer weighs " << lorry.mass() << '\n' <<

"Speed is " << lorry.speed() << '\n' <<

"Name is " << lorry.name() << '\n';

}

The class Truck was derived from Car. However, one might question this class design. Since a truck

is conceived of as a combination of a tractor and a trailer it is probably better defined using a mixed

design, using inheritance for the tractor part (inheriting from Car, and composition for the trailer part).

This redesign changes our point of view from a Truck being a Car (and some strangely added data

members) to a Truck still being an Car (the tractor) and containing a Vehicle (the trailer).

Truck’s interface is now very specific, not requiring users to study Car’s and Vehicle’s interfaces and

it opens up possibilities for defining ‘road trains’: tractors towing multiple trailers. Here is an example

of such an alternate class setup:

class Truck: public Car // the tractor

{

Vehicle d_trailer; // use vector<Vehicle> for road trains

public:

Truck();

Truck(size_t tractor_mass, size_t speed, char const *name,

size_t trailer_mass);

void setMass(size_t tractor_mass, size_t trailer_mass);

void setTractorMass(size_t tractor_mass);

void setTrailerMass(size_t trailer_mass);

size_t tractorMass() const;

size_t trailerMass() const;

// consider:

Vehicle const &trailer() const;

};

13.6 Multiple inheritance

Except for the class Randbuf classes thus far have always been derived from a single base class. In

addition to single inheritance C++ also supports multiple inheritance. In multiple inheritance a class



the same time.

When using multiple inheritance it should be defensible to consider the newly derived class an instan-

tiation of both base classes. Otherwise, composition is more appropriate. In general, linear derivation

(using only one base class) is used much more frequently than multiple derivation. Good class design

dictates that a class should have a single, well described responsibility and that principle often conflicts

with multiple inheritance where we can state that objects of class Derived are both Base1 and Base2

objects.

But then, consider the prototype of an object for which multiple inheritance was used to its extreme:

the Swiss army knife! This object is a knife, it is a pair of scissors, it is a can-opener, it is a corkscrew,

it is ....

The ‘Swiss army knife’ is an extreme example of multiple inheritance. In C++ there are various good

arguments for using multiple inheritance as well, without violating the ‘one class, one responsibility’

principle. We postpone those arguments until the next chapter. The current section concentrates on

the technical details of constructing classes using multiple inheritance.

How to construct a ‘Swiss army knife’ in C++? First we need (at least) two base classes. For example,

let’s assume we are designing a toolkit allowing us to construct an instrument panel of an aircraft’s

cockpit. We design all kinds of instruments, like an artificial horizon and an altimeter. One of the

components that is often seen in aircraft is a nav-com set: a combination of a navigational beacon

receiver (the ‘nav’ part) and a radio communication unit (the ‘com’-part). To define the nav-com set, we

start by designing the NavSet class (assume the existence of the classes Intercom, VHF_Dial and

Message):

class NavSet

{

public:

NavSet(Intercom &intercom, VHF_Dial &dial);

size_t activeFrequency() const;

size_t standByFrequency() const;

void setStandByFrequency(size_t freq);

size_t toggleActiveStandby();

void setVolume(size_t level);

void identEmphasis(bool on_off);

};

Next we design the class ComSet:

class ComSet

{

public:

ComSet(Intercom &intercom);

size_t frequency() const;

size_t passiveFrequency() const;

void setPassiveFrequency(size_t freq);

size_t toggleFrequencies();

void setAudioLevel(size_t level);

void powerOn(bool on_off);

void testState(bool on_off);

void transmit(Message &message);

};



also transmit messages using a Message object that’s passed to the ComSet object using its transmit

member function.

Now we’re ready to construct our NavCom set:

class NavComSet: public ComSet, public NavSet

{

public:

NavComSet(Intercom &intercom, VHF_Dial &dial);

};

Done. Now we have defined a NavComSet which is both a NavSet and a ComSet: the facilities of both

base classes are now available in the derived class using multiple inheritance.

Please note the following:

• The keyword public is present before both base class names (NavSet and ComSet). By default

inheritance uses private derivation and the keyword public must be repeated before each of the

base class specifications. Base classes are not required to use the same derivation type. One base

class could have public derivation and another base class could use private derivation.

• The multiply derived class NavComSet introduces no additional functionality of its own, but

merely combines two existing classes into a new aggregate class. Thus, C++ offers the possibility

to simply sweep multiple simple classes into one more complex class.

• Here is the implementation of The NavComSet constructor:

NavComSet::NavComSet(Intercom &intercom, VHF_Dial &dial)

:

ComSet(intercom),

NavSet(intercom, dial)

{}

The constructor requires no extra code: Its purpose is to activate the constructors of its base

classes. The order in which the base class initializers are called is not dictated by their calling

order in the constructor’s code, but by the ordering of the base classes in the class interface.

• The NavComSet class definition requires no additional data members or member functions: here

(and often) the inherited interfaces provide all the required functionality and data for the multiply

derived class to operate properly.

Of course, while defining the base classes, we made life easy on ourselves by strictly using differ-

ent member function names. So, there is a function setVolume in the NavSet class and a function

setAudioLevel in the ComSet class. A bit cheating, since we could expect that both units in fact have

a composed object Amplifier, handling the volume setting. A revised class might offer an Amplifier

&amplifier() const member function, and leave it to the application to set up its own interface to

the amplifier. Alternatively, a revised class could define members for setting the volume of either the

NavSet or the ComSet parts.

In situations where two base classes offer identically named members special provisions need to be

made to prevent ambiguity:

• The intended base class can explicitly be specified using the base class name and scope resolution

operator:

NavComSet navcom(intercom, dial);

navcom.NavSet::setVolume(5); // sets the NavSet volume level

navcom.ComSet::setVolume(5); // sets the ComSet volume level



additional members are usually defined inline:

class NavComSet: public ComSet, public NavSet

{

public:

NavComSet(Intercom &intercom, VHF_Dial &dial);

void comVolume(size_t volume);

void navVolume(size_t volume);

};

inline void NavComSet::comVolume(size_t volume)

{

ComSet::setVolume(volume);

}

inline void NavComSet::navVolume(size_t volume)

{

NavSet::setVolume(volume);

}

• If the NavComSet class is obtained from a third party, and cannot be modified, a disambiguating

wrapper class may be used:

class MyNavComSet: public NavComSet

{

public:

MyNavComSet(Intercom &intercom, VHF_Dial &dial);

void comVolume(size_t volume);

void navVolume(size_t volume);

};

inline MyNavComSet::MyNavComSet(Intercom &intercom, VHF_Dial &dial)

:

NavComSet(intercom, dial);

{}

inline void MyNavComSet::comVolume(size_t volume)

{

ComSet::setVolume(volume);

}

inline void MyNavComSet::navVolume(size_t volume)

{

NavSet::setVolume(volume);

}

13.7 Conversions between base classes and derived classes

When public inheritance is used to define classes, an object of a derived class is at the same time an

object of the base class. This has important consequences for object assignment and for the situation

where pointers or references to such objects are used. Both situations are now discussed.

13.7.1 Conversions with object assignments

Continuing our discussion of the NavCom class, introduced in section 13.6, we now define two objects, a

base class and a derived class object:

ComSet com(intercom);

NavComSet navcom(intercom2, dial2);



is at the same time a ComSet, allowing the assignment from navcom (a derived class object) to com (a

base class object):

com = navcom;

The effect of this assignment is that the object com now communicates with intercom2. As a ComSet

does not have a VHF_Dial, the navcom’s dial is ignored by the assignment. When assigning a base

class object from a derived class object only the base class data members are assigned, other data

members are dropped, a phenomenon called slicing. In situations like these slicing probably does not

have serious consequences, but when passing derived class objects to functions defining base class

parameters or when returning derived class objects from functions returning base class objects slicing

also occurs and might have unwelcome side-effects.

The assignment from a base class object to a derived class object is problematic. In a statement like

navcom = com;

it isn’t clear how to reassign the NavComSet’s VHF_Dial data member as they are missing in the

ComSet object com. Such an assignment is therefore refused by the compiler. Although derived class

objects are also base class objects, the reverse does not hold true: a base class object is not also a derived

class object.

The following general rule applies: in assignments in which base class objects and derived class objects

are involved, assignments in which data are dropped are legal (called slicing). Assignments in which

data remain unspecified are not allowed. Of course, it is possible to overload an assignment operator to

allow the assignment of a derived class object from a base class object. To compile the statement

navcom = com;

the class NavComSet must have defined an overloaded assignment operator accepting a ComSet object

for its argument. In that case it’s up to the programmer to decide what the assignment operator will

do with the missing data.

13.7.2 Conversions with pointer assignments

We return to our Vehicle classes, and define the following objects and pointer variable:

Land land(1200, 130);

Car car(500, 75, "Daf");

Truck truck(2600, 120, "Mercedes", 6000);

Vehicle *vp;

Now we can assign the addresses of the three objects of the derived classes to the Vehicle pointer:

vp = &land;

vp = &car;

vp = &truck;

Each of these assignments is acceptable. However, an implicit conversion of the derived class to the

base class Vehicle is used, since vp is defined as a pointer to a Vehicle. Hence, when using vp only

the member functions manipulating mass can be called as this is the Vehicle’s only functionality. As

far as the compiler can tell this is the object vp points to.

The same holds true for references to Vehicles. If, e.g., a function is defined having a Vehicle

reference parameter, the function may be passed an object of a class derived from Vehicle. Inside



references holds true in general. Remember that a reference is nothing but a pointer in disguise: it

mimics a plain variable, but actually it is a pointer.

This restricted functionality has an important consequence for the class Truck. Following vp =

&truck, vp points to a Truck object. So, vp->mass() returns 2600 instead of 8600 (the combined

mass of the cabin and of the trailer: 2600 + 6000), which would have been returned by truck.mass().

When a function is called using a pointer to an object, then the type of the pointer (and not the type

of the object) determines which member functions are available and can be executed. In other words,

C++ implicitly converts the type of an object reached through a pointer to the pointer’s type.

If the actual type of the object pointed to by a pointer is known, an explicit type cast can be used to

access the full set of member functions that are available for the object:

Truck truck;

Vehicle *vp;

vp = &truck; // vp now points to a truck object

Truck *trp;

trp = static_cast<Truck *>(vp);

cout << "Make: " << trp->name() << '\n';

Here, the second to last statement specifically casts a Vehicle ∗ variable to a Truck ∗. As usual

(when using casts), this code is not without risk. It only works if vp really points to a Truck. Otherwise

the program may produce unexpected results.

13.8 Using non-default constructors with new[]

An often heard complaint is that operator new[] calls the default constructor of a class to initialize the

allocated objects. For example, to allocate an array of 10 strings we can do

new string[10];

but it is not possible to use another constructor. Assuming that we’d want to initialize the strings with

the text hello world, we can’t write something like:

new string{ "hello world" }[10];

The initialization of a dynamically allocated object usually consists of a two-step process: first the array

is allocated (implicitly calling the default constructor); second the array’s elements are initialized, as

in the following little example:

string *sp = new string[10];

fill(sp, sp + 10, string{ "hello world" });

These approaches all suffer from ‘double initializations’, comparable to not using member initializers

in constructors.

One way to avoid double initialization is to use inheritance. Inheritance can profitably be used to

call non-default constructors in combination with operator new[]. The approach capitalizes on the

following:

• A base class pointer may point to a derived class object;



The above also suggests a possible approach:

• Derive a simple, member-less class from the class we’re interested in;

• Use the appropriate base class initializer in its default constructor;

• Allocate the required number of derived class objects, and assign new[]’s return expression to a

pointer to base class objects.

Here is a simple example, producing 10 lines containing the text hello world:

#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

using namespace std;

struct Xstr: public string

{

Xstr()

:

string("hello world")

{}

};

int main()

{

string *sp = new Xstr[10];

copy(sp, sp + 10, ostream_iterator<string>{ cout, "\n" });

}

Of course, the above example is fairly unsophisticated, but it’s easy to polish the example: the class

Xstr can be defined in an anonymous namespace, accessible only to a function getString() which

may be given a size_t nObjects parameter, allowing users to specify the number of hello world-

initialized strings they would like to allocate.

Instead of hard-coding the base class arguments it’s also possible to use variables or functions providing

the appropriate values for the base class constructor’s arguments. In the next example a local class

Xstr is defined inside a function nStrings(size_t nObjects, char const ∗fname), expecting

the number of string objects to allocate and the name of a file whose subsequent lines are used

to initialize the objects. The local class is invisible outside of the function nStrings, so no special

namespace safeguards are required.

As discussed in section 7.9, members of local classes cannot access local variables from their surround-

ing function. However, they can access global and static data defined by the surrounding function.

Using a local class neatly allows us to hide the implementation details within the function nStrings,

which simply opens the file, allocates the objects, and closes the file again. Since the local class is

derived from string, it can use any string constructor for its base class initializer. In this particular

case it doesn’t even do that, as copy elision ensures that Xstr’s base class string in fact is the string

returned by nextLine. That latter function’s string subsequently receives the lines of the just opened

stream. As nextLine is a static member function, it’s available to Xstr default constructor’s member

initializers even though at that time the Xstr object isn’t available yet.

#include <fstream>

#include <iostream>



#include <algorithm>

#include <iterator>

using namespace std;

string *nStrings(size_t size, char const *fname)

{

static thread_local ifstream in;

struct Xstr: public string

{

Xstr()

:

string(nextLine())

{}

static string nextLine()

{

string line;

getline(in, line);

return line; // copy elision turns this

} // into Xstr's base class string

};

in.open(fname);

string *sp = new Xstr[size];

in.close();

return sp;

}

int main()

{

string *sp = nStrings(10, "nstrings.cc");

copy(sp, sp + 10, ostream_iterator<string>{ cout, "\n" });

}

When this program is run, it displays the first 10 lines of the file nstrings.cc.

Note that the example defines a static thread_local ifstream object. Thread_local variables

are formally introduced in chapter 20. The thread_local specification assures that the function can

safely be used, even in multithreaded programs.

A completely different way to avoid the double initialization (not using inheritance) is to use place-

ment new (cf. section 9.1.5): simply allocate the required amount of memory followed by the proper

in-place allocation of the objects, using the appropriate constructors. In the next example a pair of

static construct/destroy members are used to perform the required initialization. In the example

construct expects an istream that provides the initialization strings for objects of a class String

simply containing a std::string object. Construct first allocates enough memory for the n String

objects plus room for an initial size_t value. This initial size_t value is then initialized with n.

Next, in a for statement, lines are read from the provided stream and the lines are passed to the con-

structors, using placement new calls. Finally the address of the first String object is returned. Then,

the destruction of the objects is handled by the member destroy. It retrieves the number of objects to

destroy from the size_t it finds just before the location of the address of the first object to destroy. The

objects are then destroyed by explicitly calling their destructors. Finally the raw memory, originally

allocated by construct is returned.

#include <fstream>

#include <iostream>



using namespace std;

class String

{

union Ptrs

{

void *vp;

String *sp;

size_t *np;

};

std::string d_str;

public:

String(std::string const &txt)

:

d_str(txt)

{}

~String()

{

cout << "destructor: " << d_str << '\n';

}

static String *construct(istream &in, size_t n)

{

Ptrs p = {operator new(n * sizeof(String) + sizeof(size_t))};

*p.np++ = n;

string line;

for (size_t idx = 0; idx != n; ++idx)

{

getline(in, line);

new(p.sp + idx) String{ line };

}

return p.sp;

}

static void destroy(String *sp)

{

Ptrs p = {sp};

--p.np;

for (size_t n = *p.np; n--; )

sp++->~String();

operator delete(p.vp);

}

};

int main()

{

String *sp = String::construct(cin, 5);

String::destroy(sp);

}

/*
After providing 5 lines containing, respectively

alpha, bravo, charley, delta, echo

the program displays:



destructor: bravo

destructor: charley

destructor: delta

destructor: echo

*/





Chapter 14

Polymorphism

Using inheritance classes may be derived from other classes, called base classes. In the previous chap-

ter we saw that base class pointers may be used to point to derived class objects. We also saw that when

a base class pointer points to an object of a derived class the pointer’s type, rather than the object’s type,

determines which member functions are visible. So when a Vehicle ∗vp, points to a Car object Car’s

speed or brandName members can’t be used.

In the previous chapter two fundamental ways classes may be related to each other were discussed:

a class may be implemented-in-terms-of another class and it can be stated that a derived class is-a

base class. The former relationship is usually implemented using composition, the latter is usually

implemented using a special form of inheritance, called polymorphism, the topic of this chapter.

An is-a relationship between classes allows us to apply the Liskov Substitution Principle (LSP) accord-

ing to which a derived class object may be passed to and used by code expecting a pointer or reference to

a base class object. In the C++ Annotations so far the LSP has been applied many times. Every time an

ostringstream, ofstream or fstream was passed to functions expecting an ostream we’ve been

applying this principle. In this chapter we’ll discover how to design our own classes accordingly.

LSP is implemented using a technique called polymorphism: although a base class pointer is used it

performs actions defined in the (derived) class of the object it actually points to. So, a Vehicle ∗vp

might behave like a Car ∗ when pointing to a Car1.

Polymorphism is implemented using a feature called late binding. It’s called that way because the

decision which function to call (a base class function or a function of a derived class) cannot be made at

compile-time, but is postponed until the program is actually executed: only then it is determined which

member function will actually be called.

In C++ late binding is not the default way functions are called. By default static binding (or early

binding) is used. With static binding the functions that are called are determined by the compiler,

merely using the class types of objects, object pointers or object references.

Late binding is an inherently different (and slightly slower) process as it is decided at run-time, rather

than at compile-time what function is going to be called. As C++ supports both late- and early-binding

C++ programmers are offered an option as to what kind of binding to use. Choices can be optimized to

the situations at hand. Many other languages offering object oriented facilities (e.g., Java) only or by

default offer late binding. C++ programmers should be keenly aware of this. Expecting early binding

and getting late binding may easily produce nasty bugs.

Let’s look at a simple example to start appreciating the differences between late and early binding. The

example merely illustrates. Explanations of why things are as shown are shortly provided.

Consider the following little program:

1In one of the StarTrek movies, Capt. Kirk was in trouble, as usual. He met an extremely beautiful lady who, however, later

on changed into a hideous troll. Kirk was quite surprised, but the lady told him: “Didn’t you know I am a polymorph?”
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using namespace std;

class Base

{

protected:

void hello()

{

cout << "base hello\n";

}

public:

void process()

{

hello();

}

};

class Derived: public Base

{

protected:

void hello()

{

cout << "derived hello\n";

}

};

int main()

{

Derived derived;

derived.process();

}

The important characteristic of the above program is the Base::process function, calling hello. As

process is the only member that is defined in the public interface it is the only member that can be

called by code not belonging to the two classes. The class Derived, derived from Base clearly inherits

Base’s interface and so process is also available in Derived. So the Derived object in main is able

to call process, but not hello.

So far, so good. Nothing new, all this was covered in the previous chapter. One may wonder why

Derived was defined at all. It was presumably defined to create an implementation of hello that’s

appropriate for Derived but differing from Base::hello’s implementation. Derived’s author’s rea-

soning was as follows: Base’s implementation of hello is not appropriate; a Derived class object can

remedy that by providing an appropriate implementation. Furthermore our author reasoned:

“since the type of an object determines the interface that is used, process must call

Derived::hello as hello is called via process from a Derived class object”.

Unfortunately our author’s reasoning is flawed, due to static binding. When Base::process was

compiled static binding caused the compiler to bind the hello call to Base::hello().

The author intended to create a Derived class that is-a Base class. That only partially succeeded:

Base’s interface was inherited, but after that Derived has relinquished all control over what happens.

Once we’re in process we’re only able to see Base’s member implementations. Polymorphism offers a

way out, allowing us to redefine (in a derived class) members of a base class allowing these redefined

members to be used from the base class’s interface.

This is the essence of LSP: public inheritance should not be used to reuse the base class members

(in derived classes) but to be reused (by the base class, polymorphically using derived class members

reimplementing base class members).

Take a second to appreciate the implications of the above little program. The hello and processmem-



ment directory travel, hello could define the action to perform when encountering a file. Base::hello

might simply show the name of a file, but Derived::hello might delete the file; might only list its

name if its younger than a certain age; might list its name if it contains a certain text; etc., etc.. Up to

now Derived would have to implement process’s actions itself; Up to now code expecting a Base class

reference or pointer could only perform Base’s actions. Polymorphism allows us to reimplement mem-

bers of base classes and to use those reimplemented members in code expecting base class references

or pointers. Using polymorphism existing code may be reused by derived classes reimplementing the

appropriate members of their base classes. It’s about time to uncover how this magic can be realized.

Polymorphism, which is not the default in C++, solves the problem and allows the author of the classes

to reach its goal. For the curious reader: prefix void hello() in the Base class with the keyword

virtual and recompile. Running the modified program produces the intended and expected derived

hello. Why this happens is explained next.

14.1 Virtual functions

By default the behavior of a member function called via a pointer or reference is determined by the

implementation of that function in the pointer’s or reference’s class. E.g., a Vehicle ∗ activates

Vehicle’s member functions, even when pointing to an object of a derived class. This is known as

as early or static binding: the function to call is determined at compile-time. In C++ late or dynamic

binding is realized using virtual member functions.

A member function becomes a virtual member function when its declaration starts with the keyword

virtual. It is stressed once again that in C++, different from several other object oriented languages,

this is not the default situation. By default static binding is used.

Once a function is declared virtual in a base class, it remains virtual in all derived classes. The

keyword virtual should not be mentioned for members in derived classes which are declared virtual

in base classes. In derived classes those members should be provided with the override indicator,

allowing the compiler to verify that you’re indeed referring to an existing virtual member function.

In the vehicle classification system (see section 13.1), let’s concentrate on the members mass and

setMass. These members define the user interface of the class Vehicle. What we would like to accom-

plish is that this user interface can be used for Vehicle and for any class inheriting from Vehicle,

since objects of those classes are themselves also Vehicles.

If we can define the user interface of our base class (e.g., Vehicle) such that it remains usable irrespec-

tive of the classes we derive from Vehicle our software achieves an enormous reusability: we design

or software around Vehicle’s user interface, and our software will also properly function for derived

classes. Using plain inheritance doesn’t accomplish this. If we define

std::ostream &operator<<(std::ostream &out, Vehicle const &vehicle)

{

return out << "Vehicle's mass is " << vehicle.mass() << " kg.";

}

and Vehicle’s member mass returns 0, but Car’s member mass returns 1000, then twice a mass of

0 is reported when the following program is executed:

int main()

{

Vehicle vehicle;

Car vw(1000);

cout << vehicle << '\n' << vw << endl;

}



face, ‘cout << vw’ will use vw’s Vehicle’s user interface as well, thus displaying a mass of 0.

Reusability is enhanced if we add a redefinable interface to the base class’s interface. A redefinable

interface allows derived classes to fill in their own implementation, without affecting the user interface.

At the same time the user interface will behave according to the derived class’s wishes, and not just to

the base class’s default implementation.

Members of the reusable interface should be declared in the class’s private sections: conceptually they

merely belong to their own classes (cf. section 14.7). In the base class these members should be de-

clared virtual. These members can be redefined (overridden) by derived classes, and should there be

provided with override indicators.

We keep our user interface (mass), and add the redefinable member vmass to Vehicle’s interface:

class Vehicle

{

public:

size_t mass() const;

size_t si_mass() const; // see below

private:

virtual size_t vmass() const;

};

Separating the user interface from the redefinable interface is a sensible thing to do. It allows us to

fine-tune the user interface (only one point of maintenance), while at the same time allowing us to

standardize the expected behavior of the members of the redefinable interface. E.g., in many countries

the International system of units is used, using the kilogram as the unit for mass. Some countries use

other units (like the lbs: 1 kg being approx. 2.2046 lbs). By separating the user interface from the

redefinable interface we can use one standard for the redefinable interface, and keep the flexibility of

transforming the information ad-lib in the user interface.

Just to maintain a clean separation of user- and redefinable interface we might consider adding another

accessor to Vehicle, providing the si_mass, simply implemented like this:

size_t Vehicle::si_mass() const

{

return vmass();

}

If Vehicle supports a member d_massFactor then its mass member can be implemented like this:

size_t Vehicle::mass()

{

return d_massFactor * si_mass();

}

Vehicle itself could define vmass so that it returns a token value. E.g.,

size_t Vehicle::vmass()

{

return 0;

}

Now let’s have a look at the class Car. It is derived from Vehicle, and it inherits Vehicle’s user

interface. It also has a data member size_t d_mass, and it implements its own reusable interface:

class Car: public Vehicle



...

private:

size_t vmass() override;

}

If Car constructors require us to specify the car’s mass (stored in d_mass), then Car simply implements

its vmass member like this:

size_t Car::vmass() const

{

return d_mass;

}

The class Truck, inheriting from Car needs two mass values: the tractor’s mass and the trailer’s

mass. The tractor’s mass is passed to its Car base class, the trailor’s mass is passed to its Vehicle

d_trailor data member. Truck, too, overrides vmass, this time returning the sum of its tractor and

trailor masses:

size_t Truck::vmass() const

{

return Car::si_mass() + d_trailer.si_mass();

}

Once a class member has been declared virtual it becomes a virtual member in all derived classes,

whether or not these members are provided with the override indicator. But override should be

used, as it allows to compiler to catch typos when writing down the derived class interface.

A member function may be declared virtual anywhere in a class hierarchy, but this probably defeats

the underlying polymorphic class design, as the original base class is no longer capable of completely

covering the redefinable interfaces of derived classes. If, e.g, mass is declared virtual in Car, but not in

Vehicle, then the specific characteristics of virtual member functions would only be available for Car

objects and for objects of classes derived from Car. For a Vehicle pointer or reference static binding

would remain to be used.

The effect of late binding (polymorphism) is illustrated below:

void showInfo(Vehicle &vehicle)

{

cout << "Info: " << vehicle << '\n';

}

int main()

{

Car car(1200); // car with mass 1200

Truck truck(6000, 115, // truck with cabin mass 6000,

"Scania", 15000); // speed 115, make Scania,

// trailer mass 15000

showInfo(car); // see (1) below

showInfo(truck); // see (2) below

Vehicle *vp = &truck;

cout << vp->speed() << '\n';// see (3) below

}

Now that mass is defined virtual, late binding is used:

• at (1), Car’s mass is displayed;



• at (3) a syntax error is generated. The member speed is not a member of Vehicle, and hence

not callable via a Vehicle∗.

The example illustrates that when a pointer to a class is used only the members of that class can be

called. A member’s virtual characteristic only influences the type of binding (early vs. late), not the

set of member functions that is visible to the pointer.

Through virtual members derived classes may redefine the behavior performed by functions called from

base class members or from pointers or references to base class objects. This redefinition of base class

members by derived classes is called overriding members.

14.2 Virtual destructors

When an object ceases to exist the object’s destructor is called. Now consider the following code frag-

ment (cf. section 13.1):

Vehicle *vp = new Land{ 1000, 120 };

delete vp; // object destroyed

Here delete is applied to a base class pointer. As the base class defines the available interface delete

vp calls ~Vehicle and ~Land remains out of sight. Assuming that Land allocates memory a memory

leak results. Freeing memory is not the only action destructors can perform. In general they may

perform any action that’s necessary when an object ceases to exist. But here none of the actions defined

by ~Land are performed. Bad news....

In C++ this problem is solved by virtual destructors. A destructor can be declared virtual. When

a base class destructor is declared virtual then the destructor of the actual class pointed to by a base

class pointer bp is going to be called when delete bp is executed. Thus, late binding is realized for

destructors even though the destructors of derived classes have unique names. Example:

class Vehicle

{

public:

virtual ~Vehicle(); // all derived class destructors are

// now virtual as well.

};

By declaring a virtual destructor, the above delete operation (delete vp) correctly calls Land’s de-

structor, rather than Vehicle’s destructor.

Once a destructor is called it performs as usual, whether or not it is a virtual destructor. So, ~Land

first executes its own statements and then calls ~Vehicle. Thus, the above delete vp statement

uses late binding to call ~Vehicle and from this point on the object destruction proceeds as usual.

Destructors should always be defined virtual in classes designed as a base class from which

other classes are going to be derived. Often those destructors themselves have no tasks to per-

form. In these cases the virtual destructor is given an empty body. For example, the definition of

Vehicle::~Vehicle() may be as simple as:

Vehicle::~Vehicle()

{}

Resist the temptation to define virtual destructors (even empty destructors) inline as this complicates

class maintenance. Section 14.11 discusses the reason behind this rule of thumb.



14.3 Pure virtual functions

The base class Vehicle is provided with its own concrete implementations of its virtual members

(mass and setMass). However, virtual member functions do not necessarily have to be implemented in

base classes.

When the implementations of virtual members are omitted from base classes the class imposes require-

ments upon derived classes. The derived classes are required to provide the ‘missing implementations’.

This approach, in some languages (like C#, Delphi and Java) known as an interface, defines a protocol.

Derived classes must obey the protocol by implementing the as yet not implemented members. If a class

contains at least one member whose implementation is missing no objects of that class can be defined.

Such incompletely defined classes are always base classes. They enforce a protocol by merely declaring

names, return values and arguments of some of their members. These classes are call abstract classes

or abstract base classes. Derived classes become non-abstract classes by implementing the as yet not

implemented members.

Abstract base classes are the foundation of many design patterns (cf. Gamma et al. (1995)) , allowing

the programmer to create highly reusable software. Some of these design patterns are covered by the

C++ Annotations (e.g, the Template Method in section 24.2), but for a thorough discussion of design

patterns the reader is referred to Gamma et al.’s book.

Members that are merely declared in base classes are called pure virtual functions. A virtual member

becomes a pure virtual member by postfixing = 0 to its declaration (i.e., by replacing the semicolon

ending its declaration by ‘= 0;’). Example:

#include <iosfwd>

class Base

{

public:

virtual ~Base();

virtual std::ostream &insertInto(std::ostream &out) const = 0;

};

inline std::ostream &operator<<(std::ostream &out, Base const &base)

{

return base.insertInto(out);

}

All classes derived from Base must implement the insertInto member function, or their objects

cannot be constructed. This is neat: all objects of class types derived from Base can now always be

inserted into ostream objects.

Could the virtual destructor of a base class ever be a pure virtual function? The answer to this ques-

tion is no. First of all, there is no need to enforce the availability of destructors in derived classes

as destructors are provided by default (unless a destructor is declared with the = delete attribute).

Second, if it is a pure virtual member its implementation does not exist. However, derived class de-

structors eventually call their base class destructors. How could they call base class destructors if their

implementations are lacking? More about this in the next section.

Often, but not necessarily, pure virtual member functions are const member functions. This allows

the construction of constant derived class objects. In other situations this might not be necessary (or

realistic), and non-constant member functions might be required. The general rule for const member

functions also applies to pure virtual functions: if the member function alters the object’s data members,

it cannot be a const member function.

Abstract base classes frequently don’t have data members. However, once a base class declares a pure

virtual member it must be declared identically in derived classes. If the implementation of a pure

virtual function in a derived class alters the derived class object’s data, then that function cannot be

declared as a const member. Therefore, the author of an abstract base class should carefully consider

whether a pure virtual member function should be a const member function or not.



Pure virtual member functions may be implemented. To implement a pure virtual member function,

provide it with its normal = 0; specification, but implement it as well. Since the = 0; ends in a

semicolon, the pure virtual member is always at most a declaration in its class, but an implementation

may either be provided outside from its interface (maybe using inline).

Pure virtual member functions may be called from derived class objects or from its class or derived

class members by specifying the base class and scope resolution operator together with the member to

be called. Example:

#include <iostream>

class Base

{

public:

virtual ~Base();

virtual void pureimp() = 0;

};

Base::~Base()

{}

void Base::pureimp()

{

std::cout << "Base::pureimp() called\n";

}

class Derived: public Base

{

public:

virtual void pureimp();

};

inline void Derived::pureimp()

{

Base::pureimp();

std::cout << "Derived::pureimp() called\n";

}

int main()

{

Derived derived;

derived.pureimp();

derived.Base::pureimp();

Derived *dp = &derived;

dp->pureimp();

dp->Base::pureimp();

}

// Output:

// Base::pureimp() called

// Derived::pureimp() called

// Base::pureimp() called

// Base::pureimp() called

// Derived::pureimp() called

// Base::pureimp() called

Implementing a pure virtual member has limited use. One could argue that the pure virtual member

function’s implementation may be used to perform tasks that can already be performed at the base class

level. However, there is no guarantee that the base class virtual member function is actually going to



blurring the distinction between a member doing some work and a pure virtual member enforcing a

protocol.

14.4 Explicit virtual overrides

Consider the following situations:

• A class Value is a value class. It offers a copy constructor, an overloaded assignment operator,

maybe move operations, and a public, non-virtual constructor. In section 14.7 it is argued that

such classes are not suited as base classes. New classes should not inherit from Value. How to

enforce this?

• A polymorphic class Base defines a virtual member v_process(int32_t). A class derived from

Base needs to override this member, but the author mistakingly defined v_proces(int32_t).

How to prevent such errors, breaking the polymorphic behavior of the derived class?

• A class Derived, derived from a polymorphic Base class overrides the member

Base::v_process, but classes that are in turn derived from Derived should no longer

override v_process, but may override other virtual members like v_call and v_display. How

to enforce this restricted polymorphic character for classes derived from Derived?

Two special identifiers, final and override are used to realize the above. These identifiers are special

in the sense that they only require their special meanings in specific contexts. Outside of this context

they are just plain identifiers, allowing the programmer to define a variable like bool final.

The identifier final can be applied to class declarations to indicate that the class cannot be used as a

base class. E.g.:

class Base1 final // cannot be a base class

{};

class Derived1: public Base1 // ERR: Base1 is final

{};

class Base2 // OK as base class

{};

class Derived2 final: public Base2 // OK, but Derived2 can't be

{}; // used as a base class

class Derived: public Derived2 // ERR: Derived2 is final

{};

The identifier final can also be added to virtual member declarations. This indicates that those

virtual members cannot be overridden by derived classes. The restricted polymorphic character of a

class, mentioned above, can thus be realized as follows:

class Base

{

virtual int v_process(); // define polymorphic behavior

virtual int v_call();

virtual int v_display();

};

class Derived: public Base // Derived restricts polymorphism

{ // to v_call and v_display

virtual int v_process() final;

};

class Derived2: public Derived



// int v_process(); No go: Derived:v_process is final

virtual int v_display(); // OK to override

};

To allow the compiler to detect typos, differences in parameter types, or differences in member function

modifiers (e.g., const vs. non-const) the identifier override can (should) be appended to derived

class members overriding base class members. E.g.,

class Base

{

virtual int v_process();

virtual int v_call() const;

virtual int v_display(std::ostream &out);

};

class Derived: public Base

{

virtual int v_proces() override; // ERR: v_proces != v_process

virtual int v_call() override; // ERR: not const

// ERR: parameter types differ

virtual int v_display(std::istream &out) override;

};

14.5 Virtual functions and multiple inheritance

In chapter 6 we encountered the class fstream, one class offering features of ifstream and ofstream.

In chapter 13 we learned that a class may be derived from multiple base classes. Such a derived class

inherits the properties of all its base classes. Polymorphism can also be used in combination with

multiple inheritance.

Consider what would happen if more than one ‘path’ leads from the derived class up to its (base) classes.

This is illustrated in the next (fictitious) example where a class Derived is doubly derived from Base:

class Base

{

int d_field;

public:

void setfield(int val);

int field() const;

};

inline void Base::setfield(int val)

{

d_field = val;

}

inline int Base::field() const

{

return d_field;

}

class Derived: public Base, public Base

{};

Due to the double derivation, Base’s functionality now occurs twice in Derived. This results in am-

biguity: when the function setfield() is called for a Derived class object, which function will that

be as there are two of them? The scope resolution operator won’t come to the rescue and so the C++

compiler cannot compile the above example and (correctly) identifies an error.
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Figure 14.1: Duplication of a base class in multiple derivation.
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Figure 14.2: Internal organization of an AirCar object.

The above code clearly duplicates its base class in the derivation, which can of course easily be avoided

by not doubly deriving from Base (or by using composition (!)). But duplication of a base class can

also occur through nested inheritance, where an object is derived from, e.g., a Car and from an Air

(cf. section 13.1). Such a class would be needed to represent, e.g., a flying car2. An AirCar would ulti-

mately contain two Vehicles, and hence two mass fields, two setMass() functions and two mass()

functions. Is this what we want?

14.5.1 Ambiguity in multiple inheritance

Let’s investigate closer why an AirCar introduces ambiguity, when derived from Car and Air.

• An AirCar is a Car, hence a Land, and hence a Vehicle.

• However, an AirCar is also an Air, and hence a Vehicle.

The duplication of Vehicle data is further illustrated in Figure 14.1. The internal organization of an

AirCar is shown in Figure 14.2 The C++ compiler detects the ambiguity in an AirCar object, and will

therefore not compile statements like:

AirCar jBond;

cout << jBond.mass() << '\n';

Which member function mass to call cannot be determined by the compiler but the programmer has

two possibilities to resolve the ambiguity for the compiler:

• First, the function call where the ambiguity originates can be modified. The ambiguity is resolved

using the scope resolution operator:

// let's hope that the mass is kept in the Car

// part of the object..

cout << jBond.Car::mass() << '\n';

2such as the one in James Bond vs. the Man with the Golden Gun...



function.

• Second, a dedicated function mass could be created for the class AirCar:

int AirCar::mass() const

{

return Car::mass();

}

The second possibility is preferred as it does not require the compiler to flag an error; nor does it require

the programmer using the class AirCar to take special precautions.

However, there exists a more elegant solution, discussed in the next section.

14.5.2 Virtual base classes

As illustrated in Figure 14.2, an AirCar represents two Vehicles. This not only results in an am-

biguity about which function to use to access the mass data, but it also defines two mass fields in an

AirCar. This is slightly redundant, since we can assume that an AirCar has but one mass.

It is, however, possible to define an AirCar as a class consisting of but one Vehicle and yet using

multiple derivation. This is realized by defining the base classes that are multiply mentioned in a

derived class’s inheritance tree as a virtual base class.

For the class AirCar this implies a small change when deriving an AirCar from Land and Air classes:

class Land: virtual public Vehicle

{

// etc

};

class Car: public Land

{

// etc

};

class Air: virtual public Vehicle

{

// etc

};

class AirCar: public Car, public Air

{

};

Virtual derivation ensures that a Vehicle is only added once to a derived class. This means that the

route along which a Vehicle is added to an AirCar is no longer depending on its direct base classes;

we can only state that an AirCar is a Vehicle. The internal organization of an AirCar after virtual

derivation is shown in Figure 14.3.

When a class Third inherits from a base class Second which in turn inherits from a base class First

then the First class constructor called by the Second class constructor is also used when this Second

constructor is used when constructing a Third object. Example:

class First

{

public:

First(int x);

};

class Second: public First
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Figure 14.3: Internal organization of an AirCar object when the base classes are virtual.

{

public:

Second(int x)

:

First(x)

{}

};

class Third: public Second

{

public:

Third(int x)

:

Second(x) // calls First(x)

{}

};

The above no longer holds true when Second uses virtual derivation. When Second uses virtual

derivation its base class constructor is ignored when Second’s constructor is called from Third. Instead

Second by default calls First’s default constructor. This is illustrated by the next example:

class First

{

public:

First()

{

cout << "First()\n";

}

First(int x);

};

class Second: public virtual First // note: virtual

{

public:

Second(int x)

:

First(x)

{}

};

class Third: public Second

{

public:

Third(int x)

:

Second(x)

{}

};

int main()

{



`
}

When constructing Third First’s default constructor is used by default. Third’s constructor, however,

may overrule this default behavior by explicitly specifying the constructor to use. Since the First ob-

ject must be available before Second can be constructed it must be specified first. To call First(int)

when constructing Third(int) the latter constructor can be defined as follows:

class Third: public Second

{

public:

Third(int x)

:

First(x), // now First(int) is called.

Second(x)

{}

};

This behavior may seem puzzling when simple linear inheritance is used but it makes sense when mul-

tiple inheritance is used with base classes using virtual inheritance. Consider AirCar: when Air and

Car both virtually inherit from Vehicle will Air and Car both initialize the common Vehicle object?

If so, which one is going to be called first? What if Air and Car use different Vehicle constructors?

All these questions can be avoided by passing the responsibility for the initialization of a common base

class to the class eventually using the common base class object. In the above example Third. Hence

Third is provided an opportunity to specify the constructor to use when initializing First.

Multiple inheritance may also be used to inherit from classes that do not all use virtual inheritance.

Assume we have two classes, Derived1 and Derived2, both (possibly virtually) derived from Base.

We now address the question which constructors will be called when calling a constructor of the class

Final: public Derived1, public Derived2.

To distinguish the involved constructors Base1 indicates the Base class constructor called as base

class initializer for Derived1 (and analogously: Base2 called from Derived2). A plain Base indicates

Base’s default constructor.

Derived1 and Derived2 indicate the base class initializers used when constructing a Final object.

Now we’re ready to distinguish the various cases when constructing an object of the class Final:

public Derived1, public Derived2:

• classes:

Derived1: public Base

Derived2: public Base

This is normal, non virtual multiple derivation. The following constructors are called in

the order shown:

Base1,

Derived1,

Base2,

Derived2

• classes:

Derived1: public Base

Derived2: virtual public Base



Instead, Base is called and it is called prior to any other constructor:

Base,

Base1,

Derived1,

Derived2

As only one class uses virtual derivation, two Base class objects remain available in the

eventual Final class.

• classes:

Derived1: virtual public Base

Derived2: public Base

Only Derived1 uses virtual derivation. Derived1’s base class constructor is ignored.

Instead, Base is called and it is called prior to any other constructor. Different from the

first (non-virtual) case Base is now called, rather than Base1:

Base,

Derived1,

Base2,

Derived2

• classes:

Derived1: virtual public Base

Derived2: virtual public Base

Both base classes use virtual derivation and so only one Base class object will be present

in the Final class object. The following constructors are called in the order shown:

Base,

Derived1,

Derived2

Virtual derivation is, in contrast to virtual functions, a pure compile-time issue. Virtual inheritance

merely defines how the compiler defines a class’s data organization and construction process.

14.5.3 When virtual derivation is not appropriate

Virtual inheritance can be used to merge multiply occurring base classes. However, situations may

be encountered where multiple occurrences of base classes is appropriate. Consider the definition of a

Truck (cf. section 13.5):

class Truck: public Car

{

int d_trailer_mass;

public:

Truck();

Truck(int engine_mass, int sp, char const *nm,

int trailer_mass);

void setMass(int engine_mass, int trailer_mass);

int mass() const;

};

Truck::Truck(int engine_mass, int sp, char const *nm,

int trailer_mass)



Car(engine_mass, sp, nm)

{

d_trailer_mass = trailer_mass;

}

int Truck::mass() const

{

return // sum of:

Car::mass() + // engine part plus

trailer_mass; // the trailer

}

This definition shows how a Truck object is constructed to contain two mass fields: one via its deriva-

tion from Car and one via its own int d_trailer_mass data member. Such a definition is of course

valid, but it could also be rewritten. We could derive a Truck from a Car and from a Vehicle, thereby

explicitly requesting the double presence of a Vehicle; one for the mass of the engine and cabin, and

one for the mass of the trailer. A slight complication is that a class organization like

class Truck: public Car, public Vehicle

is not accepted by the C++ compiler. As a Vehicle is already part of a Car, it is therefore not needed

once again. This organization may, however be forced using a small trick. By creating an additional

class inheriting from Vehicle and deriving Truck from that additional class rather than directly from

Vehicle the problem is solved. Simply derive a class TrailerVeh from Vehicle, and then Truck

from Car and TrailerVeh:

class TrailerVeh: public Vehicle

{

public:

TrailerVeh(int mass)

:

Vehicle(mass)

{}

};

class Truck: public Car, public TrailerVeh

{

public:

Truck();

Truck(int engine_mass, int sp, char const *nm, int trailer_mass);

void setMass(int engine_mass, int trailer_mass);

int mass() const;

};

inline Truck::Truck(int engine_mass, int sp, char const *nm,

int trailer_mass)

:

Car(engine_mass, sp, nm),

TrailerVeh(trailer_mass)

{}

inline int Truck::mass() const

{

return // sum of:

Car::mass() + // engine part plus

TrailerVeh::mass(); // the trailer

}



14.6 Run-time type identification

C++ offers two ways to retrieve types of objects and expressions at run-time. The possibilities of C++’s

run-time type identification are limited compared to languages like Java. Usually static type checking

and static type identification is used in C++. Static type checking is possibly safer and certainly more

efficient than run-time type identification and should therefore be preferred over run-time type iden-

tification. But situations exist where run-time type identification is appropriate. C++ offers run-time

type identification through the dynamic cast and typeid operators.

• A dynamic_cast is used to convert a base class pointer or reference to a derived class pointer or

reference. This is also known as down-casting.

• The typeid operator returns the actual type of an expression.

These operators can be used with objects of classes having at least one virtual member function.

14.6.1 The dynamic_cast operator

The dynamic_cast<> operator is used to convert a base class pointer or reference to, respectively, a

derived class pointer or reference. This is also called down-casting as direction of the cast is down the

inheritance tree.

A dynamic cast’s actions are determined run-time; it can only be used if the base class declares at least

one virtual member function. For the dynamic cast to succeed, the destination class’s Vtable must be

equal to the Vtable to which the dynamic cast’s argument refers to, lest the cast fails and returns 0 (if

a dynamic cast of a pointer was requested) or throws a std::bad_cast exception (if a dynamic cast of

a reference was requested).

In the following example a pointer to the class Derived is obtained from the Base class pointer bp:

class Base

{

public:

virtual ~Base();

};

class Derived: public Base

{

public:

char const *toString();

};

inline char const *Derived::toString()

{

return "Derived object";

}

int main()

{

Base *bp;

Derived *dp,

Derived d;

bp = &d;

dp = dynamic_cast<Derived *>(bp);

if (dp)

cout << dp->toString() << '\n';

else



}

In the condition of the above if statement the success of the dynamic cast is verified. This verification

is performed at run-time, as the actual class of the objects to which the pointer points is only known by

then.

If a base class pointer is provided, the dynamic cast operator returns 0 on failure and a pointer to the

requested derived class on success.

Assume a vector<Base ∗> is used. The pointers of such a vector may point to objects of various

classes, all derived from Base. A dynamic cast returns a pointer to the specified class if the base class

pointer indeed points to an object of the specified class and returns 0 otherwise.

We could determine the actual class of an object a pointer points to by performing a series of checks to

find the derived class to which a base class pointer points. Example:

class Base

{

public:

virtual ~Base();

};

class Derived1: public Base;

class Derived2: public Base;

int main()

{

vector<Base *> vb(initializeBase());

Base *bp = vb.front();

if (dynamic_cast<Derived1 *>(bp))

cout << "bp points to a Derived1 class object\n";

else if (dynamic_cast<Derived2 *>(bp))

cout << "bp points to a Derived2 class object\n";

}

Alternatively, a reference to a base class object may be available. In this case the dynamic_cast

operator throws an exception if the down casting fails. Example:

#include <iostream>

#include <typeinfo>

class Base

{

public:

virtual ~Base();

virtual char const *toString();

};

inline char const *Base::toString()

{

return "Base::toString() called";

}

class Derived1: public Base

{};

class Derived2: public Base

{};

Base::~Base()



void process(Base &b)

{

try

{

std::cout << dynamic_cast<Derived1 &>(b).toString() << '\n';

}

catch (std::bad_cast)

{}

try

{

std::cout << dynamic_cast<Derived2 &>(b).toString() << '\n';

}

catch (std::bad_cast)

{

std::cout << "Bad cast to Derived2\n";

}

}

int main()

{

Derived1 d;

process(d);

}

/*
Generated output:

Base::toString() called

Bad cast to Derived2

*/

In this example the value std::bad_cast is used. A std::bad_cast exception is thrown if the

dynamic cast of a reference to a derived class object fails.

Note the form of the catch clause: bad_cast is the name of a type. Section 17.4.1 describes how such

a type can be defined.

The dynamic cast operator is a useful tool when an existing base class cannot or should not be modified

(e.g., when the sources are not available), and a derived class may be modified instead. Code receiving

a base class pointer or reference may then perform a dynamic cast to the derived class to access the

derived class’s functionality.

You may wonder in what way the behavior of the dynamic_cast differs from that of the static_cast.

When the static_cast is used, we tell the compiler that it must convert a pointer or reference to its

expression type to a pointer or reference of its destination type. This holds true whether the base class

declares virtual members or not. Consequently, all the static_cast’s actions can be determined by

the compiler, and the following compiles fine:

class Base

{

// maybe or not virtual members

};

class Derived1: public Base

{};

class Derived2: public Base

{};

int main()

{

Derived1 derived1;



Derived1 &d1ref = static_cast<Derived1 &>(*bp);

Derived2 &d2ref = static_cast<Derived2 &>(*bp);

}

Pay attention to the second static_cast: here the Base class object is cast to a Derived2 class

reference. The compiler has no problems with this, as Base and Derived2 are related by inheritance.

Semantically, however, it makes no sense as bp in fact points to a Derived1 class object. This is

detected by a dynamic_cast. A dynamic_cast, like the static_cast, converts related pointer or

reference types, but the dynamic_cast provides a run-time safeguard. The dynamic cast fails when

the requested type doesn’t match the actual type of the object we’re pointing at. In addition, the

dynamic_cast’s use is much more restricted than the static_cast’s use, as the dynamic_cast

can only be used for downcasting to derived classes having virtual members.

In the end a dynamic cast is a cast, and casts should be avoided whenever possible. When the need

for dynamic casting arises ask yourself whether the base class has correctly been designed. In situa-

tions where code expects a base class reference or pointer the base class interface should be all that is

required and using a dynamic cast should not be necessary. Maybe the base class’s virtual interface

can be modified so as to prevent the use of dynamic casts. Start frowning when encountering code

using dynamic casts. When using dynamic casts in your own code always properly document why the

dynamic cast was appropriately used and was not avoided.

14.6.2 The ‘typeid’ operator

As with the dynamic_cast operator, typeid is usually applied to references to base class objects that

refer to derived class objects. Typeid should only be used with base classes offering virtual members.

Before using typeid the <typeinfo> header file must be included.

The typeid operator returns an object of type type_info. Different compilers may offer different im-

plementations of the class type_info, but at the very least typeid must offer the following interface:

class type_info

{

public:

virtual ~type_info();

int operator==(type_info const &other) const;

int operator!=(type_info const &other) const;

bool before(type_info const &rhs) const;

char const *name() const;

private:

type_info(type_info const &other);

type_info &operator=(type_info const &other);

};

Note that this class has a private copy constructor and a private overloaded assignment operator. This

prevents code from constructing type_info objects and prevents code from assigning type_info ob-

jects to each other. Instead, type_info objects are constructed and returned by the typeid operator.

If the typeid operator is passed a base class reference it is able to return the actual name of the type

the reference refers to. Example:

class Base;

class Derived: public Base;

Derived d;



cout << typeid(br).name() << '\n';

In this example the typeid operator is given a base class reference. It prints the text “Derived”, being

the class name of the class br actually refers to. If Base does not contain virtual functions, the text

“Base” is printed.

The typeid operator can be used to determine the name of the actual type of expressions, not just of

class type objects. For example:

cout << typeid(12).name() << '\n'; // prints: int

cout << typeid(12.23).name() << '\n'; // prints: double

Note, however, that the above example is suggestive at most. It may print int and double, but this

is not necessarily the case. If portability is required, make sure no tests against these static, built-in

text-strings are required. Check out what your compiler produces in case of doubt.

In situations where the typeid operator is applied to determine the type of a derived class, a base class

reference should be used as the argument of the typeid operator. Consider the following example:

class Base; // contains at least one virtual function

class Derived: public Base;

Base *bp = new Derived; // base class pointer to derived object

if (typeid(bp) == typeid(Derived *)) // 1: false

...

if (typeid(bp) == typeid(Base *)) // 2: true

...

if (typeid(bp) == typeid(Derived)) // 3: false

...

if (typeid(bp) == typeid(Base)) // 4: false

...

if (typeid(*bp) == typeid(Derived)) // 5: true

...

if (typeid(*bp) == typeid(Base)) // 6: false

...

Base &br = *bp;

if (typeid(br) == typeid(Derived)) // 7: true

...

if (typeid(br) == typeid(Base)) // 8: false

...

Here, (1) returns false as a Base ∗ is not a Derived ∗. (2) returns true, as the two pointer types

are the same, (3) and (4) return false as pointers to objects are not the objects themselves.

On the other hand, if ∗bp is used in the above expressions, then (1) and (2) return false as an object

(or reference to an object) is not a pointer to an object, whereas (5) now returns true: ∗bp actually

refers to a Derived class object, and typeid(∗bp) returns typeid(Derived). A similar result is

obtained if a base class reference is used: 7 returning true and 8 returning false.

The type_info::before(type_info const &rhs) member is used to determine the collating or-

der of classes. This is useful when comparing two types for equality. The function returns a nonzero

value if ∗this precedes rhs in the hierarchy or collating order of the used types. When a derived class

is compared to its base class the comparison returns 0, otherwise a non-zero value. E.g.:

cout << typeid(ifstream).before(typeid(istream)) << '\n' << // not 0



With built-in types the implementor may implement that non-0 is returned when a ‘wider’ type is

compared to a ‘smaller’ type and 0 otherwise:

cout << typeid(double).before(typeid(int)) << '\n' << // not 0

typeid(int).before(typeid(double)) << '\n'; // 0

When two equal types are compared, 0 is returned:

cout << typeid(ifstream).before(typeid(ifstream)) << '\n'; // 0

When a 0-pointer is passed to the operator typeid a bad_typeid exception is thrown.

14.7 Inheritance: when to use to achieve what?

Inheritance should not be applied automatically and thoughtlessly. Often composition can be used

instead, improving on a class’s design by reducing coupling. When inheritance is used public inheri-

tance should not automatically be used but the type of inheritance that is selected should match the

programmer’s intent.

We’ve seen that polymorphic classes on the one hand offer interface members defining the functionality

that can be requested of base classes and on the other hand offer virtual members that can be over-

ridden. One of the signs of good class design is that member functions are designed according to the

principle of ‘one function, one task’. In the current context: a class member should either be a member

of the class’s public or protected interface or it should be available as a virtual member for reimplemen-

tation by derived classes. Often this boils down to virtual members that are defined in the base class’s

private section. Those functions shouldn’t be called by code using the base class, but they exist to be

overridden by derived classes using polymorphism to redefine the base class’s behavior.

The underlying principle was mentioned before in the introductory paragraph of this chapter: accord-

ing to the Liskov Substitution Principle (LSP) an is-a relationship between classes (indicating that

a derived class object is a base class object) implies that a derived class object may be used in code

expecting a base class object.

In this case inheritance is used not to let the derived class use the facilities already implemented by

the base class but to reuse the base class polymorphically by reimplementing the base class’s virtual

members in the derived class.

In this section we’ll discuss the reasons for using inheritance. Why should inheritance (not) be used? If

it is used what do we try to accomplish by it?

Inheritance often competes with composition. Consider the following two alternative class designs:

class Derived: public Base

{ ... };

class Composed

{

Base d_base;

...

};

Why and when prefer Derived over Composed and vice versa? What kind of inheritance should be

used when designing the class Derived?

• Since Composed and Derived are offered as alternatives we are looking at the design of a class

(Derived or Composed) that is-implemented-in-terms-of another class.



ther. The underlying principle is that private inheritance should be used when deriving a classs

Derived from Base where Derived is-implemented-in-terms-of Base.

• Should we use inheritance or composition? Here are some arguments:

– In general terms composition results in looser coupling and should therefore be preferred

over inheritance.

– Composition allows us to define classes having multiple members of the same type (think

about a class having multiple std::string members) which can not be realized using in-

heritance.

– Composition allows us to separate the class’s interface from its implementation. This allows

us to modify the class’s data organization without the need to recompile code using our class.

This is also known as the bridge design pattern or the compiler firewall or pimpl (pointer to

the implementation) idiom.

– If Base offers members in its protected interface that must be used when implementing

Derived inheritance must also be used. Again: since we’re implementing-in-terms-of the

inheritance type should be private.

– Protected inheritance may be considered when the derived class (D) itself is intended as a

base class that should only make the members of its own base class (B) available to classes

that are derived from it (i.e., D).

Private inheritance should also be used when a derived class is-a certain type of base class, but in order

to initialize that base class an object of another class type must be available. Example: a new istream

class-type (say: a stream IRandStream from which random numbers can be extracted) is derived from

std::istream. Although an istream can be constructed empty (receiving its streambuf later using

its rdbuf member), it is clearly preferable to initialize the istream base class right away.

Assuming that a Randbuffer: public std::streambuf has been created for generating random

numbers then IRandStream can be derived from Randbuffer and std::istream. That way the

istream base class can be initialized using the Randbuffer base class.

As a RandStream is definitely not a Randbuffer public inheritance is not appropriate. In this case

IRandStream is-implemented-in-terms-of a Randbuffer and so private inheritance should be used.

IRandStream’s class interface should therefore start like this:

class IRandStream: private Randbuffer, public std::istream

{

public:

IRandStream(int lowest, int highest) // defines the range

:

Randbuffer(lowest, highest),

std::istream(this) // passes &Randbuffer

{}

...

};

Public inheritance should be reserved for classes for which the LSP holds true. In those cases the

derived classes can always be used instead of the base class from which they derive by code merely

using base class references, pointers or members (I.e., conceptually the derived class is-a base class).

This most often applies to classes derived from base classes offering virtual members. To separate the

user interface from the redefinable interface the base class’s public interface should not contain virtual

members (except for the virtual destructor) and the virtual members should all be in the base class’s

private section. Such virtual members can still be overridden by derived classes (this should not come

as a surprise, considering how polymorphism is implemented) and this design offers the base class full

control over the context in which the redefined members are used. Often the public interface merely

calls a virtual member, but those members can always be redefined to perform additional duties.



class Base

{

public:

virtual ~Base();

void process(); // calls virtual members (e.g.,

// v_process)

private:

virtual void v_process(); // overridden by derived classes

};

Alternatively a base class may offer a non-virtual destructor, which should then be protected. It

shouldn’t be public to prevent deleting objects through their base class pointers (in which case vir-

tual destructors should be used). It should be protected to allow derived class destructors to call their

base class destructors. Such base classes should, for the same reasons, have non-public constructors

and overloaded assignment operators.

14.8 The ‘streambuf’ class

The class std::streambuf receives the character sequences processed by streams and defines the

interface between stream objects and devices (like a file on disk). A streambuf object is usually not

directly constructed, but usually it is used as base class of some derived class implementing the com-

munication with some concrete device.

The primary reason for existence of the class streambuf is to decouple the stream classes from the

devices they operate upon. The rationale here is to add an extra layer between the classes allowing us

to communicate with devices and the devices themselves. This implements a chain of command which

is seen regularly in software design.

The chain of command is considered a generic pattern when designing reusable software, encountered

also in, e.g., the TCP/IP stack.

A streambuf can be considered yet another example of the chain of command pattern. Here the

program talks to stream objects, which in turn forward their requests to streambuf objects, which

in turn communicate with the devices. Thus, as we will see shortly, we are able to do in user-software

what had to be done via (expensive) system calls before.

The class streambuf has no public constructor, but does make available several public member func-

tions. In addition to these public member functions, several member functions are only available to

classes derived from streambuf. In section 14.8.2 a predefined specialization of the class streambuf

is introduced. All public members of streambuf discussed here are also available in filebuf.

The next section shows the streambuf members that may be overridden when deriving classes from

streambuf. Chapter 24 offers concrete examples of classes derived from streambuf.

The class streambuf is used by streams performing input operations and by streams performing out-

put operations and their member functions can be ordered likewise. The type std::streamsize used

below may, for all practical purposes, be considered equal to the type size_t.

When inserting information into ostream objects the information is eventually passed on to the

ostream’s streambuf. The streambuf may decide to throw an exception. However, this exception

does not leave the ostream using the streambuf. Rather, the exception is caught by the ostream,

which sets its ios::bad_bit. Exceptions thrown by manipulators which are inserted into ostream

objects are not caught by the ostream objects.

Public members for input operations



Returns a lower bound on the number of characters that can be read immediately.

• int sbumpc():

The next available character or EOF is returned. The returned character is removed from the

streambuf object. If no input is available, sbumpc calls the (protected) member uflow (see

section 14.8.1 below) to make new characters available. EOF is returned if no more characters are

available.

• int sgetc():

The next available character or EOF is returned. The character is not removed from the

streambuf object. To remove a character from the streambuf object, sbumpc (or sgetn) can

be used.

• int sgetn(char ∗buffer, std::streamsize n):

At most n characters are retrieved from the input buffer, and stored in buffer. The actual

number of characters read is returned. The (protected) member xsgetn (see section 14.8.1 below)

is called to obtain the requested number of characters.

• int snextc():

The current character is obtained from the input buffer and returned as the next available char-

acter or EOF is returned. The character is not removed from the streambuf object.

• int sputbackc(char c):

Inserts c into the streambuf’s buffer to be returned as the next character to read from the

streambuf object. Caution should be exercised when using this function: often there is a maxi-

mum of just one character that can be put back.

• int sungetc():

Returns the last character read to the input buffer, to be read again at the next input operation.

Caution should be exercised when using this function: often there is a maximum of just one

character that can be put back.

Public members for output operations

• int pubsync():

Synchronizes (i.e., flushes) the buffer by writing any information currently available in the

streambuf’s buffer to the device. Normally only used by classes derived from streambuf.

• int sputc(char c):

Character c is inserted into the streambuf object. If, after writing the character, the buffer is

full, the function calls the (protected) member function overflow to flush the buffer to the device

(see section 14.8.1 below).

• int sputn(char const ∗buffer, std::streamsize n):

At most n characters from buffer are inserted into the streambuf object. The actual number of

characters inserted is returned. This member function calls the (protected) member xsputn (see

section 14.8.1 below) to insert the requested number of characters.

Public members for miscellaneous operations

The next three members are normally only used by classes derived from streambuf.

• ios::pos_type pubseekoff(ios::off_type offset, ios::seekdir way,

ios::openmode mode = ios::in | ios::out):

Sets the offset of the next character to be read or written to offset, relative to the standard

ios::seekdir values indicating the direction of the seeking operation.

• ios::pos_type pubseekpos(ios::pos_type offset, ios::openmode mode =

ios::in | ios::out):

Sets the absolute position of the next character to be read or written to pos.

• streambuf ∗pubsetbuf(char∗ buffer, std::streamsize n):

The streambuf object is going to use buffer, which may contain at least n characters.



The protected members of the class streambuf are important for understanding and using streambuf

objects. Although there are both protected data members and protected member functions defined

in the class streambuf the protected data members are not mentioned here as using them would

violate the principle of data hiding. As streambuf’s set of member functions is quite extensive, it is

hardly ever necessary to use its data members directly. The following subsections do not even list all

protected member functions but only those are covered that are useful for constructing specializations.

Streambuf objects control a buffer, used for input and/or output, for which begin-, actual- and end-

pointers have been defined, as depicted in figure 14.4.

Streambuf offers two protected constructors:

• streambuf::streambuf():

Default (protected) constructor of the class streambuf.

• streambuf::streambuf(streambuf const &rhs):

(Protected) copy constructor of the class streambuf. Note that this copy constructor merely

copies the values of the data members of rhs: after using the copy constructor both streambuf

objects refer to the same data buffer and initially their pointers point at identical positions. Also

note that these are not shared pointers, but only ‘raw copies’.

14.8.1.1 Protected members for input operations

Several protected member functions are available for input operations. The member functions marked

virtual may of course be redefined in derived classes:

• char ∗eback():

Streambuf maintains three pointers controlling its input buffer: eback points to the ‘end of the

putback’ area: characters can safely be put back up to this position. See also figure 14.4. Eback

points to the beginning of the input buffer.

• char ∗egptr():

Egptr points just beyond the last character that can be retrieved from the input buffer. See also

figure 14.4. If gptr equals egptr the buffer must be refilled. This should be implemented by

calling underflow, see below.

• void gbump(int n):

The object’s gptr (see below) is advanced over n positions.

• char ∗gptr():

Gptr points to the next character to be retrieved from the object’s input buffer. See also figure

14.4.

• virtual int pbackfail(int c):

This member function may be overridden by derived classes to do something intelligent when

putting back character c fails. One might consider restoring the old read pointer when input

buffer’s begin has been reached. This member function is called when ungetting or putting back

a character fails. In particular, it is called when

– gptr() == 0: no buffering used,

– gptr() == eback(): no more room to push back,

– ∗gptr() != c: a different character than the next character to be read must be pushed

back.

If c == endOfFile() then the input device must be reset by one character position. Otherwise

c must be prepended to the characters to be read. The function should return EOF on failure.

Otherwise 0 can be returned.



Figure 14.4: Input- and output buffer pointers of the class ‘streambuf’



∗ ∗ ∗

Initializes an input buffer. beg points to the beginning of the input area, next points to the next

character to be retrieved, and beyond points to the location just beyond the input buffer’s last

character. Usually next is at least beg + 1, to allow for a put back operation. No input buffering

is used when this member is called as setg(0, 0, 0). See also the member uflow, below.

• virtual streamsize showmanyc():

(Pronounce: s-how-many-c) This member function may be overridden by derived classes. It must

return a guaranteed lower bound on the number of characters that can be read from the device

before uflow or underflow returns EOF. By default 0 is returned (meaning no or some characters

are returned before the latter two functions return EOF). When a positive value is returned then

the next call of u(nder)flow does not return EOF.

• virtual int uflow():

This member function may be overridden by derived classes to reload an input buffer with fresh

characters. Its default implementation is to call underflow (see below). If underflow() fails,

EOF is returned. Otherwise, the next available character is returned as static_cast<unsigned

char>(∗gptr()) following a gbump(-1). Uflow also moves the pending character that is re-

turned to the backup sequence. This is different from underflow(), which merely returns the

next available character, but does not alter the input pointer positions.

When no input buffering is required this function, rather than underflow, can be overridden to

produce the next available character from the device to read from.

• virtual int underflow():

This member function may be overridden by derived classes to read another character from the

device. The default implementation is to return EOF.

It is called when

– there is no input buffer (eback() == 0)

– gptr() >= egptr(): the input buffer is exhausted.

Often, when buffering is used, the complete buffer is not refreshed as this would make it impossi-

ble to put back characters immediately following a reload. Instead, buffers are often refreshed in

halves. This system is called a split buffer.

Classes derived from streambuf for reading normally at least override underflow. The proto-

typical example of an overridden underflow function looks like this:

int underflow()

{

if (not refillTheBuffer()) // assume a member d_buffer is available

return EOF;

// reset the input buffer pointers

setg(d_buffer, d_buffer, d_buffer + d_nCharsRead);

// return the next available character

// (the cast is used to prevent

// misinterpretations of 0xff characters

// as EOF)

return static_cast<unsigned char>(*gptr());

}

• virtual streamsize xsgetn(char ∗buffer, streamsize n):

This member function may be overridden by derived classes to retrieve at once n characters from

the input device. The default implementation is to call sbumpc for every single character meaning

that by default this member (eventually) calls underflow for every single character. The function

returns the actual number of characters read or EOF. Once EOF is returned the streambuf stops

reading the device.



The following protected members are available for output operations. Again, some members may be

overridden by derived classes:

• virtual int overflow(int c):

This member function may be overridden by derived classes to flush the characters currently

stored in the output buffer to the output device, and then to reset the output buffer pointers so as

to represent an empty buffer. Its parameter c is initialized to the next character to be processed.

If no output buffering is used overflow is called for every single character that is written to

the streambuf object. No output buffering is accomplished by setting the buffer pointers (using,

setp, see below) to 0. The default implementation returns EOF, indicating that no characters can

be written to the device.

Classes derived from streambuf for writing normally at least override overflow. The prototyp-

ical example of an overridden overflow function looks like this:

int OFdStreambuf::overflow(int c)

{

sync(); // flush the buffer

if (c != EOF) // write a character?

{

*pptr() = static_cast<char>(c); // put it into the buffer

pbump(1); // advance the buffer's pointer

}

return c;

}

• char ∗pbase():

Streambuf maintains three pointers controlling its output buffer: pbase points to the beginning

of the output buffer area. See also figure 14.4.

• char ∗epptr():

Streambuf maintains three pointers controlling its output buffer: epptr points just beyond the

output buffer’s last available location. See also figure 14.4. If pptr (see below) equals epptr the

buffer must be flushed. This is implemented by calling overflow, see before.

• void pbump(int n):

The location returned by pptr (see below) is advanced by n. The next character written to the

stream will be entered at that location.

• char ∗pptr():

Streambuf maintains three pointers controlling its output buffer: pptr points to the location in

the output buffer where the next available character should be written. See also figure 14.4.

• void setp(char ∗beg, char ∗beyond):

Streambuf’s output buffer is initialized to the locations passed to setp. Beg points to the begin-

ning of the output buffer and beyond points just beyond the last available location of the output

buffer. Use setp(0, 0) to indicate that no buffering should be used. In that case overflow is

called for every single character to write to the device.

• virtual streamsize xsputn(char const ∗buffer, streamsize n):

This member function may be overridden by derived classes to write a series of at most n charac-

ters to the output buffer. The actual number of inserted characters is returned. If EOF is returned

writing to the device stops. The default implementation calls sputc for each individual character.

Redefine this member if, e.g., the streambuf should support the ios::openmode ios::app.

Assuming the class MyBuf, derived from streambuf, features a data member ios::openmode

d_mode (representing the requested ios::openmode), and a member write(char const

∗buf, streamsize len) (writing len bytes at pptr()), then the following code acknowledges

the ios::app mode:

std::streamsize MyStreambuf::xsputn(char const *buf, std::streamsize len)



if (d_openMode & ios::app)

seekoff(0, ios::end);

return write(buf, len);

}

14.8.1.3 Protected members for buffer manipulation

Several protected members are related to buffer management and positioning:

• virtual streambuf ∗setbuf(char ∗buffer, streamsize n):

This member function may be overridden by derived classes to install a buffer. The default imple-

mentation performs no actions. It is called by pubsetbuf.

• virtual ios::pos_type seekoff(ios::off_type offset, ios::seekdir way,

ios::openmode mode = ios::in | ios::out):

This member function may be overridden by derived classes to reset the next pointer for input

or output to a new relative position (using ios::beg, ios::cur or ios::end). The default

implementation indicates failure by returning -1. The function is called when tellg or tellp

are called. When derived class supports seeking, then it should also define this function to handle

repositioning requests. It is called by pubseekoff. The new position or an invalid position (i.e.,

-1) is returned.

• virtual ios::pos_type seekpos(ios::pos_type offset, ios::openmode mode =

ios::in | ios::out):

This member function may be overridden by derived classes to reset the next pointer for input

or output to a new absolute position (i.e, relative to ios::beg). The default implementation

indicates failure by returning -1.

• virtual int sync():

This member function may be overridden by derived classes to flush the output buffer to the out-

put device or to reset the input device just beyond the position of the character that was returned

last. It returns 0 on success, -1 on failure. The default implementation (not using a buffer) is to

return 0, indicating successful syncing. This member is used to ensure that any characters that

are still buffered are written to the device or to put unconsumed characters back to the device

when the streambuf object ceases to exist.

14.8.1.4 Deriving classes from ‘streambuf’

When classes are derived from streambuf at least underflow should be overridden by classes intend-

ing to read information from devices, and overflow should be overridden by classes intending to write

information to devices. Several examples of classes derived from streambuf are provided in chapter

24.

Fstream class type objects use a combined input/output buffer, resulting from istream and ostream

being virtually derived from ios, which class defines a streambuf. To construct a class supporting

both input and output using separate buffers, the streambuf itself may define two buffers. When

seekoff is called for reading, a mode parameter can be set to ios::in, otherwise to ios::out. Thus

the derived class knows whether it should access the read buffer or the write buffer. Of course,

underflow and overflow do not have to inspect the mode flag as they by implication know on which

buffer they should operate.

14.8.2 The class ‘filebuf’

The class filebuf is a specialization of streambuf used by the file stream classes. Before using a

filebuf the header file <fstream> must be included.



the following (public) members:

• filebuf():

Filebuf offers a public constructor. It initializes a plain filebuf object that is not yet connected

to a stream.

• bool is_open():

True is returned if the filebuf is actually connected to an open file, false otherwise. See the

open member, below.

• filebuf ∗open(char const ∗name, ios::openmode mode):

Associates the filebuf object with a file whose name is provided. The file is opened according to

the provided openmode.

• filebuf ∗close():

Closes the association between the filebuf object and its file. The association is automatically

closed when the filebuf object ceases to exist.

14.8.3 Safely interfacing streams to another std::streambuf

Consider classes derived from std::istream or std::ostream. Such a class could be designed as

follows:

class XIstream: public std::istream

{

public:

...

};

Assuming that the streambuf to which XIstream interfaces is not yet available construction

time, XIstream only offers default constructors. The class could, however, offer a member void

switchStream(std::streambuf ∗sb) to provide XIstream objects with a streambuf to interface

to. How to implement switchStream? We could simply call rdbuf, passing it the pointer to the new

streambuf may work, but the problem is that there may be an existing streambuf, which may have

buffered some information that we don’t want to lose.

Instead of using rdbuf the protected member void init(std::streambuf ∗sb) should be used for

switching to another streambuf in an existing stream.

The init member expects a pointer to a streambuf which should be associated with the istream

or ostream object. The init member properly ends any existing association before switching to the

streambuf whose address is provided to init.

Assuming that the streambuf to which switchStream’s sb points persists, then switchStream could

simply be implemented like this:

void switchStream(streambuf *sb)

{

init(sb);

}

No further actions are required. The initmember ends the current association, and only then switches

to using streambuf ∗sb.



14.9 A polymorphic exception class

Earlier in the C++ Annotations (section 10.3.1) we hinted at the possibility of designing a class

Exception whose process member would behave differently, depending on the kind of exception

that was thrown. Now that we’ve introduced polymorphism we can further develop this example.

It probably does not come as a surprise that our class Exception should be a polymorphic base class

from which special exception handling classes can be derived. In section 10.3.1 a member severity

was used offering functionality that may be replaced by members of the Exception base class.

The base class Exception may be designed as follows:

#ifndef INCLUDED_EXCEPTION_H_

#define INCLUDED_EXCEPTION_H_

#include <iostream>

#include <string>

class Exception

{

std::string d_reason;

public:

Exception(std::string const &reason);

virtual ~Exception();

std::ostream &insertInto(std::ostream &out) const;

void handle() const;

private:

virtual void action() const;

};

inline void Exception::action() const

{

throw;

}

inline Exception::Exception(std::string const &reason)

:

d_reason(reason)

{}

inline void Exception::handle() const

{

action();

}

inline std::ostream &Exception::insertInto(std::ostream &out) const

{

return out << d_reason;

}

inline std::ostream &operator<<(std::ostream &out, Exception const &e)

{

return e.insertInto(out);

}

#endif

Objects of this class may be inserted into ostreams but the core element of this class is the virtual

member function action, by default rethrowing an exception.



class Fatal overrides Exception::action by calling std::terminate, forcefully terminating the

program.

Here are the classes Warning and Fatal

#ifndef WARNINGEXCEPTION_H_

#define WARNINGEXCEPTION_H_

#include "exception.h"

class Warning: public Exception

{

public:

Warning(std::string const &reason)

:

Exception("Warning: " + reason)

{}

};

#endif

#ifndef FATAL_H_

#define FATAL_H_

#include "exception.h"

class Fatal: public Exception

{

public:

Fatal(std::string const &reason);

private:

virtual void action() const;

};

inline Fatal::Fatal(std::string const &reason)

:

Exception(reason)

{}

inline void Fatal::action() const

{

std::cout << "Fatal::action() terminates" << '\n';

std::terminate();

}

#endif

When the example program is started without arguments it throws a Fatal exception, otherwise it

throws a Warning exception. Of course, additional exception types could also easily be defined. To

make the example compilable the Exception destructor is defined above main. The default destructor

cannot be used, as it is a virtual destructor. In practice the destructor should be defined in its own little

source file:

#include "warning.h"

#include "fatal.h"

Exception::~Exception()

{}



using namespace std;

int main(int argc, char **argv)

try

{

try

{

if (argc == 1)

throw Fatal("Missing Argument") ;

else

throw Warning("the argument is ignored");

}

catch (Exception const &e)

{

cout << e << '\n';

e.handle();

}

}

catch(...)

{

cout << "caught rethrown exception\n";

}

14.10 How polymorphism is implemented

This section briefly describes how polymorphism is implemented in C++. It is not necessary to under-

stand how polymorphism is implemented if you just want to use polymorphism. However, we think it’s

nice to know how polymorphism is possible. Also, knowing how polymorphism is implemented clarifies

why there is a (small) penalty to using polymorphism in terms of memory usage and efficiency.

The fundamental idea behind polymorphism is that the compiler does not know which function to call

at compile-time. The appropriate function is selected at run-time. That means that the address of

the function must be available somewhere, to be looked up prior to the actual call. This ‘somewhere’

place must be accessible to the object in question. So when a Vehicle ∗vp points to a Truck object,

then vp->mass() calls Truck’s member function. The address of this function is obtained through the

actual object to which vp points.

Polymorphism is commonly implemented as follows: an object containing virtual member functions

also contains, usually as its first data member a hidden data member, pointing to an array containing

the addresses of the class’s virtual member functions. The hidden data member is usually called the

vpointer, the array of virtual member function addresses the vtable.

The class’s vtable is shared by all objects of that class. The overhead of polymorphism in terms of

memory consumption is therefore:

• one vpointer data member per object pointing to:

• one vtable per class.

Consequently, a statement like vp->mass first inspects the hidden data member of the object pointed

to by vp. In the case of the vehicle classification system, this data member points to a table containing

two addresses: one pointer to the function mass and one pointer to the function setMass (three pointers

if the class also defines (as it should) a virtual destructor). The actually called function is determined

from this table.

The internal organization of the objects having virtual functions is illustrated in Figure 14.5 and Figure



Vehicle::setWeight()

Vehicle::getWeight()

Truck::getWeight()

Vehicle

Car

Truck

Objects Tables Actual functions

Figure 14.5: Internal organization objects when virtual functions are defined.

Figure 14.6: Complementary figure, provided by Guillaume Caumon

14.6 (originals provided by Guillaume Caumon3).

As shown by Figure 14.5 and Figure 14.6, objects potentially using virtual member functions must have

one (hidden) data member to address a table of function pointers. The objects of the classes Vehicle

and Car both address the same table. The class Truck, however, overrides mass. Consequently, Truck

needs its own vtable.

A small complication arises when a class is derived from multiple base classes, each defining virtual

functions. Consider the following example:

class Base1

{

public:

virtual ~Base1();

void fun1(); // calls vOne and vTwo

private:

virtual void vOne();

virtual void vTwo();

};

class Base2

{

public:

3mailto:Guillaume.Caumon@ensg.inpl-nancy.fr
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Figure 14.7: Vtables and vpointers with multiple base classes

virtual ~Base2();

void fun2(); // calls vThree

private:

virtual void vThree();

};

class Derived: public Base1, public Base2

{

public:

~Derived() override;

private:

void vOne() override;

void vThree() override;

};

In the example Derived is multiply derived from Base1 and Base2, each supporting virtual functions.

Because of this, Derived also has virtual functions, and so Derived has a vtable allowing a base

class pointer or reference to access the proper virtual member.

When Derived::fun1 is called (or a Base1 pointer pointing to a Derived object calls fun1)

then fun1 calls Derived::vOne and Base1::vTwo. Likewise, when Derived::fun2 is called

Derived::vThree is called.

The complication occurs with Derived’s vtable. When fun1 is called its class type determines the

vtable to use and hence which virtual member to call. So when vOne is called from fun1, it is pre-

sumably the second entry in Derived’s vtable, as it must match the second entry in Base1’s vtable.

However, when fun2 calls vThree it apparently is also the second entry in Derived’s vtable as it must

match the second entry in Base2’s vtable.

Of course this cannot be realized by a single vtable. Therefore, when multiple inheritance is used (each

base class defining virtual members) another approach is followed to determine which virtual function

to call. In this situation (cf. figure Figure 14.7) the class Derived receives two vtables, one for each

of its base classes and each Derived class object harbors two hidden vpointers, each one pointing to its

corresponding vtable.



to one of the base classes the compiler can determine which vpointer to use.

The following therefore holds true for classes multiply derived from base classes offering virtual mem-

ber functions:

• the derived class defines a vtable for each of its base classes offering virtual members;

• Each derived class object contains as many hidden vpointers as it has vtables.

• Each of a derived class object’s vpointers points to a unique vtable and the vpointer to use is

determined by the class type of the base class pointer, the base class reference, or the base class

interface function that is used.

14.11 Undefined reference to vtable ...

Occasionaly, the linker generates an error like the following:

In function `Derived::Derived()':
: undefined reference to `vtable for Derived'

This error is generated when a virtual function’s implementation is missing in a derived class, but the

function is mentioned in the derived class’s interface.

Such a situation is easily encountered:

• Construct a (complete) base class defining a virtual member function;

• Construct a Derived class mentioning the virtual function in its interface;

• The Derived class’s virtual function is not implemented. Of course, the compiler doesn’t know

that the derived class’s function is not implemented and will, when asked, generate code to create

a derived class object;

• Eventually, the linker is unable to find the derived class’s virtual member function. Therefore, it

is unable to construct the derived class’s vtable;

• The linker complains with the message:

undefined reference to `vtable for Derived'

Here is an example producing the error:

class Base

{

virtual void member();

};

inline void Base::member()

{}

class Derived: public Base

{

virtual void member(); // only declared

};

int main()

{

Derived d; // Will compile, since all members were declared.

// Linking will fail, since we don't have the

// implementation of Derived::member()

}



Virtual functions should never be implemented inline. Since the vtable contains the addresses of the

class’s virtual functions, these functions must have addresses and so they must have been compiled

as real (out-of-line) functions. By defining virtual functions inline you run the risk that the compiler

simply overlooks those functions as they may very well never be explicitly called (but only polymorphi-

cally, from a base class pointer or reference). As a result their addresses may never enter their class’s

vtables (and even the vtable itself might remain undefined), causing linkage problems or resulting in

programs showing unexpected behavior. All these kinds of problems are simply avoided: never define

virtual members inline (see also section 7.8.2.1).

14.12 Virtual constructors

In section 14.2 we learned that C++ supports virtual destructors. Like many other object oriented

languages (e.g., Java), however, the notion of a virtual constructor is not supported. Not having virtual

constructors becomes a liability when only base class references or pointers are available, and a copy

of a derived class object is required. Gamma et al. (1995) discuss the Prototype design pattern to deal

with this situation.

According to the Prototype Design Pattern each derived class is given the responsibility of implementing

a member function returning a pointer to a copy of the object for which the member is called. The usual

name for this function is clone. Separating the user interface from the reimplementation interface

clone is made part of the interface and newCopy is defined in the reimplementation interface. A base

class supporting ‘cloning’ defines a virtual destructor, clone, returning newCopy’s return value and the

virtual copy constructor, a pure virtual function, having the prototype virtual Base ∗newCopy()

const = 0. As newCopy is a pure virtual function all derived classes must now implement their own

‘virtual constructor’.

This setup suffices in most situations where we have a pointer or reference to a base class, but it fails

when used with abstract containers. We can’t create a vector<Base>, with Base featuring the pure

virtual copy member in its interface, as Base is called to initialize new elements of such a vector. This

is impossible as newCopy is a pure virtual function, so a Base object can’t be constructed.

The intuitive solution, providing newCopy with a default implementation, defining it as an ordinary

virtual function, fails too as the container calls Base(Base const &other), which would have to call

newCopy to copy other. At this point it is unclear what to do with that copy, as the new Base object

already exists, and contains no Base pointer or reference data member to assign newCopy’s return

value to.

Alternatively (and preferred) the original Base class (defined as an abstract base class) is kept as-is

and a wrapper class Clonable is used to manage the Base class pointers returned by newCopy. In

chapter 17 ways to merge Base and Clonable into one class are discussed, but for now we’ll define

Base and Clonable as separate classes.

The class Clonable is a very standard class. It contains a pointer member so it needs a copy con-

structor, destructor, and overloaded assignment operator. It’s given at least one non-standard member:

Base &base() const, returning a reference to the derived object to which Clonable’s Base ∗ data

member refers. It is also provided with an additional constructor to initialize its Base ∗ data member.

Any non-abstract class derived from Base must implement Base ∗newCopy(), returning a pointer to

a newly created (allocated) copy of the object for which newCopy is called.

Once we have defined a derived class (e.g., Derived1), we can put our Clonable and Base facilities to

good use. In the next example we see main defining a vector<Clonable>. An anonymous Derived1

object is then inserted into the vector using the following steps:

• A new anonymous Derived1 object is created;

• It initializes a Clonable using Clonable(Base ∗bp);



There are only temporary Derived and Clonable objects at this point, so no copy construction

is required.

In this sequence, only the Clonable object containing the Derived1 ∗ is used. No additional copies

need to be made (or destroyed).

Next, the base member is used in combination with typeid to show the actual type of the Base &

object: a Derived1 object.

Main then contains the interesting definition vector<Clonable> v2(bv). Here a copy of bv is

created. This copy construction observes the actual types of the Base references, making sure that the

appropriate types appear in the vector’s copy.

At the end of the program, we have created two Derived1 objects, which are correctly deleted by the

vector’s destructors. Here is the full program, illustrating the ‘virtual constructor’ concept4:

#include <iostream>

#include <vector>

#include <algorithm>

#include <typeinfo>

// Base and its inline member:

class Base

{

public:

virtual ~Base();

Base *clone() const;

private:

virtual Base *newCopy() const = 0;

};

inline Base *Base::clone() const

{

return newCopy();

}

// Clonable and its inline members:

class Clonable

{

Base *d_bp;

public:

Clonable();

explicit Clonable(Base *base);

~Clonable();

Clonable(Clonable const &other);

Clonable(Clonable &&tmp);

Clonable &operator=(Clonable const &other);

Clonable &operator=(Clonable &&tmp);

Base &base() const;

};

inline Clonable::Clonable()

:

d_bp(0)

{}

inline Clonable::Clonable(Base *bp)

4Jesse van den Kieboom created an alternative implementation of a class Clonable, implemented as a class template. His

implementation is found in the source archive under contrib/classtemplates/.



d_bp(bp)

{}

inline Clonable::Clonable(Clonable const &other)

:

d_bp(other.d_bp->clone())

{}

inline Clonable::Clonable(Clonable &&tmp)

:

d_bp(tmp.d_bp)

{

tmp.d_bp = 0;

}

inline Clonable::~Clonable()

{

delete d_bp;

}

inline Base &Clonable::base() const

{

return *d_bp;

}

// Derived and its inline member:

class Derived1: public Base

{

public:

~Derived1();

private:

virtual Base *newCopy() const;

};

inline Base *Derived1::newCopy() const

{

return new Derived1(*this);

}

// Members not implemented inline:

Base::~Base()

{}

Clonable &Clonable::operator=(Clonable const &other)

{

Clonable tmp(other);

std::swap(d_bp, tmp.d_bp);

return *this;

}

Clonable &Clonable::operator=(Clonable &&tmp)

{

std::swap(d_bp, tmp.d_bp);

return *this;

}

Derived1::~Derived1()

{

std::cout << "~Derived1() called\n";

}

// The main function:

using namespace std;

int main()

{



bv.push_back(Clonable(new Derived1()));

cout << "bv[0].name: " << typeid(bv[0].base()).name() << '\n';

vector<Clonable> v2(bv);

cout << "v2[0].name: " << typeid(v2[0].base()).name() << '\n';

}

/*
Output:

bv[0].name: 8Derived1

v2[0].name: 8Derived1

~Derived1() called

~Derived1() called

*/





Chapter 15

Friends

In all examples discussed up to now, we’ve seen that private members are only accessible by the

members of their class. This is good, as it enforces encapsulation and data hiding. By encapsulating

functionality within a class we prevent that a class exposes multiple responsibilities; by hiding data we

promote a class’s data integrity and we prevent that other parts of the software become implementation

dependent on the data that belong to a class.

In this (very) short chapter we introduce the friend keyword and the principles that underly its use.

The bottom line being that by using the friend keyword functions are granted access to a class’s

private members. Even so, this does not imply that the principle of data hiding is abandoned when

the friend keyword is used.

In this chapter the topic of friendship among classes is not discussed. Situations in which it is natural

to use friendship among classes are discussed in chapters 17 and 21 and such situations are natural

extensions of the way friendship is handled for functions.

There should be a well-defined conceptual reason for declaring friendship (i.e., using the friend key-

word). The traditionally offered definition of the class concept usually looks something like this:

A class is a set of data together with the functions that operate on that data.

As we’ve seen in chapter 11 some functions have to be defined outside of a class interface. They are

defined outside of the class interface to allow promotions for their operands or to extend the facilities

of existing classes not directly under our control. According to the above traditional definition of the

class concept those functions that cannot be defined in the class interface itself should nevertheless

be considered functions belonging to the class. Stated otherwise: if permitted by the language’s syntax

they would certainly have been defined inside the class interface. There are two ways to implement such

functions. One way consists of implementing those functions using available public member functions.

This approach was used, e.g., in section 11.2. Another approach applies the definition of the class

concept to those functions. By stating that those functions in fact belong to the class they should be

given direct access to the data members of objects. This is accomplished by the friend keyword.

As a general principle we state that all functions operating on the data of objects of a class that are

declared in the same file as the class interface itself belong to that class and may be granted direct

access to the class’s data members.

15.1 Friend functions

In section 11.2 the insertion operator of the class Person (cf. section 9.3) was implemented like this:

ostream &operator<<(ostream &out, Person const &person)
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return

out <<

"Name: " << person.name() << ", "

"Address: " << person.address() << ", "

"Phone: " << person.phone();

}

Person objects can now be inserted into streams.

However, this implementation required three member functions to be called, which may be considered a

source of inefficiency. An improvement would be reached by defining a member Person::insertInto

and let operator<< call that function. These two functions could be defined as follows:

std::ostream &operator<<(std::ostream &out, Person const &person)

{

return person.insertInto(out);

}

std::ostream &Person::insertInto(std::ostream &out)

{

return

out << "Name: " << d_name << ", "

"Address: " << d_address << ", "

"Phone: " << d_phone;

}

As insertInto is a member function it has direct access to the object’s data members so no additional

member functions must be called when inserting person into out.

The next step consists of realizing that insertInto is only defined for the benefit of operator<<,

and that operator<<, as it is declared in the header file containing Person’s class interface should

be considered a function belonging to the class Person. The member insertInto can therefore be

omitted when operator<< is declared as a friend.

Friend functions must be declared as friends in the class interface. These friend declarations are

not member functions, and so they are independent of the class’s private, protected and public

sections. Friend declaration may be placed anywhere in the class interface. Convention dictates that

friend declarations are listed directly at the top of the class interface. The class Person, using friend

declaration for its extraction and insertion operators starts like this:

class Person

{

friend std::ostream &operator<<(std::ostream &out, Person &pd);

friend std::istream &operator>>(std::istream &in, Person &pd);

// previously shown interface (data and functions)

};

The insertion operator may now directly access a Person object’s data members:

std::ostream &operator<<(std::ostream &out, Person const &person)

{

return

cout << "Name: " << person.d_name << ", "

"Address: " << person.d_address << ", "

"Phone: " << person.d_phone;

}



tions do not have to be declared again below the class’s interface. This also clearly indicates the class

designer’s intent: the friend functions are declared by the class, and can thus be considered functions

belonging to the class.

15.2 Extended friend declarations

C++ has added extended friend declarations to the language. When a class is declared as a friend, then

the class keyword no longer has to be provided. E.g.,

class Friend; // declare a class

typedef Friend FriendType; // and a typedef for it

using FName = Friend; // and a using declaration

class Class1

{

friend Friend; // FriendType and FName: also OK

};

In the pre-C++11 standards the friend declaration required an explicit class; e.g., friend class

Friend.

The explicit use of class remains required if the compiler hasn’t seen the friend’s name yet. E.g.,

class Class1

{

// friend Unseen; // fails to compile: Unseen unknown.

friend class Unseen; // OK

};

Section 22.10 covers the use of extended friend declarations in class templates.





Chapter 16

Classes Having Pointers To

Members

Classes having pointer data members have been discussed in detail in chapter 9. Classes defining

pointer data-members deserve some special attention, as they usually require the definitions of copy

constructors, overloaded assignment operators and destructors

Situations exist where we do not need a pointer to an object but rather a pointer to members of a class.

Pointers to members can profitably be used to configure the behavior of objects of classes. Depending

on which member a pointer to a member points to objects will show certain behavior.

Although pointers to members have their use, polymorphism can frequently be used to realize com-

parable behavior. Consider a class having a member process performing one of a series of alternate

behaviors. Instead of selecting the behavior of choice at object construction time the class could use

the interface of some (abstract) base class, passing an object of some derived class to its constructor

and could thus configure its behavior. This allows for easy, extensible and flexible configuration, but

access to the class’s data members would be less flexible and would possibly require the use of ‘friend’

declarations. In such cases pointers to members may actually be preferred as this allows for (somewhat

less flexible) configuration as well as direct access to a class’s data members.

So the choice apparently is between on the one hand ease of configuration and on the other hand

ease of access to a class’s data members. In this chapter we’ll concentrate on pointers to members,

investigating what these pointers have to offer.

16.1 Pointers to members: an example

Knowing how pointers to variables and objects are used does not intuitively lead to the concept of

pointers to members . Even if the return types and parameter types of member functions are taken into

account, surprises can easily be encountered. For example, consider the following class:

class String

{

char const *(*d_sp)() const;

public:

char const *get() const;

};

For this class, it is not possible to let char const ∗(∗d_sp)() const point to the String::get

member function as d_sp cannot be given the address of the member function get.
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to a function, not a pointer to a function within String), while the member function get is defined

within the String class, and thus has class scope. The fact that d_sp is a data member of the

class String is irrelevant here. According to d_sp’s definition, it points to a function living somewhere

outside of the class.

Consequently, to define a pointer to a member (either data or function, but usually a function) of a class,

the scope of the pointer must indicate class scope. Doing so, a pointer to the member String::get is

defined like this:

char const *(String::*d_sp)() const;

So, by prefixing the ∗d_sp pointer data member by String::, it is defined as a pointer in the context

of the class String. According to its definition it is a pointer to a function in the class String, not

expecting arguments, not modifying its object’s data, and returning a pointer to constant characters.

16.2 Defining pointers to members

Pointers to members are defined by prefixing the normal pointer notation with the appropriate

class plus scope resolution operator. Therefore, in the previous section, we used char const ∗

(String::∗d_sp)() const to indicate that d_sp

• is a pointer (∗d_sp);

• points to something in the class String (String::∗d_sp);

• is a pointer to a const function, returning a char const ∗ (char const ∗

(String::∗d_sp)() const).

The prototype of a matching function is therefore:

char const *String::somefun() const;

which is any const parameterless function in the class String, returning a char const ∗.

When defining pointers to members the standard procedure for constructing pointers to functions can

still be applied:

• put parentheses around the fully qualified function name (i.e., the function’s header, including the

function’s class name):

char const * ( String::somefun ) () const

• Put a pointer (a star (∗)) character immediately before the function name itself:

char const * ( String:: * somefun ) () const

• Replace the function name with the name of the pointer variable:

char const * (String::*d_sp)() const

Here is another example, defining a pointer to a data member. Assume the class String contains

a string d_text member. How to construct a pointer to this member? Again we follow standard

procedure:

• put parentheses around the fully qualified variable name:

std::string (String::d_text)



∗

std::string (String::*d_text)

• Replace the variable name with the name of the pointer variable:

std::string (String::*tp)

In this case, the parentheses are superfluous and may be omitted:

string String::*tp

Alternatively, a very simple rule of thumb is

• Define a normal (i.e., global) pointer variable,

• Prefix the class name to the pointer character, once you point to something inside a class

For example, the following pointer to a global function

char const * (*sp)() const;

becomes a pointer to a member function after prefixing the class-scope:

char const * (String::*sp)() const;

Nothing forces us to define pointers to members in their target (String) classes. Pointers to members

may be defined in their target classes (so they become data members), or in another class, or as a local

variable or as a global variable. In all these cases the pointer to member variable can be given the

address of the kind of member it points to. The important part is that a pointer to member can be

initialized or assigned without requiring the existence of an object of the pointer’s target class.

Initializing or assigning an address to such a pointer merely indicates to which member the pointer

points. This can be considered some kind of relative address; relative to the object for which the function

is called. No object is required when pointers to members are initialized or assigned. While it is allowed

to initialize or assign a pointer to member, it is (of course) not possible to call those members without

specifying an object of the correct type.

In the following example initialization of and assignment to pointers to members is illustrated (for

illustration purposes all members of the class PointerDemo are defined public). In the example

itself the &-operator is used to determine the addresses of the members. These operators as well as the

class-scopes are required. Even when used inside member implementations:

#include <cstddef>

class PointerDemo

{

public:

size_t d_value;

size_t get() const;

};

inline size_t PointerDemo::get() const

{

return d_value;

}

int main()



size_t (PointerDemo::*getPtr)() const = &PointerDemo::get;

size_t PointerDemo::*valuePtr = &PointerDemo::d_value;

getPtr = &PointerDemo::get; // assignment

valuePtr = &PointerDemo::d_value;

}

This involves nothing special. The difference with pointers at global scope is that we’re now restricting

ourselves to the scope of the PointerDemo class. Because of this restriction, all pointer definitions and

all variables whose addresses are used must be given the PointerDemo class scope.

Pointers to members can also be used with virtual member functions. No special syntax is required

when pointing to virtual members. Pointer construction, initialization and assignment is done identi-

cally to the way it is done with non-virtual members.

16.3 Using pointers to members

Using pointers to members to call a member function requires the existence of an object of the class

of the members to which the pointer to member refers to. With pointers operating at global scope,

the dereferencing operator ∗ is used. With pointers to objects the field selector operator operating on

pointers (->) or the field selector operating operating on objects (.) can be used to select appropriate

members.

To use a pointer to member in combination with an object the pointer to member field selector (.∗) must

be specified. To use a pointer to a member via a pointer to an object the ‘pointer to member field selector

through a pointer to an object’ (->∗) must be specified. These two operators combine the notions of a

field selection (the . and -> parts) to reach the appropriate field in an object and of dereferencing: a

dereference operation is used to reach the function or variable the pointer to member points to.

Using the example from the previous section, let’s see how we can use pointers to member functions

and pointers to data members:

#include <iostream>

class PointerDemo

{

public:

size_t d_value;

size_t get() const;

};

inline size_t PointerDemo::get() const

{

return d_value;

}

using namespace std;

int main()

{ // initialization

size_t (PointerDemo::*getPtr)() const = &PointerDemo::get;

size_t PointerDemo::*valuePtr = &PointerDemo::d_value;

PointerDemo object; // (1) (see text)

PointerDemo *ptr = &object;



cout << object.*valuePtr << '\n' <<

object.d_value << '\n';

ptr->*valuePtr = 54321; // (3)

cout << object.d_value << '\n' <<

(object.*getPtr)() << '\n' << // (4)

(ptr->*getPtr)() << '\n';

}

We note:

• At (1) a PointerDemo object and (in the next line) a pointer to such an object is defined.

• At (2) we specify an object (and hence the .∗ operator) to reach the member valuePtr points to.

This member is given a value.

• At (3) the same member is assigned another value, but this time using the pointer to a

PointerDemo object. Hence we use the ->∗ operator.

• At (4) the .∗ and ->∗ are used once again, this time to call a function through a pointer to

member. As the function argument list has a higher priority than the pointer to member field

selector operator, the latter must be protected by parentheses.

Pointers to members can be used profitably in situations where a class has a member that behaves

differently depending on a configuration setting. Consider once again the class Person from section

9.3. Person defines data members holding a person’s name, address and phone number. Assume

we want to construct a Person database of employees. The employee database can be queried, but

depending on the kind of person querying the database either the name, the name and phone number

or all stored information about the person is made available. This implies that a member function

like address must return something like ‘<not available>’ in cases where the person querying the

database is not allowed to see the person’s address, and the actual address in other cases.

The employee database is opened specifying an argument reflecting the status of the employee who

wants to make some queries. The status could reflect his or her position in the organization, like BOARD,

SUPERVISOR, SALESPERSON, or CLERK. The first two categories are allowed to see all information about

the employees, a SALESPERSON is allowed to see the employee’s phone numbers, while the CLERK is only

allowed to verify whether a person is actually a member of the organization.

We now construct a member string personInfo(char const ∗name) in the database class. A

standard implementation of this class could be:

string PersonData::personInfo(char const *name)

{

Person *p = lookup(name); // see if `name' exists

if (!p)

return "not found";

switch (d_category)

{

case BOARD:

case SUPERVISOR:

return allInfo(p);

case SALESPERSON:

return noPhone(p);

case CLERK:

return nameOnly(p);

}

}



personInfo is called. Instead of using a switch, we could define a member d_infoPtr as a pointer to

a member function of the class PersonData returning a string and expecting a pointer to a Person

as its argument.

Instead of evaluating the switch this pointer can be used to point to allInfo, noPhone or nameOnly.

Furthermore, the member function the pointer points to will be known by the time the PersonData

object is constructed and so its value needs to be determined only once (at the PersonData object’s

construction time).

Having initialized d_infoPtr the personInfo member function is now implemented simply as:

string PersonData::personInfo(char const *name)

{

Person *p = lookup(name); // see if `name' exists

return p ? (this->*d_infoPtr)(p) : "not found";

}

The member d_infoPtr is defined as follows (within the class PersonData, omitting other members):

class PersonData

{

std::string (PersonData::*d_infoPtr)(Person *p);

};

Finally, the constructor initializes d_infoPtr. This could be realized using a simple switch:

PersonData::PersonData(PersonData::EmployeeCategory cat)

{

switch (cat)

{

case BOARD:

case SUPERVISOR:

d_infoPtr = &PersonData::allInfo;

break;

case SALESPERSON:

d_infoPtr = &PersonData::noPhone;

break;

case CLERK:

d_infoPtr = &PersonData::nameOnly;

break;

}

}

Note how addresses of member functions are determined. The class PersonData scope must be speci-

fied, even though we’re already inside a member function of the class PersonData.

Since the EmployeeCategory values are known, the switch in the above constructor can also easily

be avoided by defining a static array of pointers to functions. The class PersonData defines the static

array:

class PersonData

{

std::string (PersonData::*d_infoPtr)(Person *p);

static std::string (PersonData::*s_infoPtr[])(Person *p);

};



string (PersonData::*PersonData::s_infoPtr[])(Person *p) =

{

&PersonData::allInfo, // BOARD

&PersonData::allInfo, // SUPERVISOR

&PersonData::noPhone, // SALESPERSON

&PersonData::nameOnly // CLERK

};

The constructor, instead of using a switch, now directly calls the required member from the appropri-

ate array element:

PersonData::PersonData(PersonData::EmployeeCategory cat)

:

d_infoPtr(s_infoPtr[cat])

{}

An example using pointers to data members is provided in section 19.1.60, in the context of the

stable_sort generic algorithm.

16.4 Pointers to static members

Static members of a class can be used without having available an object of their class. Public static

members can be called like free functions, albeit that their class names must be specified when they

are called.

Assume a class String has a public static member function count, returning the number of string

objects created so far. Then, without using any String object the function String::count may be

called:

void fun()

{

cout << String::count() << '\n';

}

Public static members can be called like free functions (but see also section 8.2.1). Private static mem-

bers can only be called within the context of their class, by their class’s member or friend functions.

Since static members have no associated objects their addresses can be stored in ordinary function

pointer variables, operating at the global level. Pointers to members cannot be used to store addresses

of static members. Example:

void fun()

{

size_t (*pf)() = String::count;

// initialize pf with the address of a static member function

cout << (*pf)() << '\n';

// displays the value returned by String::count()

}



16.5 Pointer sizes

An interesting characteristic of pointers to members is that their sizes differ from those of ‘normal’

pointers. Consider the following little program:

#include <string>

#include <iostream>

class X

{

public:

void fun();

std::string d_str;

};

inline void X::fun()

{

std::cout << "hello\n";

}

using namespace std;

int main()

{

cout <<

"size of pointer to data-member: " << sizeof(&X::d_str) << "\n"

"size of pointer to member function: " << sizeof(&X::fun) << "\n"

"size of pointer to non-member data: " << sizeof(char *) << "\n"

"size of pointer to free function: " << sizeof(&printf) << '\n';

}

/*
generated output (on 32-bit architectures):

size of pointer to data-member: 4

size of pointer to member function: 8

size of pointer to non-member data: 4

size of pointer to free function: 4

*/

On a 32-bit architecture a pointer to a member function requires eight bytes, whereas other kind of

pointers require four bytes (Using GNU’s g++ compiler).

Pointer sizes are hardly ever explicitly used, but their sizes may cause confusion in statements like:

printf("%p", &X::fun);

Of course, printf is likely not the right tool for displaying the value of these C++ specific pointers. The

values of these pointers can be inserted into streams when a union, reinterpreting the 8-byte pointers

as a series of size_t char values, is used:

#include <string>

#include <iostream>

#include <iomanip>

class X

{

public:

void fun();
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Figure 16.1: std::fstream object organization

std::string d_str;

};

inline void X::fun()

{

std::cout << "hello\n";

}

using namespace std;

int main()

{

union

{

void (X::*f)();

unsigned char *cp;

}

u = { &X::fun };

cout.fill('0');

cout << hex;

for (unsigned idx = sizeof(void (X::*)()); idx-- > 0; )

cout << setw(2) << static_cast<unsigned>(u.cp[idx]);

cout << '\n';

}

But why are their sizes different from the sizes of ordinary pointers? To answer this question let’s first

have a look at the familiar std::fstream. It is derived from std::ifstream and std::ofstream.

An fstream, therefore, contains both an ifstream and an ofstream. An fstream will be organized

as shown in figure 16.1.

In fstream (a) the first base class was std::istream, and the second baseclass was

std::ofstream. But it could also very well be the other way around, as illustrated in fstream (b):

first the std::ofstream, then the std::ifstream. And that’s the crux of the biscuit.

If we have an fstream fstr{"myfile"} object and do fstr.seekg(0), then we call ifstream’s

seekg function. But if we do fstr.seekp(0), then we call ofstream’s seekp function. These

functions have their own addresses, say &seekg and &seekp. But when we call a member function (like



But the problem here is that &fstr does not represent the correct object address: seekp oper-

ates on an ofstream, and that object does not start at &fstr, so (in fstream (a)), at &(fstr +

sizeof(ifstream)).

So, the compiler, when calling a member function of a class using inheritance, must make a correction

for the relative location of an object whose members we are calling.

However, when we’re defining something like

ostream &(fstream::*ptr)(ios::off_type step, ios::seekdir org) = &seekp;

and then do (fstr->∗)ptr(0) the compiler doesn’t know anymore which function is actually being

called: it merely receives the function’s address. To solve the compiler’s problem the shift (for the

location of the ofstream object) is now stored in the member pointer itself. That’s one reason why the

extra data field is needed when using function pointers.

Here is a concrete illustration: first we define 2 structs, each having a member function (all inline,

using single line implementations to save some space):

struct A

{

int a;

};

struct B

{

int b;

void bfun() {}

};

Then we define C, which is derived from both A (first) and B (next) (comparable to fstream, which

embeds ifstream and ofstream):

struct C: public A, public B

{};

Next, in main we define objects of two different unions and assign the address of B::bfun to their ptr

fields, but BPTR.ptr looks at it as a member in the struct B world, while CPTR.ptr looks at it as a

member in the struct C world.

Once the unions’ pointer fields have been assigned their value[] arrays are used to display the content

of the ptr fields (see below):

int main()

{

union BPTR

{

void (B::*ptr)();

unsigned long value[2];

};

BPTR bp;

bp.ptr = &B::bfun;

cout << hex << bp.value[0] << ' ' << bp.value[1] << dec << '\n';

union CPTR

{



unsigned long value[2];

};

CPTR cp;

cp.ptr = &C::bfun;

cout << hex << cp.value[0] << ' ' << cp.value[1] << dec << '\n';

}

When this program is run, we see

400b0c 0

400b0c 4

(your address values (the first ones on the two lines) may differ). Note that the functions’ addresses are

the same, but since in the C world the B object lives beyond the A object, and the A object is 4 bytes

large, we must add 4 to the value of the ‘this’ pointer when calling the function from a C object. That’s

exactly what the shift value in the pointer’s second field is telling the compiler.





Chapter 17

Nested Classes

Classes can be defined inside other classes. Classes defined inside other classes are called nested

classes. Nested classes are used in situations where the nested class has a close conceptual relationship

to its surrounding class. For example, with the class string a type string::iterator is available

which provides all characters that are stored in the string. This string::iterator type could be

defined as an object iterator, defined as nested class in the class string.

Since nested classes are defined inside other classes their members, when provided with references or

pointers to objects of their surrounding classes, may access all members of those objects, even their

private members.

A class can be nested in every part of the surrounding class: in the public, protected or private

section. If a class is nested in the public section of a class, it is visible outside the surrounding class.

If it is nested in the protected section it is visible in subclasses, derived from the surrounding class,

if it is nested in the private section, it is only visible for the members of the surrounding class.

The surrounding class has no special privileges with respect to the nested class. For example, consider

the following class definition:

class Surround

{

public:

class FirstWithin

{

int d_variable;

public:

FirstWithin();

int var() const;

};

private:

class SecondWithin

{

int d_variable;

public:

SecondWithin();

int var() const;

};

};

inline int Surround::FirstWithin::var() const

{

return d_variable;

}
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{

return d_variable;

}

In the Annotations(), in order to save space, nested class interfaces are usually declared inside their

surrounding class, as shown above. Often this can be avoided, which is desirable as it more clearly

separates the outer class’s interface and the nested class’s interface. Likewise, in-class member imple-

mentations should be avoided. Here is an illustration of how outer- and nested class interfaces can be

separated:

class Surround

{

class SecondWithin;

public:

class FirstWithin;

};

class Surround::FirstWithin

{

int d_variable;

public:

FirstWithin();

int var() const;

};

class Surround::SecondWithin

{

int d_variable;

public:

SecondWithin();

int var() const;

};

For these three classes access to members is defined as follows:

• The class Surround::FirstWithin is visible outside and inside Surround. The class

Surround::FirstWithin thus has global visibility.

• FirstWithin’s constructor and its member function var are also globally visible.

• The data member d_variable is only visible to the members of the class

Surround::FirstWithin. Neither the members of Surround nor the members of

Surround::SecondWithin can directly access Surround::FirstWithin::d_variable.

• The class Surround::SecondWithin is only visible inside Surround. The public mem-

bers of the class Surround::SecondWithin can also be used by the members of the class

Surround::FirstWithin, as nested classes can be considered members of their surrounding

class.

• Surround::SecondWithin’s constructor and its member function var also can only be reached

by the members of Surround (and by the members of its nested classes).

• Surround::SecondWithin::d_variable is only visible to Surround::SecondWithin’s

members. Neither the members of Surround nor the members of Surround::FirstWithin

can access d_variable of the class Surround::SecondWithin directly.



true for nested classes.

To grant the surrounding class access rights to the private members of a nested class the nested class

may declare its surrounding class as a friend. Conversely, as nested classes can be considered members

of their surrounding class their member functions have full access to the outer class members, if they

are provided with an outer class object (see section 17.3).

Although nested classes can be considered members of the surrounding class, members of nested

classes are not members of the surrounding class: members of the class Surround may not directly

call FirstWithin::var. This is understandable considering that a Surround object is not also a

FirstWithin or SecondWithin object. In fact, nested classes are just typenames. It is not implied

that objects of such classes automatically exist in the surrounding class. If a member of the surround-

ing class should use a (non-static) member of a nested class then the surrounding class must define

a nested class object, which can thereupon be used by the members of the surrounding class to use

members of the nested class.

For example, in the following class definition there is a surrounding class Outer and a nested class

Inner. The class Outer contains a member function caller. The member function caller uses the

d_inner object that is composed within Outer to call Inner::infunction:

class Outer

{

public:

void caller();

private:

class Inner

{

public:

void infunction();

};

Inner d_inner; // class Inner must be known

};

void Outer::caller()

{

d_inner.infunction();

}

17.1 Defining nested class members

Member functions of nested classes may be defined as inline functions. Inline member functions can

be defined as if they were defined outside of the class definition. To define the member function

Outer::caller outside of the class Outer, the function’s fully qualified name (starting from the out-

ermost class scope (Outer)) must be provided to the compiler. Inline and in-class functions can be

defined accordingly. They can be defined and they can use any nested class. Even if the nested class’s

definition appears later in the outer class’s interface.

When (nested) member functions are defined inline, their definitions should be put below their class

interface. Static nested data members are also usually defined outside of their classes. If the class

FirstWithin would have had a static size_t datamember epoch, it could have been initialized

as follows:

size_t Surround::FirstWithin::epoch = 1970;

Furthermore, multiple scope resolution operators are needed to refer to public static members in code

outside of the surrounding class:



{

cout << Surround::FirstWithin::epoch;

}

Within the class Surround only the FirstWithin:: scope must be used; within the class

FirstWithin there is no need to refer explicitly to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin

are both nested within Surround, and can be considered members of the surrounding class. Since

members of a class may directly refer to each other, members of the class SecondWithin can refer to

(public) members of the class FirstWithin. Consequently, members of the class SecondWithin could

refer to the epoch member of FirstWithin as FirstWithin::epoch.

17.2 Declaring nested classes

Nested classes may be declared before they are actually defined in a surrounding class. Such forward

declarations are required if a class contains multiple nested classes, and the nested classes contain

pointers, references, parameters or return values to objects of the other nested classes.

For example, the following class Outer contains two nested classes Inner1 and Inner2. The class

Inner1 contains a pointer to Inner2 objects, and Inner2 contains a pointer to Inner1 objects. Cross

references require forward declarations. Forward declarations must be given an access specification

that is identical to the access specification of their definitions. In the following example the Inner2

forward declaration must be given in a private section, as its definition is also part of the class Outer’s

private interface:

class Outer

{

private:

class Inner2; // forward declaration

class Inner1

{

Inner2 *pi2; // points to Inner2 objects

};

class Inner2

{

Inner1 *pi1; // points to Inner1 objects

};

};

17.3 Accessing private members in nested classes

To grant nested classes access rights to the private members of other nested classes, or to grant a

surrounding class access to the private members of its nested classes the friend keyword must be

used.

No friend declaration is required to grant a nested class access to the private members of its surround-

ing class. Static members of the surrounding class can directly be accessed, other members can be

accessed if a surrounding class object is defined by or passed to members of the nested class. After

all, a nested class is a type defined by its surrounding class and as such objects of the nested class

are members of the outer class and thus can access all the outer class’s members. Here is an example

showing this principle. The example won’t compile as members of the class Extern are denied access

to Outer’s private members, but Outer::Inner’s members can access Outer’s private members:



{

int d_value;

static int s_value;

public:

Outer()

:

d_value(12)

{}

class Inner

{

public:

Inner()

{

cout << "Outer's static value: " << s_value << '\n';

}

Inner(Outer &outer)

{

cout << "Outer's value: " << outer.d_value << '\n';

}

};

};

class Extern // won't compile!

{

public:

Extern(Outer &outer)

{

cout << "Outer's value: " << outer.d_value << '\n';

}

Extern()

{

cout << "Outer's static value: " << Outer::s_value << '\n';

}

};

int Outer::s_value = 123;

int main()

{

Outer outer;

Outer::Inner in1;

Outer::Inner in2{ outer };

}

Now consider the situation where a class Surround has two nested classes FirstWithin and

SecondWithin. Each of the three classes has a static data member int s_variable:

class Surround

{

static int s_variable;

public:

class FirstWithin

{

static int s_variable;

public:

int value();

};

int value();



class SecondWithin

{

static int s_variable;

public:

int value();

};

};

If the class Surround should be able to access FirstWithin and SecondWithin’s private members,

these latter two classes must declare Surround to be their friend. The function Surround::value can

thereupon access the private members of its nested classes. For example (note the friend declarations

in the two nested classes):

class Surround

{

static int s_variable;

public:

class FirstWithin

{

friend class Surround;

static int s_variable;

public:

int value();

};

int value();

private:

class SecondWithin

{

friend class Surround;

static int s_variable;

public:

int value();

};

};

inline int Surround::FirstWithin::value()

{

FirstWithin::s_variable = SecondWithin::s_variable;

return (s_variable);

}

Friend declarations may be provided beyond the definition of the entity that is to be considered a friend.

So a class can be declared a friend beyond its definition. In that situation in-class code may already

use the fact that it is going to be declared a friend by the upcoming class. As an example, consider

an in-class implementation of the function Surround::FirstWithin::value. The required friend

declaration can also be inserted after the implementation of the function value:

class Surround

{

public:

class FirstWithin

{

static int s_variable;

public:

int value();

{

FirstWithin::s_variable = SecondWithin::s_variable;

return s_variable;



friend class Surround;

};

private:

class SecondWithin

{

friend class Surround;

static int s_variable;

};

};

Note that members named identically in outer and inner classes (e.g., ‘s_variable’) may be accessed

using the proper scope resolution expressions, as illustrated below:

class Surround

{

static int s_variable;

public:

class FirstWithin

{

friend class Surround;

static int s_variable; // identically named

public:

int value();

};

int value();

private:

class SecondWithin

{

friend class Surround;

static int s_variable; // identically named

public:

int value();

};

static void classMember();

};

inline int Surround::value()

{ // scope resolution expression

FirstWithin::s_variable = SecondWithin::s_variable;

return s_variable;

}

inline int Surround::FirstWithin::value()

{

Surround::s_variable = 4; // scope resolution expressions

Surround::classMember();

return s_variable;

}

inline int Surround::SecondWithin::value()

{

Surround::s_variable = 40; // scope resolution expression

return s_variable;

}

Nested classes aren’t automatically each other’s friends. Here friend declarations must be provided

to grant one nested classes access to another nested class’s private members.

To grant FirstWithin access to SecondWithin’s private members, SecondWithin must contain a

friend declaration.



SecondWithin access to FirstWithin’s private members. Even though the compiler hasn’t

seen SecondWithin yet, a friend declaration is also considered a forward declaration.

Note that SecondWithin’s forward declaration cannot be specified inside FirstWithin by using

‘class Surround::SecondWithin;’, as this would generate an error message like:

‘Surround’ does not have a nested type named ‘SecondWithin’

Now assume that in addition to the nested class SecondWithin there also exists an outer-level class

SecondWithin. To declare that class a friend of FirstWithin’s declare friend ::SecondWithin

inside class FirstWithin. In that case, an outer level class declaration of FirstWithin must be

provided before the compiler encounters the friend ::SecondWithin declaration.

Here is an example in which all classes have full access to all private members of all involved classes: ,

and a outer level FirstWithin has also been declared:

class SecondWithin;

class Surround

{

// class SecondWithin; not required (but no error either):

// friend declarations (see below)

// are also forward declarations

static int s_variable;

public:

class FirstWithin

{

friend class Surround;

friend class SecondWithin;

friend class ::SecondWithin;

static int s_variable;

public:

int value();

};

int value(); // implementation given above

private:

class SecondWithin

{

friend class Surround;

friend class FirstWithin;

static int s_variable;

public:

int value();

};

};

inline int Surround::FirstWithin::value()

{

Surround::s_variable = SecondWithin::s_variable;

return s_variable;

}

inline int Surround::SecondWithin::value()

{

Surround::s_variable = FirstWithin::s_variable;

return s_variable;

}



17.4 Nesting enumerations

Enumerations may also be nested in classes. Nesting enumerations is a good way to show the close

connection between the enumeration and its class. Nested enumerations have the same controlled

visibility as other class members. They may be defined in the private, protected or public sections

of classes and are inherited by derived classes. In the class ios we’ve seen values like ios::beg

and ios::cur. In the current GNU C++ implementation these values are defined as values of the

seek_dir enumeration:

class ios: public _ios_fields

{

public:

enum seek_dir

{

beg,

cur,

end

};

};

As an illustration assume that a class DataStructure represents a data structure that may be tra-

versed in a forward or backward direction. Such a class can define an enumeration Traversal having

the values FORWARD and BACKWARD. Furthermore, a member function setTraversal can be defined

requiring a Traversal type of argument. The class can be defined as follows:

class DataStructure

{

public:

enum Traversal

{

FORWARD,

BACKWARD

};

setTraversal(Traversal mode);

private:

Traversal

d_mode;

};

Within the class DataStructure the values of the Traversal enumeration can be used directly. For

example:

void DataStructure::setTraversal(Traversal mode)

{

d_mode = mode;

switch (d_mode)

{

FORWARD:

// ... do something

break;

BACKWARD:

// ... do something else

break;

}

}



values of the enumeration. Here the classname is sufficient. Only if a variable of the enumeration type

is required the name of the enumeration type is needed, as illustrated by the following piece of code:

void fun()

{

DataStructure::Traversal // enum typename required

localMode = DataStructure::FORWARD; // enum typename not required

DataStructure ds;

// enum typename not required

ds.setTraversal(DataStructure::BACKWARD);

}

In the above example the constant DataStructure;:FORWARD was used to specify a value of an

enum defined in the class DataStructure. Instead of DataStructure::FORWARD the construction

ds.FORWARD is also accepted. In my opinion this syntactic liberty is ugly: FORWARD is a symbolic value

that is defined at the class level; it’s not a member of ds, which is suggested by the use of the member

selector operator.

Only if DataStructure defines a nested class Nested, in turn defining the enumeration Traversal,

the two class scopes are required. In that case the latter example should have been coded as follows:

void fun()

{

DataStructure::Nested::Traversal

localMode = DataStructure::Nested::FORWARD;

DataStructure ds;

ds.setTraversal(DataStructure::Nested::BACKWARD);

}

Here a construction like DataStructure::Nested::Traversal localMode =

ds.Nested::FORWARD could also have been used, although I personally would avoid it, as FORWARD is

not a member of ds but rather a symbol that is defined in DataStructure.

17.4.1 Empty enumerations

Enum types usually define symbolic values. However, this is not required. In section 14.6.1 the

std::bad_cast type was introduced. A bad_cast is thrown by the dynamic_cast<> operator when

a reference to a base class object cannot be cast to a derived class reference. The bad_cast could be

caught as type, irrespective of any value it might represent.

Types may be defined without any associated values. An empty enum can be defined which is an enum

not defining any values. The empty enum’s type name may thereupon be used as a legitimate type in,

e.g. a catch clause.

The example shows how an empty enum is defined (often, but not necessarily within a class) and how

it may be thrown (and caught) as exceptions:

#include <iostream>

enum EmptyEnum

{};

int main()



{

throw EmptyEnum();

}

catch (EmptyEnum)

{

std::cout << "Caught empty enum\n";

}

17.5 Revisiting virtual constructors

In section 14.12 the notion of virtual constructors was introduced. In that section a class Base was

defined as an abstract base class. A class Clonable was defined to manage Base class pointers in

containers like vectors.

As the class Base is a minute class, hardly requiring any implementation, it can very well be defined

as a nested class in Clonable. This emphasizes the close relationship between Clonable and Base.

Nesting Base under Clonable changes

class Derived: public Base

into:

class Derived: public Clonable::Base

Apart from defining Base as a nested class and deriving from Clonable::Base rather than from Base

(and providing Base members with the proper Clonable:: prefix to complete their fully qualified

names), no further modifications are required. Here are the modified parts of the program shown

earlier (cf. section 14.12), now using Base nested under Clonable:

// Clonable and nested Base, including their inline members:

class Clonable

{

public:

class Base;

private:

Base *d_bp;

public:

class Base

{

public:

virtual ~Base();

Base *clone() const;

private:

virtual Base *newCopy() const = 0;

};

Clonable();

explicit Clonable(Base *base);

~Clonable();

Clonable(Clonable const &other);

Clonable(Clonable &&tmp);

Clonable &operator=(Clonable const &other);

Clonable &operator=(Clonable &&tmp);

Base &base() const;

};



{

return newCopy();

}

inline Clonable::Base &Clonable::base() const

{

return *d_bp;

}

// Derived and its inline member:

class Derived1: public Clonable::Base

{

public:

~Derived1();

private:

virtual Clonable::Base *newCopy() const;

};

inline Clonable::Base *Derived1::newCopy() const

{

return new Derived1(*this);

}

// Members not implemented inline:

Clonable::Base::~Base()

{}



Chapter 18

The Standard Template Library

The Standard Template Library (STL) is a general purpose library consisting of containers,

generic algorithms, iterators, function objects, allocators, adaptors and data structures. The data struc-

tures used by the algorithms are abstract in the sense that the algorithms can be used with (practically)

any data type.

The algorithms can process these abstract data types because they are template based. This chapter

does not cover template construction (see chapter 21 for that). Rather, it focuses on the use of the

algorithms.

Several elements also used by the standard template library have already been discussed in the C++

Annotations. In chapter 12 abstract containers were discussed, and in section 11.10 function objects

were introduced. Also, iterators were mentioned at several places in this document.

The main components of the STL are covered in this and the next chapter. Iterators, adaptors, smart

pointers, multi threading and other features of the STL are discussed in coming sections. Generic

algorithms are covered in the next chapter (19).

Allocators take care of the memory allocation within the STL. The default allocator class suffices for

most applications, and is not further discussed in the C++ Annotations.

All elements of the STL are defined in the standard namespace. Therefore, a using namespace std

or a comparable directive is required unless it is preferred to specify the required namespace explicitly.

In header files the std namespace should explicitly be used (cf. section 7.11.1).

In this chapter the empty angle bracket notation is frequently used. In code a typename must be

supplied between the angle brackets. E.g., plus<> is used in the C++ Annotations, but in code

plus<string> may be encountered.

18.1 Predefined function objects

Before using the predefined function objects presented in this section the <functional> header file

must be included.

Function objects play important roles in generic algorithms. For example, there exists a generic al-

gorithm sort expecting two iterators defining the range of objects that should be sorted, as well as

a function object calling the appropriate comparison operator for two objects. Let’s take a quick look

at this situation. Assume strings are stored in a vector, and we want to sort the vector in descending

order. In that case, sorting the vector stringVec is as simple as:

sort(stringVec.begin(), stringVec.end(), greater<string>());

The last argument is recognized as a constructor: it is an instantiation of the greater<> class tem-
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generic algorithm calls the function object’s operator() member to compare two string objects. The

function object’s operator() will, in turn, call operator> of the string data type. Eventually, when

sort returns, the first element of the vector will contain the string having the greatest string value

of all.

The function object’s operator() itself is not visible at this point. Don’t confuse the parenthe-

ses in the ‘greater<string>()’ argument with calling operator(). When operator() is actu-

ally used inside sort, it receives two arguments: two strings to compare for ‘greaterness’. Since

greater<string>::operator() is defined inline, the call itself is not actually present in the above

sort call. Instead sort calls string::operator> through greater<string>::operator().

Now that we know that a constructor is passed as argument to (many) generic algorithms, we can

design our own function objects. Assume we want to sort our vector case-insensitively. How do we pro-

ceed? First we note that the default string::operator< (for an incremental sort) is not appropriate,

as it does case sensitive comparisons. So, we provide our own CaseInsensitive class, which compares

two strings case insensitively. Using the POSIX function strcasecmp, the following program performs

the trick. It case-insensitively sorts its command-line arguments in ascending alphabetic order:

#include <iostream>

#include <string>

#include <cstring>

#include <algorithm>

using namespace std;

class CaseInsensitive

{

public:

bool operator()(string const &left, string const &right) const

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

};

int main(int argc, char **argv)

{

sort(argv, argv + argc, CaseInsensitive{});

for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";

cout << '\n';

}

The default constructor of the class CaseInsensitive is used to provide sort with its final argu-

ment. So the only member function that must be defined is CaseInsensitive::operator(). Since

we know it’s called with string arguments, we define it to expect two string arguments, which are

used when calling strcasecmp. Furthermore, the function call operator operator() is defined inline,

so that it does not produce overhead when called by the sort function. The sort function calls the

function object with various combinations of strings. If the compiler grants our inline requests, it

will in fact call strcasecmp, skipping two extra function calls.

The comparison function object is often a predefined function object. Predefined function object classes

are available for many commonly used operations. In the following sections the available predefined

function objects are presented, together with some examples showing their use. Near the end of the

section about function objects function adaptors are introduced.

Predefined function objects are used predominantly with generic algorithms. Predefined function ob-

jects exists for arithmetic, relational, and logical operations.



The arithmetic function objects support the standard arithmetic operations: addition, subtraction,

multiplication, division, modulo and negation. These function objects invoke the corresponding oper-

ators of the data types for which they are instantiated. For example, for addition the function object

plus<Type> is available. If we replace Type by size_t then the addition operator for size_t values

is used, if we replace Type by string, the addition operator for strings is used. For example:

#include <iostream>

#include <string>

#include <functional>

using namespace std;

int main(int argc, char **argv)

{

plus<size_t> uAdd; // function object to add size_ts

cout << "3 + 5 = " << uAdd(3, 5) << '\n';

plus<string> sAdd; // function object to add strings

cout << "argv[0] + argv[1] = " << sAdd(argv[0], argv[1]) << '\n';

}

/*
Output when called as: a.out going

3 + 5 = 8

argv[0] + argv[1] = a.outgoing

*/

Why is this useful? Note that the function object can be used with all kinds of data types (not only with

the predefined datatypes) supporting the operator called by the function object.

Suppose we want to perform an operation on a left hand side operand which is always the same variable

and a right hand side argument for which, in turn, all elements of an array should be used. E.g., we

want to compute the sum of all elements in an array; or we want to concatenate all the strings in a

text-array. In situations like these function objects come in handy.

As stated, function objects are heavily used in the context of the generic algorithms, so let’s take a quick

look ahead at yet another one.

The generic algorithm accumulate visits all elements specified by an iterator-range, and performs a

requested binary operation on a common element and each of the elements in the range, returning

the accumulated result after visiting all elements specified by the iterator range. It’s easy to use this

algorithm. The next program accumulates all command line arguments and prints the final string:

#include <iostream>

#include <string>

#include <functional>

#include <numeric>

using namespace std;

int main(int argc, char **argv)

{

string result =

accumulate(argv, argv + argc, string{}, plus<string>());

cout << "All concatenated arguments: " << result << '\n';

}



This anonymous string object provides an initial value. We could also have used

"All concatenated arguments: "s

in which case the cout statement could simply have been cout << result << ’\n’. The string-

addition operation is used, called from plus<string>. The final concatenated string is returned.

Now we define a class Time, overloading operator+. Again, we can apply the predefined function

object plus, now tailored to our newly defined datatype, to add times:

#include <iostream>

#include <string>

#include <vector>

#include <functional>

#include <numeric>

using namespace std;

class Time

{

friend ostream &operator<<(ostream &str, Time const &time);

size_t d_days;

size_t d_hours;

size_t d_minutes;

size_t d_seconds;

public:

Time(size_t hours, size_t minutes, size_t seconds);

Time &operator+=(Time const &rhs);

};

Time &&operator+(Time const &lhs, Time const &rhs)

{

Time ret(lhs);

return std::move(ret += rhs);

}

Time::Time(size_t hours, size_t minutes, size_t seconds)

:

d_days(0),

d_hours(hours),

d_minutes(minutes),

d_seconds(seconds)

{}

Time &Time::operator+=(Time const &rhs)

{

d_seconds += rhs.d_seconds;

d_minutes += rhs.d_minutes + d_seconds / 60;

d_hours += rhs.d_hours + d_minutes / 60;

d_days += rhs.d_days + d_hours / 24;

d_seconds %= 60;

d_minutes %= 60;

d_hours %= 24;

return *this;

}

ostream &operator<<(ostream &str, Time const &time)

{

return cout << time.d_days << " days, " << time.d_hours <<

" hours, " <<

time.d_minutes << " minutes and " <<

time.d_seconds << " seconds.";

}



{

vector<Time> tvector;

tvector.push_back(Time( 1, 10, 20));

tvector.push_back(Time(10, 30, 40));

tvector.push_back(Time(20, 50, 0));

tvector.push_back(Time(30, 20, 30));

cout <<

accumulate

(

tvector.begin(), tvector.end(), Time(0, 0, 0), plus<Time>()

) <<

'\n';

}

// Displays: 2 days, 14 hours, 51 minutes and 30 seconds.

The design of the above program is fairly straightforward. Time defines a constructor, it defines an

insertion operator and it defines its own operator+, adding two time objects. In main four Time

objects are stored in a vector<Time> object. Then, accumulate is used to compute the accumulated

time. It returns a Time object, which is inserted into cout.

While this section’s first example illustrated using a named function object, the last two examples

illustrate how anonymous objects can be passed to the (accumulate) function.

The STL supports the following set of arithmetic function objects. The function call operator

(operator()) of these function objects calls the matching arithmetic operator for the objects that are

passed to the function call operator, returning that arithmetic operator’s return value. The arithmetic

operator that is actually called is mentioned below:

• plus<>: calls the binary operator+;

• minus<>: calls the binary operator-;

• multiplies<>: calls the binary operator∗;

• divides<>: calls operator/;

• modulus<>: calls operator%;

• negate<>: calls the unary operator-. This arithmetic function object is a unary function object

as it expects one argument.

In the next example the transform generic algorithm is used to toggle the signs of all elements of an

array. Transform expects two iterators, defining the range of objects to be transformed; an iterator

defining the begin of the destination range (which may be the same iterator as the first argument); and

a function object defining a unary operation for the indicated data type.

#include <iostream>

#include <string>

#include <functional>

#include <algorithm>

using namespace std;

int main(int argc, char **argv)

{

int iArr[] = { 1, -2, 3, -4, 5, -6 };

transform(iArr, iArr + 6, iArr, negate<int>());



for (int idx = 0; idx < 6; ++idx)

cout << iArr[idx] << ", ";

cout << '\n';

}

// Displays: -1, 2, -3, 4, -5, 6,

18.1.2 Relational function objects

The relational operators are called by the relational function objects. All standard relational operators

are supported: ==, !=, >, >=, < and <=.

The STL supports the following set of relational function objects. The function call operator

(operator()) of these function objects calls the matching relational operator for the objects that are

passed to the function call operator, returning that relational operator’s return value. The relational

operator that is actually called is mentioned below:

• equal_to<>: calls operator==;

• not_equal_to<>: calls operator!=;

• greater<>: calls operator>;

• greater_equal<>: calls operator>=;

• less<>: this object’s member operator() calls operator<;

• less_equal<>: calls operator<=.

An example using the relational function objects in combination with sort is:

#include <iostream>

#include <string>

#include <functional>

#include <algorithm>

using namespace std;

int main(int argc, char **argv)

{

sort(argv, argv + argc, greater_equal<string>());

for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";

cout << '\n';

sort(argv, argv + argc, less<string>());

for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";

cout << '\n';

}

The example illustrates how strings may be sorted alphabetically and reversed alphabetically. By

passing greater_equal<string> the strings are sorted in decreasing order (the first word will be

the ’greatest’), by passing less<string> the strings are sorted in increasing order (the first word will

be the ’smallest’).

Note that argv contains char ∗ values, and that the relational function object expects a string. The

promotion from char const ∗ to string is silently performed.



The logical operators are called by the logical function objects. The standard logical operators are

supported: and, or, and not.

The STL supports the following set of logical function objects. The function call operator (operator())

of these function objects calls the matching logical operator for the objects that are passed to the func-

tion call operator, returning that logical operator’s return value. The logical operator that is actually

called is mentioned below:

• logical_and<>: calls operator&&;

• logical_or<>: calls operator||;

• logical_not<>: calls operator!.

An example using operator! is provided in the following trivial program, using transform to trans-

form the logical values stored in an array:

#include <iostream>

#include <string>

#include <functional>

#include <algorithm>

using namespace std;

int main(int argc, char **argv)

{

bool bArr[] = {true, true, true, false, false, false};

size_t const bArrSize = sizeof(bArr) / sizeof(bool);

for (size_t idx = 0; idx < bArrSize; ++idx)

cout << bArr[idx] << " ";

cout << '\n';

transform(bArr, bArr + bArrSize, bArr, logical_not<bool>());

for (size_t idx = 0; idx < bArrSize; ++idx)

cout << bArr[idx] << " ";

cout << '\n';

}

/*
Displays:

1 1 1 0 0 0

0 0 0 1 1 1

*/

18.1.4 The ‘std::not_fn’ negator

A negator is a function object toggling the truth value of a function that’s called from the negator: if the

function returns true the negator returns false and vv.

The standard negator is std::not_fn, declared in the <functional> header file.

The function not_fn expects a (movable) object as its argument, returning the negated value of the

return value of its argument’s function call operator.

As an example consider a main function defining an array of int values:



{

int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

}

To count the number of even values count_if, using a lambda function can be used:

cout <<

count_if(arr, arr + size(arr),

[&](int value)

{

return (value & 1 == 0);

}

) << '\n';

To count the number of odd values, not_fn can be used in the above code like so:

cout <<

count_if(arr, arr + size(arr),

not_fn(

[&](int value)

{

return (value & 1 == 0);

}

)

) << '\n';

Of course, in this simple example the lambda function could also easily have been modified. But if in-

stead of a lambda function an existing class implementing a function object had been used it would have

been difficult or impossible to change the behavior of that class. If the class offers moving operations

then not_fn can be used to negate the values returned by that class’s function call operator.

18.2 Iterators

In addition to the conceptual iterator types presented in this section the STL defines several adaptors

allowing objects to be passed as iterators. These adaptors are presented in the upcoming sections.

Before those adaptors can be used the <iterator> header file must be included.

Although standard iterators are candidates for deprecation1, this does not mean that they will (soon)

be removed from the std library. It’s probably a suboptimal strategy to ‘reinvent’ your own. Instead,

it is advised to continue using the std::iterator classes until they have officially been replaced by

alternatives.

Iterators are objects acting like pointers. Iterators have the following general characteristics:

• Two iterators may be compared for (in)equality using the == and != operators. The ordering

operators (e.g., >, <) can usually not be used.

• Given an iterator iter, ∗iter represents the object the iterator points to (alternatively, iter->

can be used to reach the members of the object the iterator points to).

• Given an iterator iter, iter.base() returns the address of ∗iter. It returns the same type as

&∗iter. E.g.,

vector<int> vi{ 1, 2, 3 };

int *ip = vi.begin().base();

cout << *ip << '\n'; // shows: 1

1http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0174r1.html#2.1



to the next element is consequently applied: several containers support reverse_iterator types, in

which the ++iter operation actually reaches a previous element in a sequence.

• Pointer arithmetic may be used with iterators of containers storing their elements consecutively

in memory like vector and deque. For such containers iter + 2 points to the second element

beyond the one to which iter points. See also section 18.2.1, covering std::distance.

• Merely defining an iterator is comparable to having a 0-pointer. Example:

#include <vector>

#include <iostream>

using namespace std;

int main()

{

vector<int>::iterator vi;

cout << &*vi; // prints 0

}

STL containers usually define members offering iterators (i.e., they define their own type

iterator). These members are commonly called begin and end and (for reversed iterators (type

reverse_iterator)) rbegin and rend.

Wherease reverse iterators can be constructed from ordinary (forward) iterators using

reverse_iterator constructors as in:

string str;

auto revit = string::reverse_iterator{ str.begin() };

the opposite is not accomplished that way. To retrieve the forward iterator corresponding to a reverse

iterator, the reverse_iterator.base() member can be used. E.g., to obtain the forward iterator

corresponding to revit use

auto forward { revit.base() };

Standard practice requires iterator ranges to be left inclusive. The notation [left, right) indicates

that left is an iterator pointing to the first element, while right is an iterator pointing just beyond

the last element. The iterator range is empty when left == right.

The following example shows how all elements of a vector of strings can be inserted into cout using its

iterator ranges [begin(), end()), and [rbegin(), rend()). Note that the for-loops for both

ranges are identical. Furthermore it nicely illustrates how the auto keyword can be used to define

the type of the loop control variable instead of using a much more verbose variable definition like

vector<string>::iterator (see also section 3.3.7):

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int main(int argc, char **argv)

{

vector<string> args(argv, argv + argc);

for (auto iter = args.begin(); iter != args.end(); ++iter)

cout << *iter << " ";

cout << '\n';



for (auto iter = args.rbegin(); iter != args.rend(); ++iter)

cout << *iter << " ";

cout << '\n';

}

Furthermore, the STL defines const_iterator types that must be used when visiting a series of elements

in a constant container. Whereas the elements of the vector in the previous example could have been

altered, the elements of the vector in the next example are immutable, and const_iterators are

required:

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int main(int argc, char **argv)

{

vector<string> const args(argv, argv + argc);

for

(

vector<string>::const_iterator iter = args.begin();

iter != args.end();

++iter

)

cout << *iter << " ";

cout << '\n';

for

(

vector<string>::const_reverse_iterator iter = args.rbegin();

iter != args.rend();

++iter

)

cout << *iter << " ";

cout << '\n';

}

The examples also illustrate that plain pointers can be used as iterators. The initialization

vector<string> args(argv, argv + argc) provides the args vector with a pair of pointer-

based iterators: argv points to the first element to initialize args with, argv + argc points just

beyond the last element to be used, ++argv reaches the next command line argument. This is a general

pointer characteristic, which is why they too can be used in situations where iterators are expected.

The STL defines five types of iterators. These iterator types are expected by generic algorithms, and

in order to create a particular type of iterator yourself it is important to know their characteristics. In

general, iterators (see also section 22.14) must define:

• operator==, testing two iterators for equality,

• operator!=, testing two iterators for inequality,

• operator++, incrementing the iterator, as prefix operator,

• operator∗, to access the element the iterator refers to,

The following types of iterators are used when describing generic algorithms in chapter 19:



InputIterators are used to read from a container. The dereference operator is guaran-

teed to work as rvalue in expressions. Instead of an InputIterator it is also possible

to use (see below) Forward-, Bidirectional- or RandomAccessIterators. Notations like

InputIterator1 and InputIterator2 may be used as well. In these cases, num-

bers are used to indicate which iterators ‘belong together’. E.g., the generic algorithm

inner_product has the following prototype:

Type inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, Type init);

InputIterator1 first1 and InputIterator1 last1 define a pair of input itera-

tors on one range, while InputIterator2 first2 defines the beginning of another

range. Analogous notations may be used with other iterator types.

• OutputIterators:

OutputIterators can be used to write to a container. The dereference operator is guar-

anteed to work as an lvalue in expressions, but not necessarily as rvalue. Instead

of an OutputIterator it is also possible to use (see below) Forward-, Bidirectional- or

RandomAccessIterators.

• ForwardIterators:

ForwardIterators combine InputIterators and OutputIterators. They can be used to tra-

verse containers in one direction, for reading and/or writing. Instead of a ForwardItera-

tor it is also possible to use (see below) Bidirectional- or RandomAccessIterators.

• BidirectionalIterators:

BidirectionalIterators can be used to traverse containers in both directions, for reading

and writing. Instead of a BidirectionalIterator it is also possible to use (see below) a

RandomAccessIterator.

• RandomAccessIterators:

RandomAccessIterators provide random access to container elements. An algorithm

like sort requires a RandomAccessIterator, and can therefore not be used to sort the

elements of lists or maps, which only provide BidirectionalIterators.

The example given with the RandomAccessIterator illustrates how to relate iterators and generic al-

gorithms: look for the iterator that’s required by the (generic) algorithm, and then see whether the

datastructure supports the required type of iterator. If not, the algorithm cannot be used with the

particular datastructure.

18.2.1 std::distance and std::size

Earlier, in section 18.2 it was stated that iterators support pointer arithmetic for containers storing

their elements consecutively in memory. This is not completely true: to determine the number of

elements between the elements to which two iterators refer the iterator must support the subtraction

operator.

Using pointer arithmetic to compute the number of elements between two iterators in, e.g., a

std::list or std::unordered_map is not possible, as these containers do not store their elements

consecutively in memory.

The function std::distance fills in that little gap: std::distance expects two InputIterators and

returns the number of elements between them.

Before using distance the <iterator> header file must be included.



the number of elements is non-positive, otherwise it is non-negative. If the number of elements cannot

be determined (e.g., the iterators do not refer to elements in the same container), then distance’s

return value is undefined.

Example:

#include <iostream>

#include <unordered_map>

using namespace std;

int main()

{

unordered_map<int, int> myMap = {{1, 2}, {3, 5}, {-8, 12}};

cout << distance(++myMap.begin(), myMap.end()) << '\n'; // shows: 2

}

The iterator header file also defines the function std::size, returning the number of elements in

a containers (as returned by the container’s size member) or of an array whose dimension is known

to the compiler at the point of std::size’s call. E.g., if the size of an array data is known to the

compiler, then to call a function handler (expecting the address of the first element of an array and

the address of the location just beyond that array) the following statement can be used:

handler(data, data + std::size(data));

As noted, the std::size function is defined in the iterator header. However, it’s also guaranteed

available when including the header file of a container supporting iterators (including the string

header file).

18.2.2 Insert iterators

Generic algorithms often require a target container into which the results of the algorithm are de-

posited. For example, the copy generic algorithm has three parameters. The first two define the range

of visited elements, the third defines the first position where the results of the copy operation should

be stored.

With the copy algorithm the number of elements to copy is usually available beforehand, since that

number can usually be provided by pointer arithmetic. However, situations exist where pointer arith-

metic cannot be used. Analogously, the number of resulting elements sometimes differs from the num-

ber of elements in the initial range. The generic algorithm unique_copy is a case in point. Here the

number of elements that are copied to the destination container is normally not known beforehand.

In situations like these an inserter adaptor function can often be used to create elements in the desti-

nation container. There are three types of inserter adaptors:

• back_inserter: calls the container’s push_back member to add new elements at the end of the

container. E.g., to copy all elements of source in reversed order to the back of destination,

using the copy generic algorithm:

copy(source.rbegin(), source.rend(), back_inserter(destination));

• front_inserter calls the container’s push_front member, adding new elements at the begin-

ning of the container. E.g., to copy all elements of source to the front of the destination container

(thereby also reversing the order of the elements):

copy(source.begin(), source.end(), front_inserter(destination));



ing point. E.g., to copy all elements of source to the destination container, starting at the begin-

ning of destination, shifting up existing elements to beyond the newly inserted elements:

copy(source.begin(), source.end(), inserter(destination,

destination.begin()));

The inserter adaptors require the existence of two typedefs:

• typedef Data value_type, where Data is the data type stored in the class offer-

ing push_back, push_front or insert members (Example: typedef std::string

value_type);

• typedef value_type const &const_reference

Concentrating on back_inserter, this iterator expects the name of a container supporting a member

push_back. The inserter’s operator() member calls the container’s push_back member. Objects of

any class supporting a push_back member can be passed as arguments to back_inserter provided

the class adds

typedef DataType const &const_reference;

to its interface (where DataType const & is the type of the parameter of the class’s member

push_back). Example:

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

class Insertable

{

public:

typedef int value_type;

typedef int const &const_reference;

void push_back(int const &)

{}

};

int main()

{

int arr[] = {1};

Insertable insertable;

copy(arr, arr + 1, back_inserter(insertable));

}

18.2.3 Iterators for ‘istream’ objects

The istream_iterator<Type> can be used to define a set of iterators for istream objects. The

general form of the istream_iterator iterator is:

istream_iterator<Type> identifier(istream &in)



iterator in an iterator range. Type may be any type for which operator>> is defined in combination

with istream objects.

The default constructor is used as the end-iterator and corresponds to the end-of-stream. For example,

istream_iterator<string> endOfStream;

The stream object that was specified when defining the begin-iterator is not mentioned with the default

constructor.

Using back_inserter and istream_iterator adaptors, all strings from a stream can easily be

stored in a container. Example (using anonymous istream_iterator adaptors):

#include <iostream>

#include <iterator>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

vector<string> vs;

copy(istream_iterator<string>(cin), istream_iterator<string>(),

back_inserter(vs));

for

(

vector<string>::const_iterator begin = vs.begin(), end = vs.end();

begin != end; ++begin

)

cout << *begin << ' ';

cout << '\n';

}

18.2.3.1 Iterators for ‘istreambuf’ objects

Input iterators are also available for streambuf objects.

To read from streambuf objects supporting input operations istreambuf_iterators can be used,

supporting the operations that are also available for istream_iterator. Different from the latter

iterator type istreambuf_iterators support three constructors:

• istreambuf_iterator<Type>:

The end iterator of an iterator range is created using the default istreambuf_iterator con-

structor. It represents the end-of-stream condition when extracting values of type Type from the

streambuf.

• istreambuf_iterator<Type>(streambuf ∗):

A pointer to a streambuf may be used when defining an istreambuf_iterator. It represents

the begin iterator of an iterator range.

• istreambuf_iterator<Type>(istream):

An istream may be also used when defining an istreambuf_iterator. It accesses the

istream’s streambuf and it also represents the begin iterator of an iterator range.



ostreambuf_iterators.

18.2.4 Iterators for ‘ostream’ objects

An ostream_iterator<Type> adaptor can be used to pass an ostream to algorithms expecting an

OutputIterator. Two constructors are available for defining ostream_iterators:

ostream_iterator<Type> identifier(ostream &outStream);

ostream_iterator<Type> identifier(ostream &outStream, char const *delim);

Type is the type of the data elements that should be inserted into an ostream. It may be any type

for which operator<< is defined in combination with ostream objects. The latter constructor can

be used to separate the individual Type data elements by delimiter strings. The former constructor

does not use any delimiters.

The example shows how istream_iterators and an ostream_iterator may be used to

copy information of a file to another file. A subtlety here is that you probably want to use

in.unsetf(ios::skipws). It is used to clear the ios::skipws flag. As a consequence whitespace

characters are simply returned by the operator, and the file is copied character by character. Here is

the program:

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

cin.unsetf(ios::skipws);

copy(istream_iterator<char>(cin), istream_iterator<char>(),

ostream_iterator<char>(cout));

}

18.2.4.1 Iterators for ‘ostreambuf’ objects

Output iterators are also available for streambuf objects.

To write to streambuf objects supporting output operations ostreambuf_iterators can be used,

supporting the operations that are also available for ostream_iterator. Ostreambuf_iterators

support two constructors:

• ostreambuf_iterator<Type>(streambuf ∗):

A pointer to a streambuf may be used when defining an ostreambuf_iterator. It can be used

as an OutputIterator.

• ostreambuf_iterator<Type>(ostream):

An ostream may be also used when defining an ostreambuf_iterator. It accesses the

ostream’s streambuf and it can also be used as an OutputIterator.

The next example illustrates the use of both istreambuf_iterators and ostreambuf_iterators

when copying a stream in yet another way. Since the stream’s streambufs are directly accessed the

streams and stream flags are bypassed. Consequently there is no need to clear ios::skipws as in the

previous section, while the next program’s efficiency probably also exceeds the efficiency of the program

shown in the previous section.

#include <iostream>



#include <iterator>

using namespace std;

int main()

{

istreambuf_iterator<char> in(cin.rdbuf());

istreambuf_iterator<char> eof;

ostreambuf_iterator<char> out(cout.rdbuf());

copy(in, eof, out);

}

18.3 The class ’unique_ptr’

Before using the unique_ptr class presented in this section the <memory> header file must be in-

cluded.

When pointers are used to access dynamically allocated memory strict bookkeeping is required to pre-

vent memory leaks. When a pointer variable referring to dynamically allocated memory goes out of

scope, the dynamically allocated memory becomes inaccessible and the program suffers from a mem-

ory leak. Consequently, the programmer has to make sure that the dynamically allocated memory is

returned to the common pool just before the pointer variable goes out of scope.

When a pointer variable points to a dynamically allocated single value or object, bookkeeping require-

ments are greatly simplified when the pointer variable is defined as a std::unique_ptr object.

Unique_ptrs are objects masquerading as pointers. Since they are objects, their destructors are called

when they go out of scope. Their destructors automatically delete the dynamically allocated memory

to which they point. Unique_ptrs (and their cousins shared_ptrs (cf. section 18.4) are also called smart

pointers).

Unique_ptrs have several special characteristics:

• when assigning a unique_ptr to another move semantics is used. If move semantics is not

available compilation fails. On the other hand, if compilation succeeds then the used containers

or generic algorithms support the use of unique_ptrs. Here is an example:

std::unique_ptr<int> up1(new int);

std::unique_ptr<int> up2(up1); // compilation error

The second definition fails to compile as unique_ptr’s copy constructor is private (the same holds

true for the assignment operator). But the unique_ptr class does offer facilities to initialize and

assign from rvalue references:

class unique_ptr // interface partially shown

{

public:

unique_ptr(unique_ptr &&tmp); // rvalues bind here

private:

unique_ptr(const unique_ptr &other);

};

In the next example move semantics is used and so it compiles correctly:

unique_ptr<int> cp(unique_ptr<int>(new int));

• a unique_ptr object should only point to memory that was made available dynamically, as only

dynamically allocated memory can be deleted.



allocated memory. The unique_ptr’s interface was designed to prevent this from happening.

Once a unique_ptr object goes out of scope, it deletes the memory it points to, immediately

changing any other object also pointing to the allocated memory into a wild pointer.

• When a class Derived is derived from Base, then a newly allocated Derived class object can

be assigned to a unique_ptr<Base>, without having to define a virtual destructor for Base.

The Base ∗ pointer that is returned by the unique_ptr object can simply be cast statically to

Derived, and Derived’s destructor is automatically called as well, if the unique_ptr definition

is provided with a deleter function address. This is illustrated in the next example:

class Base

{ ... };

class Derived: public Base

{

...

public:

// assume Derived has a member void process()

static void deleter(Base *bp);

};

void Derived::deleter(Base *bp)

{

delete static_cast<Derived *>(bp);

}

int main()

{

unique_ptr<Base, void (*)(Base *)> bp(new Derived, &Derived::deleter);

static_cast<Derived *>(bp.get())->process(); // OK!

} // here ~Derived is called: no polymorphism required.

The class unique_ptr offers several member functions to access the pointer itself or to have a

unique_ptr point to another block of memory. These member functions (and unique_ptr construc-

tors) are introduced in the next few sections.

Unique_ptr can also be used with containers and (generic) algorithms. They can properly destruct any

type of object, as their constructors accept customizable deleters. In addition, arrays can be handled by

unique_ptrs.

18.3.1 Defining ‘unique_ptr’ objects

There are three ways to define unique_ptr objects. Each definition contains the usual <type> speci-

fier between angle brackets:

• The default constructor simply creates a unique_ptr object that does not point to a particular

block of memory. Its pointer is initialized to 0 (zero):

unique_ptr<type> identifier;

This form is discussed in section 18.3.2.

• The move constructor initializes an unique_ptr object. Following the use of the move constructor

its unique_ptr argument no longer points to the dynamically allocated memory and its pointer

data member is turned into a zero-pointer:

unique_ptr<type> identifier(another unique_ptr for type);

This form is discussed in section 18.3.3.



allocated memory that is passed to the object’s constructor. Optionally deleter can be provided.

A (free) function (or function object) receiving the unique_ptr’s pointer as its argument can be

passed as deleter. It is supposed to return the dynamically allocated memory to the common pool

(doing nothing if the pointer equals zero).

unique_ptr<type> identifier (new-expression [, deleter]);

This form is discussed in section 18.3.4.

18.3.2 Creating a plain ‘unique_ptr’

Unique_ptr’s default constructor defines a unique_ptr not pointing to a particular block of memory:

unique_ptr<type> identifier;

The pointer controlled by the unique_ptr object is initialized to 0 (zero). Although the unique_ptr

object itself is not the pointer, its value can be compared to 0. Example:

unique_ptr<int> ip;

if (!ip)

cout << "0-pointer with a unique_ptr object\n";

Alternatively, the member get can be used (cf. section 18.3.5).

18.3.3 Moving another ‘unique_ptr’

A unique_ptr may be initialized using an rvalue reference to a unique_ptr object for the same type:

unique_ptr<type> identifier(other unique_ptr object);

The move constructor is used, e.g., in the following example:

void mover(unique_ptr<string> &&param)

{

unique_ptr<string> tmp(move(param));

}

Analogously, the assignment operator can be used. A unique_ptr object may be assigned to a tempo-

rary unique_ptr object of the same type (again move-semantics is used). For example:

#include <iostream>

#include <memory>

#include <string>

using namespace std;

int main()

{

unique_ptr<string> hello1{ new string{ "Hello world" } };

unique_ptr<string> hello2{ move(hello1) };

unique_ptr<string> hello3;



hello3 = move(hello2);

cout << // *hello1 << '\n' << // would have segfaulted

// *hello2 << '\n' << // same

*hello3 << '\n';

}

// Displays: Hello world

The example illustrates that

• hello1 is initialized by a pointer to a dynamically allocated string (see the next section).

• The unique_ptr hello2 grabs the pointer controlled by hello1 using a move constructor. This

effectively changes hello1 into a 0-pointer.

• Then hello3 is defined as a default unique_ptr<string>. But then it grabs its value using

move-assignment from hello2 (which, as a consequence, is changed into a 0-pointer).

If hello1 or hello2 had been inserted into cout a segmentation fault would have resulted. The reason

for this should now be clear: it is caused by dereferencing 0-pointers. In the end, only hello3 actually

points to the originally allocated string.

18.3.4 Pointing to a newly allocated object

A unique_ptr is most often initialized using a pointer to dynamically allocated memory. The generic

form is:

unique_ptr<type [, deleter_type]> identifier(new-expression

[, deleter = deleter_type{}]);

The second (template) argument (deleter(_type)) is optional and may refer to a free function, a

function object handling the destruction of the allocated memory, or a lambda function. A deleter is

used, e.g., in situations where a double pointer is allocated and the destruction must visit each nested

pointer to destroy the allocated memory (see below for an illustration).

Here is an example initializing a unique_ptr pointing to a string object:

unique_ptr<string> strPtr{ new string{ "Hello world" } };

The argument that is passed to the constructor is the pointer returned by operator new. Note that

type does not mention the pointer. The type that is used in the unique_ptr construction is the same

as the type that is used in new expressions.

Here is an example showing how an explicitly defined deleter may be used to delete a dynamically

allocated array of pointers to strings:

#include <iostream>

#include <string>

#include <memory>

using namespace std;

struct Deleter

{

size_t d_size;

Deleter(size_t size = 0)

:



{}

void operator()(string **ptr) const

{

for (size_t idx = 0; idx < d_size; ++idx)

delete ptr[idx];

delete[] ptr;

}

};

int main()

{

unique_ptr<string *, Deleter> sp2{ new string *[10], Deleter{ 10 } };

Deleter &obj = sp2.get_deleter();

}

A unique_ptr can be used to reach the member functions that are available for objects allocated by

the new expression. These members can be reached as if the unique_ptr was a plain pointer to the

dynamically allocated object. For example, in the following program the text ‘C++’ is inserted behind

the word ‘hello’:

#include <iostream>

#include <memory>

#include <cstring>

using namespace std;

int main()

{

unique_ptr<string> sp{ new string{ "Hello world" } };

cout << *sp << '\n';

sp->insert(strlen("Hello "), "C++ ");

cout << *sp << '\n';

}

/*
Displays:

Hello world

Hello C++ world

*/

18.3.5 Operators and members

The class unique_ptr offers the following operators:

• unique_ptr<Type> &operator=(unique_ptr<Type> &&tmp):

This operator transfers the memory pointed to by the rvalue unique_ptr object to the lvalue

unique_ptr object using move semantics. So, the rvalue object loses the memory it pointed at

and turns into a 0-pointer. An existing unique_ptr may be assigned to another unique_ptr by

converting it to an rvalue reference first using std::move. Example:

unique_ptr<int> ip1(new int);

unique_ptr<int> ip2;

ip2 = std::move(ip1);

• operator bool() const:

This operator returns false if the unique_ptr does not point to memory (i.e., its get member,

see below, returns 0). Otherwise, true is returned.



∗

This operator returns a reference to the information accessible via a unique_ptr object . It acts

like a normal pointer dereference operator.

• Type ∗operator->():

This operator returns a pointer to the information accessible via a unique_ptr object. This

operator allows you to select members of an object accessible via a unique_ptr object. Example:

unique_ptr<string> sp{ new string{ "hello" } };

cout << sp->c_str();

The class unique_ptr supports the following member functions:

• Type ∗get():

A pointer to the information controlled by the unique_ptr object is returned. It acts like

operator->. The returned pointer can be inspected. If it is zero the unique_ptr object does not

point to any memory.

• Deleter &unique_ptr<Type>::get_deleter():

A reference to the deleter object used by the unique_ptr is returned.

• Type ∗release():

A pointer to the information accessible via a unique_ptr object is returned. At the same time

the object itself becomes a 0-pointer (i.e., its pointer data member is turned into a 0-pointer).

This member can be used to transfer the information accessible via a unique_ptr object to a

plain Type pointer. After calling this member the proper destruction of the dynamically allocated

memory is the responsibility of the programmer.

• void reset(Type ∗):

The dynamically allocated memory controlled by the unique_ptr object is returned to the com-

mon pool; the object thereupon controls the memory to which the argument that is passed to

the function points. It can also be called without argument, turning the object into a 0-pointer.

This member function can be used to assign a new block of dynamically allocated memory to a

unique_ptr object.

• void swap(unique_ptr<Type> &):

Two identically typed unique_ptrs are swapped.

18.3.6 Using ‘unique_ptr’ objects for arrays

When a unique_ptr is used to store arrays the dereferencing operator makes little sense but with

arrays unique_ptr objects benefit from index operators. The distinction between a single object

unique_ptr and a unique_ptr referring to a dynamically allocated array of objects is realized

through a template specialization.

With dynamically allocated arrays the following syntax is available:

• the index ([]) notation is used to specify that the smart pointer controls a dynamically allocated

array. Example:

unique_ptr<int[]> intArr(new int[3]);

• the index operator can be used to access the array’s elements. Example:

intArr[2] = intArr[0];

In these cases the smart pointer’s destructors call delete[] rather than delete.



18.4 The class ‘shared_ptr’

In addition to the class unique_ptr the class std::shared_ptr<Type> is available, which is a

reference counting smart pointer.

Before using shared_ptrs the <memory> header file must be included.

The shared pointer automatically destroys its content once its reference count has decayed to zero.

As with unique_ptr, when defining a shared_ptr<Base> to store a newly allocated Derived class

object, the returned Base ∗ may be cast to a Derived ∗ using a static_cast: polymorphism isn’t

required, and when resetting the shared_ptr or when the shared_ptr goes out of scope, no slicing

occurs, and Derived’s destructor (or, if configured: deleter) is called (cf. section 18.3).

Shared_ptrs support copy and move constructors as well as standard and move overloaded assign-

ment operators.

Like unique_ptrs, shared_ptrs may refer to dynamically allocated arrays.

18.4.1 Defining ‘shared_ptr’ objects

There are four ways to define shared_ptr objects. Each definition contains the usual <type> specifier

between angle brackets:

• The default constructor simply creates a shared_ptr object that does not point to a particular

block of memory. Its pointer is initialized to 0 (zero):

shared_ptr<type> identifier;

This form is discussed in section 18.4.2.

• The copy constructor initializes a shared_ptr so that both objects share the memory pointed at

by the existing object. The copy constructor also increments the shared_ptr’s reference count.

Example:

shared_ptr<string> org{ new string{ "hi there" } };

shared_ptr<string> copy(org); // reference count now 2

• The move constructor initializes a shared_ptr with the pointer and reference count of a tem-

porary shared_ptr. The temporary shared_ptr is changed into a 0-pointer. An existing

shared_ptr may have its data moved to a newly defined shared_ptr (turning the existing

shared_ptr into a 0-pointer as well). In the next example a temporary, anonymous shared_ptr

object is constructed, which is then used to construct grabber. Since grabber’s constructor re-

ceives an anonymous temporary object, the compiler uses shared_ptr’s move constructor:

shared_ptr<string> grabber{ shared_ptr<string>{ new string{ "hi there" } } };

• The form that is used most often initializes a shared_ptr object to the block of dynamically

allocated memory that is passed to the object’s constructor. Optionally deleter can be provided.

A (free) function (or function object) receiving the shared_ptr’s pointer as its argument can be

passed as deleter. It is supposed to return the dynamically allocated memory to the common pool

(doing nothing if the pointer equals zero).

shared_ptr<type> identifier (new-expression [, deleter]);

This form is discussed in section 18.4.3.



Shared_ptr’s default constructor defines a shared_ptr not pointing to a particular block of memory:

shared_ptr<type> identifier;

The pointer controlled by the shared_ptr object is initialized to 0 (zero). Although the shared_ptr

object itself is not the pointer, its value can be compared to 0. Example:

shared_ptr<int> ip;

if (!ip)

cout << "0-pointer with a shared_ptr object\n";

Alternatively, the member get can be used (cf. section 18.4.4).

18.4.3 Pointing to a newly allocated object

Most often a shared_ptr is initialized by a dynamically allocated block of memory. The generic form

is:

shared_ptr<type> identifier(new-expression [, deleter]);

The second argument (deleter) is optional and refers to a function object or free function handling

the destruction of the allocated memory. A deleter is used, e.g., in situations where a double pointer

is allocated and the destruction must visit each nested pointer to destroy the allocated memory (see

below for an illustration). It is used in situations comparable to those encountered with unique_ptr

(cf. section 18.3.4).

Here is an example initializing a shared_ptr pointing to a string object:

shared_ptr<string> strPtr{ new string{ "Hello world" } };

The argument that is passed to the constructor is the pointer returned by operator new. Note that

type does not mention the pointer. The type that is used in the shared_ptr construction is the same

as the type that is used in new expressions.

The next example illustrates that two shared_ptrs indeed share their information. After modifying

the information controlled by one of the objects the information controlled by the other object is modified

as well:

#include <iostream>

#include <memory>

#include <cstring>

using namespace std;

int main()

{

shared_ptr<string> sp(new string{ "Hello world" });

shared_ptr<string> sp2(sp);

sp->insert(strlen("Hello "), "C++ ");

cout << *sp << '\n' <<

*sp2 << '\n';

}



Displays:

Hello C++ world

Hello C++ world

*/

18.4.4 Operators and members

The class shared_ptr offers the following operators:

• shared_ptr &operator=(shared_ptr<Type> const &other):

Copy assignment: the reference count of the operator’s left hand side operand is reduced. If the

reference count decays to zero the dynamically allocated memory controlled by the left hand side

operand is deleted. Then it shares the information with the operator’s right hand side operand,

incrementing the information’s reference count.

• shared_ptr &operator=(shared_ptr<Type> &&tmp):

Move assignment: the reference count of the operator’s left hand side operand is reduced. If the

reference count decays to zero the dynamically allocated memory controlled by the left hand side

operand is deleted. Then it grabs the information controlled by the operator’s right hand side

operand which is turned into a 0-pointer.

• operator bool() const:

If the shared_ptr actually points to memory true is returned, otherwise, false is returned.

• Type &operator∗():

A reference to the information stored in the shared_ptr object is returned. It acts like a normal

pointer.

• Type ∗operator->():

A pointer to the information controlled by the shared_ptr object is returned. Example:

shared_ptr<string> sp{ new string{ "hello" } };

cout << sp->c_str() << '\n';

The following member function member functions are supported:

• Type ∗get():

A pointer to the information controlled by the shared_ptr object is returned. It acts like

operator->. The returned pointer can be inspected. If it is zero the shared_ptr object does not

point to any memory.

• Deleter &get_deleter():

A reference to the shared_ptr’s deleter (function or function object) is returned.

• void reset(Type ∗):

The reference count of the information controlled by the shared_ptr object is reduced and if it

decays to zero the memory it points to is deleted. Thereafter the object’s information will refer to

the argument that is passed to the function, setting its shared count to 1. It can also be called

without argument, turning the object into a 0-pointer. This member function can be used to assign

a new block of dynamically allocated memory to a shared_ptr object.

• void reset(Type ∗, DeleterType &&):

This variant of the previous member accepts a specific Deleter type: if Type is a base-class

and derived class objects are used, these derived class objects may require specific actions at

destruction time. When the previous member is used, then eventually the newly assigned object’s

destructor is called without using an explicit deleter function. The current member ensures that

by the time the shared counter has decayed to zero the provided deleter is used.



Two identically typed shared_ptrs are swapped.

• bool unique() const:

If the current object is the only object referring to the memory controlled by the object true is

returned otherwise (including the situation where the object is a 0-pointer) false is returned.

• size_t use_count() const:

The number of objects sharing the memory controlled by the object is returned.

18.4.5 Casting shared pointers

Be cautious when using standard C++ style casts in combination with shared_ptr objects. Consider

the following two classes:

struct Base

{};

struct Derived: public Base

{};

As with unique_ptr, when defining a shared_ptr<Base> to store a newly allocated Derived class

object, the returned Base ∗ may be cast to a Derived ∗ using a static_cast: polymorphism isn’t

required, and when resetting the shared_ptr or when the shared_ptr goes out of scope, no slicing

occurs, and Derived’s destructor is called (cf. section 18.3).

Of course, a shared_ptr<Derived> can easily be defined. Since a Derived object is also a Base ob-

ject, a pointer to Derived can be considered a pointer to Base without using casts, but a static_cast

could be used to force the interpretation of a Derived ∗ to a Base ∗:

Derived d;

static_cast<Base *>(&d);

However, a plain static_cast cannot be used when initializing a shared pointer to a Base using the

get member of a shared pointer to a Derived object. The following code snipped eventually results in

an attempt to delete the dynamically allocated Base object twice:

shared_ptr<Derived> sd{ new Derived };

shared_ptr<Base> sb{ static_cast<Base *>(sd.get()) };

Since sd and sb point at the same object ~Base will be called for the same object when sb goes out

of scope and when sd goes out of scope, resulting in premature termination of the program due to a

double free error.

These errors can be prevented using casts that were specifically designed for being used with

shared_ptrs. These casts use specialized constructors that create a shared_ptr pointing to memory

but shares ownership (i.e., a reference count) with an existing shared_ptr. These special casts are:

• std::static_pointer_cast<Base>(std::shared_ptr<Derived> ptr):

A shared_ptr to a Base class object is returned. The returned shared_ptr refers to the base

class portion of the Derived class to which the shared_ptr<Derived> ptr refers. Example:

shared_ptr<Derived> dp{ new Derived };

shared_ptr<Base> bp = static_pointer_cast<Base>(dp);

• std::const_pointer_cast<Class>(std::shared_ptr<Class const> ptr):

A shared_ptr to a Class class object is returned. The returned shared_ptr refers to a non-

const Class object whereas the ptr argument refers to a Class const object. Example:

shared_ptr<Derived const> cp{ new Derived };

shared_ptr<Derived> ncp = const_pointer_cast<Derived>(cp);



A shared_ptr to a Derived class object is returned. The Base class must have at least one

virtual member function, and the class Derived, inheriting from Base may have overridden

Base’s virtual member(s). The returned shared_ptr refers to a Derived class object if the

dynamic cast from Base ∗ to Derived ∗ succeeded. If the dynamic cast did not succeed the

shared_ptr’s get member returns 0. Example (assume Derived and Derived2 were derived

from Base):

shared_ptr<Base> bp(new Derived());

cout << dynamic_pointer_cast<Derived>(bp).get() << ' ' <<

dynamic_pointer_cast<Derived2>(bp).get() << '\n';

The first get returns a non-0 pointer value, the second get returns 0.

18.4.6 Using ‘shared_ptr’ objects for arrays

Different from the unique_ptr class no specialization exists for the shared_ptr class to handle dy-

namically allocated arrays of objects.

But like unique_ptrs, with shared_ptrs referring to arrays the dereferencing operator makes little

sense while in these circumstances shared_ptr objects would benefit from index operators.

It is not difficult to create a class shared_array offering such facilities. The class template

shared_array, derived from shared_ptr merely should provide an appropriate deleter to make sure

that the array and its elements are properly destroyed. In addition it should define the index operator

and, when applicable should declare the derefencing operators using delete.

Here is an example showing how shared_array can be defined and used:

struct X

{

~X()

{

cout << "destr\n"; // show the object's destruction

}

};

template <typename Type>

class shared_array: public shared_ptr<Type>

{

struct Deleter // Deleter receives the pointer

{ // and calls delete[]

void operator()(Type* ptr)

{

delete[] ptr;

}

};

public:

shared_array(Type *p) // other constructors

: // not shown here

shared_ptr<Type>(p, Deleter())

{}

Type &operator[](size_t idx) // index operators

{

return shared_ptr<Type>::get()[idx];

}

Type const &operator[](size_t idx) const

{

return shared_ptr<Type>::get()[idx];

}



Type const &operator*() const = delete;

Type *operator->() = delete;

Type const *operator->() const = delete;

};

int main()

{

shared_array<X> sp{ new X[3] };

sp[0] = sp[1];

}

18.5 Smart ‘smart pointer’ construction: ‘make_shared’ and

‘make_unique’

Usually a shared_ptr is initialized at definition time with a pointer to a newly allocated object. Here

is an example:

std::shared_ptr<string> sptr{ new std::string{ "hello world" } }

In such statements two memory allocation calls are used: one for the allocation of the std::string

and one used interally by std::shared_ptr’s constructor itself.

The two allocations can be combined into one single allocation (which is also slightly more efficient than

explicitly calling shared_ptr’s constructor) using the make_shared template. The function template

std::make_shared has the following prototype:

template<typename Type, typename ...Args>

std::shared_ptr<Type> std::make_shared(Args ...args);

Before using make_shared the <memory> header file must be included.

This function template allocates an object of type Type, passing args to its constructor (using perfect

forwarding, see section 22.5.2), and returns a shared_ptr initialized with the address of the newly

allocated Type object.

Here is how the above sptr object can be initialized using std::make_shared. Notice the use of auto

which frees us from having to specify sptr’s type explicitly:

auto sptr(std::make_shared<std::string>("hello world"));

After this initialization std::shared_ptr<std::string> sptr has been defined and initialized. It

could be used as follows:

std::cout << *sptr << '\n';

In addition to make_shared the function std::make_unique can be used. It can be used

make_shared but returns a std::unique_ptr rather than a shared_ptr.

18.6 Classes having pointer data members

Classes having pointer data members require special attention. In particular at construction time one

must be careful to prevent wild pointers and/or memory leaks. Consider the following class defining

two pointer data members:



{

istream *d_in;

ostream *d_out;

public:

Filter(char const *in, char const *out);

};

Assume that Filter objects filter information read from ∗d_in and write the filtered information to

∗d_out. Using pointers to streams allows us to have them point at any kind of stream like istreams,

ifstreams, fstreams or istringstreams. The shown constructor could be implemented like this:

Filter::Filter(char const *in, char const *out)

:

d_in(new ifstream{ in }),

d_out(new ofstream{ out })

{

if (!*d_in || !*d_out)

throw "Input and/or output stream not available"s;

}

Of course, the construction could fail. new could throw an exception; the stream constructors could

throw exceptions; or the streams could not be opened in which case an exception is thrown from the

constructor’s body. Using a function try block helps. Note that if d_in’s initialization throws, there’s

nothing to be worried about. The Filter object hasn’t been constructed, its destructor is not called

and processing continues at the point where the thrown exception is caught. But Filter’s destructor

is also not called when d_out’s initialization or the constructor’s if statement throws: no object, and

hence no destructor is called. This may result in memory leaks, as delete isn’t called for d_in and/or

d_out. To prevent this, d_in and d_out must first be initialized to 0 and only then the initialization

can be performed:

Filter::Filter(char const *in, char const *out)

try

:

d_in(0),

d_out(0)

{

d_in = new ifstream{ in };

d_out = new ofstream{ out };

if (!*d_in || !*d_out)

throw "Input and/or output stream not available"s;

}

catch (...)

{

delete d_out;

delete d_in;

}

This quickly gets complicated, though. If Filter harbors yet another data member of a class whose

constructor needs two streams then that data cannot be constructed or it must itself be converted into

a pointer:

Filter::Filter(char const *in, char const *out)

try

:

d_in(0),



d_filterImp(*d_in, *d_out) // won't work

{ ... }

// instead:

Filter::Filter(char const *in, char const *out)

try

:

d_in(0),

d_out(0),

d_filterImp(0)

{

d_in = new ifstream(in);

d_out = new ofstream(out);

d_filterImp = new FilterImp(*d_in, *d_out);

...

}

catch (...)

{

delete d_filterImp;

delete d_out;

delete d_in;

}

Although the latter alternative works, it quickly gets hairy. In situations like these smart pointers

should be used to prevent the hairiness. By defining the stream pointers as (smart pointer) objects they

will, once constructed, properly be destroyed even if the rest of the constructor’s code throws exceptions.

Using a FilterImp and two unique_ptr data members Filter’s setup and its constructor becomes:

class Filter

{

std::unique_ptr<std::ifstream> d_in;

std::unique_ptr<std::ofstream> d_out;

FilterImp d_filterImp;

...

};

Filter::Filter(char const *in, char const *out)

try

:

d_in(new ifstream(in)),

d_out(new ofstream(out)),

d_filterImp(*d_in, *d_out)

{

if (!*d_in || !*d_out)

throw "Input and/or output stream not available"s;

}

We’re back at the original implementation but this time without having to worry about wild pointers

and memory leaks. If one of the member initializers throws the destructors of previously constructed

data members (which are now objects) are always called.

As a rule of thumb: when classes need to define pointer data members they should define those pointer

data members as smart pointers if there’s any chance that their constructors throw exceptions.



18.7 Comparison classes

With the introduction of the spaceship operator (<=>, cf. section 11.6.2) several comparison category

classes were added to the standard namespace.

Comparison classes are required when implementing the spaceship operator, and to use them (or when

declaring and implementing the spachip operator) the <compare> header file must be included.

The weak class types do not support substitutability. Substitutability means that if two objects one

and two are equal (so: one == two is true), then fun(one) == fun(two) is also true. Here fun is

any function that only uses public const members of its argument that return value types (as compared

to pointer types) which also support comparisons (also called comparison-salient state).

The operators of comparison classes expect at least one argument of their own class types. The other

argument may either also be of their own class types or it can be the value 0 (or any value that can be

considered 0, like nullptr_t).

There are five comparison classes, primarily used when implementing spaceship operators:

• weak_equality, used for classes that only support the == and != operators, but not substi-

tutability;

• strong_equality, used for classes that only support the == and != operators, as well as substi-

tutability;

• partial_ordering used for classes that support all comparison operators, do not support sub-

stitutability, and can be used when comparing incomparable arguments (i.e., all comparison oper-

ators return false);

• weak_ordering used for classes that support all comparison operators and that do not support

substitutability;

• strong_orderingused for classes that support all comparison operators as well as substitutabil-

ity;

18.7.1 The class ‘weak_equality’

The class std::weak_equality is used when implementing the spaceship operator for classes that

only support (in)equality comparisons, but not substitutability. The class provides free functions

operator== and operator!= expecting weak_equality arguments (one argument may be 0) and

it defines two static objects:

• weak_equality::equivalent, indicating equality;

• weak_equality::nonequivalent, indicating non-equality;

Note: at the current release of the Gnu C++ compiler (10.0.0) this class is not yet available in the

<compare> header file.

18.7.2 The class ‘strong_equality’

The class std::strong_equality is used when implementing the spaceship operator for classes that

only support (in)equality comparisons as well as substitutability. The class provides free functions

operator== and operator!= expecting strong_equality arguments (one argument may be 0) and

it defines four static objects:

• strong_equality::equal, indicating equality;



• strong_equality::nonequal, indicating non-equality;

• strong_equality::nonequivalent, indicating non-equality;

Note: at the current release of the Gnu C++ compiler (10.0.0) this class is not yet available in the

<compare> header file.

18.7.3 The class ‘partial_ordering’

The class std::partial_ordering is used when implementing the spaceship operator for classes

that support all comparison operators (where one operand may be zero), that do not support substi-

tutability, and whose objects, using the spaceship operator itself, can also be compared to any other

type of object.

The class partial_ordering provides free functions for all comparison operations (==, !=, <,

<=, >, and >=) expecting partial_ordering arguments (one argument may be 0). It also defines

four static objects which can be returned by the spaceship operator:

• partial_ordering::less, returned when the lhs operand of the spaceship operator should be

ordered before the rhs operand;

• partial_ordering::equivalent, indicating equality: there is no ordering preference between

the two operands of the spaceship operator;

• partial_ordering::greater, returned when the lhs operand of the spaceship operator should

be ordered after the rhs operand;

• partial_ordering::unordered, returned when all comparison operators of a class imple-

menting the spaceship operator should return false (so ==, !=, <, <=, >, and >= all return

false).

As an example, consider road taxes. Trucks, cars, and motor cycles have to pay road taxes, but there’s

no road tax for bicycles. For ordering road taxes a class RoadTax may be used, defining the following

spaceship operator (assuming that all types of vehicles are derived from a class Vehicle, and that

Vehicle has a (virtual) member double roadTax() returning the amount of road tax that is due for

the various types of vehicles; the amount is negative if no road tax is required):

partial_ordering RoadTax::operator<=>(Vehicle const &lhs,

Vehicle const &rhs)

{

return

lhs.roadTax() < 0 or rhs.roadTax() < 0 ?

partial_ordering::unordered :

lhs.roadTax() < rhs.roadTax() ? partial_ordering::less :

lhs.roadTax() > rhs.roadTax() ? partial_ordering::greater :

partial_ordering::equivalent;

}

18.7.4 The class ‘weak_ordering’

The class std::weak_ordering is used when implementing the spaceship operator for classes that

support all comparison operators (where one operand may be zero), and that do not support substi-

tutability.

The class weak_ordering differs from the partial_ordering class in that unordered cannot be used

as a comparison result. Like the class partial_ordering it provides free functions for all comparison



may be 0). It also defines three static objects which can be returned by the spaceship operator:

• weak_ordering::less, returned when the lhs operand of the spaceship operator should be or-

dered before the rhs operand;

• weak_ordering::equal, indicating equality: there is no ordering preference between the two

operands of the spaceship operator;

• weak_ordering::greater, returned when the lhs operand of the spaceship operator should be

ordered after the rhs operand;

The example in the previous section can easily adapted to the weak_ordering comparison class: if

the roadTax members of vehicles for which no road tax is due return zero then RoadTax’s spaceship

operator can be implemented this way:

weak_ordering RoadTax::operator<=>(Vehicle const &lhs,

Vehicle const &rhs)

{

return

lhs.roadTax() < rhs.roadTax() ? weak_ordering::less :

lhs.roadTax() > rhs.roadTax() ? weak_ordering::greater :

weak_ordering::equal;

}

18.7.5 The class ‘strong_ordering’

The class std::strong_ordering is used when implementing the spaceship operator for classes that

support all comparison operators (where one operand may be zero), as well as substitutability.

The class strong_ordering provides free functions for all comparison operations (==, !=, <, <=,

>, and >=) expecting partial_ordering arguments (one argument may be 0). It also defines three

static objects which can be returned by the spaceship operator:

• strong_ordering::less, returned when the lhs operand of the spaceship operator should be

ordered before the rhs operand;

• strong_ordering::equal, indicating equality: there is no ordering preference between the two

operands of the spaceship operator;

• strong_ordering::greater, returned when the lhs operand of the spaceship operator should

be ordered after the rhs operand;

An example where the class strong_ordering was used has already been provided in section 11.6.2,

where the spaceship operator itself was introduced.

18.8 Regular Expressions

C++ itself provides facilities for handling regular expressions. Regular expressions were already avail-

able in C++ via its C heritage (as C has always offered functions like regcomp and regexec), but the

dedicated regular expression facilities have a richer interface than the traditional C facilities, and can

be used in code using templates.

Before using the specific C++ implementations of regular expressions the header file <regex> must

be included.



Regular Expressions2, O’Reilly). The reader is referred to these sources for a refresher on the

topic of regular expressions. In essence, regular expressions define a small meta-language recognizing

textual units (like ‘numbers’, ‘identifiers’, etc.). They are extensively used in the context of lexical

scanners (cf. section 24.6.1) when defining the sequence of input characters associated with tokens.

But they are also intensively used in other situations. Programs like sed(1) and grep(1) use regular

expressions to find pieces of text in files having certain characteristics, and a program like perl(1) adds

some ‘sugar’ to the regular expression language, simplifying the construction of regular expressions.

However, though extremely useful, it is also well known that regular expressions tend to be very hard

to read. Some even call the regular expression language a write-only language: while specifying a

regular expression it’s often clear why it’s written in a particular way. But the opposite, understanding

what a regular expression is supposed to represent if you lack the proper context, can be extremely

difficult. That’s why, from the onset and as a rule of thumb, it is stressed that an appropriate comment

should be provided, with each regular expression, as to what it is supposed to match.

In the upcoming sections first a short overview of the regular expression language is provided, which

is then followed by the facilities C++ is currently offering for using regular expressions. These facil-

ities mainly consist of classes helping you to specify regular expression, matching them to text, and

determining which parts of the text (if any) match (parts of) the text being analyzed.

18.8.1 The regular expression mini language

Regular expressions are expressions consisting of elements resembling those of numeric expressions.

Regular expressions consist of basic elements and operators, having various priorities and associa-

tions. Like numeric expressions, parentheses can be used to group elements together to form a unit on

which operators operate. For an extensive discussion the reader is referred to, e.g., section 15.10 of the

ecma-international.org3 page, which describes the characteristics of the regular expressions used

by default by C++’s regex classes.

C++’s default definition of regular expressions distinguishes the following atoms:

• x: the character ‘x’;

• .: any character except for the newline character;

• [xyz]: a character class; in this case, either an ‘x’, a ‘y’, or a ‘z’ matches the regular expression.

See also the paragraph about character classes below;

• [abj-oZ]: a character class containing a range of characters; this regular expression matches

an ‘a’, a ‘b’, any letter from ‘j’ through ‘o’, or a ‘Z’. See also the paragraph about character classes

below;

• [^A-Z]: a negated character class: this regular expression matches any character but those in the

class beyond ^. In this case, any character except for an uppercase letter. See also the paragraph

about character classes below;

• [:predef:]: a predefined set of characters. See below for an overview. When used, it is inter-

preted as an element in a character class. It is therefore always embedded in a set of square

brackets defining the character class (e.g., [[:alnum:]]);

• \X: if X is ‘a’, ‘b’, ‘f ’, ‘n’, ‘r’, ‘t’, or ‘v’, then the ANSI-C interpretation of ‘\x’. Otherwise, a literal ‘X’

(used to escape operators such as ∗);

• (r): the regular expression r. It is used to override precedence (see below), but also to define

r as a marked sub-expression whose matching characters may directly be retrieved from, e.g., a

std::smatch object (cf. section 18.8.3);

• (?:r): the regular expression r. It is used to override precedence (see below), but it is not

regarded as a marked sub-expression;

2http://oreilly.com/catalog/
3http://ecma-international.org/ecma-262/5.1/#sec-15.10



character classes):

• \s: a whitespace character;

• \S: any character but a whitespace character;

• \d: a decimal digit character;

• \D: any character but a decimal digit character;

• \w: an alphanumeric character or an underscore (_) character;

• \W: any character but an alphanumeric character or an underscore (_) character.

Atoms may be concatenated. If r and s are atoms then the regular expression rs matches a target text

if the target text matches r and s, in that order (without any intermediate characters inside the target

text). E.g., the regular expression [ab][cd] matches the target text ac, but not the target text a:c.

Atoms may be combined using operators. Operators bind to the preceding atom. If an operator should

operate on multiple atoms the atoms must be surrounded by parentheses (see the last element in the

previous itemization). To use an operator character as an atom it can be escaped. Eg., ∗ represents an

operator, \∗ the atom character star. Note that character classes do not recognize escape sequences:

[\∗] represents a character class consisting of two characters: a backslash and a star.

The following operators are supported (r and s represent regular expression atoms):

• r∗: zero or more rs;

• r+: one or more rs;

• r?: zero or one rs (that is, an optional r);

• r{m, n}: where 1 <= m <= n: matches ‘r’ at least m, but at most n times;

• r{m,}: where 1 <= m: matches ‘r’ at least m times;

• r{m}: where 1 <= m: matches ‘r’ exactly m times;

• r|s: matches either an ‘r’ or an ‘s’. This operator has a lower priority than any of the multiplica-

tion operators;

• ^r : ^ is a pseudo operator. This expression matches ‘r’, if appearing at the beginning of the

target text. If the ^-character is not the first character of a regular expression it is interpreted as

a literal ^-character;

• r$: $ is a pseudo operator. This expression matches ‘r’, if appearing at the end of the target text.

If the $-character is not the last character of a regular expression it is interpreted as a literal

$-character;

When a regular expression contains marked sub-expressions and multipliers, and the marked

sub-expressions are multiply matched, then the target’s final sub-string matching the marked

sub-expression is reported as the text matching the marked sub-expression. E.g, when using

regex_search (cf. section 18.8.4.3), marked sub-expression (((a|b)+\s?)), and target text a a b,

then a a b is the fully matched text, while b is reported as the sub-string matching the first and second

marked sub-expressions.



Inside a character class all regular expression operators lose their special meanings, except for the

special atoms \s, \S, \d, \D, \w, and \W; the character range operator -; the end of character

class operator ]; and, at the beginning of the character class, ^. Except in combination with the special

atoms the escape character is interpreted as a literal backslash character (to define a character class

containing a backslash and a d simply use [d\]).

To add a closing bracket to a character class use [] immediately following the initial open-bracket, or

start with [^] for a negated character class not containing the closing bracket. Minus characters are

used to define character ranges (e.g., [a-d], defining [abcd]) (be advised that the actual range may

depend on the locale being used). To add a literal minus character to a character class put it at the very

beginning ([-, or [^-) or at the very end (-]) of a character class.

Once a character class has started, all subsequent characters are added to the class’s set of characters,

until the final closing bracket (]) has been reached.

In addition to characters and ranges of characters, character classes may also contain predefined sets

of character. They are:

[:alnum:] [:alpha:] [:blank:]

[:cntrl:] [:digit:] [:graph:]

[:lower:] [:print:] [:punct:]

[:space:] [:upper:] [:xdigit:]

These predefined sets designate sets of characters equivalent to the corresponding standard C isXXX

function. For example, [:alnum:] defines all characters for which isalnum(3) returns true.

18.8.2 Defining regular expressions: std::regex

Before using the (w)regex class presented in this section the <regex> header file must be included.

The types std::regex and std::wregex define regular expression patterns. They define, respectively

the types basic_regex<char> and basic_regex<wchar_t> types. Below, the class regex is used,

but in the examples wregex could also have been used.

Regular expression facilities were, to a large extent, implemented through templates, using, e.g., the

basic_string<char> type (which is equal to std::string). Likewise, generic types like OutputIter

(output iterator) and BidirConstIter (bidirectional const iterator) are used with several functions. Such

functions are function templates. Function templates determine the actual types from the arguments

that are provided at call-time.

These are the steps that are commonly taken when using regular expressions:

• First, a regular expression is defined. This involves defining or modifying a regex object.

• Then the regular expression is provided with a target text, which may result in sections of the

target text matching the regular expression.

• The sections of the target text matching (or not matching) the regular expression are retrieved to

be processed elsewhere, or:

• The sections of the target text matching (or not matching) the regular expression are directly

modified by existing regular expression facilities, after which the modified target text may be

processed elsewhere.

The way regex objects handle regular expressions can be configured using a bit_or combined set

of std::regex_constants values, defining a regex::flag_type value. These regex_constants

are:



awk(1)’s (POSIX) regular expression grammar is used to specify regular exressions (e.g., regu-

lar expressions are delimited by /-characters, like /\w+/; for further details and for details of

other regular expression grammars the reader should consult the man-pages of the respective

programs);

• std::regex_constants::basic:

the basic POSIX regular expression grammar is used to specify regular expressions;

• std::regex_constants::collate:

the character range operator (-) used in character classes defines a locale sensitive range (e.g.,

[a-k]);

• std::regex_constants::ECMAScript:

this flag_type is used by default by regex constructors. The regular expression uses the Modi-

fied ECMAScript regular expression grammar;

• std::regex_constants::egrep:

egrep(1)’s (POSIX) regular expression grammar is used to specify regular expressions. This is

the same grammar as used by regex_constants::extended, with the addition of the newline

character (’\n’) as an alternative for the ’|’-operator;

• std::regex_constants::extended:

the extended POSIX regular expression grammar is used to specify regular expressions;

• std::regex_constants::grep:

grep(1)’s (POSIX) regular expression grammar is used to specify regular expressions. This is the

same grammar as used by regex_constants::basic, with the addition of the newline charac-

ter (’\n’) as an alternative for the ’|’-operator;

• std::regex_constants::icase:

letter casing in the target string is ignored. E.g., the regular expression A matches a and A;

• std::regex_constants::nosubs:

When performing matches, all sub-expressions ((expr)) are treated as non-marked (?:expr);

• std::regex_constants::optimize:

optimizes the speed of matching regular expressions, at the cost of slowing down the construction

of the regular expression somewhat. If the same regular expression object is frequently used then

this flag may substantially improve the speed of matching target texts;

Constructors

The default, move and copy constructors are available. Actually, the default constructor defines one

parameter of type regex::flag_type, for which the value regex_constants::ECMAScript is used

by default.

• regex():

the default constructor defines a regex object not containing a regular expression;

• explicit regex(char const ∗pattern):

defines a regex object containing the regular expression found at pattern;

• regex(char const ∗pattern, std::size_t count):

defines a regex object containing the regular expression found at the first count characters of

pattern;

• explicit regex(std::string const &pattern):

defines a regex object containing the regular expression found at pattern. This constructor is

defined as a member template, accepting a basic_string-type argument which may also use

non-standard character traits and allocators;



defines a regex object containing the regular expression found at the (forward) iterator range

[first, last). This constructor is defined as a member template, accepting any forward itera-

tor type (e.g., plain char pointers) which can be used to define the regular expression’s pattern;

• regex(std::initializer_list<Char> init):

defines a regex object containing the regular expression from the characters in the initializer list

init.

Here are some examples:

std::regex re("\\w+"); // matches a sequence of alpha-numeric

// and/or underscore characters

std::regex re{'\\', 'w', '+'} ; // idem

std::regex re(R"(\w+xxx")", 3); // idem

Member functions

• regex &operator=(RHS):

The copy and move assignment operators are available. Otherwise, RHS may be:

– an NTBS (of type char const ∗);

– a std::string const & (or any compatible std::basic_string);

– a std::initializer_list<char>;

• regex &assign(RHS):

This member accepts the same arguments as regex’s constructors, including the (optional)

regex_constants values;

• regex::flag_type flag() const:

Returns the regex_constants flags that are active for the current regex object. E.g.,

int main()

{

regex re;

regex::flag_type flags = re.flags();

cout << // displays: 16 0 0

(re.flags() & regex_constants::ECMAScript) << ' ' <<

(re.flags() & regex_constants::icase) << ' ' <<

(re.flags() & regex_constants::awk) << ' ' << '\n';

}

Note that when a combination of flag_type values is specified at construction-time that only

those flags that were specified are set. E.g., when re(regex_constants::icase) would have

been specified the cout statement would have shown 0 1 0. It’s also possible to specify con-

flicting combinations of flag-values like regex_constants::awk | regex_constants::grep.

The construction of such regex objects succeeds, but should be avoided.

• locale_type get_loc() const:

Returns the locale that is associated with the current regex object;

• locale_type imbue(locale_type locale):

Replaces the regex object’s current locale setting with locale, returning the replaced locale;

• unsigned mark_count() const:

The number of marked sub-expressions in the regex objext is returned. E.g.,

int main()



regex re("(\\w+)([[:alpha:]]+)");

cout << re.mark_count() << '\n'; // displays: 2

}

• void swap(regex &other) noexcept:

Swaps the current regex object with other. Also available as a free function: void swap(regex

&lhs, regex &rhs), swapping lhs and rhs.

18.8.3 Retrieving matches: std::match_results

Once a regex object is available, it can be used to match some target text against the regular expres-

sion. To match a target text against a regular expression the following functions, described in the next

section (18.8.4), are available:

• regex_match merely matches a target text against a regular expression, informing the caller

whether a match was found or not;

• regex_search also matches a target text against a regular expression, but allows retrieval of

matches of marked sub-expressions (i.e., parenthesized regular expressions);

• regex_replace matches a target text against a regular expression, and replaces pieces of

matched sections of the target text by another text.

These functions must be provided with a target text and a regex object (which is not modified by

these functions). Usually another argument, a std::match_results object is also passed to these

functions, to contain the results of the regular expression matching procedure.

Before using the match_results class the <regex> header file must be included.

Examples of using match_results objects are provided in section 18.8.4. This and the next section

are primarily for referential purposes.

Various specializations of the class match_results exist. The specialization that is used should match

the specializations of the used regex class. E.g., if the regular expression was specified as a char

const ∗ the match_results specialization should also operate on char const ∗ values. The various

specializations of match_results have been given names that can easily be remembered, so selecting

the appropriate specialization is simple.

The class match_results has the following specializations:

• cmatch:

defines match_results<char const ∗>, using a char const ∗ type of iterator. It should be

used with a regex(char const ∗) regular expression specification;

• wcmatch:

defines match_results<wchar_ const ∗>, using a wchar_t const ∗ type of iterator. It

should be used with a regex(wchar_t const ∗) regular expression specification;

• smatch:

defines match_results<std::string::const_iterator>, using a

std::string::const_iterator type of iterator. It should be used with a

regex(std::string const &) regular expression specification;

• wsmatch:

defines match_results<std::wstring::const_iterator>, using a

std::wstring::const_iterator type of iterator. It should be used with a regex(wstring

const &) regular expression specification.



The default, copy, and move constructors are available. The default constructor defines an Allocator

const & parameter, which by default is initialized to the default allocator. Normally, objects of

the class match_results receive their match-related information by passing them to the above-

mentioned functions, like regex_match. When returning from these functions members of the class

match_results can be used to retrieve specific results of the matching process.

Member functions

• match_results &operator=:

The copy and move assignment operators are available;

• std::string const &operator[](size_t idx) const:

Returns a (const) reference to sub-match idx. With idx value 0 a reference to the full match is

returned. If idx >= size() (see below) a reference to an empty sub-range of the target string is

returned. The behavior of this member is undefined if the member ready() (see below) returns

false;

• Iterator begin() const:

Returns an iterator to the first sub-match. Iterator is a const-iterator for const

match_results objects;

• Iterator cegin() const:

Returns an iterator to the first sub-match. Iterator is a const-iterator;

• Iterator cend() const:

Returns an iterator pointing beyond the last sub-match. Iterator is a const-iterator;

• Iterator end() const:

Returns an iterator pointing beyond the last sub-match. Iterator is a const-iterator for const

match_results objects;

• ReturnType format(Parameters) const:

As this member requires a fairly extensive description, it would break the flow of the current

overview. This member is used in combination with the regex_replace function, and it is there-

fore covered in detail in that function’s section (18.8.4.5);

• allocator_type get_allocator() const:

Returns the object’s allocator;

• bool empty() const:

Returns true if the match_results object contains no matches (which is also returned after

merely using the default constructor). Otherwise it returns false;

• int length(size_t idx = 0) const:

Returns the length of sub-match idx. By default the length of the full match is returned. If idx

>= size() (see below) 0 is returned;

• size_type max_size() const:

Returns the maximum number of sub-matches that can be contained in a match_results object.

This is an implementation dependent constant value;

• int position(size_t idx = 0) const:

Returns the offset in the target text of the first character of sub-match idx. By default the position

of the first character of the full match is returned. If idx >= size() (see below) -1 is returned;

• std::string const &prefix() const:

Returns a (const) reference to a sub-string of the target text that ends at the first character of the

full match;

• bool ready() const:

No match results are available from a default constructed match_results object. It receives its

match results from one of the mentioned matching functions. Returns true once match results

are available, and false otherwise.



Returns the number of sub-matches. E.g., with a regular expression (abc)|(def) and target

defcon three submatches are reported: the total match (def); the empty text for (abc); and def

for the (def) marked sub-expression.

Note: when multipliers are used only the last match is counted and reported. E.g., for the pattern

(a|b)+ and target aaab two sub-matches are reported: the total match aaab, and the last match

(b);

• std::string str(size_t idx = 0) const:

Returns the characters defining sub-match idx. By default this is the full match. If idx >=

size() (see below) an empty string returned;

• std::string const &suffix() const:

Returns a (const) reference to a sub-string of the target text that starts beyond the last character

of the full match;

• void swap(match_results &other) noexcept:

Swaps the current match_results object with other. Also available as a free function: void

swap(match_results &lhs, match_results &rhs), swapping lhs and rhs.

18.8.4 Regular expression matching functions

Before using the functions presented in this section the <regex> header file must be included.

There are three major families of functions that can be used to match a target text against a regular

expression. Each of these functions, as well as the match_results::format member, has a final

std::regex_constants::match_flag_type parameter (see the next section), which is given the

default value regex_constants::match_defaultwhich can be used to fine-tune the way the regular

expression and the matching process is being used. This final parameter is not explicitly mentioned

with the regular expression matching functions or with the format member. The three families of

functions are:

• bool std::regex_match(Parameters):

This family of functions is used to match a regular expression against a target text. Only if the

regular expression matches the full target text true is returned; otherwise false is returned.

Refer to section 18.8.4.2 for an overview of the available overloaded regex_match functions;

• bool std::regex_search(Parameters):

This family of functions is also used to match a regular expression against a target text. This

function returns true once the regular expression matches a sub-string of the target text; other-

wise false is returned. See below for an overview of the available overloaded regex_search

functions;

• ReturnType std::regex_replace(Parameters):

This family of functions is used to produce modified texts, using the characters of a target string,

a regex object and a format string. This member closely resembles the functionality of the

match_results::format member discussed in section 18.8.4.4.

The match_results::format member can be used after regex_replace and is discussed after cov-

ering regex_replace (section 18.8.4.4).

18.8.4.1 The std::regex_constants::match_flag_type flags

All overloaded format members and all regular expression matching functions accept a final

regex_constants::match_flag_type argument, which is a bit-masked type, for which the bit_or

operator can be used. All format members by default specify the argument match_default.



the character sequence being matched).

• format_default (not a bit-mask value, but a default value which is equal to 0). With just this

specification ECMAScript rules are used to construct strings in std::regex_replace;

• format_first_only: std::regex_replace only replaces the first match;

• format_no_copy: non-matching strings are not passed to the output by std::regex_replace;

• format_sed: POSIX sed(1) rules are used to construct strings in std::regex_replace;

• match_any: if multiple matches are possible, then any match is an acceptable result;

• match_continuous: sub-sequences are only matching if they start at first;

• match_not_bol: the first character in [first, last) is treated as an ordinary character: ^

does not match [first, first);

• match_not_bow: \b does not match [first, first);

• match_default (not a bit-mask value, but equal to 0): the default value of the final argument

that’s passed to the regular expression matching functions and match_results::format mem-

ber. ECMAScript rules are used to construct strings in std::regex_replace;

• match_not_eol: the last character in [first, last) is treated as an ordinary character: $

does not match [last,last);

• match_not_eow: \b does not match [last, last);

• match_not_null: empty sequences are not considered matches;

• match_prev_avail: +NOTRANS(-{}-{})first refers to a valid character position. When spec-

ified match_not_bol and match_not_bow are ignored;

18.8.4.2 Matching full texts: std::regex_match

The regular expression matching function std::regex_match returns true if the regular expres-

sion defined in its provided regex argument fully matches the provided target text. This means that

match_results::prefix and match_results::suffix must return empty strings. But defining

sub-expressions is OK.

The following overloaded variants of this function are available:

• bool regex_match(BidirConstIter first, BidirConstIter last,

std::match_results &results, std::regex const &re):

BidirConstIter is a bidirectional const iterator. The range [first, last) defines the target

text. The match results are returned in results. The types of the iterators must match the type

of the match_results that’s used. E.g., a cmatch should be used if the iterators are of char

const ∗ types, and a smatch should be used if the iterators are of string::const_iterator

types. Similar correspondence requirements hold true for the other overloaded versions of this

function;

• bool regex_match(BidirConstIter first, BidirConstIter last, std::regex

const &re):

this function behaves like the previous function, but does not return the results of the matching

process in a match_results object;

• bool regex_match(char const ∗target, std::match_results &results,

std::regex const &re):

this function behaves like the first overloaded variant, using the characters in target as its

target text;



∗

this function behaves like the previous function but does not return the match results;

• bool regex_match(std::string const &target, std::match_results &results,

std::regex const &re):

this function behaves like the first overloaded variant, using the characters in target as its

target text;

• bool regex_match(std::string const &str, std::regex const &re):

this function behaves like the previous function but does not return the match results;

• bool regex_match(std::string const &&, std::match_results &, std::regex &)

= delete (the regex_match function does not accept temporary string objects as target

strings, as this would result in invalid string iterators in the match_result argument.)

Here is a small example: the regular expression matches the matched text (provided by argv[1]) if

it starts with 5 digits and then merely contains letters ([[:alpha:]]). The digits can be retrieved as

sub-expression 1:

#include <iostream>

#include <regex>

using namespace std;

int main(int argc, char const **argv)

{

regex re("(\\d{5})[[:alpha:]]+");

cmatch results;

if (not regex_match(argv[1], results, re))

cout << "No match\n";

else

cout << "size: " << results.size() << ": " <<

results.str(1) << " -- " << results.str() << '\n';

}

18.8.4.3 Partially matching text: std::regex_search

Different from regex_match the regular expression matching function std::regex_search returns

true if the regular expression defined in its regex argument partially matches the target text.

The following overloaded variants of this function are available:

• bool regex_search(BidirConstIter first, BidirConstIter last,

std::match_results &results, std::regex const &re):

BidirConstIter is a bidirectional const iterator. The range [first, last) defines the target

text. The match results are returned in results. The types of the iterators must match the type

of the match_results that’s used. E.g., a cmatch should be used if the iterators are of char

const ∗ types, and a smatch should be used if the iterators are of string::const_iterator

types. Similar correspondence requirements hold true for the other overloaded versions of this

function;

• bool regex_search(BidirConstIter first, BidirConstIter last, std::regex

const &re):

this function behaves like the previous function, but does not return the results of the matching

process in a match_results object;



∗

std::regex const &re):

this function behaves like the first overloaded variant, using the characters in target as its

target text;

• bool regex_search(char const ∗str, std::regex const &re):

this function behaves like the previous function but does not return the match results;

• bool regex_search(std::string const &target, std::match_results &results,

std::regex const &re):

this function behaves like the first overloaded variant, using the characters in target as its

target text;

• bool regex_search(std::string const &str, std::regex const &re):

this function behaves like the previous function but does not return the match results;

• bool regex_search(std::string const &&, std::match_results &, std::regex

&) = delete:

the regex_search function does not accept temporary string objects as target strings, as this

would result in invalid string iterators in the match_result argument.

The following example illustrates how regex_search could be used:

1: #include <iostream>

2: #include <string>

3: #include <regex>

4:

5: using namespace std;

6:

7: int main()

8: {

9: while (true)

10: {

11: cout << "Enter a pattern or plain Enter to stop: ";

12:

13: string pattern;

14: if (not getline(cin, pattern) or pattern.empty())

15: break;

16:

17: regex re(pattern);

18: while (true)

19: {

20: cout << "Enter a target text for `" << pattern << "'\n"

21: "(plain Enter for the next pattern): ";

22:

23: string text;

24: if (not getline(cin, text) or text.empty())

25: break;

26:

27: smatch results;

28: if (not regex_search(text, results, re))

29: cout << "No match\n";

30: else

31: {

32: cout << "Prefix: " << results.prefix() << "\n"

33: "Match: " << results.str() << "\n"

34: "Suffix: " << results.suffix() << "\n";

35: for (size_t idx = 1; idx != results.size(); ++idx)

36: cout << "Match " << idx << " at offset " <<

37: results.position(idx) << ": " <<



39: }

40: }

41: }

42: }

18.8.4.4 The member std::match:_results::format

The match_results::formatformat member is a rather complex member function of the class

match_results, which can be used to modify text which was previously matched against a regular

expression, e.g., using the function regex_search. Because of its complexity and because the function-

ality of another regular expression processing function (regex_replace) offers similar functionality it

is discussed at this point in the C++ Annotations, just before discussing the regex_replace function.

The format member operates on (sub-)matches contained in a match_results object, using a format

string, and producing text in which format specifiers (like $&) are replaced by matching sections of

the originally provided target text. In addition, the format member recognizes all standard C escape

sequences (like \n). The format member is used to create text that is modified with respect to the

original target text.

As a preliminary illustration: if results is a match_results object and match[0] (the fully matched

text) equals ‘hello world’, then calling format with the format string this is [$&] produces the

text this is [hello world]. Note the specification $& in this format string: this is an example of a

format specifier. Here is an overview of all supported format specifiers:

• $‘: corresponds to the text returned by the prefix member: all characters in the original target

text up to the first character of the fully matched text;

• $&: corresponds to the fully matched text (i.e., the text returned by the match_results::str

member);

• $n: (where n is an integral natural number): corresponds to the text returned bu

operator[](n);

• $’: corresponds to the text returned by the suffix member: all characters in the original target

string beyond the last character of the fully matched text;

• $$: corresponds to the single $ character.

Four overloaded versions of the format members are available. All overloaded versions de-

fine a final regex_constants::match_flag_type parameter, which is by default initialized to

match_default. This final parameter is not explicitly mentioned in the following coverage of the

format members.

To further illustrate the way the format members can be used it is assumed that the following code

has been executed:

1: regex re("([[:alpha:]]+)\\s+(\\d+)"); // letters blanks digits

2:

3: smatch results;

4: string target("this value 1024 is interesting");

5:

6: if (not regex_search(target, results, re))

7: return 1;

After calling regex_search (line 6) the results of the regular expression matching process are avail-

able in the match_results results object that is defined in line 3.



written. These overloaded members return the final output iterator, pointing just beyond the character

that was last written.

• OutputIter format(OutputIter out, char const ∗first, char const ∗last)

const:

the characters in the range [first, last) are applied to the sub-expressions stored in the

match_results object, and the resulting string is inserted at out. An illustration is provided

with the next overloaded version;

• OutputIter format(OutputIter out, std::string const &fmt) const:

the content of fmt is applied to the sub-expressions stored in the match_results object, and the

resulting string is inserted at out. The next line of code inserts the value 1024 into cout (note

that fmt must be a std::string, hence the explicit use of the string constructor):

results.format(ostream_iterator<char>(cout, ""), "$2"s);

The remaining two overloaded format members expect a std::string or an NTBS defining the for-

mat string. Both members return a std::string containing the formatted text:

• std::string format(std::string const &fmt) const

• std::string format(char const ∗fmt) const

The next example shows how a string can be obtained in which the order of the first and sec-

ond marked sub-expressions contained in the previously obtained match_results object have been

swapped:

string reverse(results.format("$2 and $1"));

18.8.4.5 Modifying target strings: std::regex_replace

The family of std::regex_replace functions uses regular expressions to perform substitu-

tion on sequences of characters. Their functionality closely resembles the functionality of the

match_results::format member discussed in the previous section. The following overloaded vari-

ants are available:

• OutputIt regex_replace(OutputIter out, BidirConstIter first,

BidirConstIter last, std::regex const &re, std::string const &fmt):

OutputIter is an output iterator; BidirConstIter a bidirectional const iterator.

The function returns the possibly modified text in an iterator range [out, retvalue), where

out is the output iterator passed as the first argument to regex_replace, and retvalue is the

output iterator returned by regex_replace.

The function matches the text at the range [first, last) against the regular expression stored

in re. If the regular expression does not match the target text in the range [first, last) then

the target text is literally copied to out. If the regular expression does match the target text then

– first, the match result’s prefix is copied to out. The prefix equals the initial characters of the

target text up to the very first character of the fully matched text.

– next, the matched text is replaced by the content of the fmt format string, in which the

format specifiers can be used that were described in the previous section (section 18.8.4.4),

and the replaced text is copied to out;

– finally, the match result’s suffix is copied to out. The suffix equals all characters of the target

text beyond the last character of the matched text.



1: regex re("([[:alpha:]]+)\\s+(\\d+)"); // letters blanks digits

2:

3: string target("this value 1024 is interesting");

4:

5: regex_replace(ostream_iterator<char>(cout, ""), target.begin(),

6: target.end(), re, "$2"s);

In line 5 regex_replace is called. Its format string merely contains $2, matching 1024 in the

target text. The prefix ends at the word value, the suffix starts beyond 1024, so the statement in

line 5 inserts the text

this 1024 is interesting

into the standard output stream.

• OutputIt regex_replace( OutputIter out, BidirConstIter first,

BidirConstIter last, std::regex const &re, char const ∗fmt):

This variant behaves like the first variant. When using, in the above example, "$2" instead of

"$2"s, then this variant would have been used;

• std::string regex_replace(std::string const &str, std::regex const &re,

std::string const &fmt):

This variant returns a std::string containing the modified text, and expects a std::string

containing the target text. Other than that, it behaves like the first variant. To use this

overloaded variant in the above example the statement in line 5 could have been replaced by the

following statement, initializing the string result:

string result(regex_replace(target, re, "$2"s));

• std::string regex_replace(std::string const &str, std::regex const &re,

char const ∗fmt):

After changing, in the above statement, "$2"s into "$2", this variant is used, behaving exactly

like the previous variant;

• std::string regex_replace(char const ∗str, std::regex const &re,

std::string const &fmt):

This variant uses a char const ∗ to point to the target text, and behaves exactly like the

previous but one variant;

• std::string regex_replace(char const ∗str, std::regex const &re, char

const ∗fmt):

This variant also uses a char const ∗ to point to the target text, and also behaves exactly like

the previous but one variant;

18.9 Randomization and Statistical Distributions

Before the statistical distributions and accompanying random number generators can be used the

<random> header file must be included.

The STL offers several standard mathematical (statistical) distributions. These distributions allow

programmers to obtain randomly selected values from a selected distribution.

These statistical distributions need to be provided with a random number generating object. Several of

such random number generating objects are provided, extending the traditional rand function that is

part of the C standard library.

These random number generating objects produce pseudo-random numbers, which are then processed

by the statistical distribution to obtain values that are randomly selected from the specified distribu-

tion.



distributions allow us to obtain a random number from these distributions, but probability density

functions or cumulative distribution functions are currently not provided by the STL. These functions

(distributions as well as the density and the cumulative distribution functions) are, however, available

in other libraries, like the boost math library4 (specifically:

http://www.boost.org/doc/libs/1_44_0/libs/math/doc/sf_and_dist/html/index.html).

It is beyond the scope of the C++ Annotations to discuss the mathematical characteristics of the various

statistical distributions. The interested reader is referred to the pertinent mathematical textbooks

(like Stuart and Ord’s (2009) Kendall’s Advanced Theory of Statistics, Wiley) or to web-locations like

http://en.wikipedia.org/wiki/Bernoulli_distribution.

18.9.1 Random Number Generators

The following generators are available:

Class template Integral/Floating point Quality Speed Size of state

linear_congruential_engine Integral Medium Medium 1

subtract_with_carry_engine Both Medium Fast 25

mersenne_twister_engine Integral Good Fast 624

The linear_congruential_engine random number generator computes

valuei+1 = (+a ∗ valuei + c+) % m

It expects template arguments for, respectively, the data type to contain the generated random values;

the multiplier a; the additive constant c; and the modulo value m. Example:

linear_congruential_engine<int, 10, 3, 13> lincon;

The linear_congruential generator may be seeded by providing its constructor with a seeding-

argument. E.g., lincon(time(0)).

The subtract_with_carry_engine random number generator computes

valuei = (valuei−s - valuei−r - carryi−1) % m

It expects template arguments for, respectively, the data type to contain the generated random values;

the modulo value m; and the subtractive constants s and r. Example:

subtract_with_carry_engine<int, 13, 3, 13> subcar;

The subtract_with_carry_engine generator may be seeded by providing its constructor with a

seeding-argument. E.g., subcar(time(0)).

The predefined mersenne_twister_engine mt19937 (predefined using a typedef defined by the

<random> header file) is used in the examples below. It can be constructed using ‘mt19937 mt’ or

it can be seeded by providing its constructor with an argument (e.g., mt19937 mt(time(0))). Its

function call operator returns a random unsigned integral value.

Other ways to initialize the mersenne_twister_engine are beyond the scope of the C++ Annotations

(but see Lewis et al.5 (1969)).

4http://www.boost.org/
5Lewis, P.A.W., Goodman, A.S., and Miller, J.M. (1969), A pseudorandom number generator for the System/360, IBM Systems

Journal, 8, 136-146.



long values or generator functions (as in lc.seed(time(0)), lc.seed(mt)).

The random number generators offer members min and max returning, respectively, their minimum

and maximum values (inclusive). If a reduced range is required the generators can be nested in a

function or class adapting the range.

Here’s a small example showing how the mersenne_twister_engine mt19937 can be used to gen-

erate random numbers:

#include <iostream>

#include <ctime>

#include <random>

using namespace std;

// arguments: 1st: number of random numbers to generate

// 2nd: lowest positve random number,

// 3rd: highest positive random number

int main(int argc, char **argv)

{

mt19937 mt( time(0) ); // seed with the current time in secs.

for (

size_t nGenerate = stoul(argv[1]), lowest = stoul(argv[2]),

mod = stoul(argv[3]) + 1 - lowest;

nGenerate--;

)

cout << (lowest + mt() % mod) << ' ';

cout << '\n';

}

18.9.2 Statistical distributions

In the following sections the various statistical distributions that are supported by C++ are covered.

The notation RNG is used to indicate a Random Number Generator and URNG is used to indicate a

Uniform Random Number Generator. With each distribution a struct param_type is defined con-

taining the distribution’s parameters. The organization of these param_type structs depends on (and

is described at) the actual distribution.

All distributions offer the following members (result_type refers to the type name of the values returned

by the distribution):

• result_type max() const

returns the distribution’s least upper bound;

• result_type min() const

returns the distribution’s greatest lower bound;

• param_type param() const

returns the object’s param_type struct;

• void param(const param_type &param) redefines the parameters of the distribution;

• void reset(): clears all of its cached values;

All distributions support the following operators (distribution-name should be replaced by the name of

the intended distribution, e.g., normal_distribution):



returns the next random value from the statistical distribution, with the function object urng

returning the next random number selected from a uniform random distribution;

• template<typename URNG> result_type operator()

(URNG &urng, param_type &param)

returns the next random value from the statistical distribution initialized with the parameters

provided by the param struct. The function object urng returns the next random number selected

from a uniform random distribution;

• std::istream &operator>>(std::istream &in, distribution-name &object): The

parameters of the distribution are extracted from an std::istream;

• std::ostream &operator<<(std::ostream &out, distribution-name const &bd):

The parameters of the distribution are inserted into an std::ostream

The following example shows how the distributions can be used. Replacing the name of the distribution

(normal_distribution) by another distribution’s name is all that is required to switch distributions.

All distributions have parameters, like the mean and standard deviation of the normal distribution,

and all parameters have default values. The names of the parameters vary over distributions and are

mentioned below at the individual distributions. Distributions offer members returning or setting their

parameters.

Most distributions are defined as class templates, requiring the specification of a data type that is used

for the function’s return type. If so, an empty template parameter type specification (<>) will get you

the default type. The default types are either double (for real valued return types) or int (for integral

valued return types). The template parameter type specification must be omitted with distributions

that are not defined as template classes.

Here is an example showing the use of the statistical distributions, applied to the normal distribution:

#include <iostream>

#include <ctime>

#include <random>

using namespace std;

int main()

{

std::mt19937 engine(time(0));

std::normal_distribution<> dist;

for (size_t idx = 0; idx < 10; ++idx)

std::cout << "a random value: " << dist(engine) << "\n";

cout << '\n' <<

dist.min() << " " << dist.max() << '\n';

}

18.9.2.1 Bernoulli distribution

The bernoulli_distribution is used to generate logical truth (boolean) values with a certain prob-

ability p. It is equal to a binomial distribution for one experiment (cf 18.9.2.2).

The bernoulli distribution is not defined as a class template.

Defined types:

typedef bool result_type;

struct param_type



explicit param_type(double prob = 0.5);

double p() const; // returns prob

};

Constructor and members:

• bernoulli_distribution(double prob = 0.5)

constructs a bernoulli distribution with probability prob of returning true;

• double p() const

returns prob;

• result_type min() const

returns false;

• result_type max() const

returns true;

18.9.2.2 Binomial distribution

The binomial_distribution<IntType = int> is used to determine the probability of the number

of successes in a sequence of n independent success/failure experiments, each of which yields success

with probability p.

The template type parameter IntType defines the type of the generated random value, which must be

an integral type.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(IntType trials, double prob = 0.5);

IntType t() const; // returns trials

double p() const; // returns prob

};

Constructors and members and example:

• binomial_distribution<>(IntType trials = 1, double prob = 0.5) constructs a bi-

nomial distribution for trials experiments, each having probability prob of success.

• binomial_distribution<>(param_type const &param) constructs a binomial distribu-

tion according to the values stored in the param struct.

• IntType t() const

returns trials;

• double p() const

returns prob;

• result_type min() const

returns 0;

• result_type max() const

returns trials;



The cauchy_distribution<RealType = double> looks similar to a normal distribution. But

cauchy distributions have heavier tails. When studying hypothesis tests that assume normality, seeing

how the tests perform on data from a Cauchy distribution is a good indicator of how sensitive the tests

are to heavy-tail departures from normality.

The mean and standard deviation of the Cauchy distribution are undefined.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = RealType(0),

RealType b = RealType(1));

double a() const;

double b() const;

};

Constructors and members:

• cauchy_distribution<>(RealType a = RealType(0), RealType b = RealType(1))

constructs a cauchy distribution with specified a and b parameters.

• cauchy_distribution<>(param_type const &param) constructs a cauchy distribution ac-

cording to the values stored in the param struct.

• RealType a() const

returns the distribution’s a parameter;

• RealType b() const

returns the distribution’s b parameter;

• result_type min() const

returns the smallest positive result_type value;

• result_type max() const

returns the maximum value of result_type;

18.9.2.4 Chi-squared distribution

The chi_squared_distribution<RealType = double> with n degrees of freedom is the distribu-

tion of a sum of the squares of n independent standard normal random variables.

Note that even though the distribution’s parameter n usually is an integral value, it doesn’t have to

be integral, as the chi_squared distribution is defined in terms of functions (exp and Gamma) that take

real arguments (see, e.g., the formula shown in the <bits/random.h> header file, provided with the

GNU g++ compiler distribution).

The chi-squared distribution is used, e.g., when testing the goodness of fit of an observed distribution

to a theoretical one.

Defined types:

typedef RealType result_type;



{

explicit param_type(RealType n = RealType(1));

RealType n() const;

};

Constructors and members:

• chi_squared_distribution<>(RealType n = 1) constructs a chi_squared distribution

with specified number of degrees of freedom.

• chi_squared_distribution<>(param_type const &param) constructs a chi_squared dis-

tribution according to the value stored in the param struct;

• IntType n() const

returns the distribution’s degrees of freedom;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.5 Extreme value distribution

The extreme_value_distribution<RealType = double> is related to the Weibull distribution

and is used in statistical models where the variable of interest is the minimum of many random factors,

all of which can take positive or negative values.

It has two parameters: a location parameter a and scale parameter b. See also

http://www.itl.nist.gov/div898/handbook/apr/section1/apr163.htm

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = RealType(0),

RealType b = RealType(1));

RealType a() const; // the location parameter

RealType b() const; // the scale parameter

};

Constructors and members:

• extreme_value_distribution<>(RealType a = 0, RealType b = 1) constructs an ex-

treme value distribution with specified a and b parameters;

• extreme_value_distribution<>(param_type const &param) constructs an extreme

value distribution according to the values stored in the param struct.

• RealType a() const

returns the distribution’s location parameter;

• RealType stddev() const

returns the distribution’s scale parameter;



returns the smallest positive value of result_type;

• result_type max() const

returns the maximum value of result_type;

18.9.2.6 Exponential distribution

The exponential_distribution<RealType = double> is used to describe the lengths between

events that can be modeled with a homogeneous Poisson process. It can be interpreted as the continu-

ous form of the geometric distribution.

Its parameter prob defines the distribution’s lambda parameter, called its rate parameter. Its expected

value and standard deviation are both 1 / lambda.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType lambda = RealType(1));

RealType lambda() const;

};

Constructors and members:

• exponential_distribution<>(RealType lambda = 1) constructs an exponential distri-

bution with specified lambda parameter.

• exponential_distribution<>(param_type const &param) constructs an exponential

distribution according to the value stored in the param struct.

• RealType lambda() const

returns the distribution’s lambda parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.7 Fisher F distribution

The fisher_f_distribution<RealType = double> is intensively used in statistical methods like

the Analysis of Variance. It is the distribution resulting from dividing two Chi-squared distributions.

It is characterized by two parameters, being the degrees of freedom of the two chi-squared distributions.

Note that even though the distribution’s parameter n usually is an integral value, it doesn’t have to

be integral, as the Fisher F distribution is constructed from Chi-squared distributions that accept a

non-integral parameter value (see also section 18.9.2.4).

Defined types:

typedef RealType result_type;



{

explicit param_type(RealType m = RealType(1),

RealType n = RealType(1));

RealType m() const; // The degrees of freedom of the nominator

RealType n() const; // The degrees of freedom of the denominator

};

Constructors and members:

• fisher_f_distribution<>(RealType m = RealType(1), RealType n =

RealType(1)) constructs a fisher_f distribution with specified degrees of freedom.

• fisher_f_distribution<>(param_type const &param) constructs a fisher_f distribution

according to the values stored in the param struct.

• RealType m() const

returns the degrees of freedom of the nominator;

• RealType n() const

returns the degrees of freedom of the denominator;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.8 Gamma distribution

The gamma_distribution<RealType = double> is used when working with data that are not dis-

tributed according to the normal distribution. It is often used to model waiting times.

It has two parameters, alpha and beta. Its expected value is alpha ∗ beta and its standard devia-

tion is alpha ∗ beta2.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType alpha = RealType(1),

RealType beta = RealType(1));

RealType alpha() const;

RealType beta() const;

};

Constructors and members:

• gamma_distribution<>(RealType alpha = 1, RealType beta = 1) constructs a

gamma distribution with specified alpha and beta parameters.

• gamma_distribution<>(param_type const &param) constructs a gamma distribution ac-

cording to the values stored in the param struct.

• RealType alpha() const

returns the distribution’s alpha parameter;



returns the distribution’s beta parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.9 Geometric distribution

The geometric_distribution<IntType = int> is used to model the number of bernoulli trials

(cf. 18.9.2.1) needed until the first success.

It has one parameter, prob, representing the probability of success in an individual bernoulli trial.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(double prob = 0.5);

double p() const;

};

Constructors, members and example:

• geometric_distribution<>(double prob = 0.5) constructs a geometric distribution for

bernoulli trials each having probability prob of success.

• geometric_distribution<>(param_type const &param) constructs a geometric distribu-

tion according to the values stored in the param struct.

• double p() const

returns the distribution’s prob parameter;

• param_type param() const

returns the object’s param_type structure;

• void param(const param_type &param) redefines the parameters of the distribution;

• result_type min() const

returns the distribution’s lower bound (= 0);

• result_type max() const

returns the distribution’s upper bound;

• template<typename URNG> result_type operator()(URNG &urng)

returns the next random value from the geometric distribution

• template<typename URNG> result_type operator()

(URNG &urng, param_type &param)

returns the next random value from a geometric distribution initialized by the provided param

struct.

• The random number generator that is passed to the generating functions must return integral

values. Here is an example showing how the geometric distribution can be used:

#include <iostream>

#include <ctime>



int main()

{

std::linear_congruential_engine<unsigned, 7, 3, 61> engine(0);

std::geometric_distribution<> dist;

for (size_t idx = 0; idx < 10; ++idx)

std::cout << "a random value: " << dist(engine) << "\n";

std::cout << '\n' <<

dist.min() << " " << dist.max() << '\n';

}

18.9.2.10 Log-normal distribution

The lognormal_distribution<RealType = double> is a probability distribution of a random

variable whose logarithm is normally distributed. If a random variable X has a normal distribution,

then Y = eX has a log-normal distribution.

It has two parameters, m and s representing, respectively, the mean and standard deviation of ln(X).

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType m = RealType(0),

RealType s = RealType(1));

RealType m() const;

RealType s() const;

};

Constructor and members:

• lognormal_distribution<>(RealType m = 0, RealType s = 1) constructs a log-

normal distribution for a random variable whose mean and standard deviation is, respectively, m

and s.

• lognormal_distribution<>(param_type const &param) constructs a log-normal distri-

bution according to the values stored in the param struct.

• RealType m() const

returns the distribution’s m parameter;

• RealType stddev() const

returns the distribution’s s parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;



The normal_distribution<RealType = double> is commonly used in science to describe complex

phenomena. When predicting or measuring variables, errors are commonly assumed to be normally

distributed.

It has two parameters, mean and standard deviation.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType mean = RealType(0),

RealType stddev = RealType(1));

RealType mean() const;

RealType stddev() const;

};

Constructors and members:

• normal_distribution<>(RealType mean = 0, RealType stddev = 1) constructs a

normal distribution with specified mean and stddev parameters. The default parameter values

define the standard normal distribution;

• normal_distribution<>(param_type const &param) constructs a normal distribution ac-

cording to the values stored in the param struct.

• RealType mean() const

returns the distribution’s mean parameter;

• RealType stddev() const

returns the distribution’s stddev parameter;

• result_type min() const

returns the lowest positive value of result_type;

• result_type max() const

returns the maximum value of result_type;

18.9.2.12 Negative binomial distribution

The negative_binomial_distribution<IntType = int> probability distribution describes the

number of successes in a sequence of Bernoulli trials before a specified number of failures occurs. For

example, if one throws a die repeatedly until the third time 1 appears, then the probability distribution

of the number of other faces that have appeared is a negative binomial distribution.

It has two parameters: (IntType) k (> 0), being the number of failures until the experiment is stopped

and (double) p the probability of success in each individual experiment.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(IntType k = IntType(1), double p = 0.5);



IntType k() const;

double p() const;

};

Constructors and members:

• negative_binomial_distribution<>(IntType k = IntType(1), double p = 0.5)

constructs a negative_binomial distribution with specified k and p parameters;

• negative_binomial_distribution<>(param_type const &param) constructs a nega-

tive_binomial distribution according to the values stored in the param struct.

• IntType k() const

returns the distribution’s k parameter;

• double p() const

returns the distribution’s p parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.13 Poisson distribution

The poisson_distribution<IntType = int> is used to model the probability of a number of

events occurring in a fixed period of time if these events occur with a known probability and inde-

pendently of the time since the last event.

It has one parameter, mean, specifying the expected number of events in the interval under considera-

tion. E.g., if on average 2 events are observed in a one-minute interval and the duration of the interval

under study is 10 minutes then mean = 20.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(double mean = 1.0);

double mean() const;

};

Constructors and members:

• poisson_distribution<>(double mean = 1) constructs a poisson distribution with speci-

fied mean parameter.

• poisson_distribution<>(param_type const &param) constructs a poisson distribution

according to the values stored in the param struct.

• double mean() const

returns the distribution’s mean parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;



The student_t_distribution<RealType = double> is a probability distribution that is used

when estimating the mean of a normally distributed population from small sample sizes.

It is characterized by one parameter: the degrees of freedom, which is equal to the sample size - 1.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType n = RealType(1));

RealType n() const; // The degrees of freedom

};

Constructors and members:

• student_t_distribution<>(RealType n = RealType(1)) constructs a student_t distri-

bution with indicated degrees of freedom.

• student_t_distribution<>(param_type const &param) constructs a student_t distribu-

tion according to the values stored in the param struct.

• RealType n() const

returns the degrees of freedom;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.15 Uniform int distribution

The uniform_int_distribution<IntType = int> can be used to select integral values randomly

from a range of uniformly distributed integral values.

It has two parameters, a and b, specifying, respectively, the lowest value that can be returned and the

highest value that can be returned.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(IntType a = 0, IntType b = max(IntType));

IntType a() const;

IntType b() const;

};

Constructors and members:

• uniform_int_distribution<>(IntType a = 0, IntType b = max(IntType)) con-

structs a uniform_int distribution for the specified range of values.



tribution according to the values stored in the param struct.

• IntType a() const

returns the distribution’s a parameter;

• IntType b() const

returns the distribution’s b parameter;

• result_type min() const

returns the distribution’s a parameter;

• result_type max() const

returns the distribution’s b parameter;

18.9.2.16 Uniform real distribution

The uniform_real_distribution<RealType = double> can be used to select RealType values

randomly from a range of uniformly distributed RealType values.

It has two parameters, a and b, specifying, respectively, the half-open range of values ([a, b)) that

can be returned by the distribution.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = 0, RealType b = max(RealType));

RealType a() const;

RealType b() const;

};

Constructors and members:

• uniform_real_distribution<>(RealType a = 0, RealType b = max(RealType))

constructs a uniform_real distribution for the specified range of values.

• uniform_real_distribution<>(param_type const &param) constructs a uniform_real

distribution according to the values stored in the param struct.

• RealType a() const

returns the distribution’s a parameter;

• RealType b() const

returns the distribution’s b parameter;

• result_type min() const

returns the distribution’s a parameter;

• result_type max() const

returns the distribution’s b parameter;

18.9.2.17 Weibull distribution

The weibull_distribution<RealType = double> is commonly used in reliability engineering

and in survival (life data) analysis.



eter variant has a shape (or slope) parameter, a scale parameter and a location parameter. The two

parameter variant implicitly uses the location parameter value 0. In the two parameter variant the

shape parameter (a) and the scale parameter (b) are provided. See

http://www.weibull.com/hotwire/issue14/relbasics14.htm for an interesting coverage of

the meaning of the Weibull distribution’s parameters.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = RealType{ 1 },

RealType b = RealType{ 1 });

RealType a() const; // the shape (slope) parameter

RealType b() const; // the scale parameter

};

Constructors and members:

• weibull_distribution<>(RealType a = 1, RealType b = 1) constructs a weibull dis-

tribution with specified a and b parameters;

• weibull_distribution<>(param_type const &param) constructs a weibull distribution

according to the values stored in the param struct.

• RealType a() const

returns the distribution’s shape (or slope) parameter;

• RealType stddev() const

returns the distribution’s scale parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.10 tie

We already encountered structured bindings in section 3.3.7.1. Structured bindings allow us to access

the fields of structured types (like structs, std::pair or (cf. section 22.6) tuples) as local variables

inside functions. A basic example using structured bindings is shown in the following code snippet:

pair<int, int> factory()

{

return { 1, 2 };

}

void fun()

{

auto [one, two] = factory();

cout << one << ' ' << two << '\n';

}



But what if we want to assign the fields of a struct to variables that have already been defined or that

were passed to a function via its parameters? In those situations structured bindings offer no help.

E.g., in the following code snippet a function retrieve is defined having an int & parameter and an

int local variable and we want to assign the values returned by factory to those variables:

void retrieve(int &one)

{

int two;

// ... = factory() ??

}

Structured bindings cannot be used here: the elements of structured bindings cannot be references.

Although it is possible to define a std::pair<int &, int &> such an object cannot be initialized

with the references of one and two which are directly referring to the fields returned by factory.

These statements won’t compile:

pair<int &, int &> p{one, two} = factory();

pair<int &, int &>{one, two} = factory();

While it is possible to first define a pair<int &, int &> object and then assign factory’s return

value to it, that approach clearly is less elegant than what’s offered by structured bindings:

pair<int &, int &> p{one, two};

p = factory();

Fortunately, there is a better alternative. After including the <tuple> header file (see also section

22.6) std::tie is available allowing us to ‘tie’ references to fields of structured data types. Using

std::tie it is very easy to associate the variables one and two of the function retrieve with the

fields of the pair returned by factory:

void retrieve(int &one)

{

int two;

tie(one, two) = factory();

cout << one << ' ' << two << '\n';

}

When Executing these statements:

int one = 0;

int two = 0;

cout << one << ' ' << two << '\n';

retrieve(one);

cout << one << ' ' << two << '\n';

the following output is obtained:

0 0

1 2

1 0



The struct Data in the next example defines three fields: an int, a std::string and a double.

Each of these fields support ordering and (in)equality comparisons. In those cases, all comparison op-

erators can easily be implemented through the spaceship operator (cf. section 11.6.2) using std::tie:

struct Data

{

int d_int;

string d_string;

double d_double;

};

bool operator==(Data const &lhs, Data const &rhs)

{

return tie(lhs.d_int, lhs.d_string, lhs.d_double) ==

tie(rhs.d_int, rhs.d_string, rhs.d_double);

}

partial_ordering operator<=>(Data const &lhs, Data const &rhs)

{

return tie(lhs.d_int, lhs.d_string, lhs.d_double) <=>

tie(rhs.d_int, rhs.d_string, rhs.d_double);

}

Note that struct Data’s spaceship operator returns partial_ordering values (cf. section 18.7.3).

Although int and std::string’s spaceship operators return strong_ordering values, double’s

spaceship operator doesn’t. Instead it returns partial_ordering values. Consequently, struct

Data’s spaceship operator also returns partial_ordering values.





Chapter 19

The STL Generic Algorithms

19.1 The Generic Algorithms

Before using the generic algorithms presented in this chapter, except for those in the Operators cate-

gory (defined below), the <algorithm> header file must be included. Before using a generic algorithm

in the Operators category the <numeric> header file must be included.

In the previous chapter the Standard Template Library (STL) was introduced. An important element

of the STL, the generic algorithms, was not covered in that chapter as they form a fairly extensive part

of the STL. Over time the STL has grown considerably, mainly as a result of a growing importance

and appreciation of templates. Covering generic algorithm in the STL chapter itself would turn that

chapter into an unwieldy one and so the generic algorithms were moved to a chapter of their own.

Generic algorithms perform an amazing task. Due to the strength of templates, algorithms could be

developed that can be applied to a wide range of different data types while maintaining type safety. The

prototypical example of this is the sort generic algorithm. To contrast: while C requires programmers

to write callback functions in which type-unsafe void const ∗ parameters have to be used, internally

forcing the programmer to resort to casts, STL’s sort frequently allows the programmer merely to

state something akin to

sort(first-element, last-element)

Generic algorithms should be used wherever possible. Avoid the urge to design your own code for

commonly encountered algorithms. Make it a habit to first thoroughly search the generic algorithms

for an available candidate. The generic algorithms should become your weapon of choice when writing

code: acquire full familiarity with them and make their use your ‘second nature’.

This chapter’s sections cover the STL’s generic algorithms in alphabetical order. For each algorithm the

following information is provided:

• The required header file;

• The function prototype;

• A short description;

• A short example.

In the prototypes of the algorithms Type is used to specify a generic data type. Furthermore, the

particular type of iterator (see section 18.2) that is required is mentioned as well as other generic types

that might be required (e.g., performing BinaryOperations, like plus<Type>). Although iterators

are commonly provided by abstract containers and comparable pre-defined data structures, at some

point you may want to design your own iterators. Section 22.14 offers guidelines for constructing your
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types of iterators.

Almost every generic algorithm expects an iterator range [first, last), defining the series of el-

ements on which the algorithm operates. The iterators point to objects or values. When an iterator

points to a Type value or object, function objects used by the algorithms usually receive Type const

& objects or values. Usually function objects cannot modify the objects they receive as their arguments.

This does not hold true for modifying generic algorithms, which are of course able to modify the objects

they operate upon.

Generic algorithms may be categorized. The C++ Annotations distinguishes the following categories of

generic algorithms:

• Comparators: comparing (ranges of) elements:

equal; includes; lexicographical_compare; max; min; mismatch;

• Copiers: performing copy operations:

copy; copy_backward; partial_sort_copy; remove_copy; remove_copy_if; replace_copy; re-

place_copy_if; reverse_copy; rotate_copy; unique_copy;

• Counters: performing count operations:

count; count_if;

• Heap operators: manipulating a max-heap:

make_heap; pop_heap; push_heap; sort_heap;

• Initializers: initializing data:

fill; fill_n; generate; generate_n;

• Operators: performing arithmetic operations of some sort:

accumulate; adjacent_difference; inner_product; partial_sum;

• Searchers: performing search (and find) operations:

adjacent_find; binary_search; equal_range; find; find_end; find_first_of; find_if;

lower_bound; max_element; min_element; search; search_n; set_difference;

set_intersection;

set_symmetric_difference; set_union; upper_bound;

• Shufflers: performing reordering operations (sorting, merging, permuting, swapping):

inplace_merge; iter_swap; merge; next_permutation; nth_element; partial_sort; par-

tial_sort_copy; partition; prev_permutation; remove; remove_copy; remove_copy_if; re-

move_if; reverse; reverse_copy; rotate; rotate_copy; sort; stable_partition; stable_sort;

swap; unique;

• Visitors: visiting elements in a range:

for_each; replace; replace_copy; replace_copy_if; replace_if; transform; unique_copy;

19.1.1 accumulate

• Header file: <numeric>

• Function prototypes:

– Type accumulate(InputIterator first, InputIterator last, Type init);

– Type accumulate(InputIterator first, InputIterator last, Type init,

BinaryOperation op);



– The first prototype: operator+ is applied to all elements implied by the iterator range and

to the initial value init. The resulting value is returned.

– The second prototype: the binary operator op is applied to all elements implied by the iterator

range and to the initial value init, and the resulting value is returned.

• Example:

#include <numeric>

#include <vector>

#include <iostream>

using namespace std;

int main()

{

int ia[] = {1, 2, 3, 4};

vector<int> iv(ia, ia + 4);

cout <<

"Sum of values: " << accumulate(iv.begin(), iv.end(), int()) <<

"\n"

"Product of values: " << accumulate(iv.begin(), iv.end(), int(1),

multiplies<int>()) << '\n';

}

/*
Displays:

Sum of values: 10

Product of values: 24

*/

19.1.2 adjacent_difference

• Header file: <numeric>

• Function prototypes:

– OutputIterator adjacent_difference(InputIterator first, InputIterator

last, OutputIterator result);

– OutputIterator adjacent_difference(InputIterator first, InputIterator

last, OutputIterator result, BinaryOperation op);

• Description: All operations are performed on the original values, all computed values are returned

values.

– The first prototype: the first returned element is equal to the first element of the input range.

The remaining returned elements are equal to the difference of the corresponding element in

the input range and its previous element.

– The second prototype: the first returned element is equal to the first element of the input

range. The remaining returned elements are equal to the result of the binary operator op

applied to the corresponding element in the input range (left operand) and its previous ele-

ment (right operand).

• Example:

#include <numeric>

#include <vector>

#include <iterator>

#include <iostream>



int main()

{

int ia[] = {1, 2, 5, 10};

vector<int> iv(ia, ia + 4);

vector<int> ov(iv.size());

adjacent_difference(iv.begin(), iv.end(), ov.begin());

copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));

cout << '\n';

adjacent_difference(iv.begin(), iv.end(), ov.begin(), minus<int>());

copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:

1 1 3 5

1 1 3 5

*/

19.1.3 adjacent_find

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator

last);

– OutputIterator adjacent_find(ForwardIterator first, ForwardIterator

last, Predicate pred);

• Description:

– The first prototype: the iterator pointing to the first element of the first pair of two adjacent

equal elements is returned. If no such element exists, last is returned.

– The second prototype: the iterator pointing to the first element of the first pair of two adjacent

elements for which the binary predicate pred returns true is returned. If no such element

exists, last is returned.

• Example:

#include <algorithm>

#include <string>

#include <iostream>

using namespace std;

class SquaresDiff

{

size_t d_minimum;

public:

SquaresDiff(size_t minimum)

:

d_minimum(minimum)

{}

bool operator()(size_t first, size_t second)



return second * second - first * first >= d_minimum;

}

};

int main()

{

string sarr[] =

{

"Alpha", "bravo", "charley", "delta", "echo", "echo",

"foxtrot", "golf"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

string *result = adjacent_find(sarr, last);

cout << *result << '\n';

result = adjacent_find(++result, last);

cout << "Second time, starting from the next position:\n" <<

(

result == last ?

"** No more adjacent equal elements **"

:

"*result"

) << '\n';

size_t iv[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

size_t *ilast = iv + sizeof(iv) / sizeof(size_t);

size_t *ires = adjacent_find(iv, ilast, SquaresDiff(10));

cout <<

"The first numbers for which the squares differ at least 10: "

<< *ires << " and " << *(ires + 1) << '\n';

}

/*
Displays:

echo

Second time, starting from the next position:

** No more adjacent equal elements **
The first numbers for which the squares differ at least 10: 5 and 6

*/

19.1.4 binary_search

• Header file: <algorithm>

• Function prototypes:

– bool binary_search(ForwardIterator first, ForwardIterator last, Type

const &value);

– bool binary_search(ForwardIterator first, ForwardIterator last, Type

const &value, Comparator comp);

• Description:

– The first prototype: value is looked up using binary search in the series of elements implied

by the iterator range [first, last). The elements in the range must have been sorted by

the Type::operator< function. True is returned if the element was found, false other-

wise.



implied by the iterator range [first, last). The elements in the range must have been

sorted by the Comparator function object. True is returned if the element was found, false

otherwise. As illustrated by the following example, the function object function’s first param-

eter refers to an element in the iterator range, while the function object’s second parameter

refers to value.

• Example:

#include <algorithm>

#include <string>

#include <iostream>

#include <functional>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

bool result = binary_search(sarr, last, "foxtrot");

cout << (result ? "found " : "didn't find ") << "foxtrot" << '\n';

reverse(sarr, last); // reverse the order of elements

// binary search now fails:

result = binary_search(sarr, last, "foxtrot");

cout << (result ? "found " : "didn't find ") << "foxtrot" << '\n';

// ok when using appropriate

// comparator:

result = binary_search(sarr, last, "foxtrot", greater<string>());

cout << (result ? "found " : "didn't find ") << "foxtrot" << '\n';

// alternatively, using a lambda expression showing the used 'sarr'

// indices and the value of the second parameter:

result = binary_search(sarr, last, "foxtrot",

[&](string const &sarrEl, string const &value)

{

cout << "comparing element " << (&sarrEl - sarr) <<

" (" << sarrEl << ") to " << value << '\n';

return sarrEl > value;

}

);

cout << "found it: " << result << '\n';

}

// Displays:

// found foxtrot

// didn't find foxtrot

// found foxtrot

// comparing element 4 (delta) to foxtrot

// comparing element 2 (foxtrot) to foxtrot

// comparing element 1 (golf) to foxtrot

// comparing element -3 (foxtrot) to foxtrot

// found it: 1

If value is in fact present in the range of values, then this generic algorithm doesn’t answer the ques-

tion where value is located. If that question must be answered the generic algorithms lower_bound



these latter two algorithms.

19.1.5 copy

• Header file: <algorithm>

• Function prototype:

– OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator destination);

• Description:

– The series of elements implied by the iterator range [first, last) is copied to an output

range, starting at destination using the assignment operator of the underlying data type.

The return value is the OutputIterator pointing just beyond the last element that was copied

to the destination range (so, ‘last’ in the destination range is returned).

• Example:

Note the second call to copy. It uses an ostream_iterator for string objects. This iterator

writes the string values to the specified ostream (i.e., cout), separating the values by the

specified separation string (i.e., " ").

#include <algorithm>

#include <string>

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy(sarr + 2, last, sarr); // move all elements two positions left

// copy to cout using an ostream_iterator

// for strings,

copy(sarr, last, ostream_iterator<string>(cout, " "));

cout << '\n';

}

// Displays: charley delta echo foxtrot golf hotel golf hotel

• See also: unique_copy

19.1.6 copy_backward

• Header file: <algorithm>

• Function prototype:

– BidirectionalIterator copy_backward(InputIterator first, InputIterator

last, BidirectionalIterator last2);



– The series of elements implied by the iterator range [first, last) are copied from the

element at position last - 1 until (and including) the element at position first to the ele-

ment range, ending at position last2 - 1 using the assignment operator of the underlying

data type. The destination range is therefore [last2 - (last - first), last2).

Note that this algorithm does not reverse the order of the elements when copying them to

the destination range.

The return value is the BidirectionalIterator pointing to the last element that was copied to

the destination range (so, ‘first’ in the destination range, pointed to by last2 - (last -

first), is returned).

• Example:

#include <algorithm>

#include <string>

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(

copy_backward(sarr + 3, last, last - 3),

last,

ostream_iterator<string>(cout, " ")

);

cout << '\n';

}

// Displays: golf hotel foxtrot golf hotel foxtrot golf hotel

19.1.7 count

• Header file: <algorithm>

• Function prototype:

– size_t count(InputIterator first, InputIterator last, Type const

&value);

• Description:

– The number of times value occurs in the iterator range [first, last) is returned. Uses

Type::operator== to determine whether value is equal to an element in the iterator

range.

• Example:

#include <algorithm>

#include <iostream>

using namespace std;



{

int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "Number of times the value 3 is available: " <<

count(ia, ia + sizeof(ia) / sizeof(int), 3) <<

'\n';

}

// Displays: Number of times the value 3 is available: 3

19.1.8 count_if

• Header file: <algorithm>

• Function prototype:

– size_t count_if(InputIterator first, InputIterator last, Predicate

predicate);

• Description:

– The number of times unary predicate ‘predicate’ returns true when applied to the ele-

ments implied by the iterator range [first, last) is returned.

• Example:

#include <algorithm>

#include <iostream>

using namespace std;

class Odd

{

public:

bool operator()(int value) const

{

return value & 1;

}

};

int main()

{

int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "The number of odd values in the array is: " <<

count_if(ia, ia + sizeof(ia) / sizeof(int), Odd{}) << '\n';

}

// Displays: The number of odd values in the array is: 5

19.1.9 equal

• Header file: <algorithm>

• Function prototypes:

– bool equal(InputIterator first, InputIterator last, InputIterator

otherFirst);

– bool equal(InputIterator first, InputIterator last, InputIterator

otherFirst, BinaryPredicate pred);



– The first prototype: the elements in the range [first, last) are compared to a range of

equal length starting at otherFirst. The function returns true if the visited elements in

both ranges are equal pairwise. The ranges need not be of equal length, only the elements in

the indicated range are considered (and must be available).

– The second prototype: the elements in the range [first, last) are compared to a range

of equal length starting at otherFirst. The function returns true if the binary predi-

cate, applied to all corresponding elements in both ranges returns true for every pair of

corresponding elements. The ranges need not be of equal length, only the elements in the

indicated range are considered (and must be available).

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iostream>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first,

string const &second) const

{

return !strcasecmp(first.c_str(), second.c_str());

}

};

int main()

{

string first[] =

{

"Alpha", "bravo", "Charley", "delta", "Echo",

"foxtrot", "Golf", "hotel"

};

string second[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = first + sizeof(first) / sizeof(string);

cout << "The elements of `first' and `second' are pairwise " <<

(equal(first, last, second) ? "equal" : "not equal") <<

'\n' <<

"compared case-insensitively, they are " <<

(

equal(first, last, second, CaseString{}) ?

"equal" : "not equal"

) << '\n';

}

/*
Displays:

The elements of `first' and `second' are pairwise not equal

compared case-insensitively, they are equal

*/



• Header file: <algorithm>

• Function prototypes:

– pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator

first, ForwardIterator last, Type const &value);

– pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator

first, ForwardIterator last, Type const &value, Compare comp);

• Description (see also identically named member functions of, e.g., the map (section 12.4.7) and

multimap (section 12.4.8)):

– The first prototype: starting from a sorted sequence (where the operator< of the data type

to which the iterators point was used to sort the elements in the provided range), a pair of

iterators is returned representing the return value of, respectively, lower_bound (returning

the first element that is not smaller than the provided reference value, see section 19.1.26)

and upper_bound (returning the first element beyond the provided reference value, see sec-

tion 19.1.66).

– The second prototype: starting from a sorted sequence (where the comp function object

was used to sort the elements in the provided range), a pair of iterators is returned rep-

resenting the return values of, respectively, the functions lower_bound (section 19.1.26)

and upper_bound (section 19.1.66).

• Example:

#include <algorithm>

#include <functional>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

int range[] = {1, 3, 5, 7, 7, 9, 9, 9};

size_t const size = sizeof(range) / sizeof(int);

pair<int *, int *> pi;

pi = equal_range(range, range + size, 6);

cout << "Lower bound for 6: " << *pi.first << '\n';

cout << "Upper bound for 6: " << *pi.second << '\n';

pi = equal_range(range, range + size, 7);

cout << "Lower bound for 7: ";

copy(pi.first, range + size, ostream_iterator<int>(cout, " "));

cout << '\n';

cout << "Upper bound for 7: ";

copy(pi.second, range + size, ostream_iterator<int>(cout, " "));

cout << '\n';

sort(range, range + size, greater<int>());

cout << "Sorted in descending order\n";

copy(range, range + size, ostream_iterator<int>(cout, " "));



pi = equal_range(range, range + size, 7, greater<int>());

cout << "Lower bound for 7: ";

copy(pi.first, range + size, ostream_iterator<int>(cout, " "));

cout << '\n';

cout << "Upper bound for 7: ";

copy(pi.second, range + size, ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:

Lower bound for 6: 7

Upper bound for 6: 7

Lower bound for 7: 7 7 9 9 9

Upper bound for 7: 9 9 9

Sorted in descending order

9 9 9 7 7 5 3 1

Lower bound for 7: 7 7 5 3 1

Upper bound for 7: 5 3 1

*/

19.1.11 exchange

• Header file: <utility>

• Function prototype:

– Type exchange(Type &object1, ValueType &&newValue);

• Description:

– newValue is assigned to object1, and object1’s previous value is returned.

• Example:

#include <utility>

#include <iostream>

using namespace std;

int main(int argc, char **argv)

{

bool more = argc > 5;

cout << "more than 5: " << exchange(more, argc > 2) <<

", more than 2: " << more << '\n';

}

/*
Using g++ at least version 7.0.0:

With `a.out one two three' displays:

more than 5: 0, more than 2: 1

*/



• Header file: <algorithm>

• Function prototype:

– void fill(ForwardIterator first, ForwardIterator last, Type const

&value);

• Description:

– all the elements implied by the iterator range [first, last) are initialized to value,

overwriting the previously stored values.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

vector<int> iv(8);

fill(iv.begin(), iv.end(), 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));

cout << '\n';

}

// Displays: 8 8 8 8 8 8 8 8

19.1.13 fill_n

• Header file: <algorithm>

• Function prototype:

– void fill_n(ForwardIterator first, Size n, Type const &value);

• Description:

– n elements starting at the element pointed to by first are initialized to value, overwriting

the previous stored values.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

vector<int> iv(8);

fill_n(iv.begin() + 2, 4, 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));



}

// Displays: 0 0 8 8 8 8 0 0

19.1.14 find

• Header file: <algorithm>

• Function prototype:

– InputIterator find(InputIterator first, InputIterator last, Type const

&value);

• Description:

– Element value is searched for in the range of the elements implied by the iterator range

[first, last). An iterator pointing to the first element found is returned. If the element

was not found, last is returned. The operator== of the underlying data type is used to

compare the elements.

• Example:

#include <algorithm>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(

find(sarr, last, "delta"), last,

ostream_iterator<string>(cout, " ")

);

cout << '\n';

if (find(sarr, last, "india") == last)

{

cout << "`india' was not found in the range\n";

copy(sarr, last, ostream_iterator<string>(cout, " "));

cout << '\n';

}

}

/*
Displays:

delta echo

`india' was not found in the range

alpha bravo charley delta echo

*/



• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 first2, ForwardIterator2 last2)

– ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 first2, ForwardIterator2 last2,

BinaryPredicate pred)

• Description:

– The first prototype: the sequence of elements implied by [first1, last1) is searched for

the last occurrence of the sequence of elements implied by the range [first2, last2).

If the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator

pointing to the first element of the matching sequence is returned. The operator== of the

underlying data type is used to compare the elements in the two sequences.

– The second prototype: the sequence of elements implied by [first1, last1) is searched

for the last occurrence of the sequence of elements implied by [first2, last2). If the

sequence [first2, last2) is not found, last1 is returned, otherwise an iterator pointing

to the first element of the matching sequence is returned. The provided binary predicate is

used to compare the elements in the two sequences.

• Example:

#include <algorithm>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

class Twice

{

public:

bool operator()(size_t first, size_t second) const

{

return first == (second << 1);

}

};

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel",

"foxtrot", "golf", "hotel",

"india", "juliet", "kilo"

};

string search[] =

{

"foxtrot",

"golf",

"hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(



last, ostream_iterator<string>{ cout, " " } // at 2nd 'foxtrot'

);

cout << '\n';

size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};

size_t nrs[] = {2, 3, 4};

copy // sequence of values starting at last sequence

( // of range[] that are twice the values in nrs[]

find_end(range, range + 9, nrs, nrs + 3, Twice{}),

range + 9, ostream_iterator<size_t>{ cout, " " }

);

cout << '\n';

}

/*
Displays:

foxtrot golf hotel india juliet kilo

4 6 8 10

*/

19.1.16 find_first_of

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 find_first_of(ForwardIterator1 first1,

ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2

last2)

– ForwardIterator1 find_first_of(ForwardIterator1 first1,

ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2

last2, BinaryPredicate pred)

• Description:

– The first prototype: the sequence of elements implied by [first1, last1) is searched for

the first occurrence of an element in the sequence of elements implied by the range [first2,

last2). If no element in the sequence [first2, last2) is found, last1 is returned,

otherwise an iterator pointing to the first element in [first1, last1) that is equal to an

element in [first2, last2) is returned. The operator== of the underlying data type is

used to compare the elements in the two sequences.

– The second prototype: the sequence of elements implied by [first1, last1) is searched

for the first occurrence of an element in the sequence of elements implied by [first2,

last2). Each element in the range [first1, last1) is compared to each element in

the range [first2, last2), and an iterator to the first element in [first1, last1)

for which the binary predicate pred (receiving an the element out of the range [first1,

last1) and an element from the range [first2, last2)) returns true is returned. Oth-

erwise, last1 is returned.

• Example:

#include <algorithm>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

class Twice



public:

bool operator()(size_t first, size_t second) const

{

return first == (second << 1);

}

};

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel",

"foxtrot", "golf", "hotel",

"india", "juliet", "kilo"

};

string search[] =

{

"foxtrot",

"golf",

"hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

( // sequence starting

find_first_of(sarr, last, search, search + 3),// at 1st 'foxtrot'

last, ostream_iterator<string>{ cout, " " }

);

cout << '\n';

size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};

size_t nrs[] = {2, 3, 4};

// copy the sequence of values in 'range', starting at the

// first element in 'range' that is equal to twice one of the

// values in 'nrs', and ending at the last element of 'range'

copy

(

find_first_of(range, range + 9, nrs, nrs + 3, Twice{}),

range + 9, ostream_iterator<size_t>{ cout, " " }

);

cout << '\n';

}

/*
Displays:

foxtrot golf hotel foxtrot golf hotel india juliet kilo

4 6 8 10 4 6 8 10

*/

19.1.17 find_if

• Header file: <algorithm>

• Function prototype:

– InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);



– An iterator pointing to the first element in the range implied by the iterator range [first,

last) for which the (unary) predicate pred returns true is returned. If the element was

not found, last is returned.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iterator>

#include <iostream>

using namespace std;

class CaseName

{

std::string d_string;

public:

CaseName(char const *str): d_string(str)

{}

bool operator()(std::string const &element) const

{

return strcasecmp(element.c_str(), d_string.c_str()) == 0;

}

};

int main()

{

string sarr[] =

{

"Alpha", "Bravo", "Charley", "Delta", "Echo"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(

find_if(sarr, last, CaseName{ "charley" }),

last, ostream_iterator<string>{ cout, " " }

);

cout << '\n';

if (find_if(sarr, last, CaseName{ "india" }) == last)

{

cout << "`india' was not found in the range\n";

copy(sarr, last, ostream_iterator<string>{ cout, " " });

cout << '\n';

}

}

/*
Displays:

Charley Delta Echo

`india' was not found in the range

Alpha Bravo Charley Delta Echo

*/

19.1.18 for_each

• Header file: <algorithm>



– Function for_each(ForwardIterator first, ForwardIterator last,

Function func);

• Description:

– Each of the elements implied by the iterator range [first, last) is passed in turn as a

reference to the function (or function object) func. The function may modify the elements it

receives (as the used iterator is a forward iterator). Alternatively, if the elements should be

transformed, transform (see section 19.1.63) can be used. The function itself or a copy of

the provided function object is returned: see the example below, in which an extra argument

list is added to the for_each call, which argument is eventually also passed to the function

given to for_each. Within for_each the return value of the function that is passed to it

is ignored. The for_each generic algorithm looks a lot like the range-based for loop, but

different from the range-based for-loop the for_each algorithm can also be used with sub-

ranges and with reverse-iterators.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iostream>

#include <cctype>

using namespace std;

void lowerCase(char &c) // `c' *is* modified

{

c = tolower(static_cast<unsigned char>(c));

}

void capitalizedOutput(string const &str) // `str' is *not* modified

{

char *tmp = strcpy(new char[str.size() + 1], str.c_str());

for_each(tmp + 1, tmp + str.size(), lowerCase);

tmp[0] = toupper(*tmp);

cout << tmp << " ";

delete tmp;

};

int main()

{

string sarr[] =

{

"alpha", "BRAVO", "charley", "DELTA", "echo",

"FOXTROT", "golf", "HOTEL"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

for_each(sarr, last, capitalizedOutput)("that's all, folks");

cout << '\n';

}

/*
Displays:

Alpha Bravo Charley Delta Echo Foxtrot Golf Hotel That's all, folks

*/

• Here is another example using a function object:

#include <algorithm>



#include <iostream>

#include <cctype>

using namespace std;

void lowerCase(char &c)

{

c = tolower(static_cast<unsigned char>(c));

}

class Show

{

int d_count;

public:

Show()

:

d_count(0)

{}

void operator()(std::string &str)

{

std::for_each(str.begin(), str.end(), lowerCase);

str[0] = toupper(str[0]); // assuming str is not empty

std::cout << ++d_count << " " << str << "; ";

}

int count() const

{

return d_count;

}

};

int main()

{

string sarr[] =

{

"alpha", "BRAVO", "charley", "DELTA", "echo",

"FOXTROT", "golf", "HOTEL"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

cout << for_each(sarr, last, Show{}).count() << '\n';

}

/*
Displays (all on one line):

1 Alpha; 2 Bravo; 3 Charley; 4 Delta; 5 Echo; 6 Foxtrot;

7 Golf; 8 Hotel; 8

*/

The example also shows that the for_each algorithm may be used with functions defining const and

non-const parameters. Also, see section 19.1.63 for differences between the for_each and transform

generic algorithms.

The for_each algorithm cannot directly be used (i.e., by passing ∗this as the function object argu-

ment) inside a member function to modify its own object as the for_each algorithm first creates its

own copy of the passed function object. A lambda function or a wrapper class whose constructor ac-

cepts a pointer or reference to the current object and possibly to one of its member functions solves this

problem.



• Header file: <algorithm>

• Function prototype:

– void generate(ForwardIterator first, ForwardIterator last, Generator

generator);

• Description:

– All elements implied by the iterator range [first, last) are initialized by the return

value of generator, which can be a function or function object. Generator::operator()

does not receive any arguments. The example uses a well-known fact from algebra: in order

to obtain the square of n + 1, add 1 + 2 ∗ n to n ∗ n.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

class NaturalSquares

{

size_t d_newsqr;

size_t d_last;

public:

NaturalSquares(): d_newsqr(0), d_last(0)

{}

size_t operator()()

{ // using: (a + 1)^2 == a^2 + 2*a + 1

return d_newsqr += (d_last++ << 1) + 1;

}

};

int main()

{

vector<size_t> uv(10);

generate(uv.begin(), uv.end(), NaturalSquares{});

copy(uv.begin(), uv.end(), ostream_iterator<int>{ cout, " " });

cout << '\n';

}

// Displays: 1 4 9 16 25 36 49 64 81 100

19.1.20 generate_n

• Header file: <algorithm>

• Function prototypes:

– void generate_n(ForwardIterator first, Size n, Generator generator);

• Description:

– n elements starting at the element pointed to by iterator first are initialized by the return

value of generator, which can be a function or function object.



#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

class NaturalSquares

{

size_t d_newsqr;

size_t d_last;

public:

NaturalSquares(): d_newsqr(0), d_last(0)

{}

size_t operator()()

{ // using: (a + 1)^2 == a^2 + 2*a + 1

return d_newsqr += (d_last++ << 1) + 1;

}

};

int main()

{

vector<size_t> uv(10);

generate_n(uv.begin(), 5, NaturalSquares{});

copy(uv.begin(), uv.end(), ostream_iterator<int>{ cout, " " });

cout << '\n';

}

// Displays: 1 4 9 16 25 0 0 0 0 0

19.1.21 includes

• Header file: <algorithm>

• Function prototypes:

– bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

– bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: both sequences of elements implied by the ranges [first1, last1)

and [first2, last2) should have been sorted using the operator< of the data type to

which the iterators point. The function returns true if every element in the second sequence

[first2, last2) is contained in the first sequence [first1, last1) (the second range

is a subset of the first range).

– The second prototype: both sequences of elements implied by the ranges [first1, last1)

and [first2, last2) should have been sorted using the comp function object. The function

returns true if every element in the second sequence [first2, last2) is contained in the

first sequence [first1, last1) (the second range is a subset of the first range).

• Example:

#include <algorithm>

#include <string>



#include <iostream>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first,

string const &second) const

{

return !strcasecmp(first.c_str(), second.c_str());

}

};

int main()

{

string first1[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string first2[] =

{

"Alpha", "bravo", "Charley", "delta", "Echo",

"foxtrot", "Golf", "hotel"

};

string second[] =

{

"charley", "foxtrot", "hotel"

};

size_t n = sizeof(first1) / sizeof(string);

cout << "The elements of `second' are " <<

(includes(first1, first1 + n, second, second + 3) ? "" : "not")

<< " contained in the first sequence:\n"

"second is a subset of first1\n";

cout << "The elements of `first1' are " <<

(includes(second, second + 3, first1, first1 + n) ? "" : "not")

<< " contained in the second sequence\n";

cout << "The elements of `second' are " <<

(includes(first2, first2 + n, second, second + 3) ? "" : "not")

<< " contained in the first2 sequence\n";

cout << "Using case-insensitive comparison,\n"

"the elements of `second' are "

<<

(includes(first2, first2 + n, second, second + 3, CaseString{}) ?

"" : "not")

<< " contained in the first2 sequence\n";

}

/*
Displays:

The elements of `second' are contained in the first sequence:

second is a subset of first1

The elements of `first1' are not contained in the second sequence

The elements of `second' are not contained in the first2 sequence

Using case-insensitive comparison,

the elements of `second' are contained in the first2 sequence



19.1.22 inner_product

• Header file: <numeric>

• Function prototypes:

– Type inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, Type init);

– Type inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, Type init, BinaryOperator1 op1, BinaryOperator2

op2);

• Description:

– The first prototype: the sum of all pairwise products of the elements implied by the range

[first1, last1) and the same number of elements starting at the element pointed to by

first2 are added to init, and this sum is returned. The function uses the operator+ and

operator∗ of the data type to which the iterators point.

– The second prototype: binary operator op1 instead of the default addition operator, and

binary operator op2 instead of the default multiplication operator are applied to all pairwise

elements implied by the range [first1, last1) and the same number of elements starting

at the element pointed to by first2. The results of the binary operator calls are added to

init and init’s final value is returned.

• Example:

#include <numeric>

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

using namespace std;

class Cat

{

std::string d_sep;

public:

Cat(string const &sep)

:

d_sep(sep)

{}

string operator()

(string const &s1, string const &s2) const

{

return s1 + d_sep + s2;

}

};

int main()

{

size_t ia1[] = {1, 2, 3, 4, 5, 6, 7};

size_t ia2[] = {7, 6, 5, 4, 3, 2, 1};

size_t init = 0;

cout << "The sum of all squares in ";

copy(ia1, ia1 + 7, ostream_iterator<size_t>{ cout, " " });

cout << "is " <<

inner_product(ia1, ia1 + 7, ia1, init) << '\n';



cout << "The sum of all cross-products in ";

copy(ia1, ia1 + 7, ostream_iterator<size_t>{ cout, " " });

cout << "and ";

copy(ia2, ia2 + 7, ostream_iterator<size_t>{ cout, " " });

cout << "is " <<

inner_product(ia1, ia1 + 7, ia2, init) << '\n';

string names1[] = {"Frank", "Karel", "Piet"};

string names2[] = {"Brokken", "Kubat", "Plomp"};

cout << "A list of all combined names in ";

copy(names1, names1 + 3, ostream_iterator<string>{ cout, " " });

cout << "and\n";

copy(names2, names2 + 3, ostream_iterator<string>{ cout, " " });

cout << "is:" <<

inner_product(names1, names1 + 3, names2, string{ "\t" },

Cat{ "\n\t"}, Cat{ " " }) <<

'\n';

}

/*
Displays:

The sum of all squares in 1 2 3 4 5 6 7 is 140

The sum of all cross-products in 1 2 3 4 5 6 7 and 7 6 5 4 3 2 1 is 84

A list of all combined names in Frank Karel Piet and

Brokken Kubat Plomp is:

Frank Brokken

Karel Kubat

Piet Plomp

*/

19.1.23 inplace_merge

• Header file: <algorithm>

• Function prototypes:

– void inplace_merge(BidirectionalIterator first, BidirectionalIterator

middle, BidirectionalIterator last);

– void inplace_merge(BidirectionalIterator first, BidirectionalIterator

middle, BidirectionalIterator last, Compare comp);

• Description:

– The first prototype: the two (sorted) ranges [first, middle) and [middle, last) are

merged, keeping a sorted list (using the operator< of the data type to which the iterators

point). The final series is stored in the range [first, last).

– The second prototype: the two (sorted) ranges [first, middle) and [middle, last)

are merged, keeping a sorted list (using the boolean result of the binary comparison operator

comp). The final series is stored in the range [first, last).

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iterator>

#include <iostream>

using namespace std;



class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string range[] =

{

"alpha", "charley", "echo", "golf",

"bravo", "delta", "foxtrot",

};

inplace_merge(range, range + 4, range + 7);

copy(range, range + 7, ostream_iterator<string>{ cout, " " });

cout << '\n';

string range2[] =

{

"ALPHA", "CHARLEY", "DELTA", "foxtrot", "hotel",

"bravo", "ECHO", "GOLF"

};

inplace_merge(range2, range2 + 5, range2 + 8, CaseString{});

copy(range2, range2 + 8, ostream_iterator<string>{ cout, " " });

cout << '\n';

}

/*
Displays:

alpha bravo charley delta echo foxtrot golf

ALPHA bravo CHARLEY DELTA ECHO foxtrot GOLF hotel

*/

19.1.24 iter_swap

• Header file: <algorithm>

• Function prototype:

– void iter_swap(ForwardIterator1 iter1, ForwardIterator2 iter2);

• Description:

– The elements pointed to by iter1 and iter2 are swapped.

• Example:

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

using namespace std;

int main()

{

string first[] = {"alpha", "bravo", "charley"};



size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << '\n';

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << '\n';

for (size_t idx = 0; idx < n; ++idx)

iter_swap(first + idx, second + idx);

cout << "After:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << '\n';

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

Before:

alpha bravo charley

echo foxtrot golf

After:

echo foxtrot golf

alpha bravo charley

*/

19.1.25 lexicographical_compare

• Header file: <algorithm>

• Function prototypes:

– bool lexicographical_compare(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2);

– bool lexicographical_compare(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: the corresponding pairs of elements in the ranges pointed to by the

ranges [first1, last1) and [first2, last2) are compared. The function returns

true

* at the first element in the first range which is less than the corresponding element in the

second range (using operator< of the underlying data type),

* if last1 is reached, but last2 isn’t reached yet.

False is returned in the other cases, which indicates that the first sequence is not lexico-

graphically less than the second sequence. So, false is returned:

* at the first element in the first range which is greater than the corresponding element

in the second range (using operator< of the data type to which the iterators point,

reversing the operands),

* if last2 is reached, but last1 isn’t reached yet,

* if last1 and last2 are reached.

– The second prototype: with this function the binary comparison operation as defined by comp

is used instead of operator< of the data type to which the iterators point.



#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first,

string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string word1 = "hello";

string word2 = "help";

cout << word1 << " is " <<

(

lexicographical_compare(word1.begin(), word1.end(),

word2.begin(), word2.end()) ?

"before "

:

"beyond or at "

) <<

word2 << " in the alphabet\n";

cout << word1 << " is " <<

(

lexicographical_compare(word1.begin(), word1.end(),

word1.begin(), word1.end()) ?

"before "

:

"beyond or at "

) <<

word1 << " in the alphabet\n";

cout << word2 << " is " <<

(

lexicographical_compare(word2.begin(), word2.end(),

word1.begin(), word1.end()) ?

"before "

:

"beyond or at "

) <<

word1 << " in the alphabet\n";

string one[] = {"alpha", "bravo", "charley"};

string two[] = {"ALPHA", "BRAVO", "DELTA"};

copy(one, one + 3, ostream_iterator<string>{ cout, " " });

cout << " is ordered " <<

(



two, two + 3, CaseString{}) ?

"before "

:

"beyond or at "

);

copy(two, two + 3, ostream_iterator<string>{ cout, " " });

cout << "\n"

"using case-insensitive comparisons.\n";

}

/*
Displays:

hello is before help in the alphabet

hello is beyond or at hello in the alphabet

help is beyond or at hello in the alphabet

alpha bravo charley is ordered before ALPHA BRAVO DELTA

using case-insensitive comparisons.

*/

19.1.26 lower_bound

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator lower_bound(ForwardIterator first, ForwardIterator

last, const Type &value);

– ForwardIterator lower_bound(ForwardIterator first, ForwardIterator

last, const Type &value, Compare comp);

• Description:

– The first prototype: the sorted elements indicated by the iterator range [first, last) are

searched for the first element that is not less than (i.e., greater than or equal to) value. The

returned iterator marks the location in the sequence where value can be inserted without

breaking the sorted order of the elements. The operator< of the data type to which the

iterators point is used. If no such element is found, last is returned.

– The second prototype: the elements indicated by the iterator range [first, last) must

have been sorted using the comp function (-object). Each element in the range is compared

to value using the comp function. An iterator to the first element for which the binary

predicate comp, applied to the elements of the range and value, returns false is returned.

If no such element is found, last is returned.

As illustrated by the following example, the function object function’s first parameter refers

to an element in the iterator range, while the function object’s second parameter refers to

value.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

#include <vector>

#include <functional>

using namespace std;

int main()

{

int ia[] = { 10, 20, 30 };



copy(ia, ia + 3, ostream_iterator<int>(cout, " "));

cout << "\n"

"15 can be inserted before " <<

*lower_bound(ia, ia + 3, 15) << "\n"

"35 can be inserted after " <<

(lower_bound(ia, ia + 3, 35) == ia + 3 ?

"the last element" : "???") << '\n';

cout << "Sequence: ";

copy(ia, ia + 3, ostream_iterator<int>(cout, " "));

cout << "\n"

"15 can be inserted before " <<

*lower_bound(ia, ia + 3, 15, less<int>()) << "\n"

"35 can be inserted before " <<

(lower_bound(ia, ia + 3, 35, less<int>()) == ia ?

"the first element " : "???") << '\n';

vector<int> array{ 5, 10, 20, 20, 20, 30 };

auto iter = lower_bound(array.begin(), array.end(), 20,

[&](int &arrayEl, int value)

{

cout << "Comparing " << arrayEl <<

" (index: " << (&arrayEl - &array[0]) << ")"

" to " << value << '\n';

return arrayEl < value;

}

);

cout << "New 20 to insert at idx " << (iter - array.begin()) << '\n';

}

// Displays:

// Sequence: 10 20 30

// 15 can be inserted before 20

// 35 can be inserted after the last element

// Sequence: 10 20 30

// 15 can be inserted before 20

// 35 can be inserted before ???

// Comparing 20 (index: 3) to 20

// Comparing 10 (index: 1) to 20

// Comparing 20 (index: 2) to 20

// New 20 to insert at idx 2

The binary_search generic algorithm (cf. section 19.1.4)can be used to determine whether or not

value is present in the iterator range. The upper_bound algorithm can be used to find the last

element of a series of values equal to value. The upper_bound section (19.1.66) also contains an

extensive example illustrating the use of lower_bound and as upper_bound.

19.1.27 max

• Header file: <algorithm>

• Function prototypes:

– Type const &max(Type const &one, Type const &two);

– Type const &max(Type const &one, Type const &two, Comparator comp);

• Description:



operator> of the data type to which the iterators point to determine which element is the

larger one.

– The second prototype: one is returned if the binary predicate comp(one, two) returns

true, otherwise two is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(second.c_str(), first.c_str()) > 0;

}

};

int main()

{

cout << "Word '" << max("first"s, "second"s) <<

"' is lexicographically last\n";

cout << "Word '" << max("first"s, "SECOND"s) <<

"' is lexicographically last\n";

cout << "Word '" << max("first"s, "SECOND"s,

CaseString{}) << "' is lexicographically last\n";

}

/*
Displays:

Word 'second' is lexicographically last

Word 'first' is lexicographically last

Word 'SECOND' is lexicographically last

*/

19.1.28 max_element

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator max_element(ForwardIterator first, ForwardIterator

last);

– ForwardIterator max_element(ForwardIterator first, ForwardIterator

last, Comparator comp);

• Description:

– The first prototype: an iterator pointing to the largest element in the range implied by

[first, last) is returned. The operator< of the data type to which the iterators point

is used to decide which of the elements is the largest.

– The second prototype: rather than using operator<, the binary predicate comp is used to

make the comparisons between the elements implied by the iterator range [first, last).

The element for which comp returns most often true, compared with other elements, is

returned.



#include <algorithm>

#include <iostream>

using namespace std;

class AbsValue

{

public:

bool operator()(int first, int second) const

{

return abs(first) < abs(second);

}

};

int main()

{

int ia[] = {-4, 7, -2, 10, -12};

cout << "The max. int value is " << *max_element(ia, ia + 5) << '\n';

cout << "The max. absolute int value is " <<

*max_element(ia, ia + 5, AbsValue{}) << '\n';

}

/*
Displays:

The max. int value is 10

The max. absolute int value is -12

*/

19.1.29 merge

• Header file: <algorithm>

• Function prototypes:

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result,

Compare comp);

• Description:

– The first prototype: the two (sorted) ranges [first1, last1) and [first2, last2) are

merged, keeping a sorted list (using the operator< of the data type to which the iterators

point). The final series is stored in the range starting at result and ending just before the

OutputIterator returned by the function.

– The second prototype: the two (sorted) ranges [first1, last1) and [first2, last2)

are merged, keeping a sorted list (using the boolean result of the binary comparison operator

comp). The final series is stored in the range starting at result and ending just before the

OutputIterator returned by the function.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iterator>

#include <iostream>

using namespace std;



class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string range1[] =

{ // 5 elements

"alpha", "bravo", "foxtrot", "hotel", "zulu"

};

string range2[] =

{ // 4 elements

"delta", "echo", "golf", "romeo"

};

string result[5 + 4];

copy(result,

merge(range1, range1 + 5, range2, range2 + 4, result),

ostream_iterator<string>{ cout, " " });

cout << '\n';

string range3[] =

{

"ALPHA", "bravo", "foxtrot", "HOTEL", "ZULU"

};

string range4[] =

{

"delta", "ECHO", "GOLF", "romeo"

};

copy(result,

merge(range3, range3 + 5, range4, range4 + 4, result,

CaseString{}),

ostream_iterator<string>{ cout, " " });

cout << '\n';

}

/*
Displays:

alpha bravo delta echo foxtrot golf hotel romeo zulu

ALPHA bravo delta ECHO foxtrot GOLF HOTEL romeo ZULU

*/

19.1.30 min

• Header file: <algorithm>

• Function prototypes:

– Type const &min(Type const &one, Type const &two);

– Type const &min(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: the smaller of the two elements one and two is returned using the



is the smaller.

– The second prototype: one is returned if the binary predicate comp(one, two) returns

false, otherwise two is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(second.c_str(), first.c_str()) > 0;

}

};

int main()

{

cout << "Word '" << min(string{ "first" }, string{ "second" }) <<

"' is lexicographically first\n";

cout << "Word '" << min(string{ "first" }, string{ "SECOND" }) <<

"' is lexicographically first\n";

cout << "Word '" << min(string{ "first" }, string{ "SECOND" },

CaseString{}) << "' is lexicographically first\n";

}

/*
Displays:

Word 'first' is lexicographically first

Word 'SECOND' is lexicographically first

Word 'first' is lexicographically first

*/

19.1.31 min_element

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator min_element(ForwardIterator first, ForwardIterator

last);

– ForwardIterator min_element(ForwardIterator first, ForwardIterator

last, Comparator comp);

• Description:

– The first prototype: an iterator pointing to the smallest element in the range implied by the

range [first, last) is returned using operator< of the data type to which the iterators

point to decide which of the elements is the smallest.

– The second prototype: rather than using operator<, the binary predicate comp is used to

make the comparisons between the elements implied by the iterator range [first, last).

The element for which comp returns false most often is returned.



#include <algorithm>

#include <iostream>

using namespace std;

class AbsValue

{

public:

bool operator()(int first, int second) const

{

return abs(first) < abs(second);

}

};

int main()

{

int ia[] = {-4, 7, -2, 10, -12};

cout << "The minimum int value is " << *min_element(ia, ia + 5) <<

'\n';

cout << "The minimum absolute int value is " <<

*min_element(ia, ia + 5, AbsValue{}) << '\n';

}

/*
Displays:

The minimum int value is -12

The minimum absolute int value is -2

*/

19.1.32 mismatch

• Header file: <algorithm>

• Function prototypes:

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2);

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2, Compare comp);

• Description:

– The first prototype: the two sequences of elements starting at first1 and first2 are com-

pared using the equality operator of the data type to which the iterators point. Comparison

stops if the compared elements differ (i.e., operator== returns false) or last1 is reached.

A pair containing iterators pointing to the final positions is returned. The second sequence

may contain more elements than the first sequence. The behavior of the algorithm is unde-

fined if the second sequence contains fewer elements than the first sequence.

– The second prototype: the two sequences of elements starting at first1 and first2 are

compared using the binary comparison operation as defined by comp, instead of operator==.

Comparison stops if the comp function returns false or last1 is reached. A pair containing

iterators pointing to the final positions is returned. The second sequence may contain more

elements than the first sequence. The behavior of the algorithm is undefined if the second

sequence contains fewer elements than the first sequence.

• Example:

#include <algorithm>

#include <string>



#include <iostream>

#include <utility>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) == 0;

}

};

int main()

{

string range1[] =

{

"alpha", "bravo", "foxtrot", "hotel", "zulu"

};

string range2[] =

{

"alpha", "bravo", "foxtrot", "Hotel", "zulu"

};

pair<string *, string *> pss = mismatch(range1, range1 + 5, range2);

cout << "The elements " << *pss.first << " and " << *pss.second <<

" at offset " << (pss.first - range1) << " differ\n";

if

(

mismatch(range1, range1 + 5, range2, CaseString{}).first

==

range1 + 5

)

cout << "When compared case-insensitively they match\n";

}

/*
Displays:

The elements hotel and Hotel at offset 3 differ

When compared case-insensitively they match

*/

19.1.33 next_permutation

• Header file: <algorithm>

• Function prototypes:

– bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);

– bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Comp comp);

• Description:

– The first prototype: the next permutation, given the sequence of elements in the range

[first, last), is determined. For example, if the elements 1, 2 and 3 are the range for

which next_permutation is called, then subsequent calls of next_permutation reorders

the following series:

1 2 3



2 1 3

2 3 1

3 1 2

3 2 1

This example shows that the elements are reordered such that each new permutation rep-

resents the next bigger value (132 is bigger than 123, 213 is bigger than 132, etc.) using

operator< of the data type to which the iterators point. The value true is returned if a

reordering took place, the value false is returned if no reordering took place, which is the

case if the sequence represents the last (biggest) value. In that case, the sequence is also

sorted using operator<.

– The second prototype: the next permutation given the sequence of elements in the range

[first, last) is determined, using the binary predicate comp to compare elements. The

elements in the range are reordered. The value true is returned if a reordering took place,

the value false is returned if no reordering took place, which is the case if the resulting

sequence would haven been ordered using the binary predicate comp to compare elements.

• Example:

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string saints[] = {"Oh", "when", "the", "saints"};

cout << "All permutations of 'Oh when the saints':\n";

cout << "Sequences:\n";

do

{

copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });

cout << '\n';

}

while (next_permutation(saints, saints + 4, CaseString{}));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString{});

cout << "Sequences:\n";

do

{

copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });

cout << '\n';

}

while (next_permutation(saints, saints + 4, CaseString{}));

}

/*
Displays (partially):



Sequences:

Oh when the saints

saints Oh the when

saints Oh when the

saints the Oh when

...

After first sorting the sequence:

Sequences:

Oh saints the when

Oh saints when the

Oh the saints when

Oh the when saints

...

*/

19.1.34 nth_element

• Header file: <algorithm>

• Function prototypes:

– void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);

– void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: all elements in the range [first, last) are sorted relative to the

element pointed to by nth: all elements in the range [left, nth) are smaller than the ele-

ment pointed to by nth, and alle elements in the range [nth + 1, last) are greater than

the element pointed to by nth. The two subsets themselves are not sorted. The operator<

of the data type to which the iterators point is used to compare the elements.

– The second prototype: all elements in the range [first, last) are sorted relative to the

element pointed to by nth: all elements in the range [left, nth) are smaller than the

element pointed to by nth, and alle elements in the range [nth + 1, last) are greater

than the element pointed to by nth. The two subsets themselves are not sorted. The comp

function object is used to compare the elements.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

#include <functional>

using namespace std;

int main()

{

int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

nth_element(ia, ia + 3, ia + 10);

cout << "sorting with respect to " << ia[3] << '\n';

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

nth_element(ia, ia + 5, ia + 10, greater<int>());



cout << "sorting with respect to " << ia[5] << '\n';

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:

sorting with respect to 4

1 2 3 4 9 7 5 6 8 10

sorting with respect to 5

10 8 7 9 6 5 3 4 2 1

*/

19.1.35 partial_sort

• Header file: <algorithm>

• Function prototypes:

– void partial_sort(RandomAccessIterator first, RandomAccessIterator

middle, RandomAccessIterator last);

– void partial_sort(RandomAccessIterator first, RandomAccessIterator

middle, RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: the (middle - first) smallest elements are sorted and stored in the

range [first, middle) using the operator< of the data type to which the iterators point

to compare elements. The remaining elements of the series remain unsorted, and are stored

in the range [middle, last).

– The second prototype: the (middle - first) smallest elements (according to the provided

binary predicate comp) are sorted and stored in the range [first, middle). The remain-

ing elements of the series remain unsorted.

• Example:

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

partial_sort(ia, ia + 3, ia + 10);

cout << "find the 3 smallest elements:\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

cout << "find the 5 biggest elements:\n";

partial_sort(ia, ia + 5, ia + 10, greater<int>());

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:



1 2 3 7 9 5 4 6 8 10

find the 5 biggest elements:

10 9 8 7 6 1 2 3 4 5

*/

19.1.36 partial_sort_copy

• Header file: <algorithm>

• Function prototypes:

– void partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator dest_first, RandomAccessIterator dest_last);

– void partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator dest_first, RandomAccessIterator dest_last,

Compare comp);

• Description:

– The first prototype: the (dest_last - dest_first) smallest elements in the range

[first, last) are copied to the range [dest_first, dest_last), using the

operator< of the data type to which the iterators point to decide which of the elements

to copy.

– The second prototype: the (dest_last - dest_first) smallest elements in the range

[first, last) (as decided by the binary predicate comp returning true). The elements for

which the predicate comp returns true most often are copied to the range [dest_first,

dest_last).

• Example:

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {1, 10, 3, 8, 5, 6, 7, 4, 9, 2};

int ia2[6];

partial_sort_copy(ia, ia + 10, ia2, ia2 + 6);

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

cout << "the 6 smallest elements: ";

copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));

cout << '\n';

cout << "the 4 smallest elements to a larger range:\n";

partial_sort_copy(ia, ia + 4, ia2, ia2 + 6);

copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));

cout << '\n';

cout << "the 4 biggest elements to a larger range:\n";

partial_sort_copy(ia, ia + 4, ia2, ia2 + 6, greater<int>());

copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));

cout << '\n';



/*
Displays:

1 10 3 8 5 6 7 4 9 2

the 6 smallest elements: 1 2 3 4 5 6

the 4 smallest elements to a larger range:

1 3 8 10 5 6

the 4 biggest elements to a larger range:

10 8 3 1 5 6

*/

19.1.37 partial_sum

• Header file: <numeric>

• Function prototypes:

– OutputIterator partial_sum(InputIterator first, InputIterator last,

OutputIterator result);

– OutputIterator partial_sum(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation op);

• Description:

– The first prototype: each element in the range [result, <returned OutputIterator>)

receives a value which is obtained by adding the elements in the corresponding range of the

range [first, last). The first element in the resulting range will be equal to the element

pointed to by first.

– The second prototype: the value of each element in the range [result, <returned

OutputIterator>) is obtained by applying the binary operator op to the previous element

in the resulting range and the corresponding element in the range [first, last). The

first element in the resulting range will be equal to the element pointed to by first.

• Example:

#include <numeric>

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {1, 2, 3, 4, 5};

int ia2[5];

copy(ia2,

partial_sum(ia, ia + 5, ia2),

ostream_iterator<int>(cout, " "));

cout << '\n';

copy(ia2,

partial_sum(ia, ia + 5, ia2, multiplies<int>()),

ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:



1 2 6 24 120

*/

19.1.38 partition

• Header file: <algorithm>

• Function prototype:

– BidirectionalIterator partition(BidirectionalIterator first,

BidirectionalIterator last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates as

true are placed before the elements which evaluate as false. The return value points just

beyond the last element in the partitioned range for which pred evaluates as true.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

class LessThan

{

int d_x;

public:

LessThan(int x)

:

d_x(x)

{}

bool operator()(int value) const

{

return value <= d_x;

}

};

int main()

{

int ia[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};

int *split;

split = partition(ia, ia + 10, LessThan{ ia[9] });

cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>{ cout, " " });

cout << '\n';

}

/*
Displays:

Last element <= 4 is ia[3]

1 3 4 2 9 10 7 8 6 5

*/



• Header file: <algorithm>

• Function prototypes:

– bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);

– bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Comp comp);

• Description:

– The first prototype: the previous permutation given the sequence of elements in the range

[first, last) is determined. The elements in the range are reordered such that the first

ordering is obtained representing a ‘smaller’ value (see next_permutation (section 19.1.33)

for an example involving the opposite ordering). The value true is returned if a reordering

took place, the value false is returned if no reordering took place, which is the case if the

provided sequence was already ordered, according to the operator< of the data type to

which the iterators point.

– The second prototype: the previous permutation given the sequence of elements in the range

[first, last) is determined , using the binary predicate comp to compare elements. The

elements in the range are reordered. The value true is returned if a reordering took place,

the value false is returned if no reordering took place, which is the case if the original

sequence was already ordered, using the binary predicate comp to compare two elements.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string saints[] = {"Oh", "when", "the", "saints"};

cout << "All previous permutations of 'Oh when the saints':\n";

cout << "Sequences:\n";

do

{

copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });

cout << '\n';

}

while (prev_permutation(saints, saints + 4, CaseString{}));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString{});

cout << "Sequences:\n";

while (prev_permutation(saints, saints + 4, CaseString{}))



copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });

cout << '\n';

}

cout << "No (more) previous permutations\n";

}

/*
Displays:

All previous permutations of 'Oh when the saints':

Sequences:

Oh when the saints

Oh when saints the

Oh the when saints

Oh the saints when

Oh saints when the

Oh saints the when

After first sorting the sequence:

Sequences:

No (more) previous permutations

*/

19.1.40 remove

• Header file: <algorithm>

• Function prototype:

– ForwardIterator remove(ForwardIterator first, ForwardIterator last,

Type const &value);

• Description:

– The elements in the range pointed to by [first, last) are reordered such that all values

unequal to value are placed at the beginning of the range. The returned forward iterator

points to the first element that can be removed after reordering. The range [returnvalue,

last) is called the leftover of the algorithm. Note that the leftover may contain elements

different from value, but these elements can be removed safely, as such elements are also

present in the range [first, returnvalue). Such duplication is the result of the fact

that the algorithm copies, rather than moves elements into new locations. The function uses

operator== of the data type to which the iterators point to determine which elements to

remove.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"alpha", "alpha", "papa", "quebec" };

string *removed;

size_t const size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";

removed = remove(words, words + size, "alpha");



cout << '\n'

<< "Leftover elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

Removing all "alpha"s:

kilo lima mike november papa quebec

Leftover elements are:

alpha alpha alpha papa quebec

*/

19.1.41 remove_copy

• Header file: <algorithm>

• Function prototypes:

– OutputIterator remove_copy(InputIterator first, InputIterator last,

OutputIterator result, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) not matching value are copied

to the range [result, returnvalue), where returnvalue is the value returned by the

function. The range [first, last) is not modified. The function uses operator== of the

data type to which the iterators point to determine which elements not to copy.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

string remaining

[

size -

count_if

(

words, words + size,

bind2nd(equal_to<string>(), "alpha"s)

)

];

string *returnvalue =

remove_copy(words, words + size, remaining, "alpha");

cout << "Removing all \"alpha\"s:\n";

copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));

cout << '\n';



/*
Displays:

Removing all "alpha"s:

kilo lima mike november oscar papa quebec

*/

19.1.42 remove_copy_if

• Header file: <algorithm>

• Function prototype:

– OutputIterator remove_copy_if(InputIterator first, InputIterator last,

OutputIterator result, UnaryPredicate pred);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate pred

returns true are removed from the resulting copy. All other elements are copied to the range

[result, returnvalue), where returnvalue is the value returned by the function. The

range [first, last) is not modified.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

string remaining[

size -

count_if

(

words, words + size,

bind2nd(equal_to<string>(), "alpha")

)

];

string *returnvalue =

remove_copy_if

(

words, words + size, remaining,

bind2nd(equal_to<string>(), "alpha")

);

cout << "Removing all \"alpha\"s:\n";

copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

Removing all "alpha"s:



*/

19.1.43 remove_if

• Header file: <algorithm>

• Function prototype:

– ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

UnaryPredicate pred);

• Description:

– The elements in the range pointed to by [first, last) are reordered such that all values

for which the unary predicate pred evaluates as false are placed at the beginning of the

range, while their relative order is kept. The returned forward iterator points to the first

element, after reordering, for which pred returns true. The range [returnvalue, last)

is called the leftover of the algorithm. The leftover may contain elements for which the predi-

cate pred returns false, but these can safely be removed, as such elements are also present

in the range [first, returnvalue). Such duplication is the result of the fact that the

algorithm copies, rather than moves elements into new locations.

• Example:

#include <functional>

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";

string *removed = remove_if(words, words + size,

bind2nd(equal_to<string>(), "alpha"s));

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << '\n'

<< "Trailing elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

Removing all "alpha"s:

kilo lima mike november oscar papa quebec

Trailing elements are:

oscar alpha alpha papa quebec

*/



• Header file: <algorithm>

• Function prototype:

– ForwardIterator replace(ForwardIterator first, ForwardIterator last,

Type const &oldvalue, Type const &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced by

a copy of newvalue. The algorithm uses operator== of the data type to which the iterators

point.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa" };

size_t const size = sizeof(words) / sizeof(string);

replace(words, words + size, "alpha"s, "ALPHA"s);

copy(words, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.45 replace_copy

• Header file: <algorithm>

• Function prototype:

– OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result, Type const &oldvalue, Type const &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced by

a copy of newvalue in a new range [result, returnvalue), where returnvalue is the

return value of the function. The algorithm uses operator== of the data type to which the

iterators point.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>



int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa"};

size_t const size = sizeof(words) / sizeof(string);

string remaining[size];

copy

(

remaining,

replace_copy(words, words + size, remaining, "alpha"s, "ALPHA"s),

ostream_iterator<string>(cout, " ")

);

cout << '\n';

}

/*
Displays:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.46 replace_copy_if

• Header file: <algorithm>

• Function prototypes:

– OutputIterator replace_copy_if(ForwardIterator first, ForwardIterator

last, OutputIterator result, UnaryPredicate pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range [result,

returnvalue), where returnvalue is the value returned by the function. The elements for

which the unary predicate pred returns true are replaced by value. The range [first,

last) is not modified.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november",

"alpha", "oscar", "alpha", "alpha", "papa"};

size_t const size = sizeof(words) / sizeof(string);

string result[size];

// Note: the comparisons are: "mike" > word[i]

replace_copy_if(words, words + size, result,

bind1st(greater<string>(), "mike"s), "ALPHA"s);

copy (result, result + size, ostream_iterator<string>(cout, " "));



}

/*
Displays (all strings in words[] which are exceeded by 'mike' are

replaced by ALPHA):

ALPHA ALPHA ALPHA mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.47 replace_if

• Header file: <algorithm>

• Function prototype:

– ForwardIterator replace_if(ForwardIterator first, ForwardIterator

last, UnaryPredicate pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate pred

evaluates as true are replaced by value.

Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa"};

size_t const size = sizeof(words) / sizeof(string);

replace_if(words, words + size,

bind1st(equal_to<string>(), "alpha"s), "ALPHA"s);

copy(words, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.48 reverse

• Header file: <algorithm>

• Function prototype:

– void reverse(BidirectionalIterator first, BidirectionalIterator last);

• Description:

– The elements in the range pointed to by [first, last) are reversed.



#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

int main()

{

string line;

while (getline(cin, line))

{

reverse(line.begin(), line.end());

cout << line << '\n';

}

}

19.1.49 reverse_copy

• Header file: <algorithm>

• Function prototype:

– OutputIterator reverse_copy(BidirectionalIterator first,

BidirectionalIterator last, OutputIterator result);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range [result,

returnvalue) in reversed order. The value returnvalue is the value that is returned by

the function.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

int main()

{

string line;

while (getline(cin, line))

{

size_t size = line.size();

char copy[size + 1];

cout << "line: " << line << '\n' <<

"reversed: ";

reverse_copy(line.begin(), line.end(), copy);

copy[size] = 0; // 0 is not part of the reversed

// line !

cout << copy << '\n';

}

}



• Header file: <algorithm>

• Function prototype:

– void rotate(ForwardIterator first, ForwardIterator middle,

ForwardIterator last);

• Description:

– The elements implied by the range [first, middle) are moved to the end of the container,

the elements implied by the range [middle, last) are moved to the beginning of the con-

tainer, keeping the order of the elements in the two subsets intact.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "lima", "mike", "november", "oscar",

"foxtrot", "golf", "hotel", "india", "juliet" };

size_t const size = sizeof(words) / sizeof(string);

size_t const midsize = size / 2;

rotate(words, words + midsize, words + size);

copy(words, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

foxtrot golf hotel india juliet kilo lima mike november oscar

*/

19.1.51 rotate_copy

• Header file: <algorithm>

• Function prototypes:

– OutputIterator rotate_copy(ForwardIterator first, ForwardIterator

middle, ForwardIterator last, OutputIterator result);

• Description:

– The elements implied by the range [middle, last) and then the elements implied

by [first, middle) are copied to the destination container having range [result,

returnvalue), where returnvalue is the iterator returned by the function. The original

order of the elements in the two subsets is not altered.

• Example:

#include <algorithm>

#include <iostream>



#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "lima", "mike", "november", "oscar",

"foxtrot", "golf", "hotel", "india", "juliet" };

size_t const size = sizeof(words) / sizeof(string);

size_t const midsize = size / 2;

string out[size];

copy(out,

rotate_copy(words, words + midsize, words + size, out),

ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

foxtrot golf hotel india juliet kilo lima mike november oscar

*/

19.1.52 search

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 first2, ForwardIterator2 last2);

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 first2, ForwardIterator2 last2,

BinaryPredicate pred);

• Description:

– The first prototype: an iterator into the first range [first1, last1) is returned where the

elements in the range [first2, last2) are found using operator== of the data type to

which the iterators point. If no such location exists, last1 is returned.

– The second prototype: an iterator into the first range [first1, last1) is returned where

the elements in the range [first2, last2) are found using the provided binary predicate

pred to compare the elements in the two ranges. If no such location exists, last1 is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

using namespace std;

class absInt

{

public:

bool operator()(int i1, int i2) const

{

return abs(i1) == abs(i2);

}

};



{

int range1[] = {-2, -4, -6, -8, 2, 4, 6, 8};

int range2[] = {6, 8};

copy

(

search(range1, range1 + 8, range2, range2 + 2),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << '\n';

copy

(

search(range1, range1 + 8, range2, range2 + 2, absInt()),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << '\n';

}

/*
Displays:

6 8

-6 -8 2 4 6 8

*/

19.1.53 search_n

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 search_n(ForwardIterator1 first1, ForwardIterator1

last1, Size count, Type const &value);

– ForwardIterator1 search_n(ForwardIterator1 first1, ForwardIterator1

last1, Size count, Type const &value, BinaryPredicate pred);

• Description:

– The first prototype: an iterator into the first range [first1, last1) is returned where

n consecutive elements having value value are found using operator== of the data type

to which the iterators point to compare the elements. If no such location exists, last1 is

returned.

– The second prototype: an iterator into the first range [first1, last1) is returned where

n consecutive elements having value value are found using the provided binary predicate

pred to compare the elements. If no such location exists, last1 is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

using namespace std;

bool eqInt(int i1, int i2)

{

return abs(i1) == abs(i2);

}



{

int range1[] = {-2, -4, -4, -6, -8, 2, 4, 4, 6, 8};

copy

(

search_n(range1, range1 + 8, 2, 4),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << '\n';

copy

(

search_n(range1, range1 + 8, 2, 4, eqInt),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << '\n';

}

/*
Displays:

4 4

-4 -4 -6 -8 2 4 4

*/

19.1.54 set_difference

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_difference(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2, OutputIterator

result);

– OutputIterator set_difference(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2, OutputIterator

result, Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) is returned, starting at result,

and ending at the OutputIterator returned by the function. The elements in the two

ranges must have been sorted using operator< of the data type to which the iterators

point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) is returned, starting at result,

and ending at the OutputIterator returned by the function. The elements in the two

ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;



bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[7];

string *returned;

copy(result,

set_difference(set1, set1 + 7, set2, set2 + 3, result),

ostream_iterator<string>(cout, " "));

cout << '\n';

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_difference(set1, set1 + 7, set3, set3 + 3, result,

caseless),

ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

kilo lima mike november oscar

kilo lima mike november oscar

*/

19.1.55 set_intersection

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_intersection(InputIterator1 first1, InputIterator1)

linebreak() tt(last1, InputIterator2 first2, InputIterator2 last2,

OutputIterator result);

– OutputIterator set_intersection(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2, OutputIterator

result, Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are also present in the range [first2, last2) is returned, starting at

result, and ending at the OutputIterator returned by the function. The elements in the

two ranges must have been sorted using operator< of the data type to which the iterators

point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are also present in the range [first2, last2) is returned, starting at

result, and ending at the OutputIterator returned by the function. The elements in

the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>



#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[7];

string *returned;

copy(result,

set_intersection(set1, set1 + 7, set2, set2 + 3, result),

ostream_iterator<string>(cout, " "));

cout << '\n';

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_intersection(set1, set1 + 7, set3, set3 + 3, result,

caseless),

ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

papa quebec

papa quebec

*/

19.1.56 set_symmetric_difference

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_symmetric_difference(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2, InputIterator2 last2,

OutputIterator result);

– OutputIterator set_symmetric_difference(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2, InputIterator2 last2,

OutputIterator result, Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) and those in the range

[first2, last2) that are not present in the range [first1, last1) is returned, start-

ing at result, and ending at the OutputIterator returned by the function. The elements

in the two ranges must have been sorted using operator< of the data type to which the

iterators point.



last1) that are not present in the range [first2, last2) and those in the range

[first2, last2) that are not present in the range [first1, last1) is returned, start-

ing at result, and ending at the OutputIterator returned by the function. The elements

in the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[7];

copy(result,

set_symmetric_difference(set1, set1 + 7, set2, set2 + 3,

result),

ostream_iterator<string>(cout, " "));

cout << '\n';

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_symmetric_difference(set1, set1 + 7, set3, set3 + 3,

result, caseless),

ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

kilo lima mike november oscar romeo

kilo lima mike november oscar ROMEO

*/

19.1.57 set_union

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result,

Compare comp);



– The first prototype: a sorted sequence of the elements that are present in either the range

[first1, last1) or the range [first2, last2) or in both ranges is returned, starting

at result, and ending at the OutputIterator returned by the function. The elements

in the two ranges must have been sorted using operator< of the data type to which the

iterators point. Note that in the final range each element appears only once.

– The second prototype: a sorted sequence of the elements that are present in either the range

[first1, last1) or the range [first2, last2) or in both ranges is returned, starting

at result, and ending at the OutputIterator returned by the function. The elements in

the two ranges must have been sorted using comp function object. Note that in the final

range each element appears only once.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[8];

copy(result,

set_union(set1, set1 + 7, set2, set2 + 3, result),

ostream_iterator<string>(cout, " "));

cout << '\n';

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_union(set1, set1 + 7, set3, set3 + 3, result, caseless),

ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

kilo lima mike november oscar papa quebec romeo

kilo lima mike november oscar papa quebec ROMEO

*/

19.1.58 sort

• Header file: <algorithm>

• Function prototypes:

– void sort(RandomAccessIterator first, RandomAccessIterator last);



Compare comp);

• Description:

– The first prototype: the elements in the range [first, last) are sorted in ascending order

using operator< of the data type to which the iterators point.

– The second prototype: the elements in the range [first, last) are sorted in ascending

order using the comp function object to compare the elements. The binary predicate comp

should return true if its first argument should be placed earlier in the sorted sequence than

its second argument.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] = {"november", "kilo", "mike", "lima",

"oscar", "quebec", "papa"};

sort(words, words + 7);

copy(words, words + 7, ostream_iterator<string>(cout, " "));

cout << '\n';

sort(words, words + 7, greater<string>());

copy(words, words + 7, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

kilo lima mike november oscar papa quebec

quebec papa oscar november mike lima kilo

*/

19.1.59 stable_partition

• Header file: <algorithm>

• Function prototype:

– BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates as

true are placed before the elements which evaluate as false. Apart from this reordering,

the relative order of all elements for which the predicate evaluates to false and the relative

order of all elements for which the predicate evaluates to true is kept. The return value

points just beyond the last element in the partitioned range for which pred evaluates as

true.

• Example:

#include <algorithm>



#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int org[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};

int ia[10];

int *split;

copy(org, org + 10, ia);

split = partition(ia, ia + 10, bind2nd(less_equal<int>(), ia[9]));

cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

copy(org, org + 10, ia);

split = stable_partition(ia, ia + 10,

bind2nd(less_equal<int>(), ia[9]));

cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:

Last element <= 4 is ia[3]

1 3 4 2 9 10 7 8 6 5

Last element <= 4 is ia[3]

1 3 2 4 5 7 9 10 8 6

*/

19.1.60 stable_sort

• Header file: <algorithm>

• Function prototypes:

– void stable_sort(RandomAccessIterator first, RandomAccessIterator

last);

– void stable_sort(RandomAccessIterator first, RandomAccessIterator

last, Compare comp);

• Description:

– The first prototype: the elements in the range [first, last) are stable-sorted in ascend-

ing order using operator< of the data type to which the iterators point: the relative order

of equal elements is kept.

– The second prototype: the elements in the range [first, last) are stable-sorted in as-

cending order using the comp binary predicate to compare the elements. This predicate

should return true if its first argument should be placed before its second argument in the

sorted set of element.

• Example (annotated below):

#include <algorithm>



#include <string>

#include <vector>

#include <iterator>

using namespace std;

struct Pss: public pair<string, string> // 1

{

Pss(string const &s1, string const &s2)

:

pair<string, string>(s1, s2)

{}

};

ostream &operator<<(ostream &out, Pss const &p) // 2

{

return out << " " << p.first << " " << p.second << '\n';

}

class Sortby

{

string Pss::*d_field;

public:

Sortby(string Pss::*field) // 3

:

d_field(field)

{}

bool operator()(Pss const &p1, Pss const &p2) const // 4

{

return p1.*d_field < p2.*d_field;

}

};

int main()

{

vector<Pss> namecity { // 5

Pss("Hampson", "Godalming"),

Pss("Moran", "Eugene"),

Pss("Goldberg", "Eugene"),

Pss("Moran", "Godalming"),

Pss("Goldberg", "Chicago"),

Pss("Hampson", "Eugene")

};

sort(namecity.begin(), namecity.end(), Sortby{ &Pss::first });// 6

cout << "sorted by names:\n";

copy(namecity.begin(), namecity.end(),

ostream_iterator<Pss>{ cout });

// 7

stable_sort(namecity.begin(), namecity.end(),

Sortby{ &Pss::second });

cout << "sorted by names within sorted cities:\n";

copy(namecity.begin(), namecity.end(),

ostream_iterator<Pss>{ cout });

}

/*
Displays:

sorted by names:

Goldberg Eugene



Hampson Godalming

Hampson Eugene

Moran Eugene

Moran Godalming

sorted by names within sorted cities:

Goldberg Chicago

Goldberg Eugene

Hampson Eugene

Moran Eugene

Hampson Godalming

Moran Godalming

*/

Note that the example implements a solution to an often occurring problem: how to sort using multiple

hierarchal criteria. The example deserves some additional attention:

• First, at // 1 a wrapper struct Pss is created around std::pair<std::string,

std::string>. The intent here is to define a type that is a wrapper around a class that is

defined in the std namespace for which no insertion operation has been defined. This struct de-

sign conflicts with the principles outlined in section 14.7. However, inheritance is defensible here

as the intention is not to add ‘missing features’ and as pair itself is in essence just Plain Old

Data.

• Next (// 2), operator<< is overloaded for Pss objects. Although the compiler wouldn’t have

complained if this operator had been defined in the std namespace for the pair<string,

string> type, this would also have been bad style as the std namespace is off limits to or-

dinary programs. By defining a wrapper type around pair<string, string> bad style can be

prevented.

• Then (// 3), a class Sortby is defined, allowing us to construct an anonymous object receiving a

pointer to one of the Pss data members that are used for sorting. In this case, as both members

are string objects, its constructor can easily be defined. It expects a pointer to a stringmember

of the class Pss.

• Sortby’s operator() member (// 4) receives two references to Pss objects and uses its pointer

to member to compare the appropriate fields of the Pss objects.

• In main some data is stored in a vector (// 5).

• Then (// 6) the first sort takes place. The least important criterion must be sorted first and

for this a simple sort suffices. Since we want the names to be sorted within cities, the names

represent the least important criterion, so we sort by names: Sortby(&Pss::first).

• The next important criterion, the cities, are sorted next (// 7). Since the relative ordering of the

names are not altered anymore by stable_sort, the ties that are observed when cities are sorted

are solved in such a way that the existing relative ordering is not broken. So, we end up getting

Goldberg in Eugene before Hampson in Eugene, before Moran in Eugene. To sort by cities, we use

another anonymous Sortby object: Sortby(&Pss::second).

19.1.61 swap

• Header file: <algorithm>

• Function prototype:

– void swap(Type &object1, Type &object2);

• Description:

– The elements object1 and object2 exchange their values. They do so by either cyclic copy

assignment or cyclic move assignment (if available).



#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string first[] = {"alpha", "bravo", "charley"};

string second[] = {"echo", "foxtrot", "golf"};

size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << '\n';

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << '\n';

for (size_t idx = 0; idx < n; ++idx)

swap(first[idx], second[idx]);

cout << "After:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << '\n';

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

Before:

alpha bravo charley

echo foxtrot golf

After:

echo foxtrot golf

alpha bravo charley

*/

19.1.62 swap_ranges

• Header file: <algorithm>

• Function prototype:

– ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 result);

• Description:

– The elements in the range pointed to by [first1, last1) are swapped with the elements

in the range [result, returnvalue), where returnvalue is the value returned by the

function. The two ranges must be disjoint.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>



int main()

{

string first[] = {"alpha", "bravo", "charley"};

string second[] = {"echo", "foxtrot", "golf"};

size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << '\n';

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << '\n';

swap_ranges(first, first + n, second);

cout << "After:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << '\n';

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

Before:

alpha bravo charley

echo foxtrot golf

After:

echo foxtrot golf

alpha bravo charley

*/

19.1.63 transform

• Header file: <algorithm>

• Function prototypes:

– OutputIterator transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperator op);

– OutputIterator transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result, BinaryOperator op);

• Description:

– The first prototype: the unary operator op is applied to each of the elements in the range

[first, last), and the resulting values are stored in the range starting at result. The

return value points just beyond the last generated element.

– The second prototype: the binary operator op is applied to each of the elements in the range

[first1, last1) and the corresponding element in the second range starting at first2.

The resulting values are stored in the range starting at result. The return value points just

beyond the last generated element.

• Example:

#include <functional>

#include <vector>

#include <algorithm>

#include <iostream>



#include <cctype>

#include <iterator>

using namespace std;

string caps(string const &src)

{

string tmp;

tmp.resize(src.length());

transform(src.begin(), src.end(), tmp.begin(), ::toupper);

return tmp;

}

int main()

{

string words[] = {"alpha", "bravo", "charley"};

copy(words, transform(words, words + 3, words, caps),

ostream_iterator<string>(cout, " "));

cout << '\n';

int values[] = {1, 2, 3, 4, 5};

vector<int> squares;

transform(values, values + 5, values,

back_inserter(squares), multiplies<int>());

copy(squares.begin(), squares.end(),

ostream_iterator<int>(cout, " "));

cout << '\n';

}

/*
Displays:

ALPHA BRAVO CHARLEY

1 4 9 16 25

*/

the following differences between the for_each (section 19.1.18) and transform generic algorithms

should be noted:

• With transform the return value of the function object’s operator() member is used; the argu-

ment that is passed to the operator() member itself is not changed.

• With for_each the function object’s operator() receives a reference to an argument, which

itself may be changed by the function object’s operator().

Also note that the range-based for loop can often be used instead of the transform generic algorithm.

However, but different from the range-based for-loop the transform algorithm can also be used width

sub-ranges and with reverse-iterators.

19.1.64 unique

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator unique(ForwardIterator first, ForwardIterator last);



BinaryPredicate pred);

• Description:

The std::unique generic algorithm assumes that the elements in the range have previously

been sorted (cf. section 19.1.58).

– The first prototype: using operator== of the data type to which the iterators point, all

but the first of consecutively equal elements in the range pointed to by [first, last) are

relocated to the end of the range. The returned forward iterator marks the beginning of the

leftover. All elements in the range [first, return-value) are unique, all elements in

the range [return-value, last) have undetermined (but valid) values.

– The second prototype: all but the first of consecutive elements in the range pointed to by

[first, last) for which the binary predicate pred returns true are relocated to the end of

the range. The predicate pred expects two arguments of the data type to which the iterators

point. The returned forward iterator marks the beginning of the leftover. For all pairs of

elements in the range [first, return-value) pred returns false (i.e., they are unique).

All elements in the leftover (i.e., the range [return-value, last)) have undetermined

(but valid) values.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool casestring(string const &first, string const &second)

{

return strcasecmp(first.c_str(), second.c_str()) == 0;

}

int main()

{

string words[] = {"alpha", "alpha", "Alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

string *removed = unique(words, words + size);

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << '\n'

<< "Trailing elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

removed = unique(words, words + size, casestring);

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << '\n'

<< "Trailing elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
Displays:

alpha Alpha papa quebec

Trailing elements are:

quebec

alpha papa quebec

Trailing elements are:

quebec quebec

*/



• Header file: <algorithm>

• Function prototypes:

– OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result);

– OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);

• Description:

– The first prototype: the elements in the range [first, last) are copied to the resulting

container, starting at result. Consecutively equal elements (using operator== of the data

type to which the iterators point) are copied only once (keeping the first of a series of equal

elements). The returned output iterator points just beyond the last copied element.

– The second prototype: the elements in the range [first, last) are copied to the resulting

container, starting at result. Consecutive elements in the range pointed to by [first,

last) for which the binary predicate pred returns true are copied only once (keeping the

first of a series of equal elements). The returned output iterator points just beyond the last

copied element.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

#include <iterator>

#include <cstring>

using namespace std;

bool casestring(string const &first, string const &second)

{

return strcasecmp(first.c_str(), second.c_str()) == 0;

}

int main()

{

string words[] = {"oscar", "Alpha", "alpha", "alpha",

"papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

vector<string> remaining;

unique_copy(words, words + size, back_inserter(remaining));

copy(remaining.begin(), remaining.end(),

ostream_iterator<string>(cout, " "));

cout << '\n';

vector<string> remaining2;

unique_copy(words, words + size,

back_inserter(remaining2), casestring);

copy(remaining2.begin(), remaining2.end(),

ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*



oscar Alpha alpha papa quebec

oscar Alpha papa quebec

*/

19.1.66 upper_bound

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator upper_bound(ForwardIterator first, ForwardIterator

last, Type const &value);

– ForwardIterator upper_bound(ForwardIterator first, ForwardIterator

last, Type const &value, Compare comp);

• Description:

– The first prototype: the sorted elements (using ascending sort) stored in the iterator range

[first, last) are searched for the first element that is greater than value. The returned

iterator marks the first location in the sequence where value can be inserted without break-

ing the sorted order of the elements using operator< of the data type to which the iterators

point. If no such element is found, last is returned.

– The second prototype: the elements implied by the iterator range [first, last) must

have been sorted using the comp function or function object. Each element in the range

is compared to value using the comp function. An iterator is returned pointing to the first

element for which the binary predicate comp, applied to the elements of the range and value,

returns true. The comp function object function’s first parameter refers to value and the

function object’s second parameter refers to an element in the iterator range.

Caveat: note that the comp object’s parameters when using upper_bound are swapped com-

pared to the parameters expected by lower_bound.

– When the values in the iterator range were sorted in ascending order (i.e., using operator<)

then upper_bound returns an iterator pointing beyond the last of a series of values equal to

value, while lower_bound returns an iterator pointing to the first of such a series of equal

values.

When the iterator range contains a series of values which are, according to comp, equal to

value then upper_bound returns an iterator to the first element beyond that series, while

lower_bound returns an iterator to the first element of that series.

The following program illustrates the various possibilities. Th program illustrates both

lower_bound and upper_bound and also illustrates the situation where value’ Type is

unequal to the types of the values in the iterator range. Specific comment is provided below

the program’s code.

• Example:

1: #include <algorithm>

2: #include <iostream>

3: using namespace std;

4:

5: int main()

6: {

7: typedef pair<int, char> pic;

8:

9: pic picArr[] =

10: { {1, 'f'}, {5, 'r'}, {5, 'a'}, {7, 'n'}, {8, 'k'} };

11: pic *picArrEnd = picArr + size(picArr);

12:

13: cout << "Sequence: ";



15: cout << '{' << pair.first << ',' << pair.second << "}, ";

16: cout << '\n';

17:

18: auto iter = lower_bound(picArr, picArrEnd, 5,

19: [&](pic const &range, int value)

20: {

21: return range.first < value;

22: }

23: );

24: cout << " lower bound, <, {5,?} can be inserted before {" <<

25: iter->first << ',' << iter->second << "}\n";

26:

27: iter = upper_bound(picArr, picArrEnd, 5,

28: [&](int value, pic const &range)

29: {

30: return value < range.first;

31: }

32: );

33: cout << " upper_bound, <, {5,?} can be inserted before {" <<

34: iter->first << ',' << iter->second << "}\n";

35:

36: iter = upper_bound(picArr, picArrEnd, 9,

37: [&](int value, pic const &range)

38: {

39: return value < range.first;

40: }

41: );

42: cout << " upper_bound, <, {9,?} can be inserted " <<

43: ( &*iter == picArrEnd ? "at the end" : "???") << '\n';

44:

45: sort(picArr, picArrEnd,

46: [](pic const &lhs, pic const &rhs)

47: {

48: return lhs.first > rhs.first;

49: }

50: );

51:

52: cout << "\nSequence: ";

53: for (auto &pair: picArr)

54: cout << '{' << pair.first << ',' << pair.second << "}, ";

55: cout << '\n';

56:

57: iter = lower_bound(picArr, picArrEnd, 5,

58: [&](pic const &range, int value)

59: {

60: return range.first > value;

61: }

62: );

63: cout << " lower_bound, >, {5,?} can be inserted before {" <<

64: iter->first << ',' << iter->second << "}\n";

65:

66: iter = upper_bound(picArr, picArrEnd, 5,

67: [&](int value, pic const &range)

68: {

69: return value > range.first;

70: }

71: );

72: cout << " upper_bound, >, {5,?} can be inserted before {" <<



74:

75: iter = upper_bound(picArr, picArrEnd, 0,

76: [&](int value, pic const &range)

77: {

78: return value > range.first;

79: }

80: );

81: cout << " upper_bound, >, {0,?} can be inserted " <<

82: ( &*iter == picArrEnd ? "at the end" : "???") << '\n';

83: }

84: // Displays:

85: // Sequence: {1,f}, {5,r}, {5,a}, {7,n}, {8,k},

86: // lower bound, <, {5,?} can be inserted before {5,r}

87: // upper_bound, <, {5,?} can be inserted before {7,n}

88: // upper_bound, <, {9,?} can be inserted at the end

89: //

90: // Sequence: {8,k}, {7,n}, {5,r}, {5,a}, {1,f},

91: // lower_bound, >, {5,?} can be inserted before {5,r}

92: // upper_bound, >, {5,?} can be inserted before {1,f}

93: // upper_bound, >, {0,?} can be inserted at the end

– Lines 7 thru 12: the iterator range consists of a series of pairs, sorted by their first

members.

– Lines 18 thru 23: lower_bound is called using a lambda expression to define the Compare

function object. Note (line 19) that a reference to a value in the iterator range is the lambda

expression’s first parameter, while the target value is its second parameter.

– Lines 27 thru 32: here upper_bound is called, also using a lambda expression. With

upper_bound the target value is the lambda expression’s first parameter, while a reference

to a value in the iterator range is its second parameter.

– Lines 57 thru 62, 66 thru 71, and 75 thru 80: after sorting the values in the picArr array

in descending order lower_bound and upper_bound are again used. This time instead of

using the < operator the > operator should be used.

The binary_search generic algorithm can be used to simply determine whether or nog value is present

in the iterator range. The lower_bound generic algorithm can be used to find the first element of a

series of values equal to value.

19.1.67 Heap algorithms

A heap is a kind of binary tree which can be represented by an array. In the standard heap, the key of

an element is not smaller than the key of its children. This kind of heap is called a max heap. A tree in

which numbers are keys could be organized as shown in figure 19.1. Such a tree may also be organized

in an array:

12, 11, 10, 8, 9, 7, 6, 1, 2, 4, 3, 5

In the following description, keep two pointers into this array in mind: a pointer node indicates the

location of the next node of the tree, a pointer child points to the next element which is a child of the

node pointer. Initially, node points to the first element, and child points to the second element.

• ∗node++ (== 12). 12 is the top node. its children are ∗child++ (11) and ∗child++ (10), both

less than 12.

• The next node (∗node++ (== 11)), in turn, has ∗child++ (8) and ∗child++ (9) as its children.

• The next node (∗node++ (== 10)) has ∗child++ (7) and ∗child++ (6) as its children.



Figure 19.1: A binary tree representation of a heap

• The next node (∗node++ (== 8)) has ∗child++ (1) and ∗child++ (2) as its children.

• Then, node (∗node++ (== 9)) has children ∗child++ (4) and ∗child++ (3).

• Finally (as far as children are concerned) (∗node++ (== 7)) has one child ∗child++ (5)

Since child now points beyond the array, the remaining nodes have no children. So, nodes 6, 1, 2, 4, 3

and 5 don’t have children.

Note that the left and right branches are not ordered: 8 is less than 9, but 7 is larger than 6.

A heap is created by traversing a binary tree level-wise, starting from the top node. The top node is 12,

at the zeroth level. At the first level we find 11 and 10. At the second level 8, 9, 7 and 6 are found, etc.

Heaps can be constructed in containers supporting random access. So, a list is not an appropriate data

structure for a heap. Heaps can be constructed from an (unsorted) array (using make_heap). The top-

element can be pruned from a heap, followed by reordering the heap (using pop_heap), a new element

can be added to the heap, followed by reordering the heap (using push_heap), and the elements in a

heap can be sorted (using sort_heap, which, of course, invalidates the heap).

19.1.67.1 The ‘make_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void make_heap(RandomAccessIterator first, RandomAccessIterator last);

– void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: the elements in the range [first, last) are reordered to form a max-

heap using operator< of the data type to which the iterators point.

– The second prototype: the elements in the range [first, last) are reordered to form a

max-heap using the binary comparison function object comp to compare elements.

19.1.67.2 The ‘pop_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void pop_heap(RandomAccessIterator first, RandomAccessIterator last);



Compare comp);

• Description:

– The first prototype: the first element in the range [first, last) is moved to last - 1.

Then, the elements in the range [first, last - 1) are reordered to form a max-heap

using the operator< of the data type to which the iterators point.

– The second prototype: the first element in the range [first, last) is moved to last -

1. Then, the elements in the range [first, last - 1) are reordered to form a max-heap

using the binary comparison function object comp to compare elements.

19.1.67.3 The ‘push_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void push_heap(RandomAccessIterator first, RandomAccessIterator last);

– void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: assuming that the range [first, last - 1) contains a valid heap,

and the element at last - 1 contains an element to be added to the heap, the elements in

the range [first, last - 1) are reordered to form a max-heap using the operator< of

the data type to which the iterators point.

– The second prototype: assuming that the range [first, last - 1) contains a valid heap,

and the element at last - 1 contains an element to be added to the heap, the elements in

the range [first, last - 1) are reordered to form a max-heap using the binary compar-

ison function object comp to compare elements.

19.1.67.4 The ‘sort_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

– void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: assuming the elements in the range [first, last) form a valid max-

heap, the elements in the range [first, last) are sorted using operator< of the data

type to which the iterators point.

– The second prototype: assuming the elements in the range [first, last) form a valid

heap, the elements in the range [first, last) are sorted using the binary comparison

function object comp to compare elements.

19.1.67.5 An example using the heap functions

Here is an example showing the various generic algorithms manipulating heaps:

#include <algorithm>



#include <functional>

#include <iterator>

using namespace std;

void show(int *ia, char const *header)

{

cout << header << ":\n";

copy(ia, ia + 20, ostream_iterator<int>(cout, " "));

cout << '\n';

}

int main()

{

int ia[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

make_heap(ia, ia + 20);

show(ia, "The values 1-20 in a max-heap");

pop_heap(ia, ia + 20);

show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20);

show(ia, "Adding 20 (at the end) to the heap again");

sort_heap(ia, ia + 20);

show(ia, "Sorting the elements in the heap");

make_heap(ia, ia + 20, greater<int>());

show(ia, "The values 1-20 in a heap, using > (and beyond too)");

pop_heap(ia, ia + 20, greater<int>());

show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20, greater<int>());

show(ia, "Re-adding the removed element");

sort_heap(ia, ia + 20, greater<int>());

show(ia, "Sorting the elements in the heap");

}

/*
Displays:

The values 1-20 in a max-heap:

20 19 15 18 11 13 14 17 9 10 2 12 6 3 7 16 8 4 1 5

Removing the first element (now at the end):

19 18 15 17 11 13 14 16 9 10 2 12 6 3 7 5 8 4 1 20

Adding 20 (at the end) to the heap again:

20 19 15 17 18 13 14 16 9 11 2 12 6 3 7 5 8 4 1 10

Sorting the elements in the heap:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The values 1-20 in a heap, using > (and beyond too):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Removing the first element (now at the end):

2 4 3 8 5 6 7 16 9 10 11 12 13 14 15 20 17 18 19 1

Re-adding the removed element:

1 2 3 8 4 6 7 16 9 5 11 12 13 14 15 20 17 18 19 10

Sorting the elements in the heap:

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1







Chapter 20

Multi Threading

The 98 C++ standard did not acknowledge the existence of multi-threading. Between then and the

release of the current C++ standard computers have evolved to multi-core machines, and using multi-

threading by now is a real option to consider when developing software.

Multi-threading is an extensive and complex subject, and many good reference texts on the subject

exist. The C++ multi-threading is built upon the facilities offered by the pthreads library (cf. Nichols,

B, et al.’s Pthreads Programming1, O’Reilly ). However, in line with C++’s current-day philosophy

the multi-threading implementation offered by the language offers a high level interface to multi-

threading, and using the raw pthread building blocks is hardly ever necessary (cf. Williams, A. (2012):

C++ Concurrency in action).

This chapter covers the facilities for multi-threading as supported by C++. Although the coverage aims

at providing the tools and examples allowing you to create your own multi-threaded programs, coverage

necessarily is far from complete. The topic of multi threading is too extensive for that. The mentioned

reference texts provide a good starting point for any further study of multi threading.

A thread of execution (commonly abbreviated to a thread) is a single flow of control within a program.

It differs from a separately executed program, as created by the fork(1) system call in the sense that

threads all run inside one program, while fork(1) creates independent copies of a running program.

Multi-threading means that multiple tasks are being executed in parallel inside one program, and

no assumptions can be made as to which thread is running first or last, or at what moment in time.

Especially when the number of threads does not exceed the number of cores, each thread may be active

at the same time. If the number of threads exceed the number of cores, the operating system will resort

to task switching, offering each thread time slices in which it can perform its tasks. Task switching

takes time, and the law of diminishing returns applies here as well: if the number of threads greatly

exceeds the number of available cores (also called overpopulation), then the overhead incurred may

exceed the benefit of being able to run multiple tasks in parallel.

Since all threads are running inside one single program, all threads share the program’s data and code.

When the same data are accessed by multiple threads, and at least one of the threads is modifying

these data, access must be synchronized to avoid that threads read data while these data are being

modified by other threads, and to avoid that multiple threads modify the same data at the same time.

So how do we run a multi-threaded program in C++? Let’s look at hello world, the multi-threaded way:

1: #include <iostream>

2: #include <thread>

3:

4: void hello()

5: {

6: std::cout << "hello world!\n";

7: }

1http://oreilly.com/catalog/

615



9: int main()

10: {

11: std::thread hi(hello);

12: hi.join();

13: }

• At line 2 the header thread is included, informing the compiler about the existence of the class

std::thread (cf. section 20.1.2);

• At line 11 the std::thread hi object is created. It is provided with the name of a function

(hello) which will be called in a separate thread. Actually, the second thread, running hello, is

immediately started when a std::thread is defined this way;

• The main function itself also represents a thread: the program’s first thread. It should wait until

the second thread has finished. This is realized in line 12, where hi.join() waits until the

thread hi has finished its job. Since there are no further statements in main, the program itself

ends immediately thereafter.

• The function hello itself, defined in lines 4 through 7, is trivial: it simply inserts the text ‘hello

world’ into cout, and terminates, thus ending the second thread.

When compiling multi-threaded programs using the GNU g++ compiler the -pthread option must be

specified.

To create a multi-threaded program defined in a source file multi.cc the g++ compiler can be called

like this:

g++ --std=c++14 -pthread -Wall multi.cc

20.1 Multi Threading

In C++ multi threading may be implemented at various levels of abstraction. In general the highest

level of abstraction which is available to implement a mult-threaded problem should be used. Not so

much because it’s often simpler than using lower levels of abstraction, but because higher levels of

abstraction are usually semantically closer to the original problem description, resulting in code which

is easier to understand and therefore easier to maintain. Also, high-abstraction classes also provide

exception safety and prevent the occurrence of memory leaks.

C++’s main tool for creating multi-threaded programs is the class std::thread, and some examples

of its use have already been shown at the beginning of this chapter.

Characteristics of individual threads can be queried from the std::this_thread namespace. Also,

std::this_thread offers some control over the behavior of an individual thread.

To synchronize access to shared data C++ offers mutexes (implemented by the class std::mutex) and

condition variables (implemented by the class std::condition_variable).

Members of these classes may throw system_error objects (cf. section 10.9) when encountering a

low-level error condition.

20.1.1 The namespace std::this_thread

The namespace std::this_thread contains functions that are uniquely associated with the cur-

rently running thread.

Before using the namespace this_thread the <thread> header file must be included.



about the current thread or that can be used to control its behavior:

• thread::id this_thread::get_id() noexcept:

returns an object of type thread::id that identifies the currently active thread of execution.

For an active thread the returned id is unique in the sense that it maps 1:1 to the currently

active thread, and is not returned by any other thread. If a thread is currently not running

thread::id() is returned by the std::thread object’s get_id member.

• void yield() noexcept:

when a thread calls this_thread::yield() the current thread is briefly suspended, allowing

other (waiting) threads to start.

• void sleep_for(chrono::duration<Rep, Period> const &relTime) noexcept:

when a thread calls this_thread::sleep_for(...) it is suspended for the amount of time

that’s specified in its argument. E.g.,

std::this_thread::sleep_for(std::chrono::seconds(5));

• void sleep_until(chrono::time_point<Clock, Duration> const &absTime)

noexcept:

when a thread calls this member it is suspended until the specified absTime is in the past. The

next example has the same effect as the previous example:

// assume using namespace std

this_thread::sleep_until(chrono::system_clock().now() + chrono::seconds(5));

Conversely, the sleep_until call in the next example immediately returns:

this_thread::sleep_until(chrono::system_clock().now() - chrono::seconds(5));

20.1.2 The class std::thread

Multi threading in C++ starts off with objects of the class std::thread. Each object of this class

handles a separate thread.

Before using Thread objects the <thread> header file must be included.

Thread objects can be constructed in various ways:

• thread() noexcept:

The default constructor creates a thread object. As it receives no function to execute, it does not

start a separate thread of execution. It is used, e.g., as a data member of a class, allowing class

objects to start a separate thread at some later point in time;

• thread(thread &&tmp) noexcept:

The move constructor takes ownership of the thread controlled by tmp, while tmp, if it runs a

thread, loses control over its thread. Following this, tmp is in its default state, and the newly

created thread is responsible for calling, e.g., join.

• explicit thread(Fun &&fun, Args &&...args):

This member template (cf. section 22.1.3) expects a function (or functor) as its first argument. The

function is immediately started as a separate thread. If the function (or functor) expects argu-

ments, then these arguments can be passed to the thread’s constructor immediately following

its first (function) argument. Additional arguments are passed with their proper types and values

to fun. Following the thread object’s construction, a separately running thread of execution is

started.

The notation Arg &&...args indicates that any additional arguments are passed as is to the

function. The types of the arguments that are passed to the thread constructor and that are



r-value references must be r-value references (or move construction must be supported). The

following example illustrates this requirement:

1: #include <iostream>

2: #include <thread>

3:

4: using namespace std;

5:

6: struct NoMove

7: {

8: NoMove() = default;

9: NoMove(NoMove &&tmp) = delete;

10: };

11:

12: struct MoveOK

13: {

14: int d_value = 10;

15:

16: MoveOK() = default;

17: MoveOK(MoveOK const &) = default;

18:

19: MoveOK(MoveOK &&tmp)

20: {

21: d_value = 0;

22: cout << "MoveOK move cons.\n";

23: }

24: };

25:

26: void valueArg(int value)

27: {}

28: void refArg(int &ref)

29: {}

30: void r_refArg(int &&tmp)

31: {

32: tmp = 100;

33: }

34: void r_refNoMove(NoMove &&tmp)

35: {}

36: void r_refMoveOK(MoveOK &&tmp)

37: {}

38:

39: int main()

40: {

41: int value = 0;

42:

43: std::thread(valueArg, value).join();

44: std::thread(refArg, ref(value)).join();

45: std::thread(r_refArg, move(value)).join();

46:

47: // std::thread(refArg, value);

48:

49: std::thread(r_refArg, value).join();

50: cout << "value after r_refArg: " << value << '\n';

51:

52: // std::thread(r_refNoMove, NoMove());

53:

54: NoMove noMove;

55: // std::thread(r_refNoMove, noMove).join();



57: MoveOK moveOK;

58: std::thread(r_refMoveOK, moveOK).join();

59: cout << moveOK.d_value << '\n';

60: }

– At lines 43 through 45 we see a value, reference, and and r-value reference being passed to a

std::thread: with the functions running the threads expecting matching argument types.

– Line 47 fails to compile, as a value argument doesn’t match the reference expected by

refArg. Note that this problem was solved in line 43 by using the std::ref function.

– On the other hand lines 49 and 58 compile OK, as int values and class-types supporting

move operations can be passed as values to functions expecting r-value references. In this

case notice that the functions expecting the r-value references do not access the provided

arguments (except for the actions performed by their move constructors), but use move con-

struction to create temporary values or objects on which the functions operate.

– Lines 52 and 55 won’t compile as the NoMove struct doesn’t offer a move constructor.

Be careful when passing local variables as arguments to thread objects: if the thread continues

to run when the function whose local variables are used terminates, then the thread suddenly

uses wild pointers or wild references, as the local variables no longer exist. To prevent this from

happening (illustrated by the next example) do as follows:

– pass an anonymous copy of the local variable as argument to the thread constructor, or

– call join on the thread object to ensure that the thread has finished within the local vari-

able’s lifetime.

1: #include <iostream>

2: #include <thread>

3: #include <string>

4: #include <chrono>

5:

6: void threadFun(std::string const &text)

7: {

8: for (size_t iter = 1; iter != 6; ++iter)

9: {

10: std::cout << text << '\n';

11: std::this_thread::sleep_for(std::chrono::seconds(1));

12: }

13: }

14:

15: std::thread safeLocal()

16: {

17: std::string text = "hello world";

18: return std::thread(threadFun, std::string{ text });

19: }

20:

21: int main()

22: {

23: std::thread local(safeLocal());

24: std::cout << "safeLocal has ended\n";

25: local.join();

26: }

In line 18 be sure not to call std::ref(text) instead of std::string{ text }.

If the thread cannot be created a std::system_error exception is thrown.

Since this constructor not only accepts functions but also function objects as its first argument, a

local context may be passed to the function object’s constructor. Here is an example of a thread

receiving a function object using a local context:

#include <iostream>



#include <array>

using namespace std;

class Functor

{

array<int, 30> &d_data;

int d_value;

public:

Functor(array<int, 30> &data, int value)

:

d_data(data),

d_value(value)

{}

void operator()(ostream &out)

{

for (auto &value: d_data)

{

value = d_value++;

out << value << ' ';

}

out << '\n';

}

};

int main()

{

array<int, 30> data;

Functor functor{ data, 5 };

thread funThread{ functor, ref(cout) };

funThread.join();

};

The class std::thread does not provide a copy constructor.

The following members are available:

• thread &operator=(thread &&tmp) noexcept:

If the operator’s left-hand side operand (lhs) is a joinable thread, then terminate is

called. Otherwise, tmp is assigned to the operator’s lhs and tmp’s state is changed to

the thread’s default state (i.e., thread()).

• void detach():

Requires joinable (see below) to return true. The thread for which detach is called continues

to run. The (e.g., parent) thread calling detach continues immediately beyond the detach-call.

After calling object.detach(), ‘object’ no longer represents the (possibly still continuing but

now detached) thread of execution. It is the detached thread’s implementation’s responsibility to

release its resources when its execution ends.

Since detach disconnects a thread from the running program, e.g., main no longer can wait for

the thread’s completion. As a program ends when main ends, its still running detached threads

also stop, and a program may not properly finish all its threads, as demonstrated by the following

example:

#include <thread>

#include <iostream>

#include <chrono>



void fun(size_t count, char const *txt)

{

for (; count--; )

{

std::this_thread::sleep_for(std::chrono::milliseconds(100));

std::cout << count << ": " << txt << std::endl;

}

}

int main()

{

std::thread first(fun, 5, "hello world");

first.detach();

std::thread second(fun, 5, "a second thread");

second.detach();

std::this_thread::sleep_for(std::chrono::milliseconds(400));

std::cout << "leaving" << std::endl;

}

A detached thread may very well continue to run after the function that launched it has finished.

Here, too, you should be very careful not to pass local variables to the detached thread, as their

references or pointers will be undefined once the function defining the local variables terminates:

#include <iostream>

#include <thread>

#include <chrono>

using namespace std;

using namespace chrono;

void add(int const &p1, int const &p2)

{

this_thread::sleep_for(milliseconds(200));

cerr << p1 << " + " << p2 << " = " << (p1 + p2) << '\n';

}

void run()

{

int v1 = 10;

int v2 = 20;

// thread(add, ref(v1), ref(v2)).detach(); // DON'T DO THIS

thread(add, int(v1), int(v2)).detach(); // this is OK: own copies

}

void oops()

{

int v1 = 0;

int v2 = 0;

}

int main()

{

run();

oops();

this_thread::sleep_for(seconds(1));

}



If the current object does not represent a running thread thread::id() is returned. Otherwise,

the thread’s unique ID (also obtainable from with the thread from this_thread::get_id()) is

returned.

• void join():

Requires joinable to return true. If the thread for which join is called hasn’t finished yet then

the thread calling join will be suspended (also called blocked) until the thread for which join

is called has completed. Following its completion the object whose join member was called no

longer represents a running thread, and its get_id member will return std::thread::id().

This member was used in several examples shown so far. As noted: when main ends while a

joinable thread is still running, terminate is called, aborting the program.

• bool joinable() const noexcept:

returns object.get_id() != id(), where object is the thread object for which joinable

was called.

• void swap(thread &other) noexcept:

The states of the thread object for which swap was called and other are swapped. Note that

threads may always be swapped, even when their thread functions are currently being executed.

• unsigned thread::hardware_concurrency() noexecpt:

This static member returns the number of threads that can run at the same time on the current

computer. On a stand-alone multi-core computer it (probably) returns the number of cores.

Things to note:

• When intending to define an anonymous thread it may appear not to start, unless you immedi-

ately also call join. E.g.,

void doSomething();

int main()

{

thread(doSomething); // nothing happens??

thread(doSomething).join() // doSomething is executed??

}

This similar to the situation we encountered in section 7.5: the first statement doesn’t define

an anonymous thread object at all. It simply defines the thread object doSomething. Conse-

quently, compilation of the second statement fails, as there is no thread(thread &) constructor.

When the first statement is omitted, the doSomething function is executed by the second state-

ment. If the second statement is omitted, a default constructed thread object by the name of

doSomething is defined.

• A thread only starts after its construction has completed. This includes move constructions or

move assignments. E.g., in a statement like

thread object(thread(doSomething));

the move constructor is used to transfer control from an anonymous thread executing

doSomething to the thread object. Only after object’s construction has completed

doSomething is started in the separate thread.

• Exceptions thrown from the thread (e.g., by the function defining the thread’s actions) are local to

the executed thread. Either they must be caught by the executing thread (as each running thread

has its own execution stack), or they can be passed to the starting thread using a packaged_task

and a future (cf., respectively, sections 20.11 and 20.8).

A thread ends when the function executing a thread finishes. When a thread object is destroyed while

its thread function is still running, terminate is called, aborting the program’s end. Bad news: the



happens in the following program as the thread is still active when main ends:

#include <iostream>

#include <thread>

void hello()

{

while (true)

std::cout << "hello world!\n";

}

int main()

{

std::thread hi(hello);

}

There are several ways to solve this problem. One of them is discussed in the next section.

20.1.2.1 Static data and threads: thread_local

With multi-threaded programs the well-known distinction between global and local data is somewhat

too coarse. For single- and multi-threaded programs alike, global data are available to all of the pro-

gram’s code, and local data are available to the function (or compound statement) in which the local

data are defined. But multi-threaded programs may feel the need for an intermediate type of data,

uniquely available to the different threads.

The thread_local keyword provides this intermediate data level. Global variables declared

as thread_local are global within each individual thread. Each thread owns a copy of the

thread_local variables, and may modify them at will. A thread_local variable in one thread

is completely separated from that variable in another thread. Here is an example:

1: #include <iostream>

2: #include <thread>

3:

4: using namespace std;

5:

6: thread_local int t_value = 100;

7:

8: void modify(char const *label, int newValue)

9: {

10: cout << label << " before: " << t_value << ". Address: " <<

11: &t_value << endl;

12: t_value = newValue;

13: cout << label << " after: " << t_value << endl;

14: }

15:

16: int main()

17: {

18: thread(modify, "first", 50).join();

19: thread(modify, "second", 20).join();

20: modify("main", 0);

21: }

• At line 6 the thread_local variable t_value is defined. It is initialized to 100, and that becomes

the initial value for each separately running thread;

• In lines 8 through 14 the function modify is defined. It assigns a new value to t_value;



• The main thread itself is also a thread, and it directly calls modify.

Running this program shows that each separate thread starts with t_value being 100, and then

modifies it without affecting the values of t_value used by other threads.

Note that, although the t_value variables are unique to each thread, identical addresses may be

shown for them. Since each thread uses its own stack, these variables may occupy the same relative

locations within their respective stacks, giving the illusion that their physical addresses are identical.

20.1.2.2 Exceptions and join()

Once a thread starts and it isn’t detached it must eventually join its starting (parent) thread, or the

program aborts. Usually, once a thread has started the parent thread continues to do some work by

itself:

void childActions();

void doSomeWork();

void parent()

{

thread child(childActions);

doSomeWork();

child.join();

}

However, maybe doSomeWork can’t complete its work, and throws an exception, to be caught outside of

parent. This, unfortunately, ends parent, and child.join() is missed. Consequently, the program

aborts because of a thread that hasn’t been joined.

Clearly, all exceptions must be caught, join must be called, and the exception must be rethrown. But

parent cannot use a function try-block, as the thread object is already out of scope once execution

reaches the matching catch-clause. So we get:

void childActions();

void doSomeWork();

void parent()

{

thread child(childActions);

try

{

doSomeWork();

child.join();

}

catch (...)

{

child.join();

throw;

}

}

This is ugly: suddenly the function’s code is clobbered with a try-catch clause, as well as some

unwelcome code-duplication.

This situation can be avoided using object based programming. Like, e.g., unique pointers, which

use their destructors to encapsulate the destruction of dynamically allocated memory, we can use a

comparable technique to encapsulate thread joining in an object’s destructor.



even if the childActions function throws an exception, the thread’s join member is called. Here

are the bare essentials of our JoinGuard class, providing the join-guarantee (using in-line member

implementations for brevity):

1: #include <thread>

2:

3: class JoinGuard

4: {

5: std::thread d_thread;

6:

7: public:

8: JoinGuard(std::thread &&threadObj)

9: :

10: d_thread(std::move(threadObj))

11: {}

12: ~JoinGuard()

13: {

14: if (d_thread.joinable())

15: d_thread.join();

16: }

17: };

• At line 8 its only constructor starts: it receives a temporary thread object, which is moved, in

line 10, to JoinGuard’s d_thread data member.

• When the JoinGuard object ceases to exist, its destructor (line 12) makes sure the thread is

joined if it’s still joinable (lines 14 and 15).

Here is an example how JoinGuard could be used:

1: #include <iostream>

2: #include "joinguard.h"

3:

4: void childActions();

5:

6: void doSomeWork()

7: {

8: throw std::runtime_error("doSomeWork throws");

9: }

10:

11: void parent()

12: {

13: JoinGuard{std::thread{childActions}};

14: doSomeWork();

15: }

16:

17: int main()

18: try

19: {

20: parent();

21: }

22: catch (std::exception const &exc)

23: {

24: std::cout << exc.what() << '\n';

25: }

• At line 4 childActions is declared. Its implementation (not provided here) defines the child

thread’s actions.



thrown by parent;

• The parent function defines (line 13) an anonymous JoinGuard, receiving an anonymous

thread object. Anonymous objects are used, as the parent function doesn’t need to access them

anymore.

• In line 14 doSomeWork is called, which throws an exception. This ends parent, but just before

that JoinGuard’s destructor makes sure that the child-thread has been joined.

20.2 Synchronization (mutexes)

Objects of mutex classes are used to protect shared data.

Before using mutexes the <mutex> header file must be included.

One of the key characteristics of multi-threaded programs is that threads may share data. Functions

running as separate threads have access to all global data, and may also share the local data of their

parent threads. However, unless proper measures are taken, this may easily result in data corruption,

as illustrated by the following simulation of some steps that could be encountered in a multi-threaded

program:

---------------------------------------------------------------------------

Time step: Thread 1: var Thread 2: description

---------------------------------------------------------------------------

0 5

1 starts T1 active

2 writes var T1 commences writing

3 stopped Context switch

4 starts T2 active

5 writes var T2 commences writing

6 10 assigns 10 T2 writes 10

7 stopped Context switch

8 assigns 12 T1 writes 12

9 12

----------------------------------------------------------------------------

In this example, threads 1 and 2 share variable var, initially having the value 5. At step 1 thread 1

starts, and starts to write a value into var. However, it is interrupted by a context switch, and thread

2 is started (step 4). Thread 2 also wants to write a value into var, and succeeds until time step 7,

when another context switch takes place. By now var is 10. However, thread 1 was also in the process

of writing a value into var, and it is given a chance to complete its work: it assigns 12 to var in time

step 8. Once time step 9 is reached, thread 2 proceeds on the (erroneous) assumption that var must be

equal to 10. Clearly, from the point of view of thread 2 its data have been corrupted.

In this case data corruption was caused by multiple threads accessing the same data in an uncontrolled

way. To prevent this from happening, access to shared data should be protected in such a way that only

one thread at a time may access the shared data.

Mutexes are used to prevent the abovementioned kinds of problems by offering a guarantee that data

are only accessed by the thread that could lock the mutex that is used to synchronize access to those

data.

Exclusive data access completely depends on cooperation between the threads. If thread 1 uses mu-

texes, but thread 2 doesn’t, then thread 2 may freely access the common data. Of course that’s bad

practice, which should be avoided.

It is stressed that although using mutexes is the programmer’s responsibility, their implementation

isn’t: mutexes offer the necessary atomic calls. When requesting a mutex-lock the thread is blocked



Apart from the class std::mutex the class std::recursive_mutex is available. When a

recursive_mutex is called multiple times by the same thread it increases its lock-count. Before other

threads may access the protected data the recursive mutex must be unlocked again that number of

times. Moreover, the classes std::timed_mutex and std::recursive_timed_mutex are available.

Their locks expire when released, but also after a certain amount of time.

The members of the mutex classes perform atomic actions: no context switch occurs while they are

active. So when two threads are trying to lock a mutex only one can succeed. In the above example: if

both threads would use a mutex to control access to var thread 2 would not have been able to assign 12

to var, with thread 1 assuming that its value was 10. We could even have two threads running purely

parallel (e.g., on two separate cores). E.g.:

-------------------------------------------------------------------------

Time step: Thread 1: Thread 2: escription

-------------------------------------------------------------------------

1 starts starts T1 and T2 active

2 locks locks Both threads try to

lock the mutex

3 blocks... obtains lock T2 obtains the lock,

and T1 must wait

4 (blocked) processes var T2 processes var,

T1 still blocked

5 obtains lock releases lock T2 releases the lock,

and T1 immediately

obtains the lock

6 processes var now T1 processes var

7 releases lock T1 also releases the lock

-------------------------------------------------------------------------

Although mutexes can directly be used in programs, this rarely happens. It is more common to embed

mutex handling in locking classes that make sure that the mutex is automatically unlocked again when

the mutex lock is no longer needed. Therefore, this section merely offers an overview of the interfaces

of the mutex classes. Examples of their use will be given in the upcoming sections (e.g., section 20.3).

All mutex classes offer the following constructors and members:

• mutex() constexpr:

The default constexpr constructor is the only available constructor;

• ~mutex():

The destructor does not unlock a locked mutex. If locked it must explicitly be unlocked using the

mutex’s unlock member;

• void lock():

The calling thread blocks until it owns the mutex. Unless lock is called for a recursive mutex a

system_error is thrown if the thread already owns the lock. Recursive mutexes increment their

internal lock count;

• bool try_lock() noexcept:

The calling thread tries to obtain ownership of the mutex. If ownership is obtained, true is

returned, otherwise false. If the calling thread already owns the lock true is also returned, and

in this case a recursive mutex also increments its internal lock count;

• void unlock() noexcept:

The calling thread releases ownership of the mutex. A system_error is thrown if the thread

does not own the lock. A recursive mutex decrements its interal lock count, releasing ownership

of the mutex once the lock count has decayed to zero;



• bool try_lock_for(chrono::duration<Rep, Period> const &relTime) noexcept:

The calling thread tries to obtain ownership of the mutex within the specified time interval. If

ownership is obtained, true is returned, otherwise false. If the calling thread already owns the

lock true is also returned, and in this case a recursive timed mutex also increments its internal

lock count. The Rep and Duration types are inferred from the actual relTime argument. E.g.,

std::timed_mutex timedMutex;

timedMutex.try_lock_for(chrono::seconds(5));

• bool try_lock_until(chrono::time_point<Clock, Duration> const &absTime)

noexcept:

The calling thread tries to obtain ownership of the mutex until absTime has passed. If ownership

is obtained, true is returned, otherwise false. If the calling thread already owns the lock true

is also returned, and in this case a recursive timed mutex also increments its internal lock count.

The Clock and Duration types are inferred from the actual absTime argument. E.g.,

std::timed_mutex timedMutex;

timedMutex.try_lock_until(chrono::system_clock::now() + chrono::seconds(5));

20.2.1 Initialization in multi-threaded programs

Before using the std::once_flag and the std::call_once function, introduced in this section, the

<mutex> header file must be included.

In single threaded programs the initialization of global data does not necessarily occur at one point

in code. An example is the initialization of the object of a singleton class (cf. Gamma et al. (1995),

Design Patterns, Addison-Wesley). Singleton classes may define a single static pointer data member

Singleton ∗s_object, pointing to the singleton’s object, and may offer a static member instance,

implemented something like this:

Singleton &Singleton::instance()

{

return s_object ?

s_object

:

(s_object = new Singleton);

}

With multi-threaded programs this approach immediately gets complex. For example, if two threads

call instance at the same time, while s_object still equals 0, then both may call new Singleton,

resulting in one dynamically allocated Singleton object becoming unreachable. Other threads, called

after s_object was initialized for the first time, may either return a reference to that object, or may

return a reference to the object initialized by the second thread. Not exactly the expected behavior of a

singleton.

Mutexes (cf. section 20.2) can be used to solve these kinds of problems, but they result in some overhead

and inefficiency, as the mutex must be inspected at each call of Singleton::instance.

When variables must dynamically be initialized, and the initialization should take place only once the

std::once_flag type and the std::call_once function should be used.

The call_once function expects two or three arguments:

• The first argument is a once_flag variable, keeping track of the actual initialization status. The

call_once function simply returns if the once_flag indicates that initialization already took

place;



may be a free function or it may be the address of a class member function;

• If the second argument is the address of a class member function, then the object for which the

member function should be called must be provided as call_once’s third argument.

A thread-safe implementation of the singleton’s instance function can now easily be designed (using

in-class implementations for brevity):

class Singleton

{

static std::once_flag s_once;

static Singleton *s_singleton;

...

public:

static Singleton *instance()

{

std::call_once(s_once, []{s_singleton = new Singleton;} );

return s_singleton;

}

...

};

However, there are additional ways to initialize data, even for multi-threaded programs:

• First, suppose a constructor is declared with the constexpr keyword (cf. section 8.1.4.1), satisfy-

ing the requirements for constant initialization. In this case, a static object, initialized using that

constructor, is guaranteed to be initialized before any code is run as part of the static initialization

phase. This is used by std::mutex, as it eliminates the possibility of race conditions when global

mutexes are initialized.

• Second, a static variable defined within a compound statement may be used (e.g., a static local

variable within a function body). Static variables defined within a compound statement are ini-

tialized the first time the function is called at the point in the code where the static variable is

defined. Here is an example:

#include <iostream>

struct Cons

{

Cons()

{

std::cout << "Cons called\n";

}

};

void called(char const *time)

{

std::cout << time << "time called() activated\n";

static Cons cons;

}

int main()

{

std::cout << "Pre-1\n";

called("first");

called("second");

std::cout << "Pre-2\n";

Cons cons;

}

/*



Pre-1

firsttime called() activated

Cons called

secondtime called() activated

Pre-2

Cons called

*/

This feature causes a thread to wait automatically if another thread is still initializing the static

data (note that non-static data never cause problems, as non-static local variables only exist

within their own thread of execution).

20.2.2 Shared mutexes

Shared mutexes (via the type std::shared_mutex) are available after including the

<shared_mutex> header file. Shared mutex types behave like timed_mutex types and option-

ally have the characteristics described below.

The class shared_mutex provides a non-recursive mutex with shared ownership semantics, compara-

ble to, e.g., the shared_ptr type. A program using shared_mutexes is undefined if:

• it destroys a shared_mutex object owned by any thread;

• a thread recursively attempts to gain ownership of a shared_mutex;

• a thread terminates while owning a shared_mutex.

Shared mutex types provide a shared lock ownership mode. Multiple threads can simultaneously hold

a shared lock ownership of a shared_mutex type of object. But no thread can hold a shared lock while

another thread holds an exclusive lock on the same shared_mutex object, and vice-versa.

The type shared_mutex offers the following members:

• void lock_shared():

Blocks the calling thread until shared ownership of the mutex can be obtained by the calling

thread. An exception is thrown if the current thread already owns the lock, if it is not allowed to

lock the mutex, or if the mutex is already locked and blocking is not possible;

• void unlock_shared():

Releases a shared lock on the mutex held by the calling thread. Nothing happens if the current

thread does not already own the lock;

• bool try_lock_shared():

The current thread attempts to obtain shared ownership of the mutex without blocking. If shared

ownership is not obtained, there is no effect and try_lock_shared immediately returns. Re-

turns true if the shared ownership lock was acquired, false otherwise. An implementation may

fail to obtain the lock even if it is not held by any other thread. Initially the calling thread may

not yet own the mutex;

• bool try_lock_shared_for(rel_time):

Attempts to obtain shared lock ownership for the calling thread within the relative time pe-

riod specified by rel_time. If the time specified by rel_time is less than or equal to

rel_time.zero(), the member attempts to obtain ownership without blocking (as if by calling

try_lock_shared()). The member shall return within the time interval specified by rel_time

only if it has obtained shared ownership of the mutex object. Returns true if the shared owner-

ship lock was acquired, false otherwise. Initially the calling thread may not yet own the mutex;



Attempts to obtain shared lock ownership for the calling thread until the time specified by

abs_time has passed. If the time specified by abs_time has already passed then the member

attempts to obtain ownership without blocking (as if by calling try_lock_shared()). Returns

true if the shared ownership lock was acquired, false otherwise. Initially the calling thread

may not yet own the mutex;

20.3 Locks and lock handling

Locks are used to simplify the use of mutexes. Before locks can be used the <mutex> header file must

be included.

Whenever threads share data, and at least one of the threads may change common data, mutexes

should be used to prevent threads from using the same data synchronously.

Usually locks are released at the end of action blocks. This requires explicit calls to the mutexes’

unlock function, which introduces comparable problems as we’ve seen with the thread’s join member.

To simplify locking and unlocking two mutex wrapper classes are available:

• std::lock_guard:

objects of this class offer the basic unlock-guarantee: their destructors call the member unlock

of the mutexes they control;

• std::unique_lock:

objects of this class offer a more extensive interface, allowing explicit unlocking and locking of

the mutexes they control, while their destructors preserve the unlock-guarantee also offered by

lock_guard;

The class lock_guard offers a limited, but useful interface:

• lock_guard<Mutex>(Mutex &mutex):

when defining a lock_guard object the mutex type (e.g., std::mutex, std::timed_mutex,

std::shared_mutex) is specified, and a mutex of the indicated type is provided as its argu-

ment. The construction blocks until the lock_guard object owns the lock. The lock_guard’s

destructor automatically releases the mutex lock.

• lock_guard<Mutex>(Mutex &mutex, std::adopt_lock_t):

this constructor is used to transfer control over the mutex from the calling thread to the

lock_guard. The mutex lock is released again by the lock_guard’s destructor. At construction

time the mutex must already be owned by the calling thread. Here is an illustration of how it can

be used:

1: void threadAction(std::mutex &mut, int &sharedInt)

2: {

3: std::lock_guard<std::mutex> lg{mut, std::adopt_lock_t()};

4: // do something with sharedInt

5: }

– At line 1 threadAction receives a reference to a mutex. Assume the mutex owns the lock;

– At line 3 control is transferred to the lock_guard. Even though we don’t explicitly use the

lock_guard object, an object should be defined to prevent the compiler from destroying an

anonymous object before the function ends;

– When the function ends, at line 5, the mutex’s lock is released by the lock_guard’s de-

structor.

• mutex_type:

in addition to the constructors and destructor, lock_guard<Mutex> types also define the type

mutex_type: it is a synonym of the Mutex type that is passed to the lock_guard’s constructor.



inserted into cout from getting mixed.

bool oneLine(istream &in, mutex &mut, int nr)

{

lock_guard<mutex> lg(mut);

string line;

if (not getline(in, line))

return false;

cout << nr << ": " << line << endl;

return true;

}

void io(istream &in, mutex &mut, int nr)

{

while (oneLine(in, mut, nr))

this_thread::yield();

}

int main(int argc, char **argv)

{

ifstream in(argv[1]);

mutex ioMutex;

thread t1(io, ref(in), ref(ioMutex), 1);

thread t2(io, ref(in), ref(ioMutex), 2);

thread t3(io, ref(in), ref(ioMutex), 3);

t1.join();

t2.join();

t3.join();

}

As with lock_guard, a mutex-type must be specified when defining objects of the class

std::unique_lock. The class unique_lock is much more elaborate than the basic lock_guard

class template. Its interface does not define a copy constructor or overloaded assignment oper-

ator, but it does define a move constructor and a move assignment operator. In the following

overview of unique_lock’s inteface Mutex refers to the mutex-type that is specified when defining

a unique_lock:

• unique_lock() noexcept:

the default constructor is not yet associated with a mutex object. It must be assigned a mutex

(e.g., using move-assignment) before it can do anything useful;

• explicit unique_lock(Mutex &mutex):

initializes a unique_lock with an existing Mutex object, and calls mutex.lock();

• unique_lock(Mutex &mutex, defer_lock_t) noexcept:

initializes a unique_lock with an existing Mutex object, but does not call mutex.lock(). Call

it by passing a defer_lock_t object as the constructor’s second argument, e.g.,

unique_lock<mutex> ul(mutexObj, defer_lock_t())

• unique_lock(Mutex &mutex, try_to_lock_t) noexcept:

initializes a unique_lock with an existing Mutex object, and calls mutex.try_lock(): the

constructor won’t block if the mutex cannot be locked;



initializes a unique_lock with an existing Mutex object, and assumes that the current thread

has already locked the mutex;

• unique_lock(Mutex &mutex, chrono::duration<Rep, Period> const &relTime)

noexcept:

this constructor tries to obtain ownership of the Mutex object by calling

mutex.try_lock_for(relTime). The specified mutex type must therefore support this

member (e.g., it is a std::timed_mutex). It could be called like this:

std::unique_lock<std::timed_mutex> ulock(timedMutex,

std::chrono::seconds(5));

• unique_lock(Mutex &mutex, chrono::time_point<Clock, Duration> const

&absTime) noexcept:

this constructor tries to obtain ownership of the Mutex object by calling

mutex.try_lock_until(absTime). The specified mutex type must therefore support

this member (e.g., it is a std::timed_mutex). This constructor could be called like this:

std::unique_lock<std::timed_mutex> ulock(

timedMutex,

std::chrono::system_clock::now() + std::chrono::seconds(5)

);

• void lock():

blocks the current thread until ownership of the mutex that is managed by the unique_lock is

obtained. If no mutex is currently managed, then a system_error exception is thrown.

• Mutex ∗mutex() const noexcept:

returns a pointer to the mutex object stored inside the unique_lock (a nullptr is returned if

no mutex object is currently associated with the unique_lock object.)

• explicit operator bool() const noexcept:

returns true if the unique_lock owns a locked mutex, otherwise false is returned;

• unique_lock& operator=(unique_lock &&tmp) noexcept:

if the left-hand operand owns a lock, it will call its mutex’s unlock member, whereafter tmp’s

state is transferred to the left-hand operand;

• bool owns_lock() const noexcept:

returns true if the unique_lock owns the mutex, otherwise false is returned;

• Mutex ∗release() noexcept:

returns a pointer to the mutex object that is associated with the unique_lock object, discarding

that association;

• void swap(unique_lock& other) noexcept:

swaps the states of the current unique_lock and other;

• bool try_lock():

tries to obtain ownership of the mutex that is associated witg the unique_lock, returning true

if this succeeds, and false otherwise. If no mutex is currently associated with the unique_lock

object, then a system_error exception is thrown;

• bool try_lock_for(chrono::duration<Rep, Period> const &relTime):

this member function tries to obtain ownership of the Mutex object managed by the unique_lock

object by calling the mutex’s try_lock_for(relTime) member. The specified mutex type must

therefore support this member (e.g., it is a std::timed_mutex);

• bool try_lock_until(chrono::time_point<Clock, Duration> const &absTime):

this member function tries to obtain ownership of the Mutex object managed by the unique_lock

object by calling the mutex’s mutex.try_lock_until(absTime) member. The specified mutex

type must therefore support this member (e.g., it is a std::timed_mutex);



releases ownership of the mutex (or reduces the mutex’s lock count). A system_error exception

is thrown if the unique_lock object does not own the mutex.

In addition to the members of the classes std::lock_guard and std::unique_lock the functions

std::lock and std::try_lock are available. These functions can be used to prevent deadlocks, the

topic of the next section.

20.3.1 Deadlocks

A deadlock occurs when two locks are required to process data, but one thread obtains the first lock

and another thread obtains the second lock. C++ defines the generic std::lock and std::try_lock

functions that can be used to help preventing such situations.

Before these functions can be used the <mutex> header file must be included

In the following overview L1 &l1, ... represents one or more references to objects of lockable types:

• void std::lock(L1 &l1, ...):

When the function returns locks were obtained on all li objects. If a lock could not be obtained

for at least one of the objects, then all locks obtained so far are relased, even if the object for which

no lock could be obtained threw an exception;

• int std::try_lock(L1 &l1, ...):

This function calls the lockable objects’ try_lock members. If all locks could be obtained, then

-1 is returned. Otherwise the (0-based) index of the first argument which could not be locked is

returned, releasing all previously obtained locks.

As an example consider the following little multi-threaded program: The threads use mutexes to obtain

unique access to cout and to an int value. However, fun1 first locks cout (line 7), and then value

(line 10); fun2 first locks value (line 16) and then cout (line 19). Clearly, if fun1 has locked cout

fun2 can’t obtain the lock until fun1 has released it. Unfortunately, fun2 has locked value, and the

functions only release their locks when returning. But in order to access the information in value

fun1 it must have obtained a lock on value, which it can’t, as fun2 has already locked value: the

threads are waiting for each other, and neither thread gives in.

1:

2: int value;

3: mutex valueMutex;

4: mutex coutMutex;

5:

6: void fun1()

7: {

8: lock_guard<mutex> lg1(coutMutex);

9: cout << "fun 1 locks cout\n";

10:

11: lock_guard<mutex> lg2(valueMutex);

12: cout << "fun 1 locks value\n";

13: }

14:

15: void fun2()

16: {

17: lock_guard<mutex> lg1(valueMutex);

18: cerr << "fun 2 locks value\n";

19:

20: lock_guard<mutex> lg2(coutMutex);

21: cout << "fun 2 locks cout\n";



23:

24: int main()

25: {

26: thread t1(fun1);

27: fun2();

28: t1.join();

29: }

30:

A good recipe for avoiding deadlocks is to prevent nested (or multiple) mutex lock calls. But if mul-

tiple mutexes must be used, always obtain the locks in the same order. Rather than doing this your-

self, std::lock and std::try_lock should be used whenever possible to obtain multiple mutex

locks. These functions accept multiple arguments, which must be lockable types like lock_guard,

unique_lock, or even a plain mutex. The previous deadlocking program, can be modified to call

std::lock to lock both mutexes. In this example using one single mutex would also work, but the

modified program now looks as similar as possible to the previous program. Note how in lines 10

and 21 a different ordering of the unique_locks arguments was used: it is not necessary to use an

identical argument order when calling std::lock or std::try_lock.

1:

2: int value;

3: mutex valueMutex;

4: mutex coutMutex;

5:

6: void fun1()

7: {

8: unique_lock<mutex> lg1(coutMutex, defer_lock);

9: unique_lock<mutex> lg2(valueMutex, defer_lock);

10:

11: lock(lg1, lg2);

12:

13: cout << "fun 1 locks cout\n";

14: cout << "fun 1 locks value\n";

15: }

16:

17: void fun2()

18: {

19: unique_lock<mutex> lg1(coutMutex, defer_lock);

20: unique_lock<mutex> lg2(valueMutex, defer_lock);

21:

22: lock(lg2, lg1);

23:

24: cout << "fun 2 locks cout\n";

25: cout << "fun 2 locks value\n";

26: }

27:

28: int main()

29: {

30: thread t1(fun1);

31: thread t2(fun2);

32: t1.join();

33: t2.join();

34: }

35:



Shared locks are available through the type std::shared_lock, after including the

<shared_mutex> header file.

An object of the type std::shared_lock controls the shared ownership of a lockable object within a

scope. Shared ownership of the lockable object may be acquired at construction time or thereafter, and

once acquired, it may be transferred to another shared_lock object. Objects of type shared_lock

cannot be copied, but move construction and assignment is supported.

The behavior of a program is undefined if the contained pointer to a mutex (pm) has a non-zero value and

the lockable object pointed to by pm does not exist for the entire remaining lifetime of the shared_lock

object. The supplied mutex type must be a shared_mutex or a type having the same characteristics.

The type shared_lock offers the following constructors, destructor and operators:

• shared_lock() noexcept:

The default constructor creates a shared_lock which is not owned by a thread and for which pm

== 0;

• explicit shared_lock(mutex_type &mut):

This constructor locks the mutex, calling mut.lock_shared(). The calling thread may not al-

ready own the lock. Following the construction pm == &mut, and the lock is owned by the current

thread;

• shared_lock(mutex_type &mut, defer_lock_t) noexcept:

This constructor assigns pm to &mut, but the calling thread does not own the lock;

• shared_lock(mutex_type &mut, try_to_lock_t):

This constructor tries to locks the mutex, calling mut.try_lock_shared(). The calling thread

may not already own the lock. Following the construction pm == &mut, and the lock may or may

not be owned by current thread, depending on the return value of try_lock_shared;

• shared_lock(mutex_type &mut, adopt_lock_t):

This constructor can be called if the calling thread has shared ownership of the mutex. Following

the construction pm == &mut, and the lock is owned by the current thread;

• shared_lock(mutex_type &mut, chrono::time_point<Clock, Duration> const

&abs_time):

This constructor is a member template, where Clock and Duration are types specifying a clock

and absolute time (cf. section 4.2). It can be called if the calling thread does not already own the

mutex. It calls mut.try_lock_shared_until(abs_time). Following the construction pm ==

&mut, and the lock may or may not be owned by current thread, depending on the return value of

try_lock_shared_until;

• shared_lock(mutex_type &mut, chrono::duration<Rep, Period> const

&rel_time):

This constructor is a member template, where Clock and Period are types specifying a clock

and relative time (cf. section 4.2). It can be called if the calling thread does not already own the

mutex. It calls mut.try_lock_shared_for(abs_time). Following the construction pm ==

&mut, and the lock may or may not be owned by current thread, depending on the return value of

try_lock_shared_for;

• shared_lock(shared_lock &&tmp) noexcept:

The move constructor transfers the information in tmp to the newly constructed shared_lock.

Following the construction tmp.pm == 0 and tmp no longer owns the lock;

• ~shared_lock():

If the lock is owned by the current thread, pm->unlock_shared() is called;

• shared_lock &operator=(shared_lock &&tmp) noexcept (The move assignment opera-

tor calls pm->unlock_shared and then transfers the information in tmp to the current

shared_lock object. Following this tmp.pm == 0 and tmp no longer owns the lock;)



Returns whether or not the shared_lock object owns the lock.

The following members are provided:

• void lock():

Calls pm->lock_shared(), after which the current tread owns the shared lock. Exceptions may

be thrown from lock_shared, and otherwise if pm == 0 or if the current thread already owns

the lock;

• mutex_type ∗mutex() const noexcept:

Returns pm;

• mutex_type ∗release() noexcept:

Returns the previous value of pm, which is equal to zero after calling this member. Also, the

current object no longer owns the lock;

• void swap(shared_lock &other) noexcept:

Swaps the data members of the current and the other shared_lock objects. There is also a

free member swap, a function template, swapping two shared_lock<Mutex> objects, where

Mutex represents the mutex type for which the shared lock objects were instantiated: void

swap(shared_lock<Mutex> &one, shared_lock<Mutex> &two) noexcept;

• bool try_lock():

Calls pm->try_lock_shared(), returning this call’s return value. Exceptions may be thrown

from try_lock_shared, and otherwise if pm == 0 or if the current thread already owns the

lock;

• bool try_lock_for(const chrono::duration<Rep, Period>& rel_time):

A member template, where Clock and Period are types specifying a clock and relative

time (cf. section 4.2). It calls mut.try_lock_shared_for(abs_time). Following the call

the lock may or may not be owned by current thread, depending on the return value of

try_lock_shared_until. Exceptions may be thrown from try_lock_shared_for, and other-

wise if pm == 0 or if the current thread already owns the lock;

• bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time):

A member template, where Clock and Duration are types specifying a clock and absolute time

(cf. section 4.2). It calls mut.try_lock_shared_until(abs_time), returning its return value.

Following the call the lock may or may not be owned by current thread, depending on the return

value of try_lock_shared_until. Exceptions may be thrown from try_lock_shared_until,

and otherwise if pm == 0 or if the current thread already owns the lock;

• void unlock():

Unlocks the shared mutex lock, releasing its ownership. Throws an exception if the shared mutex

was not owned by the current thread.

20.4 Event handling (condition variables)

This section introduces condition variables. Condition variables allow programs to synchronize threads

using the states of data, rather than simply locking the access to data (which is realized using mutexes).

Before condition variables can be used the <condition_variable> header file must be included.

To start our discussion, consider a classic producer-consumer scenario: the producer generates items

which are consumed by a consumer. The producer can only produce a certain number of items before

its storage capacity has filled up and the client cannot consume more items than the producer has

produced.



the client has at least consumed some items, thereby creating space in the producer’s storage. Similarly,

the consumer cannot start consuming until the producer has at least produced some items.

Implementing this scenario only using mutexes (data locking) is not an attractive option, as merely

using mutexes forces a program to implement the scenario using polling: processes must continuously

(re)acquire the mutex’s lock, determine whether they can perform some action, followed by the release

of the lock. Often there’s no action to perform, and the process is busy acquiring and releasing the

mutex’s lock. Polling forces threads to wait until they can lock the mutex, even though continuation

might already be possible. The polling interval could be reduced, but that too isn’t an attractive option,

as that increases the overhead associated with handling the mutexes (also called ‘busy waiting’).

Condition variables can be used to prevent polling. Threads can use condition variables to notify wait-

ing threads that there is something for them to do. This way threads can synchronize on data values

(states).

As data values may be modified by multiple threads, threads still need to use mutexes, but only for

controlling access to the data. In addition, condition variables allow threads to release ownership of

mutexes until a certain value has been obtained, until a preset amount of time has been passed, or

until a preset point in time has been reached.

The prototypical setup of threads using condition variables looks like this:

• consumer thread(s) act like this:

lock the mutex

while the required condition has not yet been attained (i.e., is false):

wait until being notified

(this automatically releasing the mutex's lock).

once the mutex's lock has been reacquired, and the required condition

has been attained:

process the data

release the mutex's lock.

• producer thread(s) act similarly:

lock the mutex

while the required condition has not yet been attained:

do something to attain the required condition

notify waiting threads (that the required condition has been attained)

release the mutex's lock.

No matter which thread starts, the thread holding the mutex’s lock will at some point release the lock,

allowing the other process to (re)acquire it. If the consumer starts it immediately releases the lock once

it enters its waiting state; if the producer starts it releases the lock once the condition is true.

This protocol hides a subtle initial synchronization requirement. The consumer will miss the pro-

ducer’s notification if it (i.e., the consumer) hasn’t yet entered its waiting state. So waiting (consumer)

threads should start before notifying (producer) threads. Once threads have started, no assumptions

can be made anymore about the order in which any of the condition variable’s members (notify_one,

notify_all, wait, wait_for, and wait_until) are called.

Condition variables come in two flavors: objects of the class std::condition_variable are used in

combination with objects of type unique_lock<mutex>. Because of optimizations which are available

for this specific combination using condition_variables is somewhat more efficient than using the

more generally applicable class std::condition_variable_any, which may be used with any (e.g.,

user supplied) lock type.

Condition variable classes (covered in detail in the next two sections) offer members like wait,

wait_for, wait_until, notify_one and notify_all that may concurrently be called. The no-

tifying members are always atomically executed. Execution of the wait members consists of three

atomic parts:



• Once the notification has been received, the lock is reacquired

• The wait state ends (and processing continues beyond the wait call).

So, returning from wait-members the previously waiting thread has reacquired the mutex’s lock.

In addition to the condition variable classes the following free function and enum type is provided:

• void std::notify_all_at_thread_exit(condition_variable &cond,

unique_lock<mutex> lockObject):

once the current thread has ended, all other threads waiting on cond are notified. It is good

practice to exit the thread as soon as possible after calling notify_all_at_thread_exit.

Waiting threads must verify that the thread they were waiting for has indeed ended. This

is usually realized by first obtaining the lock on lockObject, followed by verifying that

the condition they were waiting for is true and that the lock was not reacquired before

notify_all_at_thread_exit was called.

• std::cv_status:

the cv_status enum is used by several member functions of the condition variable classes (cf.

sections 20.4.1 and 20.4.2):

namespace std

{

enum class cv_status

{

no_timeout,

timeout

};

}

20.4.1 The class std::condition_variable

The class std::condition_variable merely offers a default constructor. No copy constructor or

overloaded assignment operator is provided.

Before using the class condition_variable the <condition_variable> header file must be in-

cluded.

The class’s destructor requires that no thread is blocked by the thread destroying the

condition_variable. So all threads waiting on a condition_variable must be notified be-

fore a condition_variable object’s lifetime ends. Calling notify_all (see below) before a

condition_variable’s lifetime ends takes care of that, as the condition_variable’s thread

releases its lock of the mutex variable, allowing one of the notified threads to lock the mutex.

In the following member-descriptions a type Predicate indicates that a provided Predicate argu-

ment can be called as a function without arguments, returning a bool. Also, other member functions

are frequently referred to. It is tacitly assumed that all member referred to below were called using the

same condition variable object.

The class condition_variable supports several waitmembers, which block the thread until notified

by another thread (or after a configurable waiting time). However, wait members may also spuriously

unblock, without having reacquired the lock. Therefore, returning from wait members threads should

verify that the required condition is actually true. If not, again calling wait may be appropriate. The

next piece of pseudo code illustrates this scheme:

while (conditionNotTrue())

condVariable.wait(&uniqueLock);



• void notify_one() noexcept:

one wait member called by other threads returns. Which one actually returns cannot be pre-

dicted.

• void notify_all() noexcept:

all wait members called by other threads unblock their wait states. Of course, only one of them

will subsequently succeed in reacquiring the condition variable’s lock object.

• void wait(unique_lock<mutex>& uniqueLock):

before calling wait the current thread must have acquired the lock of uniqueLock. Calling

wait releases the lock, and the current thread is blocked until it has received a notification from

another thread, and has reacquired the lock.

• void wait(unique_lock<mutex>& uniqueLock, Predicate pred):

this is a member template, using the template header template <typename Predicate>. The

template’s type is automatically derived from the function’s argument type and does not have to

be specified explicitly.

Before calling wait the current thread must have acquired the lock of uniqueLock. As long as

‘pred’ returns false wait(lock) is called.

• cv_status wait_for(unique_lock<mutex> &uniqueLock, std::chrono::duration<Rep,

Period> const &relTime):

this member is defined as a member template, using the template header template <typename

Rep, typename Period>. The template’s types are automatically derived from the types of the

function’s arguments and do not have to be specified explicitly. E.g., to wait for at most 5 seconds

wait_for can be called like this:

cond.wait_for(&unique_lock, std::chrono::seconds(5));

This member returns when being notified or when the time interval specified by relTime has

passed.

When returning due to a timeout, std::cv_status::timeout is returned, otherwise

std::cv_status::no_timeout is returned.

Threads should verify that the required data condition has been met after wait_for has re-

turned.

• bool wait_for(unique_lock<mutex> &uniqueLock, chrono::duration<Rep,

Period> const &relTime, Predicate pred):

this member is defined as a member template, using the template header template <typename

Rep, typename Period, typename Predicate>. The template’s types are automatically

derived from the types of the function’s arguments and do not have to be specified explicitly.

As long as pred returns false, the previous wait_for member is called. If the previous member

returns cv_status::timeout, then pred is returned, otherwise true.

• cv_status wait_until(unique_lock<mutex>& uniqueLock, chrono::time_point<Clock,

Duration> const &absTime):

this member is defined as a member template, using the template header template <typename

Clock, typename Duration>. The template’s types are automatically derived from the types

of the function’s arguments and do not have to be specified explicitly. E.g., to wait until 5 minutes

after the current time wait_until can be called like this:

cond.wait_until(&unique_lock, chrono::system_clock::now() +

std::chrono::minutes(5));

This function acts identically to the wait_for(unique_lock<mutex> &uniqueLock,

chrono::duration<Rep, Period> const &relTime) member described earlier, but uses

an absolute point in time, rather than a relative time specification.



passed.

When returning due to a timeout, std::cv_status::timeout is returned, otherwise

std::cv_status::no_timeout is returned.

• bool wait_until(unique_lock<mutex> &lock, chrono::time_point<Clock,

Duration> const &absTime, Predicate pred):

this member is defined as a member template, using the template header template <typename

Clock, typename Duration, typename Predicate>. The template’s types are auto-

matically derived from the types of the function’s arguments and do not have to be specified

explicitly.

As long as pred returns false, the previous wait_untilmember is called. If the previous member

returns cv_status::timeout, then pred is returned, otherwise true.

Threads should verify that the required condition is true when wait-members of condition variables

return.

20.4.2 The class std::condition_variable_any

Different from the class condition_variable the class std::condition_variable_any can be

used with any (e.g., user supplied) lock type, and not just with the stl-provided unique_lock<mutex>.

Before using the class condition_variable_any the <condition_variable> header file must be

included.

The functionality that is offered by condition_variable_any is identical to the function-

ality offered by the class condition_variable, albeit that the lock-type that is used by

condition_variable_any is not predefined. The class condition_variable_any therefore re-

quires the specification of the lock-type that must be used by its objects.

In the interface shown below this lock-type is referred to as Lock. Most of

condition_variable_any’s members are defined as member templates, defining a Lock type

as one of its parameters. The requirements of these lock-types are identical to those of the stl-provided

unique_lock, and user-defined lock-type implementations should provide at least the interface and

semantics that is also provided by unique_lock.

This section merely presents the interface of the class condition_variable_any. As its interface

offers the same members as condition_variable (allowing, where applicable, passing any lock-type

instead of just unique_lock to corresponding members), the reader is referred to the previous section

for a description of the semantics of the class members.

Like condition_variable, the class condition_variable_any only offers a default constructor.

No copy constructor or overloaded assignment operator is provided.

Also, like condition_variable, the class’s destructor requires that no thread is blocked by the cur-

rent thread. This implies that all other (waiting) threads must have been notified; those threads may,

however, subsequently block on the lock specified in their wait calls.

Note that, in addition to Lock, the types Clock, Duration, Period, Predicate, and Rep are

template types, defined just like the identically named types mentioned in the previous section.

Assuming that MyMutex is a user defined mutex type, and that MyLock is a user defined lock-type (cf.

section 20.3 for details about lock-types), then a condition_variable_any object can be defined and

used like this:

MyMutex mut;

MyLock<MyMutex> ul(mut);

condition_variable_any cva;

cva.wait(ul);



• void notify_one() noexcept;

• void notify_all() noexcept;

• void wait(Lock& lock);

• void wait(Lock& lock, Predicate pred);

• cv_status wait_until(Lock& lock, const chrono::time_point<Clock,

Duration>& absTime);

• bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>&

absTime, Predicate pred);

• cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>&

relTime);

• bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& relTime,)

Predicate pred;

20.4.3 An example using condition variables

Condition variables are used to synchronize threads on the values of data, rather than on the mere

access to data (for which plain mutex-objects can be used). Using condition variables, a thread simply

sleeps until it is notified by another thread. In a producer-consumer type of program this is usually

accomplished like this:

consumer loop:

- wait until there's an item in store,

then reduce the number of stored items

- remove the item from the store

- increment the number of available storage locations

- do something with the retrieved item

producer loop:

- produce the next item

- wait until there's room to store the item,

then reduce the number of available storage locations

- store the item

- increment the number of stored items

It is important that the two storage administrative tasks (registering the number of available items

and available storage locations) are either performed by the client or by the producer. For the consumer

‘waiting’ means:

• Get a lock on the variable containing the actual count

• As long as the count is zero: wait, releasing the lock until another thread has increased the count,

then re-acquire the lock.

• Reduce the count

• Release the lock.

This scheme is implemented in a class Semaphore, offering members wait and notify_all. For a

more extensive discussion of semaphores see Tanenbaum, A.S. and Austin, T. (2013) Structured Com-

puter Organization, Pearson Prentice-Hall.



d_mutex. In addition a condition_variable d_condition is defined:

mutable std::mutex d_mutex;

std::condition_variable d_condition;

size_t d_available;

The waiting process is implemented through its member function wait:

1: void Semaphore::wait()

2: {

3: std::unique_lock<std::mutex> lk(d_mutex); // get the lock

4: while (d_available == 0)

5: d_condition.wait(lk); // internally releases the lock

6: // and waits, on exit

7: // acquires the lock again

8: --d_available; // dec. available

9: } // the lock is released

In line 5 d_condition.wait releases the lock. It waits until receiving a notification, and re-acquires

the lock just before returning. Consequently, wait’s code always has complete and unique control over

d_available.

What about notifying the a waiting thread? This is handled in lines 4 and 5 of the member function

notify_all:

1: void Semaphore::notify_all()

2: {

3: std::lock_guard<std::mutex> lk(d_mutex); // get the lock

4: if (d_available++ == 0)

5: d_condition.notify_all(); // use notify_one to notify one other

6: // thread

7: } // the lock is released

At line 4 d_available is always incremented; by using a postfix increment it can simultaneously

be tested for being zero. If it was initially zero then d_available is now one. A thread wait-

ing until d_available exceeds zero may now continue. A waiting thread is notified by calling

d_condition.notify_one. In situations where multiple threads are waiting ‘notify_all’ can also

be used.

Using the facilities of the class Semaphore whose constructor expects an initial value of its

semaphore data member, the classic consumer-producer paradigm can now be implemented using

multi-threading2:

Semaphore available(10);

Semaphore filled(0);

std::queue itemQueue;

void consumer()

{

while (true)

{

filled.wait();

// mutex lock the queue with multiple consumers

size_t item = itemQueue.front();

2A more elaborate example of the producer-consumer program is found in the yo/threading/examples/events.cc file in

the C++ Annotations’s source archive



available.notify_all();

process(item); // not implemented here

}

}

void producer()

{

size_t item = 0;

while (true)

{

++item;

available.wait();

// mutex lock the queue with multiple consumers

itemQueue.push(item);

filled.notify_all();

}

}

int main()

{

thread consume(consumer);

thread produce(producer);

consume.join();

produce.join();

}

20.5 Atomic actions: mutexes not required

Before using the facilities introduced in this section the <atomic> header file must be included.

When data are shared among multiple threads, data corruption is usually prevented using mutexes.

To increment a simple int using this strategy code as shown below is commonly used:

{

lock_guard<mutex> lk{ intVarMutex };

++intVar;

}

The compound statement is used to limit the lock_guard’s lifetime, so that intVar is only locked for

a short little while.

This scheme is not complex, but at the end of the day having to define a lock_guard for every single

use of a simple variable, and having to define a matching mutex for each simple variable is a bit

annoying and cumbersome.

C++ offers a way out through the use of atomic data types. Atomic data types are available for all basic

types, and also for (trivial) user defined types. Trivial types are (see also section 23.6.2) all scalar types,

arrays of elements of a trivial type, and classes whose constructors, copy constructors, and destructors

all have default implementations, and their non-static data members are themselves of trivial types.

The class template std::atomic<Type> is available for all built-in types, including pointer types.

E.g., std::atomic<bool> defines an atomic bool type. For many types alternative somewhat

shorter type names are available. E.g, instead of std::atomic<unsigned short> the type

std::atomic_ushort can be used. Refer to the atomic header file for a complete list of alternate

names.

If Trivial is a user-defined trivial type then std::atomic<Trivial> defines an atomic variant of



Objects of the class template std::atomic<Type> cannot directly be copied or assigned to each other.

However, they can be initialized by values of type Type, and values of type Type can also directly be

assigned to std::atomic<Type> objects. Moreover, since atomic<Type> types offer conversion

operators returning their Type values, an atomic<Type> objects can also be assigned to or initialized

by another atomic<Type> object using a static_cast:

atomic<int> a1 = 5;

atomic<int> a2{ static_cast<int>(a1) };

The class std::atomic<Type> provides several public members, shown below. Non-member (free)

functions operating on atomic<Type> objects are also available.

The std::memory_order enumeration defines the following symbolic constants, which are used to

specify ordering constraints of atomic operations:

• memory_order_acq_rel: the operation must be a read-modify-write operation, combining

memory_order_acquire and memory_order_release;

• memory_order_acquire: the operation is an acquire operation. It synchronizes with a release

operation that wrote the same memory location;

• memory_order_consume: the operation is a consume operation on the involved memory loca-

tion;

• memory_order_relaxed: no ordering constraints are provided by the operation;

• memory_order_release: the operation is a release operation. It synchronizes with acquire

operations on the same location;

• memory_order_sec_cst: the default memory order specification for all operations.

Memory storing operations use memory_order_release, memory load operations use

memory_order_acquire, and read-modify-write operations use memory_order_acq_rel.

The memory order cannot be specified for the overloaded operators provided by atomic<Type>. Oth-

erwise, most atomic member functions may also be given a final memory_order argument. Where

this is not available it is explictly mentioned at the function’s description.

Here are the standard available std::atomic<Type> member functions:

• bool compare_exchange_strong(Type &currentValue, Type newValue) noexcept:

The value in the atomic object is compared to newValue using byte-wise comparisons. If equal

(and true is returned) then newValue is stored in the atomic object; if unequal (and false is

returned) the object’s current value is stored in currentValue;

• bool compare_exchange_weak(Type &oldValue, Type newValue) noexcept:

The value in the atomic object is compared to newValue using byte-wise comparisons. If equal

(and true is returned), then newValue is stored in the atomic object; if unequal, or newValue

cannot be atomically assigned to the current object false is returned and the object’s current

value is stored in currentValue;

• Type exchange(Type newValue) noexcept:

The object’s current value is returned, and newValue is assigned to the current object;

• bool is_lock_free() const noexept:

If the operations on the current object can be performed lock-free true is returned, otherwise

false. This member has no memory_order parameter;

• Type load() const noexcept:

The object’s value is returned;



The object’s value is returned;

• void store(Type newValue) noexcept:

NewValue is assigned to the current object. Note that the standard assignment operator can also

be used.

In addition to the above members, integral atomic types ‘Integral’ (essentially the atomic variants of

all built-in integral types) also offer the following member functions:

• Integral fetch_add(Integral value) noexcept:

Value is added to the object’s value, and the object’s value at the time of the call is returned;

• Integral fetch_sub(Integral value) noexcept:

Value is subtracted from the object’s value, and the object’s value at the time of the call is re-

turned;

• Integral fetch_and(Integral mask) noexcept:

The bit-and operator is applied to the object’s value and mask, assigning the resulting value to

the current object. The object’s value at the time of the call is returned;

• Integral fetch_|=(Integral mask) noexcept:

The bit-or operator is applied to the object’s value and mask, assigning the resulting value to

the current object. The object’s value at the time of the call is returned;

• Integral fetch_^=(Integral mask) noexcept:

The bit-xor operator is applied to the object’s value and mask, assigning the resulting value to

the current object. The object’s value at the time of the call is returned;

• Integral operator++() noexcept:

The prefix increment operator, returning object’s new value;

• Integral operator++(int) noexcept:

The postfix increment operator, returning the object’s value before it was incremented;

• Integral operator--() noexcept

The prefix decrement operator, returning object’s new value;

• Integral operator--(int) noexcept

The postfix decrement operator, returning the object’s value before it was decremented;

• Integral operator+=(Integral value) noexcept:

Value is added to the object’s current value and the object’s new value is returned;

• Integral operator-=(Integral value) noexcept:

Value is subtracted from the object’s current value and the object’s new value is returned;

• Integral operator&=(Integral mask) noexcept:

The bit-and operator is applied to the object’s current value and mask, assigning the resulting

value to the current object. The object’s new value is returned;

• Integral operator|=(Integral mask) noexcept:

The bit-or operator is applied to the object’s current value and mask, assigning the resulting

value to the current object. The object’s new value is returned;

• Integral operator^=(Integral mask) noexcept:

The bit-xor operator is applied to the object’s current value and mask, assigning the resulting

value to the current object. The object’s new value is returned;



an additional parameter ‘memory_order order’, which is not available for the non-_explicit func-

tions (e.g., atomic_load(atomic<Type> ∗ptr) and atomic_load_explicit(atomic<Type>

∗ptr, memory_order order))

Here are the free functions that are available for all atomic types:

• bool std::atomic_compare_exchange_strong(_explicit)(std::atomic<Type>

∗ptr, Type ∗oldValue, Type newValue) noexept:

returns ptr->compare_exchange_strong(∗oldValue, newValue);

• bool std::atomic_compare_exchange_weak(_explicit)(std::atomic<Type> ∗ptr,

Type ∗oldValue, Type newValue) noexept:

returns ptr->compare_exchange_weak(∗oldValue, newValue);

• Type std::atomic_exchange(_explicit)(std::atomic<Type> ∗ptr, Type

newValue) noexept:

returns ptr->exchange(newValue);

• void std::atomic_init(std::atomic<Type> ∗ptr, Type init) noexept:

Stores init non-atomically in ∗ptr. The object pointed to by ptr must have been default con-

structed, and as yet no member functions must have been called for it. This function has no

memory_order parameter;

• bool std::atomic_is_lock_free(std::atomic<Type> const ∗ptr) noexept:

returns ptr->is_lock_free(). This function has no memory_order parameter;

• Type std::atomic_load(_explicit)(std::atomic<Type> ∗ptr) noexept:

returns ptr->load();

• void std::atomic_store(_explicit)(std::atomic<Type> ∗ptr, Type value)

noexept:

calls ptr->store(value).

In addition to the abovementioned free functions atomic<Integral> types also offer the following

free member functions:

• Integral std::atomic_fetch_add(_explicit)(std::atomic<Integral> ∗ptr,

Integral value) noexcept:

returns ptr->fetch_add(value);

• Integral std::atomic_fetch_sub(_explicit)(std::atomic<Integral> ∗ptr,

Integral value) noexcept:

returns ptr->fetch_sub(value);

• Integral std::atomic_fetch_and(_explicit)(std::atomic<Integral> ∗ptr,

Integral mask) noexcept:

returns ptr->fetch_and(value);

• Integral std::atomic_fetch_or(_explicit)(std::atomic<Integral> ∗ptr,

Integral mask) noexcept:

returns ptr->fetch_or(value);

• Integral std::atomic_fetch_xor(_explicit)(std::atomic<Integral> ∗ptr,

Integral mask) noexcept:

returns ptr->fetch_xor(mask).

20.6 An example: threaded quicksort

The quicksort sorting algorithm (Hoare, 1962) is a well-known sorting algorithm. Given an array of n

elements, it works like this:



pivot element) (in the example below, assume a function partition performing the partition

is available). This leaves us with two (possibly empty) sub-arrays: one to the left of the pivot

element, and one to the right of the pivot element;

• Recursively perform quicksort on the left-hand sub-array;

• Recursively perform quicksort on the right-hand sub-array.

To convert this algorithm to a multi-threaded algorithm appears to be be a simple task:

void quicksort(Iterator begin, Iterator end)

{

if (end - begin < 2) // less than 2 elements are left

return; // and we're done

Iter pivot = partition(begin, end); // determine an iterator pointing

// to the pivot element

thread lhs(quicksort, begin, pivot);// start threads on the left-hand

// side sub-arrays

thread rhs(quicksort, pivot + 1, end); // and on the right-hand side

// sub-arrays

lhs.join();

rhs.join(); // and we're done

}

Unfortunately, this translation to a multi-threaded approach won’t work for reasonably large arrays

because of a phenomenon called overpopulation: more threads are started than the operating system

is prepared to give us. In those cases a Resource temporarily unavailable exception is thrown, and the

program ends.

Overpopulation can be avoided by using a pool of workers, where each ‘worker’ is a thread, which in

this case is responsible for handling one (sub) array, but not for the nested calls. The pool of workers

is controlled by a scheduler, receiving the requests to sort sub-arrays, and passing these requests on to

the next available worker.

The main data structure of the example program developed in this section is a queue of std::pairs

containing iterators of the array to be sorted (cf. Figure 20.1, the sources of the program are found

in the C++ Annotations’s yo/threading/examples/multisort directory). Two queues are being

used: one queue is a task-queue, receiving the iterators of sub-arrays to be partitioned. Instead of

immediately launching new threads (the lhs and rhs threads in the above example), the ranges to be

sorted are pushed on the task-queue. The other queue is the work-queue: elements are moved from the

task-queue to the work-queue, where they will be processed by one of the worker threads.

The program’s main function starts the workforce, reads the data, pushes the arrays begin and end

iterators on the task queue and then starts the scheduler. Once the scheduler ends the sorted array is

displayed:

int main()

{

workForce(); // start the worker threads

readData(); // read the data into vector<int> g_data

g_taskQ.push( // prepare the main task

Pair(g_data.begin(), g_data.end())

);

scheduler(); // sort g_data

display(); // show the sorted elements

}
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Figure 20.1: Data structure used for multi-threading quicksort

The workforce consists of a bunch of detached threads. Each thread represents a worker, implemented

in the function void worker. Since the number of worker threads is fixed, overpopulation doesn’t

occur. Once the array has been sorted and the program stops these detached threads simply end:

for (size_t idx = 0; idx != g_sizeofWorkforce; ++idx)

thread(worker).detach();

The scheduler continues for as long as there are sub-arrays to sort. When this is the case the task

queue’s front element is moved to the work queue. This reduces the work queue’s size, and prepares an

assignment for the next available worker. The scheduler now waits until a worker is available. Once

workers are available one of them is informed of the waiting assignment, and the scheduler waits for

the next task:

void scheduler()

{

while (newTask())

{

g_workQ.rawPushFront(g_taskQ);

g_workforce.wait(); // wait for a worker to be available

g_worker.notify_all(); // activate a worker

}

}

The function newTask simply checks whether the task queue is empty. If so, and none of the workers

is currently busy sorting a sub-array then the array has been sorted, and newTask can return false.

When the task queue is empty but a worker is still busy, it may be that new sub-array dimensions are

going to be placed on the task queue by an active worker. Whenever a worker is active the Semaphore

g_workforce’s size is less than the size of the work force:

bool wip()

{



}

bool newTask()

{

bool done;

unique_lock<mutex> lk(g_taskMutex);

while ((done = g_taskQ.empty()) && wip())

g_taskCondition.wait(lk);

return not done;

}

Each detached worker thread performs a continuous loop. In the loop it waits for a notification by the

scheduler. Once it receives a notification it retrieves its assignment from the work queue, and partitions

the sub-array specified in its assignment. Partitioning may result in new tasks. Once this has been

completed the worker has completed its assignment: it increments the available workforce and notifies

the scheduler that it should check whether all tasks have been performed:

void worker()

{

while (true)

{

g_worker.wait(); // wait for action

partition(g_workQ.popFront());

g_workforce.notify_all();

lock_guard<mutex> lk(g_taskMutex);

g_taskCondition.notify_one();

}

}

Sub-arrays smaller than two elements need no partitioning. All larger sub-arrays are partitioned rel-

ative to their first element. The std::partition generic algorithm does this well, but if the pivot is

itself an element of the array to partition then the pivot’s eventual location is undetermined: it may

be found anywhere in the series of elements which are at least equal to the pivot. The two required

sub-arrays, however, can easily be constructed:

• First call std::partition relative to an array’s first element, partitioning the array’s remaining

elements, returning mid, pointing to the first element of the series of elements that are at least

as large as the array’s first element;

• Then swap the array’s first element with element to which mid - 1 points;

• The two sub-arrays range from, respectively, array.begin() to mid - 1 (elements all smaller

than the pivot), and from mid to array.end() (elements all at least as large as the pivot).

The two iterator pairs defining these two sub-arrays are thereupon added to the task queue, creating

two new tasks to be dealt with by the scheduler:

void partition(Pair const &range)

{

if (range.second - range.first < 2)

return;



bind2nd(less<int>(), *range.first));

auto lhsEnd = rhsBegin - 1;

swap(*range.first, *lhsEnd);

pushTask(range.first, lhsEnd);

pushTask(rhsBegin, range.second);

}

20.7 Shared States

Just before a thread ends it may have produced some results. These results may have to to be commu-

nicated to other threads. In multi threaded programs several classes and functions can be used that

produce shared states, making it easy to communicate results to other threads. Results could be values,

objects or exceptions.

Objects that contain such shared states are called asynchronous return objects. However, due to the

nature of multi threading, a thread may request the results of an asynchronous return object before

these result are actually available. In those cases the requesting thread blocks, waiting for the results

to become available. Asynchronous return objects offer wait and get members which, respectively,

wait until the results have become available, and produce the asynchronous results once they are

available. The phrase that is used to indicate that the results are available is ‘the shared state has

been made ready’.

Shared states are made ready by asynchronous providers. Asynchronous providers are simply objects or

functions providing results to shared states. Making a shared state ready means that an asynchronous

provider

• marks its shared state as being ready, and

• unblocks any waiting threads (e.g., by allowing blocking members, like wait, to return).

Once a shared state has been made ready it contains a value, object, or exception which can be retrieved

by objects having access to the shared state. While code is waiting for a shared state to become ready

the value or exception that is going to be stored in the shared state may be computed. When multiple

threads try to access the same shared state they must use synchronizing mechanisms (like mutexes, cf.

section 20.2) to prevent access-conflicts.

Shared states use reference counting to keep track of the number of asynchronous return objects or

asynchronous providers that hold references to them. These return objects and providers may release

their references to these shared states (which is called ‘releasing the shared state). This happens

when a return object or provider holds the last reference to the shared state, and the shared state is

destroyed.

On the other hand, an asynchronous provider may also abandon its shared state. In that case the

provider, in sequence,

• stores an exception object of type std::future_error, holding the error condition

std::broken_promise in its shared state;

• makes its shared data ready; and

• releases its shared data.

Objects of the class std::future (see the next section) are asynchronous return objects. They can

be produced by the std::async (section 20.10) family of functions, and by objects of the classes

std::packaged_task (section 20.11), and std::promise (section 20.12).



20.8 Asynchronous return objects: std::future

Condition variables allow threads to wait until data have obtained certain values. A thread may also

have to wait until a sub-thread has finished when calling a sub-thread’s join member.

Waiting may be unwelcome: instead of just waiting our thread might also be doing something useful.

It might as well pick up the results produced by a sub-thread at some point in the future.

In fact, exchanging data among threads always poses some difficulties, as it requires shared variables,

and the use of locks and mutexes to prevent data corruption. Rather than waiting and using locks

it would be nice if some asynchronous task could be started, allowing the initiating thread (or even

other threads) to pick up the result at some point in the future, when the results are needed, without

having to worry about data locks or waiting times. For situations like these C++ provides the class

std::future.

Before using the class std::future the <future> header file must be included.

Objects of the class template std::future harbor the results produced by asynchronously executed

tasks. The class std::future is a class template. Its template type parameter specifies the type of

the result returned by the asynchronously executed task. This type may be void.

On the other hand, the asynchronously executed task may throw an exception (ending the task). In

that case the future object catches the exception, and rethrows it once its return value (i.e., the value

returned by the asynchronously executed task) is requested.

In this section the members of the class template future are described. Future objects are commonly

initialized through anonymous future objects returned by the factory function std::async or by

the get_future members of the classes std::promise, and std::packaged_task (introduced in

upcoming sections). Examples of the use of std::future objects are provided in those sections.

Some of future’s members return a value of the strongly typed enumeration std::future_status.

This enumeration defines three symbolic constants: future_status::ready,

future_status::timeout, and future_status::deferred.

Error conditions are returned through std::future_error exceptions. These error conditions are

represented by the values of the strongly typed enumeration std::future_errc (covered in the next

section).

The class future itself provides the following constructors:

• future():

The default constructor constructs an future object that does not refer to shared results. Its

valid member returns false.

• future(future &&tmp) noexcept:

The move constructor is available. Its valid member returns what tmp.valid() would haved

returned prior to the constructor invocation. After calling the move constructor tmp.valid()

returns false.

The class future does not offer a copy constructor or an overloaded assignment operator.

Here are the members of the class std::future:

• future &operator=(future &&tmp):

The move assignment operator grabs the information from the tmp object; following this,

tmp.valid() returns false.

• std::shared_future<ResultType> share() &&:

Returns a std::shared_future<ResultType> (see section 20.9). After calling this function,

the future’s valid member returns false.



First wait (see below) is called. Once wait has returned the results produced by the associ-

ated asynchronous task are returned. With future<Type> specifications the returned value is

the moved shared value if Type supports move assignment, otherwise a copy is returned. With

future<Type &> specifications a Type & is returned, with future<void> specifications noth-

ing is returned. If the shared value is an exception, it is thrown instead of returned. After calling

this member the future object’s valid member returns false.

• bool valid() const:

Returns true if the (future) object for which valid is called refers to an object returned by

an asynchronous task. If valid returns false, the future object exists, but in addition to

valid only its destructor and move constructor can safely be called. When other members are

called while valid returns false a std::future_error exception is thrown (having the value

future_errc::no_state).

• void wait() const:

The thread is blocked until the results produced by the associated asynchronous task are avail-

able.

• std::future_status wait_for(chrono::duration<Rep, Period> const

&rel_time) const:

This member template derives the template types Rep and Period from the actually specified

duration (cf. section 4.2.2). If the results contain a deferred function nothing happens. Otherwise

wait_for blocks

until the results are available or until the amount of time specified by rel_time has expired.

Possible return values are:

– future_status::deferred if the results contains a deferred function;

– future_status::ready if the results are avaiable;

– future_status::timeout if the function is returning because the amount of time specified

by rel_time has expired.

• future_status wait_until(chrono::time_point<Clock, Duration> const

&abs_time) const:

This member template derives the template types Clock and Duration from the actually

specified abs_time (cf. section 4.2.4). If the results contain a deferred function nothing happens.

Otherwise wait_until blocks until the results are available or until the point in time specified

by abs_time has expired. Possible return values are:

– future_status::deferred if the results contain a deferred function;

– future_status::ready if the results are available;

– future_status::timeout if the function is returning because the point in time specified

by abs_time has expired.

The class std::future<ResultType> declares the following friends:

std::promise<ResultType>

(sf. section 20.12), and

template<typename Function, typename... Args>

std::future<typename result_of<Function(Args...)>::type>

std::async(std::launch, Function &&fun, Args &&...args);

(cf. section 20.10).



Members of the class std::future may return errors by throwing std::future_error excep-

tions. These error conditions are represented by the values of the strongly typed enumeration

std::future_errc which defines the following symbolic constants:

• broken_promise

Broken_promise is thrown when a future object was received whose value was

never assigned by a promise or packaged_task. For example, an object of the

class promise<int> should set the value of the future<int> object returned by its

get_future member (cf. section 20.12), but if it doesn’t do so, then a broken_promise

exception is thrown, as illustrated by the following program:

1: std::future<int> fun()

2: {

3: return std::promise<int>().get_future();

4: }

5:

6: int main()

7: try

8: {

9: fun().get();

10: }

11: catch (std::exception const &exc)

12: {

13: std::cerr << exc.what() << '\n';

14: }

At line 3 a promise object is created, but its value is never set. Conse-

quently, it ‘breaks its promise’ to produce a value: when main tries to retrieve

its value (in line 9) a std::futue_error exception is thrown containing the

future_errc::broken_promise value

• future_already_retrieved

Future_already_retrieved is thrown when multiple attempts are made to retrieve

the future object from, e.g., a promise or packaged_task object that (eventually)

should be ready. For example:

1: int main()

2: {

3: std::promise<int> promise;

4: promise.get_future();

5: promise.get_future();

6: }

Note that after defining the std::promise object in line 3 it has merely been defined:

no value is ever assigned to its future. Even though no value is assigned to the future

object, it is a valid object. I.e., after some time the future should be ready, and the

future’s get member should produce a value. Hence, line 4 succeeds, but then, in line 5,

the exception is thrown as ‘the future has already been retrieved’.

• promise_already_satisfied

Promise_already_satisfied is thrown when multiple attempts are made to assign

a value to a promise object. Assigning a value or exception_ptr to the future of a

promise object may happen only once. For example:

1: int main()

2: {

3: std::promise<int> promise;

4: promise.set_value(15);



6: }

• no_state

No_state is thrown when a member function (other than valid, see below) of a future

object is called when its valid member returns false. This happens, e.g., when calling

members of a default constructed future object. No_state is not thrown for future

objects returned by the async factory function or returned by the get_futuremembers

of promise or packaged_task type of objects. Here is an example:

1: int main()

2: {

3: std::future<int> fut;

4: fut.get();

5: }

The class std::future_error is derived from the class std::exception, and offers, in addition

to the char const ∗what() const member also the member std::error_code const &code()

const, returning an std::error_code object associated with the thrown exception.

20.9 Shared asynchronous return objects: std::shared_future

When a thread activates an asynchronous provider (e.g., a std::async) then the return value of the

asynchronously called function becomes available in its activating thread through a std::future

object. The future object cannot be used by another thread. If this is required (e.g., see this chapter’s

final section) the future object must be converted to a std::shared_future object.

Before using the class std::shared_future the <future> header file must be included.

Once a shared_future object is available, its get member (see below) can repeatedly be called to

retrieve the results of the original future object. This is illustrated by the next small example:

1: int main()

2: {

3: std::promise<int> promise;

4: promise.set_value(15);

5:

6: auto fut = promise.get_future();

7: auto shared1 = fut.share();

8:

9: std::cerr << "Result: " << shared1.get() << '\n';

10: << "Result: " << shared1.get() << '\n';

11: << "Valid: " << fut.valid() << '\n';

12:

13: auto shared2 = fut.share();

14:

15: std::cerr << "Result: " << shared2.get() << '\n';

16: << "Result: " << shared2.get() << '\n';

17: }

In lines 9 and 10 the promise’s results are retrieved multiple times, but having obtained the

shared_future in line 7, the original future object no longer has an associated shared state. There-

fore, when another attempt is made (in line 13) to obtain the shared_future, a no associated state

exception is thrown and the program aborts.

However, multiple copies of shared_future objects may co-exist. When multiple copies of

shared_future objects exist (e.g. in different threads), the results of the associated asynchronous

task are made ready (become available) at exactly the same moment in time.



the classes unique_ptr and shared_ptr: there can only be one instance of a unique_pointer,

pointing to data, whereas there can be many instances of a shared_pointer, each pointing to the

same data.

The effect of calling any member of a shared_future object for which valid() == false other than

the destructor, the move-assignment operator, or valid is undefined.

The class shared_future supports the following constructors:

• shared_future() noexcept

an empty shared_future object is constructed that does not refer to shared results.

After using this constructor the object’s valid member returns false.

• shared_future(shared_future const &other)

a shared_future object is constructed that refers to the same results as other (if

any). After using this constructor the object’s valid member returns the same value as

other.valid().

• shared_future(shared_future<Result> &&tmp) noexcept

Effects: move constructs a shared_future object that refers to the results that were origi-

nally referred to by tmp (if any). After using this constructor the object’s valid member

returns the same value as tmp.valid() returned prior to the constructor invocation,

and tmp.valid() returns false.

• shared_future(future<Result> &&tmp) noexcept

Effects: move constructs a shared_future object that refers to the results that were origi-

nally referred to by tmp (if any). After using this constructor the object’s valid member

returns the same value as tmp.valid() returned prior to the constructor invocation,

and tmp.valid() returns false.

The class’s destructor destroys the shared_future object for which it is called. If the object

for which the destructor is called is the last shared_future object, and no std::promise or

std::packaged_task is associated with the results associated with the current object, then the re-

sults are also destroyed.

Here are the members of the class std::shared_future:

• shared_future& operator=(shared_future &&tmp):

The move assignment operator releases the current object’s shared results, and move assigns

tmp’s results to the current object. After calling the move assignment operator the current

object’s valid member returns the same value as tmp.valid() returned prior to the invocation

of the move assignment operator, and tmp.valid() returns false;

• shared_future& operator=(shared_future const &rhs):

The assignment operator releases the current object’s shared results, and rhs’s results are shared

with the current object. After calling the assignment operator the current object’s valid member

returns the same value as tmp.valid();

• Result const &shared_future::get() const:

(Specializations for shared_future<Result &> and shared_future<void> are also avail-

able). This member waits until the shared results are available, and subsequently returns Result

const &. Note that access to the data stored in Results, accessed through get is not syn-

chronized. It is the responsibility of the programmer to avoid race conditions when accessing

Result’s data. If Result holds an exception, it is thrown when get is called;

• bool valid() const:

Returns true if the current object refers to shared results;



Blocks until shared results are available (i.e., the associated asynchronous task has produced

results);

• future_status wait_for(const chrono::duration<Rep, Period>& rel_time)

const:

(The template types Rep and Period normally are derived by the compiler from the actual

rel_time specification.) If the shared results contain a deferred function (cf. section 20.10)

nothing happens. Otherwise wait_for blocks until the results of the associated asynchronous

task has produced results, or until the relative time specified by rel_time has expired. The

member returns

– future_status::deferred if the shared results contain a deferred function;

– future_status::ready if the shared results are available;

– future_status::timeout if the function is returning because the amount of time specified

by rel_time has expired;

• future_status wait_until(const chrono::time_point<Clock, Duration>&

abs_time) const:

(The template types Clock and Duration normally are derived by the compiler from the actual

abs_time specification.) If the shared results contain a deferred function nothing happens.

Otherwise wait_until blocks until the shared results are available or until the point in time

specified by abs_time has expired. Possible return values are:

– future_status::deferred if the shared results contain a deferred function;

– future_status::ready if the shared results are available;

– future_status::timeout if the function is returning because the point in time specified

by abs_time has expired.

20.10 Starting a new thread: std::async

In this section the function template std::async is covered. Async is used to start asynchronous

tasks, returning values (or void) to the calling thread, which is hard to realize merely using the

std::thread class.

Before using the function async the <future> header file must be included.

When starting a thread using the facilities of the class std::thread the initiating thread at some point

commonly calls the thread’s join method. At that point the thread must have finished or execution

blocks until join returns. While this often is a sensible course of action, it may not always be: maybe

the function implementing the thread has a return value, or it could throw an exception.

In those cases join cannot be used: if an exception leaves a thread, then your program ends. Here is

an example:

1: void thrower()

2: {

3: throw std::exception();

4: }

5:

6: int main()

7: try

8: {

9: std::thread subThread(thrower);

10: }

11: catch (...)

12: {

13: std::cerr << "Caught exception\n";

14: }



try-block (as it is defined in another thread). As a consequence, the program terminates.

This scenario doesn’t occur when std::async is used. Async may start a new asynchronous task, and

the activating thread may retrieve the return value of the function implementing the asynchronous

task or any exception leaving that function from a std::future object returned by the async function.

Basically, async is called similarly to the way a thread is started using std::thread: it is passed a

function and optionally arguments which are forwarded to the function.

Although the function implementing the asynchronous task may be passed as first argument, async’s

first argument may also be a value of the strongly typed enumeration std::launch:

enum class launch

{

async,

deferred

};

When passing launch::async the asynchronous task immediately starts; when passing

launch::deferred the asynchronous task is deferred. When std::launch is not specified the de-

fault value launch::async | launch::deferred is used, giving the implementation freedom of

choice, usually resulting in deferring execution of the asynchronous task.

So, here is the first example again, this time using async to start the sub-thread:

1: bool fun()

2: {

3: return std::cerr << " hello from fun\n";

4: }

5: int exceptionalFun()

6: {

7: throw std::exception();

8: }

9:

10: int main()

11: try

12: {

13: auto fut1 = std::async(std::launch::async, fun);

14: auto fut2 = std::async(std::launch::async, exceptionalFun);

15:

16: std::cerr << "fun returned " << std::boolalpha << fut1.get() << '\n';

17: std::cerr << "exceptionalFun did not return " << fut2.get() << '\n';

18: }

19: catch (...)

20: {

21: std::cerr << "caught exception thrown by exceptionalFun\n";

22: }

Now the threads immediately start, but although the results are available around line 13, the thrown

exception isn’t terminating the program. The first thread’s return value is made available in line 16,

the exception thrown by the second thread is simply caught by main’s try-block (line 19).

The function template async has several overloaded versions:

• The basic form expects a function or functor as its first argument, returning a std::future

holding the function’s return value or exception thrown by the function:

template <typename Function, class ...Args>

std::future<



> std::async(Function &&fun, Args &&...args);

• Alternatively, the first argument may be the address of a member function. In that case the

(required) second argument is an object (or a pointer to an object) of that member function’s class.

Any remaining arguments are passed to the member function (see also the remarks below).

• The first argument may also be a combination (using the bit_or operator) of the enumeration

values of the std::launch enumeration:

template <class Function, class ...Args>

std::future<typename std::result_of<Function(Args ...)>::type>

std::async(std::launch policy, Function &&fun, Args &&...args);

• If the first argument specifies std::launch values, the second argument may also be the address

of a member function. In that case the (required) thirs argument is an object (or a pointer to an

object) of that member function’s class. Any remaining arguments are passed to the member

function (see also the remarks below).

When calling async all arguments except for the std::launch argument must be references, pointers

or move-constructible objects:

• When a member function is specified, then the object for which the member function is called

must be a named object, an anonymous object, or a pointer to a named object.

• When a named object is passed to the async function template then copy construction is used to

construct a copy of the argument which is then forwarded to the thread-launcher.

• When an anonymous object is passed to the async function template then move construction is

used to forward the anonymous object to the thread launcher.

Once the thread itself starts another move construction is used to construct an object for the duration

of the thread. When a pointer to an object is passed, the sub-thread uses the object referred to by the

pointer, and neither copy- nor move-construction is required. However, when using a pointer to an

object the programmer should make sure that the object’s lifetime exceeds the duration of the thread

(note that this is not automatically guaranteed, as the asynchronous task may not actually start before

the future’s get member is called).

Because of the default std::launch::deferred | std::launch::async argument used by the

basic async call it is likely that the function which is passed to async doesn’t immediately start. The

launch::deferred policy allows the implementor to defer its execution until the program explicitly

asks for the function’s results. Consider the following program:

1: void fun()

2: {

3: std::cerr << " hello from fun\n";

4: }

5:

6: std::future<void> asyncCall(char const *label)

7: {

8: std::cerr << label << " async call starts\n";

9: auto ret = std::async(fun);

10: std::cerr << label << " async call ends\n";

11: return ret;

12: }

13:

14: int main()

15: {

16: asyncCall("First");

17: asyncCall("Second");

18: }



is run. This is a result of the (default) use of lauch::deferred: the system simply defers fun’s

execution until requested, which doesn’t happen. But the future object that’s returned by async has

a member wait. Once wait returns the shred state must be available. In other words: fun must have

finished. Here is what happens when after line 9 the line ret.wait() is inserted:

First async call starts

hello from fun

First async call ends

Second async call starts

hello from fun

Second async call ends

Actually, evaluation of fun can be requested at the point where we need its results, maybe even after

calling asyncCall, as shown in the next example:

1: int main()

2: {

3: auto ret1 = asyncCall("First");

4: auto ret2 = asyncCall("Second");

5:

6: ret1.get();

7: ret2.get();

8: }

Here the ret1 and ret2 std::future objects are created, but their fun functions aren’t evaluated

yet. Evaluation occurs at lines 6 and 7, resulting in the following output:

First async call starts

First async call ends

Second async call starts

Second async call ends

hello from fun

hello from fun

The std::async function template is used to start a thread, making its results available to the calling

thread. On the other hand, we may only be able to prepare (package) a task (a thread), but may have

to leave the completion of the task to another thread. Scenarios like this are realized through objects

of the class std::packaged_task, which is the topic of the next section.

20.11 Preparing a task for execution: std::packaged_task

The class template std::packaged_task allows a program to ‘package’ a function or functor and pass

the package to a thread for further processing. The processing thread then calls the packaged function,

passing it its arguments (if any). After completing the function the packaged_task’s future is ready,

allowing the program to retrieve the results produced by the function. Thus, functions and the results

of function calls can be transferred between threads.

Before using the class template packaged_task the <future> header file must be included.

Before describing the class’s interface, let’s first look at an example to get an idea about how a

packaged_task can be used. Remember that the essence of packaged_task is that part of your

program prepares (packages) a task for another thread to complete, and that the program at some

point needs the result of the completed task.

To clarify what’s happening here, let’s first look at a real-life analogon. Every now and then I make

an appointment with my garage to have my car serviced. The ‘package’ in this case are the details



My neighbor also has a car, which also needs to be serviced every now and then. This also results in

a ‘package’ for the garage. At the appropriate time me and my neighbor take our cars to the garage

(i.e., the packages are passed to another thread). The garage services the cars (i.e., calls the functions

stored in the packaged_tasks [note that the tasks differ, depending on the types of the cars]), and

performs some actions that are associated with it (e.g., registering that my or my neighbor’s car has

been serviced, or order replacement parts). In the meantime my neighbor and I perform our own

businesses (the program continues while a separate thread runs as well). But by the end of the day we’d

like to use our cars again (i.e., get the results associated with the packaged_task). A common result

in this example is the garage’s bill, which we have to pay (the program obtains the packaged_task’s

results).

Here is a little C++ program illustrating the use of a packaged_task (assuming the required headers

and using namespace std have been specified):

1: mutex carDetailsMutex;

2: condition_variable condition;

3: string carDetails;

4: packaged_task<size_t (std::string const &)> serviceTask;

5:

6: size_t volkswagen(string const &type)

7: {

8: cout << "performing maintenance by the book for a " << type << '\n';

9: return type.size() * 75; // the size of the bill

10: }

11:

12: size_t peugeot(string const &type)

13: {

14: cout << "performing quick and dirty maintenance for a " << type << '\n';

15: return type.size() * 50; // the size of the bill

16: }

17:

18: void garage()

19: {

20: while (true)

21: {

22: unique_lock<mutex> lk(carDetailsMutex);

23: while (carDetails.empty())

24: condition.wait(lk);

25:

26: cout << "servicing a " << carDetails << '\n';

27: serviceTask(carDetails);

28: carDetails.clear();

29: }

30: }

31:

32: int main()

33: {

34: thread(garage).detach();

35:

36: while (true)

37: {

38: string car;

39: if (not getline(cin, car) || car.empty())

40: break;

41: {

42: lock_guard<mutex> lk(carDetailsMutex);

43: carDetails = car;

44: }



46: car[0] == 'v' ? volkswagen : peugeot

47: );

48: auto bill = serviceTask.get_future();

49: condition.notify_one();

50: cout << "Bill for servicing a " << car <<

51: ": EUR " << bill.get() << '\n';

52: }

53: }

• Lines 1-3 define the variables used for synchronization;

• Line 4 defines a packaged_task: serviceTask is initialized with a function (or functor) ex-

pecting a string, returning a size_t;

• Lines 6-10 and 12-16 define such functions: volkswagen and peugeot represent the tasks to

perform when cars of the provided types come in for service; presumably they return the bill.

• Lines 18-30 define the function void garage, defining the actions performed by the garage when

cars come in for service. These actions are performed by a separate detached thread, starting

in line 34. In a continuous loop it waits until it obtains a lock on the carDetailsMutex and

carDetails is no longer empty. Then, at line 27, it passes carDetails to the packaged_task

‘serviceTask’. By itself this is not identical to calling the packaged_task’s function, but

eventually its function will be called. At this point the packaged_task receives its function’s

arguments, which it eventually will forward to its configured function. Finally, at line 28 it clears

carDetails, thus preparing itself for the next request.

• Lines 32-53 define main:

– First, at line 34 the anonymous detached thread running garage is started.

Then the program’s main loop starts (lines 36-52):

– The main thread reads commands from the standard input until an empty or no line is

received (lines 38-40).

– By convention the line’s first letter starts the car’s brand (volkswagen or peugeot), and the

packaged_task, provided with the right servicing function, is constructed next (line 45).

– Then, at line 48 the results, stored in a future, are retrieved. Although at this point the

future might not be ready, the future object itself is, and it is simply returned as the bill.

– Now we’re ready to inform the garage that it can service a car: the garage is notified in line

49.

Anything may happen next: the program may perform any actions, but eventually it requests the

results produced by the garage.

– The main thread obtains the results by calling bill.get() in line 51. If, by this time, the

car is still being serviced, the bill isn’t ready yet, and bill.get() blocks until it is, and the

bill for servicing a car is shown.

Now that we’ve seen an example of a program using a packaged_task, let’s have a look at its interface.

Note that the class packaged_task is a class template: its template type parameter specifies the

prototype of a function or function object implementing the task performed by the packaged_task

object.

Constructors and destructor:

• packaged_task() noexcept:

The default constructor constructs a packaged_task object which is not associated with a func-

tion or shared state;



A packaged_task is constructed for a function or functor expecting arguments of types Args...,

and returning a value of type ReturnType. The packaged_task class template specifies

ReturnType (Args...) as its template type parameter. The constructed object contains a

shared state, and a (move constructed) copy of function.

Optionally an Allocator may be specified as second template type parameter, in which case

the first two arguments are std::allocator_arg_t, Allocator const &alloc. The type

std::allocator_arg_t is a type introduced to disambiguate constructor selections, and can

simply be specified as std::allocator_arg_t().

This constructor may throw a std::bad_alloc exception or exceptions thrown by function’s

copy or move constructors

• packaged_task(packaged_task &&tmp) noexcept:

The move constructor moves any existing shared state from tmp to the newly constructed object,

removing the shared state from tmp.

• ~packaged_task():

The object’s shared state (if any) is abandoned

Member functions:

• future<ReturnType> get_future():

A std::future object is returned holding the results of the separately executed thread. When

get_future is incorrectly called a future_error exception is thrown, containing one of the

following values:

– future_already_retrieved if get_future was already called on a packaged_task ob-

ject containing the same shared state as the current object;

– no_state if the current object has no shared state.

Note: Any futures that share the object’s shared state may access the result returned by the

object’s task.

• void make_ready_at_thread_exit(Args... args):

Calls void operator()(Args... args) (see below) when the current thread exits, once all

objects of thread storage duration associated with the current thread have been destroyed.

• packaged_task &operator=(packaged_task &&tmp):

The move assignment operator first releases the current object’s shared state (if available), after

which the current object and tmp are swapped;

• void operator()(Args... args):

The args arguments are forwarded to the current object’s stored task. When the stored task

returns its return value is stored in the current object’s shared state. Otherwise any exception

thrown by the task is stored in the object’s shared state. Following this the object’s shared state is

made ready, and any threads blocked in a function waiting for the object’s shared state to become

ready are unblocked. A future_error exception is thrown upon error, containing

– promise_already_satisfied if the shared state has already been made ready;

– no_state if the current object does not have any shared state.

Calling this member synchronizes with calling any member function of a (shared_)future ob-

ject that provides access to the packaged_task’s results.

• void reset():

Abandons any available shared state, initializing the current object to

packaged_task(std::move(funct)), where funct is the object’s stored task. This member

may throw the following exceptions:

– bad_alloc if memory for the new shared state could not be allocated;

– any exception thrown by the move constructor of the task stored in the shared state;



state.

• void swap(packaged_task &other) noexcept:

The shared states and stored tasks of the current object and other are swapped.

• bool valid() const noexcept:

Returns true if the current object contains a shared state, otherwise false is returned;

The following non-member (free) function operating on packaged_task objects is available:

• void swap+(packaged_task<ReturnType(Args...)> &lhs,

packaged_task<ReturnType(Args...)> &rhs+) noexcept

Calls lhs.swap(rhs)

20.12 The class ‘std::promise’

In addition to std::packaged_task and std::async the class template std::promise can be used

to obtain the results from a separate thread.

Before using the class template promise the <future> header file must be included.

A promise is useful to obtain the results from another thread without further synchronization require-

ments. Consider the following program:

void compute(int *ret)

{

*ret = 9;

}

int main()

{

int ret = 0;

std::thread(compute, &ret).detach();

cout << ret << '\n';

}

Chances are that this program shows the value 0: the cout statement is already executed before

the detached thread has had a chance to complete its work. In this example that problem can easily

be solved by using a non-detached thread, and using the thread’s join member, but when multiple

threads are used that requires named threads and as many join calls. Instead, using a promise

might be preferred:

1: void compute(promise<int> &ref)

2: {

3: ref.set_value(9);

4: }

5:

6: int main()

7: {

8: std::promise<int> p;

9: std::thread(compute, ref(p)).detach();

10:

11: cout << p.get_future().get() << '\n';

12: }



promise object, instead of directly being assigned to a final destination variable. The promise object

contains a future object holding the computed value. The future’s get member blocks until the

future has been made ready, at which point the result becomes available. By then the detached thread

may or may not yet have been completed. If it already completed its work then get immediately

returns, otherwise there will be a slight delay.

Promises can be useful when implementing a multi threaded version of some algorithm without having

to use additional synchronization statements. As an example consider matrix multiplications. Each

element of the resulting product matrix is computed as the inner product of two vectors: the inner

product of a row of the left-hand matrix operand and a column of the right-hand matrix operand be-

comes element [row][column] of the resulting matrix. Since each element of the resulting matrix can

independently be computed from the other elements, a multi threaded implementation is well possible.

In the following example the function innerProduct (lines 4..11) leaves its result in a promise object:

1: int m1[2][2] = {{1, 2}, {3, 4}};

2: int m2[2][2] = {{3, 4}, {5, 6}};

3:

4: void innerProduct(promise<int> &ref, int row, int col)

5: {

6: int sum = 0;

7: for (int idx = 0; idx != 2; ++idx)

8: sum += m1[row][idx] * m2[idx][col];

9:

10: ref.set_value(sum);

11: }

12:

13: int main()

14: {

15: promise<int> result[2][2];

16:

17: for (int row = 0; row != 2; ++row)

18: {

19: for (int col = 0; col != 2; ++col)

20: thread(innerProduct, ref(result[row][col]), row, col).detach();

21: }

22:

23: for (int row = 0; row != 2; ++row)

24: {

25: for (int col = 0; col != 2; ++col)

26: cout << setw(3) << result[row][col].get_future().get();

27: cout << '\n';

28: }

29: }

Each inner product is computed by a separate (anonymous and detached) thread (lines 17..21), which

starts as soon as the run-time system allows it to start. By the time the threads have finished the

resulting inner products can be retrieved from the promises’ futures. Since futures’ get members block

until their results are actually available, the resulting matrix can simply be displayed by calling those

members in sequence (lines 23..28).

So, a promise allows us to use a thread to compute a value (or exception, see below), which value may

then be collected by another thread at some future point in time. The promise remains available, and

as a consequence further synchronization of the threads and the program starting the threads is not

necessary. When the promise object contains an exception, rather than a value, its future’s getmember

rethrows the stored exception.

Here is the class promise’s interface. Note that the class promise is a class template: its template

type parameter ReturnType specifies the template type parameter of the std::future that can be

retrieved from it.



• promise():

The default constructor constructs a promise object containing a shared state. The shared state

may be returned by the member get_future (see below), but that future has not yet been made

ready;

• promise(promise &&tmp) noexcept:

The move constructor constructs a promise object, transferring the ownership of tmp’s shared

state to the newly constructed object. After the object has been constructed, tmp no longer con-

tains a shared state;

• ~promise():

The object’s shared state (if any) is abandoned;

Member functions:

• std::future<ReturnType> get_future():

A std::future object sharing the current object’s shared state is returned. A future_error

exception is thrown upon error, containing

– future_already_retrieved if get_future was already called on a packaged_task ob-

ject containing the same shared state as the current object;

– no_state if the current object has no shared state.

Note: Any futures that share the object’s shared state may access the result returned by the

object’s task;

• promise &operator=(promise &&rhs) noexcept:

The move assignment operator first releases the current object’s shared state (if available), after

which the current object and tmp are swapped;

• void promise<void>::set_value():

See below, at the last set_value member’s description;

• void set_value(ReturnType &&value):

See below, at the last set_value member’s description;

• void set_value(ReturnType const &value):

See the next member function’s description;

• void set_value(ReturnType &value):

The argument (value) is atomically stored in the shared state, which is then also made ready. A

future_error exception is thrown upon error, containing

– promise_already_satisfied if the shared state has already been made ready;

– no_state if the current object does not have any shared state.

Alternatively, any exception thrown by value’s move or copy constructor may be thrown;

• void set_exception(std::exception_ptr obj):

Exception_ptr obj (cf. section 20.12.1) is atomically stored in the shared state, making that

state ready. A future_error exception is thrown upon error, containing

– promise_already_satisfied if the shared state has already been made ready;

– no_state if the current object does not have any shared state;

• void set_exception_at_thread_exit(exception_ptr ptr):

The exception pointer ptr is stored in the shared state without immediately making that state

ready. The state becomes ready when the current thread exits, once all objects of thread storage

duration which are associated with the ending thread have been destroyed. A future_error

exception is thrown upon error, containing

– promise_already_satisfied if the shared state has already been made ready;



• void set_value_at_thread_exit():

See below, at the last set_value_at_thread_exitmember’s description;

• void set_value_at_thread_exit(ReturnType &&value):

See below, at the last set_value_at_thread_exitmember’s description;

• void set_value_at_thread_exit(ReturnType const &value):

See the next set_value_at_thread_exit member’s description;

• void set_value_at_thread_exit(ReturnType &value):

Stores value in the shared state without immediately making that state ready. The state be-

comes ready when the current thread exits, once all objects of thread storage duration which are

associated with the ending thread have been destroyed. A future_error exception is thrown

upon error, containing

– promise_already_satisfied if the shared state has already been made ready;

– no_state if the current object does not have any shared state;

• void swap(promise& other) noexcept:

The shared states (if any) of the current object and other are exchanged.

The following non-member (free) function operating on promise objects is available:

• void swap(promise<ReturnType> &lhs, promise<ReturnType> &rhs) noexcept:

Calls lhs.swap(rhs)

20.12.1 Exception propagation: std::exception_ptr

Std::promise’s member set_exception does not expect a std::exception argument, but an

object of the class std::exception_ptr. In this section we take a closer look at the class

exception_ptr.

Before using the class exception_ptr the <future> header file must be included.

The class exception_ptr’s default constructor initializes it to a null-pointer. In the following code

snippet the variable isNull is set to true:

std::exception_ptr obj;

bool isNull = obj == nullptr && obj == 0;

The class exception_ptr provides copy and move constructors as well as copy and move assignment

operators.

Two exception_ptr objects can be compared for equality. They are equal if they refer to the same

exception. Move assignment transfers the exception referred to by the right-hand side operand to the

left-hand side operand, and turns the right-hand side operand into a null pointer.

There is no published method directly retrieving the exception to which an exception_ptr object

refers. However, there are some free functions constructing or handling exception_ptr objects:

• std::exception_ptr std::current_exception() noexcept:

An exception_ptr object is returned referring to the currently handled exception (or a copy of

the currently handled exception, or a default constructed exception_ptr object if no current

exception is available). This function can also be called when a default exception catcher is used.

E.g., assuming that obj refers to an available std::promise object, then the following code

snippet assigns the exception caught by default catch clause to obj:

...



{

obj.set_exception(std::current_exception());

}

The exception referred to by current_exception does not have to be an object of the class

std::exception. Any type of object or value thrown as an exception is retrieved as an

exception_ptr by current_exception. The exception referred to by an exception_ptr ob-

ject remains valid for at least as long as there exists an exception_ptr object that refers to it.

Calling current_exception twice in a row then the two returned exception_ptr objects may

or may not refer to the same exception object.

• std::exception_ptr make_exception_ptr(Type value) noexcept:

This function template constructs an exception_ptr from a value of any type which is passed

as its argument. Type does not necessarily have to be a std::exception. The constructed

exception_ptr could, e.g., be assigned to a std::promise. When the promise’s future’s get

member is subsequently called (possibly from within another thread) the exception will be thrown.

Here are some examples, showing how values of different types can be passed as arguments

to make_exception_ptr, and showing how the eventually constructed exception_ptr is as-

signed to the obj, which is assumed to be of a std::promise type:

auto ptr = make_exception_ptr(exception());

ptr = make_exception("hello world"s);

ptr = make_exception(12);

obj.set_exception(make_exception_ptr(ptr));

• void std::rethrow_exception(exception_ptr obj):

The exception to which obj refers is thrown. Note: obj cannot be a nullptr.

20.13 An example: multi-threaded compilations

In this section another program is developed. This section’s example program illustrates the use of

packaged_tasks.

Like the multi-threaded quicksort example a worker pool is used. However, in this example the workers

in fact do not know what their task is. In the current example the tasks happens to be identical, but

different tasks might as well have been used, without having to update the workers.

The program uses a class Task containing a command-specification (d_command), and a

task specification (d_task) (cf. Figure 20.2), the sources of the program are found in the

yo/threading/examples/multicompile directory of the C++ Annotations.

Like before main first starts its workforce as detached threads. Following this, the compilation jobs are

performed by yet another detached thread. Eventually, the results of the compilation jobs are handled

by results:

int main()

{

workforce(); // start the worker threads

thread(jobs).detach(); // start working on the jobs

results(); // handle the results.

}

The jobs-thread reads the names of the files to compile from the standard input stream, and passes

them on to dispatch for further handling by the workers. Lines 7 and 8 are executed at the end, and

are a safeguard against empty input. The safeguard is discussed below, at newResult’s description.

1: void jobs()



task Q
push front

Results

Workers

resultQ

Jobs/dispatch

Activating

    workers

done

string d_command

packaged_task<...> d_task
Task

Figure 20.2: Data structure used for the multi-threading compilation

2: {

3: string line;

4: while (getline(cin, line) && dispatch(line))

5: ;

6:

7: g_ready = true;

8: g_resultCond.notify_one();

9: }

Next the dispatcher. It ignores empty lines. Also, if a compilation has failed by the time the dispatcher

is called, processing stops (lines 6-7). Otherwise, the dispatcher waits for an available worker, prepares

a new task, and notifies a worker to handle it:

1: bool dispatch(string const &line)

2: {

3: if (line.empty())

4: return true;

5:

6: if (g_done.load())

7: return false;

8:

9: g_workforce.wait();

10: newTask(line);

11: g_worker.notify_all();

12: return true;

13: }

The function newTask prepares the program for the next task. First a Task object is created. Task

contains the name of the file to compile, and a packaged_task. It encapsulates all activities that are

associated with a packaged_task. Here is its (in-class) definition:



2:

3: class Task

4: {

5: string d_command;

6: PackagedTask d_task;

7:

8: public:

9: Task() = default;

10:

11: Task(string const &command, PackagedTask &&tmp)

12: :

13: d_command(command),

14: d_task(move(tmp))

15: {}

16:

17: void operator()()

18: {

19: d_task(d_command);

20: }

21:

22: shared_future<Result> result()

23: {

24: return d_task.get_future().share();

25: }

26: };

Note (lines 22-25) that result returns a shared_future. Since the dispatcher runs in a different

thread than the one processing the results, the futures created by the dispatcher must be shared with

the futures required by the function processing the results. Hence the shared_futures returned by

Task::result.

Once a Task object has been constructed its shared_future is pushed on the result queue. Although

the actual results aren’t available by this time, the result function (see below) is notified that some-

thing has been pushed on its queue. Additionally, the Task itself is pushed on the task queue, where a

worker may retrieve it:

class Task

{

string d_command;

PackagedTask d_task;

public:

Task() = default;

Task(string const &command, PackagedTask &&tmp);

void operator()();

shared_future<Result> result();

};

void pushResultQ(shared_future<Result> const &sharedResult)

{

lock_guard<mutex> lk(g_resultQMutex);

g_resultQ.push(sharedResult);

g_ready = true;

g_resultCond.notify_one();

}

The workers have a simple task: retrieve the next task from the task queue’s front, then perform that



ends when the program ends:

void worker()

{

Task task;

while (true)

{

g_worker.wait();

g_taskQ.popFront(task);

task();

g_workforce.notify_all();

}

}

This completes the description of how tasks are handled. The task itself remains to be described. In the

current example program source files are being compiled. The compilation command is passed to the

constructor of a CmdFork object, which starts the compiler as a child process. The result of the compi-

lation is retrieved via its childExit (returning the compiler’s exit code) and childOutput (returning

any textual output produced by the compiler) members. If compilation fails, the exit value won’t be

zero. In this case no further compilation tasks will be initiated (lines 11 and 12; the implementation

of the class CmdFork is available from the C++ Annotations’ yo/threading/examples/cmdfork

directory). Here is the function compile:

1: Result compile(string const &line)

2: {

3: string command("/usr/bin/g++ -Wall --std=c++11 -c " + line);

4:

5: CmdFork cmdFork(command);

6: cmdFork.fork();

7:

8: Result ret {cmdFork.childExit() == 0,

9: line + "\n" + cmdFork.childOutput()};

10:

11: if (not ret.ok)

12: g_done = true;

13:

14: return ret;

15: }

The results function continues for as long as there are results. Once results are available they are

displayed. Whenever a compilation has failed the Result’s d_ok member is false and results

ends:

void results()

{

while (newResult())

{

Result const &result = g_resultQ.front().get();

cerr << result.display;

if (not result.ok)

return;

g_resultQ.pop();



}

The function newResult controls results’ while-loop. It returns true when there are some results

available in the result queue. When no filenames are presented at the standard input stream or when

no result has as yet been pushed on the result queue newResult waits. It also waits when there are

no results available in the results queue, but at least one worker thread is busy. Whenever a result is

pushed on the result queue, and also once the input stream has been processed newResult is notified.

Following the notification newResult returns, and results either ends or shows the results appearing

at te result queue’s front:

bool newResult()

{

unique_lock<mutex> lk(g_resultQMutex);

while

(

(

g_resultQ.empty()

&&

g_workforce.size() != g_sizeofWorkforce

)

||

not g_ready.load()

)

g_resultCond.wait(lk);

return not g_resultQ.empty();

}

20.14 Transactional Memory

Transactional memory is used to simplify shared data access in multithreaded programs. The benefits

of transactional memory is best illustrated by a small program. Consider a situation where threads

need to write information to a file. A plain example of such a program would be:

void fun(int value)

{

for (size_t rept = 0; rept != 10; ++rept)

{

this_thread::sleep_for(chrono::seconds(1));

cout << "fun " << value << '\n';

}

};

int main()

{

thread thr{ fun, 1 };

fun(2);

thr.join();

}

When this program is run the fun 1 and fun 2 messages are intermixed. To prevent this we tradi-

tionally define a mutex, lock it, write the message, and release the lock:

void fun(int value)



static mutex guard;

for (size_t rept = 0; rept != 10; ++rept)

{

this_thread::sleep_for(chrono::seconds(1));

guard.lock();

cout << "fun " << value << '\n';

guard.unlock();

}

};

Transactional memory handles the locking for us. Transactional memory is used when statements are

embedded in a synchronized block. The function fun, using transactional memory, looks like this:

void fun(int value)

{

for (size_t rept = 0; rept != 10; ++rept)

{

this_thread::sleep_for(chrono::seconds(1));

synchronized

{

cout << "fun " << value << '\n';

}

}

};

To compile source files using transactional memory the g++ compiler option -fgnu-tm must be speci-

fied.

The code inside a synchronized block is executed as a single, as if the block was protected by a mu-

tex. Different from using mutexes transactional memory is implemented in software instead of using

hardware-facilities.

Considering how easy it is to use transactional memory compared to using the mutex-based locking

mechanism using transactional memory appears too good to be true. And in a sense it is. When

encountering a synchronized block the thread unconditionally executes the block’s statements. At the

same time it keeps a detailed log of all its actions. Once the statements have been completed the

thread checks whether another thread didn’t start executing the block just before it. If so, it reverses

its actions, using the synchronized block’s log. The implication of this should be clear: there’s at least

the overhead of maintaining the log, and if another thread started executing the synchronized block

before the current thread then there’s the additional overhead of reverting its actions and to try again.

The advantages of transactional memory should also be clear: the programmers no longer is responsi-

ble for correctly controlling access to shared memory; risks of encountering deadlocks have disappeared

as has all adminstrative overhead of defining mutexes, locking and unlocking. Especially for inherently

slow operations like writing to files transactional memory can greatly simplify parts of your code. Con-

sider a std::stack. Its top-element can be inspected but its pop member does not return the topmost

element. To retrieve the top element and then maybe remove it traditionally requires a mutex lock

surrounding determining the stack’s size, and if empty, release the lock and wait. If not empty then

retrieve its topmost element, followed by removing it from the stack. Using a transactional memory we

get something as simple as:

bool retrieve(stack<Item> &itemStack, Item &item)

{

synchronized

{

if (itemStack.empty())

return false;



itemStack.pop();

return true;

}

}

Variants of synchronized are:

• atomic_noexcept: the statements inside its compound statement may not throw exceptions. If

they do, std::abort is called. If the earlier fun function specifies atomic_noexcept instead

of synchronized the compiler generates and error about the use of the insertion operator, from

which an exception may be thrown.

• atomic_cancel: not yet supported by g++ (version 8.2.0). If an exception other than (std::)

bad_alloc, bad_array_new_length, bad_cast, bad_typeid, bad_exception,

exception, tx_exception<Type> is thrown std::abort is called. If an acceptable

exception is thrown, then the statements executed so far are undone.

• atomic_commit: if an exception is thrown from its compound statement all thus far executed

statements are kept (i.e., not undone).



Chapter 21

Function and Variable Templates

C++ supports syntactic constructs allowing programmers to define and use completely general (or ab-

stract) functions or classes, based on generic types and/or (possibly inferred) constant values. In the

chapters on abstract containers (chapter 12) and the STL (chapter 18) we’ve already used these con-

structs, commonly known as the template mechanism.

The template mechanism allows us to specify classes and algorithms, fairly independently of the actual

types for which the templates are eventually going to be used. Whenever the template is used, the

compiler generates code that is tailored to the particular data type(s) used with the template. This

code is generated at compile-time from the template’s definition. The piece of generated code is called

an instantiation of the template.

In this chapter the syntactic peculiarities of templates are covered. The notions of template type pa-

rameter, template non-type parameter, and function template are introduced and several examples of

templates are provided (both in this chapter and in chapter 24). Template classes are covered in chap-

ter 22. For good reasons variadic functions are deprecated in C++. However, variadic templates tell

us a completely different story, and variadic templates are perfectly acceptable. Both function- and

class-templates can be defined as variadic templates. Both forms are covered in section 22.5.

Templates already offered by the language include the abstract containers (cf. chapter 12); the string

(cf. chapter 5); streams (cf. chapter 6); and the generic algorithms (cf. chapter 19). So, templates play

a central role in present-day C++, and should not be considered an esoteric feature of the language.

Templates should be approached somewhat similarly as generic algorithms: they’re a way of life; a C++

software engineer should actively look for opportunities to use them. Initially, templates may appear

to be rather complex and you might be tempted to turn your back on them. However, over time their

strengths and benefits are more and more appreciated. Eventually you’ll be able to recognize opportu-

nities for using templates. That’s the time where your efforts should no longer focus on constructing

ordinary functions and classes (i.e., functions or classes that are not templates), but on constructing

templates.

This chapter starts by introducing function templates. The emphasis is on the required syntax. This

chapter lays the foundation upon which the other chapters about templates are built.

21.1 Defining function templates

A function template’s definition is very similar to the definition of a normal function. A function tem-

plate has a function head, a function body, a return type, possibly overloaded definitions, etc.. However,

different from ordinary functions, function templates always use one or more formal types: types for

which almost any existing (class or primitive) type could be used. Let’s have a look at a simple example.

The following function add expects two Type arguments and returns their sum:
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{

return lhs + rhs;

}

Note how closely the above function’s definition follows its description. It receives two arguments, and

returns its sum. Now consider what would happen if we defined this function for, e.g., int values. We

would write:

int add(int const &lhs, int const &rhs)

{

return lhs + rhs;

}

So far, so good. However, were we to add two doubles, we would overload this function:

double add(double const &lhs, double const &rhs)

{

return lhs + rhs;

}

There is no end to the number of overloaded versions we might be forced to construct: an overloaded

version for string, for size_t, for .... In general, we would need an overloaded version for every

type supporting operator+ and a copy constructor. All these overloaded versions of basically the same

function are required because of the strongly typed nature of C++. Because of this, a truly generic

function cannot be constructed without resorting to the template mechanism.

Fortunately, we’ve already seen an important part of a template function. Our initial function add

actually is an implementation of such a function although it isn’t a full template definition yet. If we

gave the first add function to the compiler, it would produce an error message like:

error: `Type' was not declared in this scope

error: parse error before `const'

And rightly so, as we failed to define Type. The error is prevented when we change add into a full

template definition. To do this, we look at the function’s implementation and decide that Type is

actually a formal typename. Comparing it to the alternate implementations, it is clear that we could

have changed Type into int to get the first implementation, and into double to get the second.

The full template definition allows for this formal nature of the Type typename. Using the keyword

template, we prefix one line to our initial definition, obtaining the following function template defini-

tion:

template <typename Type>

Type add(Type const &lhs, Type const &rhs)

{

return lhs + rhs;

}

In this definition we distinguish:

• The keyword template, starting a template definition or declaration.

• The angle bracket enclosed list following template. This is a list containing one or more comma-

separated elements. This angle bracket enclosed list is called the template parameter list. Tem-

plate parameter lists using multiple elements could look like this:

typename Type1, typename Type2



comparable to a formal parameter name in a function’s definition. Up to now we’ve only encoun-

tered formal variable names with functions. The types of the parameters were always known by

the time the function was defined. Templates escalate the notion of formal names one step further

up the ladder. Templates allow type names to be formalized, rather than just the variable names

themselves. The fact that Type is a formal type name is indicated by the keyword typename,

prefixed to Type in the template parameter list. A formal type name like Type is also called a

template type parameter. Template non-type parameters also exist, and are shortly introduced.

Other texts on C++ sometimes use the keyword class where we use typename. So, in other texts

template definitions might start with a line like:

template <class Type>

In the C++ Annotations the use of typename over class is preferred, reasoning that a template

type parameter is, after all, a type name (some authors prefer class over typename; in the end

it’s a matter of taste).

• The template keyword and the template parameter list is called the template header.

• The function head: it is like a normal function head, albeit that the template’s type parameters

must be used in its parameter list. When the function is eventually called using actual arguments

having actual types, these actual types are used by the compiler to infer which version (i.e., over-

load to fit the actual argument types) of the function template must be used. At the point where

the function is called the compiler creates the function that is called, a process called instantia-

tion. The function head may also use a formal type to specify its return value. This feature was

actually used in the add template definition.

• The function parameters are specified as Type const & parameters. This has the usual mean-

ing: the parameters are references to Type objects or values that will not be modified by the

function.

• The function body is like a normal function body. In the body the formal type names may be

used to define or declare variables, which may then be used as any other local variable. But some

restrictions apply. Looking at add’s body, it is clear that operator+ is used, as well as a copy

constructor, as the function returns a value. This allows us to formulate the following restrictions

for the formal type Type as used by our add function template:

– Type should support operator+

– Type should support a copy constructor

Consequently, while Type could be a string, it could never be an ostream, as neither

operator+ nor the copy constructor are available for streams.

Normal scope rules and identifier visibility rules apply to templates. Within the template definition’s

scope formal type names overrule identically named identifiers of broader scopes.

21.1.1 Considerations regarding template parameters

We’ve managed to design our first function template:

template <typename Type>

Type add(Type const &lhs, Type const &rhs)

{

return lhs + rhs;

}

Look again at add’s parameters. By specifying Type const & rather than Type superfluous copying

is prevented, at the same time allowing values of primitive types to be passed as arguments to the



tion parameters should be defined as Type const & to prevent unnecessary copying. The compiler is

smart enough to handle ‘references to references’ in this case, which is something the language nor-

mally does not support. For example, consider the following main function (here and in the following

simple examples it is assumed that the template and the required headers and namespace declarations

have been provided):

int main()

{

size_t const &var = size_t{ 4 };

cout << add(var, var) << '\n';

}

Here var is a reference to a constant size_t. It is passed as argument to add, thereby initializing

lhs and rhs as Type const & to size_t const & values. The compiler interprets Type as size_t.

Alternatively, the parameters might have been specified using Type &, rather than Type const &.

The disadvantage of this (non-const) specification being that temporary values cannot be passed to the

function anymore. The following therefore fails to compile:

int main()

{

cout << add(string{ "a" }, string{ "b" }) << '\n';

}

Here, a string const & cannot be used to initialize a string &. Had add defined Type && parame-

ters then the above program would have compiled just fine. In addition the following example correctly

compiles as the compiler decides that Type apparently is a string const:

int main()

{

string const &s = string{ "a" };

cout << add(s, s) << '\n';

}

What can we deduce from these examples?

• In general, function parameters should be specified as Type const & parameters to prevent

unnecessary copying.

• The template mechanism is fairly flexible. Formal types are interpreted as plain types, const

types, pointer types, etc., depending on the actually provided types. The rule of thumb is that the

formal type is used as a generic mask for the actual type, with the formal type name covering

whatever part of the actual type must be covered. Some examples, assuming the parameter is

defined as Type const &:

Provided argument: Actually used Type:

size_t const size_t

size_t size_t

size_t ∗ size_t ∗

size_t const ∗ size_t const ∗

As a second example of a function template, consider the following function template:

template <typename Type, size_t Size>

Type sum(Type const (&array)[Size])

{



for (size_t idx = 0; idx < Size; idx++)

tp += array[idx];

return tp;

}

This template definition introduces the following new concepts and features:

• The template parameter list. This template parameter list has two elements. The first element

is a well-known template type parameter, but the second element has a very specific type: a

size_t. Template parameters of specific (i.e., non-formal) types used in template parameter lists

are called template non-type parameters. A template non-type parameter defines the type of a

constant expression, which must be known by the time the template is instantiated and which is

specified in terms of existing types, such as a size_t.

• Looking at the function’s head, we see one parameter:

Type const (&array)[Size]

This parameter defines array as a reference to an array having Size elements of type Type that

may not be modified.

• In the parameter definition, both Type and Size are used. Type is of course the template’s type

parameter Type, but Size is also a template parameter. It is a size_t, whose value must be

inferable by the compiler when it compiles an actual call of the sum function template. Conse-

quently, Size must be a const value. Such a constant expression is called a template non-type

parameter, and its type is named in the template’s parameter list.

• When the function template is called, the compiler must be able to infer not only Type’s concrete

value, but also Size’s value. Since the function sum only has one parameter, the compiler is

only able to infer Size’s value from the function’s actual argument. It can do so if the provided

argument is an array (of known and fixed size) rather than a pointer to Type elements. So, in the

following main function the first statement will compile correctly but the second statement will

not:

int main()

{

int values[5];

int *ip = values;

cout << sum(values) << '\n'; // compiles OK

cout << sum(ip) << '\n'; // won't compile

}

• Inside the function’s body the definition Type tp{} is used to define and initialize tp to a default

value. Note here that no fixed value (like 0) is used. Also, be careful not to use Type tp(), as this

is a declaration of a function tp, expecting no arguments, and returning a Type. Generally, when

it is required to explicitly initialize a value the empty curly braces should be used. The advantage

of explicitly calling the type’s constructor is primarily encountered when Type is a basic type. E.g.,

if Type is an int then Type tp{} initializes tp to zero, whereas Type tp results in tp having

an undefined value. But all types, even the primitive types, support default constructors (some

classes may choose not to implement a default constructor, or to make it inaccessible; but most do

offer default constructors). The default constructor of primitive types initializes their variables

to 0 (or false). Furthermore, the statement Type tp = Type() is a true initialization: tp

is initialized by Type’s default constructor, rather than using Type’s copy constructor to assign

Type’s copy to tp.

It’s interesting to note (although not directly related to the current topic) that the syntactic con-

struction Type tp(Type()) cannot be used, even though it also looks like a proper initializa-

tion. Usually an initializing argument can be provided to an object’s definition, like string



When Type tp(Type()) is used it won’t result in an error message. So we don’t immediately

detect that it’s not a Type object’s default initialization. Instead, the compiler starts generating

error messages once tp is used. This is caused by the fact that in C++ (and in C alike) the compiler

does its best to recognize a function or function pointer whenever possible: the function prevalence

rule. According to this rule Type() is (because of the pair of parentheses) interpreted as a pointer

to a function expecting no arguments; returning a Type. The compiler will do so unless it clearly

isn’t possible to do so. In the initialization Type tp = Type() it can’t see a pointer to a function

as a Type object cannot be given the value of a function pointer (remember: Type() is interpreted

as Type (∗)() whenever possible). But in Type tp(Type()) it can use the pointer interpreta-

tion: tp is now declared as a function expecting a pointer to a function returning a Type, with tp

itself also returning a Type. E.g., tp could have been defined as:

Type tp(Type (*funPtr)())

{

return (*funPtr)();

}

• Comparable to the first function template, sum also assumes the existence of certain public mem-

bers in Type’s class. This time operator+= and Type’s copy constructor.

Like class definitions, template definitions should not contain using directives or declarations: the

template might be used in a situation where such a directive overrides the programmer’s intentions:

ambiguities or other conflicts may result from the template’s author and the programmer using differ-

ent using directives (E.g, a cout variable defined in the std namespace and in the programmer’s own

namespace). Instead, within template definitions only fully qualified names, including all required

namespace specifications should be used.

21.1.2 Auto and decltype

In section 3.3.7 the auto keyword was introduced. The keyword decltype, related to auto, shows

somewhat different behavior. This section concentrates on decltype. Different from auto, which

requires no further specifications, decltype is always followed by an expression between parentheses

(e.g., decltype(variable)).

As an initial illustration, assume we have a function defining a parameter std::string const

&text. Inside the function we may encounter the following two definitions:

auto scratch1{text};

decltype(text) scratch2 = text;

With auto the compiler deduces a plain type, so scratch1 is a string, and copy construction is used

to initialize it from ‘text’.

Now consider decltype: decltype determines text’s type: string const &, which is thereupon

used as scratch2’s type: string const &scratch2, referring to whatever string text refers to.

This is decltype’s standard behavior: when provided with a variable’s name, it is replaced by that

variable’s type.

Alternatively, an expression can be specified when using decltype. Of course, a variable is an expres-

sion by itself, but in the context of decltype we define an ‘expression’ as any expression that is more

complex than just a plain variable specification. But it may be as simple as (variable): the name of

a variable between parentheses.

When an expression is used, the compiler determines whether a reference could be appended to the

expression’s type. If so, decltype(expression) is replaced by the type of such an lvalue reference

(so you get expression-type &). If not, decltype(expression) is replaced by the expression’s

plain type.



int *ptr;

decltype(ptr) ref = ptr;

// decltype's argument is a plain variable, and so

// ptr's type is used: int *ref = ptr.

// decltype(ptr) is replaced by int *.

// (resulting in two warnings about not-initialized/used variables).

int *ptr;

decltype( (ptr) ) ref = ptr;

// decltype's argument is an expression, and so

// int *&ref = ptr is used.

// decltype( (ptr) ) is replaced by int *&.

int value;

decltype(value + value) var = value + value;

// decltype's argument is an expression, and so the compiler tries

// to replace decltype(...) by int & (int &var = value + value)

// since value + value is a temporary, var's type cannot be int &

// and so decltype(...) is replaced by int

// (i.e., value + value's type)

string lines[20];

decltype(lines[0]) ref = lines[6];

// decltype's argument is an expression, so

// string &ref = lines[6] is used.

// decltype(...) is replaced by string &

string &&strRef = string{};

decltype(strRef) ref = std::move(strRef);

// decltype's argument is a plain variable so the variable's

// type is used: string &&ref = std::move(strRef).

// decltype(...) is replaced by string &&

string &&strRef2 = string{}

decltype((strRef2)) ref2 = strRef2;

// decltype's argument is an expression, so

// string && &ref = strRef is used. This automatically becomes

// string &ref = strRef which is OK

// decltype is replaced by string &.

In addition to this, decltype(auto) specifications can be used, in which case decltype’s rules

are applied to auto. So, auto is used to determine the type of the initializing expression. Then,

if the initializing expression is a mere variable, then the expression’s type is used. Otherwise, if a

reference can be added to the expression’s type then decltype(auto) is replaced by a reference to the

expression’s type. Here are some examples:

int *ptr;

decltype(auto) ptr2 = ptr;

// auto produces ptr's type: int *, ptr is a plain variable, so

// decltype(auto) is replaced by int *

int value;

decltype(auto) ret = value + value;

// auto produces int, value + value is an expression, so int & is

// attempted. However, value + value cannot be assigned to a

// reference so the expression's type is used:



string lines[20];

decltype(auto) line = lines[0];

// auto produces string, lines[0] is an expression, so string & is

// attempted. string &line = lines[0] is OK, so

// decltype(auto) is replaced by string &

decltype(auto) ref = string{}

// auto produces string, string{} is an expression, so string & is

// attempted. However, string &ref = string{} is not a valid

// initialization, so string itself is used:

// decltype(auto) is replaced by string

In practice, the decltype(auto) form is most often encountered with function templates to define re-

turn types. Have a look at the following struct definition (not using function templates, but illustrating

the workings of decltype(auto)):

struct Data

{

vector<string> d_vs;

string *d_val = new string[10];

Data()

:

d_vs(1)

{}

auto autoFun() const

{

return d_val[0];

}

decltype(auto) declArr() const

{

return d_val[0];

}

decltype(auto) declVect() const

{

return d_vs[0];

}

};

• The member autoFun returns auto. Since d_val[0] is passed to auto, auto is deducing as

string, and the function’s return type is string;

• The member declArr returns decltype(auto). Since d_val[0] is an expression, representing

a string, decltype(auto) is deduced as string &, which becomes the function’s return type.

• The member declVect returns decltype(auto). Since d_vs[0] is an expression, representing

string, decltype(auto) is deduced as string &. However, since declVect is also a const

member, this reference should be a string const &. This is recognized by decltype(auto),

and so the function’s return type becomes string const &.

If you’re wondering why there’s no const in declArr’s return type while there is one in declVect’s

return type then have a look at d_vs and d_val: both are constant in the context of their functions,

but d_val, so a const ∗, points to non-const string objects. So, declArr does not have to return a

string const &, whereas declVect should return a string const &.



The keyword decltype is a tool for determining the type of an expression. To use it an expression to

which decltype is applied must be available. But what if a function template defines a typename

Class template parameter and the function template should use the return type of the function

Class::fun()? Since two classes may define members fun having different return types, the return

type to use is not immediately available.

These kinds of problems are solved by using the function template std::declval, defined in the

<utility> header file. This function template defines one template type parameter, and returns

an rvalue reference to an object of the template type parameter’s class, without actually creating a

temporary object. But since an rvalue reference is available, its fun function can be called, and the

return type of that function can then be produced by decltype. There are no specific requirements

for the constructors of the class type that’s passed to declval. Specifically: it doesn’t have to have a

default or public constructor (but access rights are used). Consider this function template:

template <typename Type>

decltype(std::declval<Type>().fun()) value()

{

return 12.5;

}

The function value’s return type is defined as the as yet unknown Type::fun’s return type.

By defining two structs, both having fun member functions value’s actual return type can now be

returned. This is used in main where respectively an int and a double is returned, resulting in the

output 12 12.5:

struct Integral

{

int fun() const; // implementation not required

};

struct Real

{

double fun() const; // same.

};

int main()

{

std::cout << value<Integral>() << ' ' << value<Real>() << '\n';

}

21.1.3 Late-specified return type

Traditional C++ requires function templates to specify their return type or to specify the return type

as a template type parameter. Consider the following function:

int add(int lhs, int rhs)

{

return lhs + rhs;

}

The above function may be converted to a function template:

template <typename Lhs, typename Rhs>



{

return lhs + rhs;

}

Unfortunately, when the function template is called as

add(3, 3.4)

the intended return type is probably a double rather than an int. This can be solved by adding an

additional template type parameter specifying the return type but then that type must explicitly be

specified:

add<double>(3, 3.4);

Using decltype (cf. section 3.3.7) to define the return type won’t work as lhs and rhs aren’t known to

the compiler by the time decltype is used. Thus the next attempt to get rid of the additional template

type parameter fails to compile:

template <typename Lhs, typename Rhs>

decltype(lhs + rhs) add(Lhs lhs, Rhs rhs)

{

return lhs + rhs;

}

The decltype-based definition of a function’s return type may become fairly complex. This complexity

can be reduced by using the late-specified return type syntax that does allow the use of decltype to

define a function’s return type. It is primarily used with function templates but it may also be used for

ordinary (non-template) functions:

template <typename Lhs, typename Rhs>

auto add(Lhs lhs, Rhs rhs) -> decltype(lhs + rhs)

{

return lhs + rhs;

}

When this function is used in a statement like cout << add(3, 3.4) the resulting value will be 6.4,

which is most likely the intended result, rather than 6. As an example how a late-specified return type

may reduce the complexity of a function’s return type definition consider the following:

template <typename T, typename U>

decltype((*(T*)0)+(*(U*)0)) add(T t, U u);

Kind of hard to read? A term like (∗(T∗)0) defines 0, using a C cast, as a pointer to type T and then

dereferences the pointer, producing a value of type T (even though that value itself doesn’t exist as a

variable). Likewise for the second term that’s used in the decltype expression. The resulting type is

thereupon used as add’s return type. Using a late-specified return type we get the equivalent:

template <typename T, typename U>

auto add(T t, U u) -> decltype(t+u);

which most people consider easier to understand.

The expression specified with decltype does not necessarily use the parameters lhs and rhs them-

selves. In the next function definition lhs.length is used instead of lhs itself:

template <typename Class, typename Rhs>



{

return lhs.length() + rhs;

}

Any variable visible at the time decltype is compiled can be used in the decltype expression. It

is also possible to handle member selection through pointers to members. The following code aims at

specifying the address of a member function as add’s first argument and then use its return value type

to determine the function template’s return type. Here is an example:

std::string global{"hello world"};

template <typename MEMBER, typename RHS>

auto add(MEMBER mem, RHS rhs) -> decltype((global.*mem)() + rhs)

{

return (global.*mem)() + rhs;

}

int main()

{

std::cout << add(&std::string::length, 3.4) << '\n'; // shows: 14.4

}

21.2 Passing arguments by reference (reference wrappers)

Before using the reference wrappers discussed in this section the <functional> header file must be

included.

Situations exist where the compiler is unable to infer that a reference rather than a value is passed

to a function template. In the following example the function template outer receives int x as its

argument and the compiler dutifully infers that Type is int:

template <typename Type>

void outer(Type t)

{

t.x();

}

void useInt()

{

int arg;

outer(arg);

}

Compilation will of course fail (as int values don’t have x members) and the compiler nicely reports

the inferred type, e.g.:

In function 'void outer(Type) [with Type = int]': ...

Another type of error results from using call in the next example. Here, call is a function tem-

plate expecting a function-type argument. The function that’s passed to call is sqrtArg, defining a

reference to a double: the variable that’s passed to sqrtArg is modified by sqrtArg.

void sqrtArg(double &arg)

{

arg = sqrt(arg);



template<typename Fun, typename Arg>

void call(Fun fun, Arg arg)

{

fun(arg);

cout << "In call: arg = " << arg << '\n';

}

The first time call is used, call(sqrtArg, value) will not modify value: the compiler infers Arg

to be a double value, and hence passes value by value to call, thus preventing sqrtArg to modify

main’s variable.

To change main’s variable value the compiler must be informed that value must be passed by ref-

erence. Note that we do not want to define call’s template parameter as a reference parameter, as

passing arguments by value might be appropriate in other situations.

In these situations the ref(arg) and cref(arg) reference wrappers should be used. They accept an

argument and return their argument as a (const) reference-typed argument. To actually change value

it can be passed to call using ref(value) as shown in the following main function:

int main()

{

double value = 3;

call(sqrtArg, value);

cout << "Passed value, returns: " << value << '\n';

call(sqrtArg, ref(value));

cout << "Passed ref(value), returns: " << value << '\n';

}

/*
Displays:

In call: arg = 1.73205

Passed value, returns: 3

In call: arg = 1.73205

Passed ref(value), returns: 1.73205

*/

21.3 Using local and unnamed types as template arguments

Usually, types have names. But an anonymous type may also be defined:

enum

{

V1,

V2,

V3

};

Here, the enum defines an unnamed or anonymous type.

When defining a function template, the compiler normally deduces the types of its template type pa-

rameters from its arguments:

template <typename T>

void fun(T &&t);



fun('c'); // T is char

The following, however, can also be used:

fun(V1); // T is a value of the above enum type

Within fun a T variable may be defined, even if it’s an anonymous type:

template <typename T>

void fun(T &&t)

{

T var(t);

}

Values or objects of locally defined types may also be passed as arguments to function templates. E.g.,

void definer()

{

struct Local

{

double dVar;

int iVar;

};

Local local; // using a local type

fun(local); // OK: T is 'Local'

}

21.4 Template parameter deduction

In this section we concentrate on the process by which the compiler deduces the actual types of the

template type parameters. These types are deduced when a function template is called using a pro-

cess called template parameter deduction. As we’ve already seen, the compiler is able to substitute a

wide range of actual types for a single formal template type parameter. Even so, not every thinkable

conversion is possible. In particular when a function has multiple parameters of the same template

type parameter, the compiler is very restrictive when determining what argument types are actually

accepted.

When the compiler deduces the actual types for template type parameters it only considers the types

of the arguments that are actually used. Neither local variables nor the function’s return value is

considered in this process. This is understandable. When a function is called the compiler is only

certain about the types of the function template’s arguments. At the point of the call it definitely does

not see the types of the function’s local variables. Also, the function’s return value might not actually

be used or may be assigned to a variable of a subrange (or super-range) type of a deduced template type

parameter. So, in the following example, the compiler won’t ever be able to call fun(), as it won’t be

able to deduce the actual type for the Type template type parameter.

template <typename Type>

Type fun() // can never be called as `fun()'
{

return Type{};

}

Although the compiler won’t be able to handle a call to ‘fun()’, it is possible to call fun() using an

explicit type specification. E.g., fun<int>() calls fun, instantiated for int. This is of course not the

same as compiler argument deduction.



types must be exactly the same. So, whereas

void binarg(double x, double y);

may be called using an int and a double, with the int argument silently being converted to a double,

a similar function template cannot be called using an int and double argument: the compiler won’t

by itself promote int to double deciding that Type should be double:

template <typename Type>

void binarg(Type const &p1, Type const &p2)

{}

int main()

{

binarg(4, 4.5); // ?? won't compile: different actual types

}

What, then, are the transformations the compiler applies when deducing the actual types of template

type parameters? It performs but three types of parameter type transformations and a fourth one to

function template non-type parameters. If it cannot deduce the actual types using these transforma-

tions, the function template will not be considered. The transformations performed by the compiler

are:

• lvalue transformations, creating an rvalue from an lvalue;

• qualification transformations, inserting a const modifier to a non-constant argument type;

• transformation to a base class instantiated from a class template, using a template base class

when an argument of a template derived class type was provided in the call.

• Standard transformations for function template non-type parameters. This isn’t a template type

parameter transformation, but it refers to any remaining template non-type parameter of function

templates. For these function parameters the compiler performs any standard conversion it has

available (e.g., int to size_t, int to double, etc.).

The purpose of the various template parameter type deduction transformations is not to match function

arguments to function parameters, but rather, having matched arguments to parameters, to determine

the actual types of the various template type parameters.

21.4.1 Lvalue transformations

There are three types of lvalue transformations:

• lvalue-to-rvalue transformations.

An lvalue-to-rvalue transformation is applied when an rvalue is required, but an

lvalue is provided. This happens when a variable is used as argument to a function

specifying a value parameter. For example,

template<typename Type>

Type negate(Type value)

{

return -value;

}

int main()

{



x = negate(x); // lvalue (x) to rvalue (copies x)

}

• array-to-pointer transformations.

An array-to-pointer transformation is applied when the name of an array is assigned to

a pointer variable. This is frequently used with functions defining pointer parameters.

Such functions frequently receive arrays as their arguments. The array’s address is

then assigned to the pointer-parameter and its type is used to deduce the corresponding

template parameter’s type. For example:

template<typename Type>

Type sum(Type *tp, size_t n)

{

return accumulate(tp, tp + n, Type());

}

int main()

{

int x[10];

sum(x, 10);

}

In this example, the location of the array x is passed to sum, expecting a pointer to some

type. Using the array-to-pointer transformation, x’s address is considered a pointer

value which is assigned to tp, deducing that Type is int in the process.

• function-to-pointer transformations.

This transformation is most frequently used with function templates defining a parame-

ter which is a pointer to a function. When calling such a function the name of a function

may be specified as its argument. The address of the function is then assigned to the

pointer-parameter, deducing the template type parameter in the process. This is called

a function-to-pointer transformation. For example:

#include <cmath>

template<typename Type>

void call(Type (*fp)(Type), Type const &value)

{

(*fp)(value);

}

int main()

{

call(sqrt, 2.0);

}

In this example, the address of the sqrt function is passed to call, expecting a pointer

to a function returning a Type and expecting a Type for its argument. Using the

function-to-pointer transformation, sqrt’s address is assigned to fp, deducing that

Type is double in the process (note that sqrt is the address of a function, not a variable

that is a pointer to a function, hence the lvalue transformation).

The argument 2.0 could not have been specified as 2 as there is no int sqrt(int)

prototype. Furthermore, the function’s first parameter specifies Type (∗fp)(Type),

rather than Type (∗fp)(Type const &) as might have been expected from our pre-

vious discussion about how to specify the types of function template’s parameters, prefer-

ring references over values. However, fp’s argument Type is not a function template pa-

rameter, but a parameter of the function fp points to. Since sqrt has prototype double

sqrt(double), rather than double sqrt(double const &), call’s parameter fp

must be specified as Type (∗fp)(Type). It’s that strict.



A qualification transformation adds const or volatile qualifications to pointers. This transformation

is applied when the function template’s type parameter explicitly specifies const (or volatile) but

the function’s argument isn’t a const or volatile entity. In that case const or volatile is provided

by the compiler. Subsequently the compiler deduces the template’s type parameter. For example:

template<typename Type>

Type negate(Type const &value)

{

return -value;

}

int main()

{

int x = 5;

x = negate(x);

}

Here we see the function template’s Type const &value parameter: a reference to a const Type.

However, the argument isn’t a const int, but an int that can be modified. Applying a qualification

transformation, the compiler adds const to x’s type, and so it matches int const x. This is then

matched against Type const &value allowing the compiler to deduce that Type must be int.

21.4.3 Transformation to a base class

Although the construction of class templates is the topic of chapter 22, we’ve already extensively used

class templates before. For example, abstract containers (cf. chapter 12) are defined as class templates.

Class templates can, like ordinary classes, participate in the construction of class hierarchies.

In section 22.11 it is shown how a class template can be derived from another class template.

As class template derivation remains to be covered, the following discussion is necessarily somewhat

premature. The reader may of course skip briefly to section 22.11 returning back to this section there-

after.

In this section it should be assumed, for the sake of argument, that a class template Vector has some-

how been derived from a std::vector. Furthermore, assume that the following function template

has been constructed to sort a vector using some function object obj:

template <typename Type, typename Object>

void sortVector(std::vector<Type> vect, Object const &obj)

{

sort(vect.begin(), vect.end(), obj);

}

To sort std::vector<string> objects case-insensitively, a class Caseless could be constructed

as follows:

class CaseLess

{

public:

bool operator()(std::string const &before,

std::string const &after) const

{

return strcasecmp(before.c_str(), after.c_str()) < 0;

}

};



int main()

{

std::vector<string> vs;

std::vector<int> vi;

sortVector(vs, CaseLess());

sortVector(vi, less<int>());

}

Applying the transformation transformation to a base class instantiated from a class template, the

function template sortVector may now also be used to sort Vector objects. For example:

int main()

{

Vector<string> vs; // `Vector' instead of `std::vector'
Vector<int> vi;

sortVector(vs, CaseLess());

sortVector(vi, less<int>());

}

In this example, Vectors were passed as argument to sortVector. Applying the transformation to

a base class instantiated from a class template, the compiler considers Vector to be a std::vector

enabling it to deduce the template’s type parameter. A std::string for the Vector vs, an int for

Vector vi.

21.4.4 The template parameter deduction algorithm

The compiler uses the following algorithm to deduce the actual types of its template type parameters:

• In turn, the function template’s parameters are identified using the arguments of the called func-

tion.

• For each template parameter used in the function template’s parameter list, the template type

parameter is associated with the corresponding argument’s type (e.g., Type is int if the argument

is int x, and the function’s parameter is Type &value).

• While matching the argument types to the template type parameters, the three allowed transfor-

mations (see section 21.4) for template type parameters are applied where necessary.

• If identical template type parameters are used with multiple function parameters, the deduced

template types must exactly match. So, the next function template cannot be called with an int

and a double argument:

template <typename Type>

Type add(Type const &rhs, Type const &rhs)

{

return lhs + rhs;

}

When calling this function template, two identical types must be used (albeit that the three stan-

dard transformations are of course allowed). If the template deduction mechanism does not come

up with identical actual types for identical template types, then the function template is not going

to be instantiated.



With function templates the combination of the types of template arguments and template parame-

ters shows some interesting contractions. What happens, for example if a template type parameter is

specified as an rvalue reference but an lvalue reference argument type is provided?

In such cases the compiler performs type contractions. Doubling identical reference types results in

a simple contraction: the type is deduced to be a single reference type. Example: if the template

parameter type is specified as a Type && and the actual parameter is an int && then Type is deduced

to be an int, rather than an int &&.

This is fairly intuitive. But what happens if the actual type is int &? There is no such thing as an

int & &&param and so the compiler contracts the double reference by removing the rvalue reference,

keeping the lvalue reference. Here the following rules are applied:

1. A function template parameter defined as an lvalue reference to a template’s type pa-

rameter (e.g., Type &) receiving an lvalue reference argument results in a single lvalue

reference.

2. A function template parameter defined as an rvalue reference to a template’s type param-

eter (e.g., Type &&) receiving any kind of reference argument uses the reference type of the

argument.

Examples:

• When providing an Actual & argument then Type & becomes an Actual & and Type is inferred

as Actual;

• When providing an Actual & then Type && becomes an Actual & and Type is inferred as

Actual;

• When providing an Actual && then Type & also becomes Actual & and Type is inferred as

Actual;

• When providing an Actual && then Type && becomes Actual && and Type is inferred as

Actual;

Let’s look at a concrete exampe where contraction occurs. Consider the following function template

where a function parameter is defined as an rvalue references to some template type parameter:

template <typename Type>

void function(Type &&param)

{

callee(static_cast<Type &&>(param));

}

In this situation, when function is called with an (lvalue) argument of type TP & the template type

parameter Type is deduced to be Tp &. Therefore, Type &&param is instantiated as Tp &param, Type

becomes Tp and the rvalue reference is replaced by an lvalue reference.

Likewise, when callee is called using the static_cast the same contraction occurs, so Type

&&param operates on Tp &param. Therefore (using contraction) the static cast also uses type Tp

&param. If param happened to be of type Tp && then the static cast uses type Tp &&param.

This characteristic allows us to pass a function argument to a nested function without changing its

type: lvalues remain lvalues, rvalues remain rvalues. This characteristic is therefore also known as

perfect forwarding which is discussed in greater detail in section 22.5.2. Perfect forwarding prevents

the template author from having to define multiply overloaded versions of a function template.



21.5 Declaring function templates

Up to now, we’ve only defined function templates. There are various consequences of including function

template definitions in multiple source files, none of them serious, but worth knowing.

• Like class interfaces, template definitions are usually included in header files. Every time a

header file containing a template definition is read by the compiler it must process the full def-

inition. It must do so even if it does not actually use the template. This somewhat slows-down

the compilation. For example, compiling a template header file like algorithm on my old laptop

takes about four times the amount of time it takes to compile a plain header file like cmath. The

header file iostream is even harder to process, requiring almost 15 times the amount of time it

takes to process cmath. Clearly, processing templates is serious business for the compiler. On the

other hand this drawback shouldn’t be taken too seriously. Compilers are continuously improving

their template processing capacity and computers keep getting faster and faster. What was a

nuisance a few years ago is hardly noticeable today.

• Every time a function template is instantiated, its code appears in the resulting object module.

However, if multiple instantiations of a template using the same actual types for its template

parameters exist in multiple object files the one definition rule is lifted. The linker weeds out su-

perfluous instantiations (i.e., identical definitions of instantiated templates). In the final program

only one instantiation for a particular set of actual template type parameters remain available

(see section 21.6 for an illustration). Therefore, the linker has an additional task to perform (viz.

weeding out multiple instantiations), which somewhat slows down the linking process.

• Sometimes the definitions themselves are not required, but references or pointers to the templates

are. Requiring the compiler to process the full template definitions in those cases needlessly slows

down the compilation process.

• In the context of template meta programming (see chapter 23) it is sometimes not even required

to provide a template implementation. Instead, only specializations (cf. section 21.9) are created

which are based upon the mere declaration.

So in some contexts template definitions may not be required. Instead the software engineer may opt

to declare a template rather than to include the template’s definition time and again in various source

files.

When templates are declared, the compiler does not have to process the template’s definitions again

and again; and no instantiations are created on the basis of template declarations alone. Any actually

required instantiation must then be available elsewhere (of course, this holds true for declarations

in general). Unlike the situation we encounter with ordinary functions, which are usually stored in

libraries, it is currently not possible to store templates in libraries (although the compiler may construct

precompiled header files). Consequently, using template declarations puts a burden on the shoulders

of the software engineer, who has to make sure that the required instantiations exist. Below a simple

way to accomplish that is introduced.

To create a function template declaration simply replace the function’s body by a semicolon. Note that

this is exactly identical to the way ordinary function declarations are constructed. So, the previously

defined function template add can simply be declared as

template <typename Type>

Type add(Type const &lhs, Type const &rhs);

We’ve already encountered template declarations. The header file iosfwd may be included in sources

not requiring instantiations of elements from the class ios and its derived classes. For example, to

compile the declaration

std::string getCsvLine(std::istream &in, char const *delim);



#include <iosfwd>

is sufficient. Processing iosfwd requires only a fraction of the time it takes to process the string and

istream header files.

21.5.1 Instantiation declarations

If declaring function templates speeds up the compilation and the linking phases of a program, how

can we make sure that the required instantiations of the function templates are available when the

program is eventually linked together?

For this a variant of a template declaration is available, a so-called explicit instantiation declaration.

An explicit instantiation declaration consists of the following elements:

• It starts with the keyword template, omitting the template parameter list.

• Next the function template’s return type and name are specified.

• The function template’s name is followed by a type specification list. A type specification list is an

angle brackets enclosed list of type names. Each type specifies the actual type of the corresponding

template type parameter in the template’s parameter list.

• Finally the function template’s parameter list is specified, terminated by a semicolon.

Although this is a declaration, it is understood by the compiler as a request to instantiate that partic-

ular variant of the function template.

Using explicit instantiation declarations all instantiations of template functions required by a program

can be collected in one file. This file, which should be a normal source file, should include the template

definition header file and should subsequently specify the required explicit instantiation declarations.

Since it’s a source file, it is not included by other sources. So namespace using directives and declara-

tions may safely be used once the required headers have been included. Here is an example showing

the required instantiations for our earlier add function template, instantiated for double, int, and

std::string types:

#include "add.h"

#include <string>

using namespace std;

template int add<int>(int const &lhs, int const &rhs);

template double add<double>(double const &lhs, double const &rhs);

template string add<string>(string const &lhs, string const &rhs);

If we’re sloppy and forget to mention an instantiation required by our program then the repair is easily

made by adding the missing instantiation declaration to the above list. After recompiling the file and

relinking the program we’re done.

21.6 Instantiating function templates

Different from an ordinary function that results in code once the compiler reads its definition a template

is not instantiated when its definition is read. A template is merely a recipe telling the compiler how to

create particular code once it’s time to do so. It’s indeed very much like a recipe in a cooking book. You

reading how to bake a cake doesn’t mean you have actually baked that cake by the time you’ve read

the recipe.



decides to instantiate templates:

• They are instantiated when they are used (e.g., the function add is called with a pair of size_t

values);

• When addresses of function templates are taken they are instantiated. Example:

char (*addptr)(char const &, char const &) = add;

The location of statements causing the compiler to instantiate a template is called the template’s point

of instantiation. The point of instantiation has serious implications for the function template’s code.

These implications are discussed in section 21.13.

The compiler is not always able to deduce the template’s type parameters unambiguously. When the

compiler reports an ambiguity it must be solved by the software engineer. Consider the following code:

#include <iostream>

#include "add.h"

size_t fun(int (*f)(int *p, size_t n));

double fun(double (*f)(double *p, size_t n));

int main()

{

std::cout << fun(add);

}

When this little program is compiled, the compiler reports an ambiguity it cannot resolve. It has two

candidate functions as for each overloaded version of fun an add function can be instantiated:

error: call of overloaded 'fun(<unknown type>)' is ambiguous

note: candidates are: int fun(size_t (*)(int*, size_t))

note: double fun(double (*)(double*, size_t))

Such situations should of course be avoided. Function templates can only be instantiated if there’s no

ambiguity. Ambiguities arise when multiple functions emerge from the compiler’s function selection

mechanism (see section 21.14). It is up to us to resolve the ambiguities. They could be resolved using a

blunt static_cast (by which we select among alternatives, all of them possible and available):

#include <iostream>

#include "add.h"

int fun(int (*f)(int const &lhs, int const &rhs));

double fun(double (*f)(double const &lhs, double const &rhs));

int main()

{

std::cout << fun(

static_cast<int (*)(int const &, int const &)>(add)

);

}

But it’s good practice to avoid type casts wherever possible. How to do this is explained in the next

section (21.7).



As mentioned in section 21.5, the linker removes identical instantiations of a template from the final

program, leaving only one instantiation for each unique set of actual template type parameters. To

illustrate the linker’s behavior we do as follows:

• First we construct several source files:

– source1.cc defines a function fun, instantiating add for int-type arguments, including

add’s template definition. It displays add’s address using union PointerUnion:

union PointerUnion

{

int (*fp)(int const &, int const &);

void *vp;

};

Here is a program using PointerUnion:

#include <iostream>

#include "add.h"

#include "pointerunion.h"

void fun()

{

PointerUnion pu = { add };

std::cout << pu.vp << '\n';

}

– source2.cc defines the same function, but merely declares the proper add template using

a template declaration (not an instantiation declaration). Here is source2.cc:

#include <iostream>

#include "pointerunion.h"

template<typename Type>

Type add(Type const &, Type const &);

void fun()

{

PointerUnion pu = { add };

std::cout << pu.vp << '\n';

}

– main.cc again includes add’s template definition, declares the function fun and defines

main, defining add for int-type arguments as well and displaying add’s function address. It

also calls the function fun. Here is main.cc:

#include <iostream>

#include "add.h"

#include "pointerunion.h"

void fun();

int main()

{

PointerUnion pu = { add };

fun();

std::cout << pu.vp << '\n';

}



using g++ version 4.3.4 (sizes of object modules reported in this section may differ for different

compilers and/or run-time libraries)) and source2.o (1740 bytes). Since source1.o contains

the instantiation of add, it is somewhat larger than source2.o, containing only the template’s

declaration. Now we’re ready to start our little experiment.

• Linking main.o and source1.o, we obviously link together two object modules, each containing

its own instantiation of the same template function. The resulting program produces the following

output:

0x80486d8

0x80486d8

Furthermore, the size of the resulting program is 6352 bytes.

• Linking main.o and source2.o, we now link together an object module containing the instan-

tiation of the add template, and another object module containing the mere declaration of the

same template function. So, the resulting program cannot but contain a single instantiation of

the required function template. This program has exactly the same size, and produces exactly the

same output as the first program.

From our little experiment we conclude that the linker indeed removes identical template instantia-

tions from a final program. Furthermore we conclude that using mere template declarations does not

result in template instantiations.

21.7 Using explicit template types

In the previous section we saw that the compiler may encounter ambiguities when attempting to in-

stantiate a template. In an example overloaded versions of a function (fun) existed, expecting different

types of arguments. The ambiguity resulted from the fact that both arguments could have been pro-

vided by an instantiation of a function template. The intuitive way to solve such an ambiguity is to use

a static_cast. But casts should be avoided wherever possible.

With function templates static casts may indeed be avoided using explicit template type arguments.

Explicit template type arguments can be used to inform the compiler about the actual types it should

use when instantiating a template. To use explicit type arguments the function’s name is followed by

an actual template type argument list which may again be followed by the function’s argument list. The

actual types mentioned in the actual template argument list are used by the compiler to ‘deduce’ what

types to use when instantiating the template. Here is the example from the previous section, now using

explicit template type arguments:

#include <iostream>

#include "add.h"

int fun(int (*f)(int const &lhs, int const &rhs));

double fun(double (*f)(double const &lhs, double const &rhs));

int main()

{

std::cout << fun(add<int>) << '\n';

}

Explicit template type arguments can be used in situations where the compiler has no way to detect

which types should actually be used. E.g., in section 21.4 the function template Type fun() was

defined. To instantiate this function for the double type, we can call fun<double>().



21.8 Overloading function templates

Let’s once again look at our add template. That template was designed to return the sum of two entities.

If we would want to compute the sum of three entities, we could write:

int main()

{

add(add(2, 3), 4);

}

This is an acceptable solution for the occasional situation. However, if we would have to add three en-

tities regularly, an overloaded version of the add function expecting three arguments might be a useful

function to have. There’s a simple solution to this problem: function templates may be overloaded.

To define an overloaded function template, merely put multiple definitions of the template in its header

file. For the add function this would boil down to:

template <typename Type>

Type add(Type const &lhs, Type const &rhs)

{

return lhs + rhs;

}

template <typename Type>

Type add(Type const &lhs, Type const &mid, Type const &rhs)

{

return lhs + mid + rhs;

}

The overloaded function does not have to be defined in terms of simple values. Like all overloaded

functions, a unique set of function parameters is enough to define an overloaded function template. For

example, here’s an overloaded version that can be used to compute the sum of the elements of a vector:

template <typename Type>

Type add(std::vector<Type> const &vect)

{

return accumulate(vect.begin(), vect.end(), Type());

}

When overloading function templates we do not have to restrict ourselves to the function’s parameter

list. The template’s type parameter list itself may also be overloaded. The last definition of the add

template allows us to specify a vector as its first argument, but no deque or map. Overloaded versions

for those types of containers could of course be constructed, but how far should we go? A better approach

seems to be to look for common characteristics of these containers. If found we may be able to define an

overloaded function template based on these common characteristics. One common characteristic of the

mentioned containers is that they all support begin and end members, returning iterators. Using this,

we could define a template type parameter representing containers that must support these members.

But mentioning a plain ‘container type’ doesn’t tell us for what type of data it was instantiated. So we

need a second template type parameter representing the container’s data type, thus overloading the

template’s type parameter list. Here is the resulting overloaded version of the add template:

template <typename Container, typename Type>

Type add(Container const &cont, Type const &init)

{

return std::accumulate(cont.begin(), cont.end(), init);

}



has a default initialization value. The answer is ‘yes’, but there are complications. It is possible to

define the add function as follows:

template <typename Type, typename Container>

Type add(Container const &cont)

{

return std::accumulate(cont.begin(), cont.end(), Type());

}

Note, however, that the template’s type parameters were reordered, which is necessary because the

compiler won’t be able to determine Type in a call like:

int x = add(vectorOfInts);

After reordering the template type parameters, putting Type first, an explicit template type argument

can be provided for the first template type parameter:

int x = add<int>(vectorOfInts);

In this example we provided a vector<int> argument. One might wonder why we have to spec-

ify int explicitly to allow the compiler to determine the template type parameter Type. In fact, we

don’t. A third kind of template parameter exists, a template template parameter, allowing the compiler

to determine Type directly from the actual container argument. Template template parameters are

discussed in section 23.4.

21.8.1 An example using overloaded function templates

With all these overloaded versions in place, we may now start the compiler to compile the following

function:

using namespace std;

int main()

{

vector<int> v;

add(3, 4); // 1 (see text)

add(v); // 2

add(v, 0); // 3

}

• In statement 1 the compiler recognizes two identical types, both int. It therefore instantiates

add<int>, our very first definition of the add template.

• In statement 2 a single argument is used. Consequently, the compiler looks for an overloaded

version of add requiring but one argument. It finds the overloaded function template expecting a

std::vector, deducing that the template’s type parameter must be int. It instantiates

add<int>(std::vector<int> const &)

• In statement 3 the compiler again encounters an argument list having two arguments. However,

this time the types of the arguments aren’t equal, so add template’s first definition can’t be used.

But it can use the last definition, expecting entities having different types. As a std::vector

supports begin and end, the compiler is now able to instantiate the function template

add<std::vector<int>, int>(std::vector<int> const &, int const &)



we’ve exhausted the possibilities for using an add function template having two template type param-

eters.

21.8.2 Ambiguities when overloading function templates

Although it is possible to define another function template add this introduces an ambiguity as the

compiler won’t be able to choose which of the two overloaded versions defining two differently typed

function parameters should be used. For example when defining:

#include "add.h"

template <typename T1, typename T2>

T1 add(T1 const &lhs, T2 const &rhs)

{

return lhs + rhs;

}

int main()

{

add(3, 4.5);

}

the compiler reports an ambiguity like the following:

error: call of overloaded `add(int, double)' is ambiguous

error: candidates are: Type add(const Container&, const Type&)

[with Container = int, Type = double]

error: T1 add(const T1&, const T2&)

[with T1 = int, T2 = double]

Now recall the overloaded function template accepting three arguments:

template <typename Type>

Type add(Type const &lhs, Type const &mvalue, Type const &rhs)

{

return lhs + mvalue + rhs;

}

It may be considered as a disadvantage that only equally typed arguments are accepted by this function

(three ints, three doubles, etc.). To remedy this we define yet another overloaded function template,

this time accepting arguments of any type. This function template can only be used if operator+ is

defined between the function’s actually used types, but apart from that there appears to be no problem.

Here is the overloaded version accepting arguments of any type:

template <typename Type1, typename Type2, typename Type3>

Type1 add(Type1 const &lhs, Type2 const &mid, Type3 const &rhs)

{

return lhs + mid + rhs;

}

Now that we’ve defined the above two overloaded function templates expecting three arguments let’s

call add as follows:

add(1, 2, 3);



that Type == int, but it might also select the latter function, deducing that Type1 == int, Type2

== int and Type3 == int. Remarkably, the compiler reports no ambiguity.

No ambiguity is reported because of the following. If overloaded template functions are defined using

less and more specialized template type parameters (e.g., less specialized: all types different vs. more

specialized: all types equal) then the compiler selects the more specialized function whenever possible.

As a rule of thumb: overloaded function templates must allow a unique combination of template type

arguments to be specified to prevent ambiguities when selecting which overloaded function template

to instantiate. The ordering of template type parameters in the function template’s type parameter

list is not important. E.g., trying to instantiate one of the following function templates results in an

ambiguity:

template <typename T1, typename T2>

void binarg(T1 const &first, T2 const &second)

{}

template <typename T1, typename T2>

void binarg(T2 const &first, T1 const &second)

{}

This should not come as a surprise. After all, template type parameters are just formal names. Their

names (T1, T2 or Whatever) have no concrete meanings.

21.8.3 Declaring overloaded function templates

Like any function, overloaded functions may be declared, either using plain declarations or instantia-

tion declarations. Explicit template argument types may also be used. Example:

• To declare a function template add accepting certain containers:

template <typename Container, typename Type>

Type add(Container const &container, Type const &init);

• to use an instantiation declaration (in which case the compiler must already have seen the tem-

plate’s definition):

template int add<std::vector<int>, int>

(std::vector<int> const &vect, int const &init);

• to use explicit template type arguments:

std::vector<int> vi;

int sum = add<std::vector<int>, int>(vi, 0);

21.9 Specializing templates for deviating types

The initial add template, defining two identically typed parameters works fine for all types supporting

operator+ and a copy constructor. However, these assumptions are not always met. For example,

with char ∗s, using operator+ or a ‘copy constructor’ does not make sense. The compiler tries to

instantiate the function template, but compilation fails as operator+ is not defined for pointers.

In such situations the compiler may be able to resolve the template type parameters but it (or we ...)

may then detect that the standard implementation is pointless or produces errors.

To solve this problem a template explicit specialization may be defined. A template explicit special-

ization defines the function template for which a generic definition already exists using specific actual



cialized function over a less specialized one. So the template explicit specialization is selected whenever

possible.

A template explicit specialization offers a specialization for its template type parameter(s). The special

type is consistently substituted for the template type parameter in the function template’s code. For

example if the explicitly specialized type is char const ∗ then in the template definition

template <typename Type>

Type add(Type const &lhs, Type const &rhs)

{

return lhs + rhs;

}

Type must be replaced by char const ∗, resulting in a function having prototype

char const *add(char const *const &lhs, char const *const &rhs);

Now we try to use this function:

int main(int argc, char **argv)

{

add(argv[0], argv[1]);

}

However, the compiler ignores our specialization and tries to instantiate the initial function template.

This fails, leaving us wondering why it didn’t select the explicit specialization....

To see what happened here we replay, step by step, the compiler’s actions:

• add is called with char ∗ arguments.

• Both types are equal, so the compiler deduces that Type equals char ∗.

• Now it inspects the specialization. Can a char ∗ template type argument match a char const

∗const & template parameter? Here opportunities for the allowable transformations from sec-

tion 21.4 may arise. A qualification transformation seems to be the only viable one, allowing the

compiler to bind a const-parameter to a non-const argument.

• So, in terms of Type the compiler can match an argument of some Type or an argument of some

Type const to a Type const &.

• Type itself is not modified, and so Type is a char ∗.

• Next the compiler inspects the available explicit specializations. It finds one, specializing for char

const ∗.

• Since a char const ∗ is not a char ∗ it rejects the explicit specialization and uses the generic

form, resulting in a compilation error.

If our add function template should also be able to handle char ∗ template type arguments another

explicit specialization for char ∗ may be required, resulting in the prototype

char *add(char *const &lhs, char *const &rhs);

Instead of defining another explicit specialization an overloaded function template could be designed

expecting pointers. The following function template definition expects two pointers to constant Type

values and returns a pointer to a non-constant Type:

template <typename Type>



{

std::cout << "Pointers\n";

return new Type;

}

What actual types may be bound to the above function parameters? In this case only a Type const

∗, allowing char const ∗’s to be passed as arguments. There’s no opportunity for a qualification

transformation here. The qualification transformation allows the compiler to add a const to a non-

const argument if the parameter itself (and not Type) is specified in terms of a const or const &.

Looking at, e.g., t1 we see that it’s defined as a Type const ∗. There’s nothing const here that’s

referring to the parameter (in which case it would have been Type const ∗const t1 or Type const

∗const &t1). Consequently a qualification transformation cannot be applied here.

As the above overloaded function template only accepts char const ∗ arguments, it will not accept

(without a reinterpret cast) char ∗ arguments. So main’s argv elements cannot be passed to our

overloaded function template.

21.9.1 Avoiding too many specializations

So do we have to define yet another overloaded function template, this time expecting Type ∗ argu-

ments? It is possible, but at some point it should become clear that our approach doesn’t scale. Like

ordinary functions and classes, function templates should have one conceptually clear purpose. Trying

to add overloaded function templates to overloaded function templates quickly turns the template into

a kludge. Don’t use this approach. A better approach is to construct the template so that it fits its

original purpose, to make allowances for the occasional specific case and to describe its purpose clearly

in its documentation.

In some situations constructing template explicit specializations may of course be defensible. Two spe-

cializations for const and non-const pointers to characters might be appropriate for our add function

template. Here’s how they are constructed:

• Start with the keyword template.

• Next, an empty set of angle brackets is written. This indicates to the compiler that there must be

an existing template whose prototype matches the one we’re about to define. If we err and there

is no such template then the compiler reports an error like:

error: template-id `add<char*>' for `char* add(char* const&, char*
const&)' does not match any template declaration

• Now the function’s head is defined. It must match the prototype of the initial function template

or the form of a template explicit instantiation declaration (see section 21.5.1) if its specialized

type cannot be determined from the function’s arguments. It must specify the correct returntype,

function name, maybe explicit template type arguments, as well as the function’s parameter list.

• Finally the function’s body is defined, providing the special implementation that is required for

the specialization.

Here are two explicit specializations for the function template add, expecting char ∗ and char const

∗ arguments:

template <> char *add<char *>(char *const &p1,

char *const &p2)

{

std::string str(p1);

str += p2;

return strcpy(new char[str.length() + 1], str.c_str());



template <> char const *add<char const *>(char const *const &p1,

char const *const &p2)

{

static std::string str;

str = p1;

str += p2;

return str.c_str();

}

Template explicit specializations are normally included in the file containing the other function tem-

plate’s implementations.

21.9.2 Declaring specializations

Template explicit specializations can be declared in the usual way. I.e., by replacing its body with a

semicolon.

When declaring a template explicit specialization the pair of angle brackets following the template

keyword are essential. If omitted, we would have constructed a template instantiation declaration. The

compiler would silently process it, at the expense of a somewhat longer compilation time.

When declaring a template explicit specialization (or when using an instantiation declaration) the ex-

plicit specification of the template type parameters can be omitted if the compiler is able to deduce

these types from the function’s arguments. As this is the case with the char (const) ∗ specializa-

tions, they could also be declared as follows:

template <> char *add(char *const &p1, char *const &p2)

template <> char const *add(char const *const &p1,

char const *const &p2);

If in addition template <> could be omitted the template character would be removed from the dec-

laration. The resulting declaration is now a mere function declaration. This is not an error: function

templates and ordinary (non-template) functions may mutually overload each other. Ordinary func-

tions are not as restrictive as function templates with respect to allowed type conversions. This could

be a reason to overload a template with an ordinary function every once in a while.

A function template explicit specialization is not just another overloaded version of the function tem-

plate. Whereas an overloaded version may define a completely different set of template parameters,

a specialization must use the same set of template parameters as its non-specialized variant. The

compiler uses the specialization in situations where the actual template arguments match the types

defined by the specialization (following the rule that the most specialized set of parameters matching

a set of arguments will be used). For different sets of parameters overloaded versions of functions (or

function templates) must be used.

21.9.3 Complications when using the insertion operator

Now that we’ve covered explicit specializations and overloading let’s consider what happens when a

class defines a std::string conversion operator (cf. section 11.3).

A conversion operator is guaranteed to be used as an rvalue. This means that objects of a class defining

a string conversion operator can be assigned to, e.g., string objects. But when trying to insert objects

defining string conversion operators into streams then the compiler complains that we’re attempting

to insert an inappropriate type into an ostream.

On the other hand, when this class defines an int conversion operator insertion is performed flawlessly.



a basic type (like int) but it is defined as a function template when inserting a string. Hence, when

trying to insert an object of our class defining a string conversion operator the compiler visits all

overloaded versions of insertion operators inserting into ostream objects.

Since no basic type conversion is available the basic type insertion operators can’t be used. Since the

available conversions for template arguments do not allow the compiler to look for conversion operators

our class defining the string conversion operator cannot be inserted into an ostream.

If it should be possible to insert objects of such a class into ostream objects the class must define its

own overloaded insertion operator (in addition to the string conversion operator that was required to

use the class’s objects as rvalue in string assignments).

21.10 Static assertions

The

static_assert(constant expression, error message)

utility is available to allow assertions to be made from inside template definitions. Here are two exam-

ples of its use:

static_assert(BUFSIZE1 == BUFSIZE2,

"BUFSIZE1 and BUFSIZE2 must be equal");

template <typename Type1, typename Type2>

void rawswap(Type1 &type1, Type2 &type2)

{

static_assert(sizeof(Type1) == sizeof(Type2),

"rawswap: Type1 and Type2 must have equal sizes");

// ...

}

The first example shows how to avoid yet another preprocessor directive (in this case the #error

directive).

The second example shows how static_assert can be used to ensure that a template operates under

the right condition(s).

The string defined in static_assert’s second argument is displayed and compilation stops if the

condition specified in static_assert’s first argument is false.

Like the #error preprocessor directive static_assert is a compile-time matter that doesn’t have

any effect on the run-time efficiency of the code in which it is used.

21.11 Numeric limits

The header file <climits> defines constants for various types, e.g., INT_MAX defines the maximum

value that can be stored in an int.

The disadvantage of the limits defined in climits is that they are fixed limits. Let’s assume you write

a function template that receives an argument of a certain type. E.g,

template<typename Type>

Type operation(Type &&type);



the largest positive value if type is a positive value. However, 0 should be returned if the type is not

an integral value.

How to proceed?

Since the constants in climits can only be used if the type to use is already known, the only approach

seems to be to create function template specializations for the various integral types, like:

template<>

int operation<int>(int &&type)

{

return type < 0 ? INT_MIN : INT_MAX;

}

The facilities provided by numeric_limits provide an alternative. To use these facilities the header file

<limits> header file must be included.

The class template numeric_limits offers various members answering all kinds of questions that

could be asked of numeric types. Before introducing these members, let’s have a look at how we could

implement the operation function template as just one single function template:

template<typename Type>

Type operation(Type &&type)

{

return

not numeric_limits<Type>::is_integer ? 0 :

type < 0 ? numeric_limits<Type>::min() :

numeric_limits<Type>::max();

}

Now operation can be used for all the language’s primitive types.

Here is an overview of the facilities offered by numeric_limits. Note that the member func-

tions defined by numeric_limits return constexpr values. A member ‘member’ defined by

numeric_limits for type Type can be used as follows:

numeric_limits<Type>::member // data members

numeric_limits<Type>::member() // member functions

• Type denorm_min():

if available for Type: its minimum positive denormalized value; otherwise it returns

numeric_limits<Type>::min().

• int digits:

the number of non-sign bits used by Type values, or (floating point types) the number of digits in

the mantissa are returned.

• int digits10:

the number of digits that are required to represent a Type value without changing it.

• Type constexpr epsilon():

The difference for Type between the smallest value exceeding 1 and 1 itself.

• float_denorm_style has_denorm:

denormalized floating point value representations use a variable number of exponent bits. The

has_denorm member returns information about denormalized values for type Type:

– denorm_absent: Type does not allow denormalized values;



not determine this at compile-time;

– denorm_present: Type uses denormalized values;

• bool has_denorm_loss:

true if a loss of accuracy was detected as a result of using denormalization (rather than being an

inexact result).

• bool has_infinity:

true if Type has a representation for positive infinity.

• bool has_quiet_NaN:

true if Type has a representation for a non-signaling ‘Not-a-Number’ value.

• bool has_signaling_NaN:

true if Type has a representation for a signaling ‘Not-a-Number’ value.

• Type constexpr infinity():

if available for Type: its positive infinity value.

• bool is_bounded:

true if Type contains a finite set of values.

• bool is_exact:

true if Type uses an exact representation.

• bool is_iec559:

true if Type uses the IEC-559 (IEEE-754) standard. Such types always return

true for has_infinity, has_quiet_NaN and has_signaling_NaN, while infinity(),

quiet_NaN() and signaling_NaN() return non-zero values.

• bool is_integer:

true if Type is an integral type.

• bool is_modulo:

true if Type is a ‘modulo’ type. Values of modulo types can always be added, but the addition

may ‘wrap around’ producing a smaller Type result than either of the addition’s two operands.

• bool is_signed:

true if Type is signed.

• bool is_specialized:

true for specializations of Type.

• Type constexpr lowest():

Type’s lowest finite value representable by Type: no other finite value smaller than the value

returned by lowest exists. This value equals the value returned by min except for floating-point

types.

• T constexpr max():

Type’s maximum value.

• T constexpr min():

Type’s minimum value. For denormalized floating point types the minimum positive normalized

value.

• int max_exponent:

maximum positive integral value for the exponent of a floating point type Type producing a valid

Type value.

• int max_exponent10:

maximum integral value for the exponent that can be used for base 10, producing a valid Type

value.



minimum negative integral value for the exponent of a floating point type Type producing a valid

Type value.

• int min_exponent10:

minimum negative integral value for the exponent that can be used for base 10, producing a valid

Type value.

• Type constexpr quiet_NaN():

if available for Type: its a non-signaling ‘Not-a-Number’ value.

• int radix:

if Type is an integral type: base of the representation; if Type is a floating point type: the base of

the exponent of the representation.

• Type constexpr round_error():

the maximum rounding error for Type.

• float_round_style round_syle:

the rounding style used by Type. It has one of the following enum float_round_style values:

– round_toward_zero: values are rounded towards zero;

– round_to_nearest: values are rounded to the nearest representable value;

– round_toward_infinity:values are rounded towards infinity;

– round_toward_neg_infinity: if it rounds towards negative infinity;

– round_indeterminate: if the rounding style is indeterminable at compile-time.

• Type constexpr signaling_NaN():

if available for Type: its a signaling ‘Not-a-Number’ value.

• bool tinyness_before:

true if Type allows tinyness to be detected before rounding.

• bool traps:

true if Type implements trapping.

21.12 Polymorphous wrappers for function objects

In C++ pointers to (member) functions have fairly strict rvalues. They can only point to functions

matching their types. This becomes a problem when defining templates where the type of a function

pointer may depend on the template’s parameters.

To solve this problem polymorphous (function object) wrappers can be used. Polymorphous wrappers

refer to function pointers, member functions or function objects, as long as their parameters match in

type and number.

Before using polymorphic function wrappers the <functional> header file must be included.

Polymorphic function wrappers are made available through the std::function class template. Its

template argument is the prototype of the function to create a wrapper for. Here is an example of the

definition of a polymorphic function wrapper that can be used to point to a function expecting two int

values and returning an int:

std::function<int (int, int)> ptr2fun;

Here, the template’s parameter is int (int, int), indicating a function expecting two int argu-

ments, and returning and int. Other prototypes return other, matching, function wrappers.



‘plus<int> add’ creates a functor defining an int operator()(int, int) function call member.

As this qualifies as a function having prototype int (int, int), our ptr2fun may point to add:

ptr2fun = add;

If ptr2fun does not yet point to a function (e.g., it is merely defined) and an attempt is made to

call a function through it a ‘std::bad_function_call’ exception is thrown. Also, a polymorphic

function wrapper that hasn’t been assigned to a function’s address represents the value false in logical

expressions (as if it had been a pointer having value zero):

std::function<int(int)> ptr2int;

if (not ptr2int)

cout << "ptr2int is not yet pointing to a function\n";

Polymorphous function wrappers can also be used to refer to functions, functors or other polymorphous

function wrappers having prototypes for which standard conversions exist for either parameters or

return values. E.g.,

bool predicate(long long value);

void demo()

{

std::function<int(int)> ptr2int;

ptr2int = predicate; // OK, convertible param. and return type

struct Local

{

short operator()(char ch);

};

Local object;

std::function<short(char)> ptr2char(object);

ptr2int = object; // OK, object is a functor whose function

// operator has a convertible param. and

// return type.

ptr2int = ptr2char; // OK, now using a polym. funct. wrapper

}

21.13 Compiling template definitions and instantiations

Consider this definition of the add function template:

template <typename Container, typename Type>

Type add(Container const &container, Type init)

{

return std::accumulate(container.begin(), container.end(), init);

}

Here std::accumulate is called using container’s begin and end members.



ters. The compiler, not having seen container’s interface, cannot check whether container actually

has members begin and end returning input iterators.

On the other hand, std::accumulate itself is independent of any template type parameter. Its argu-

ments depend on template parameters, but the function call itself isn’t. Statements in a template’s body

that are independent of template type parameters are said not to depend on template type parameters.

When the compiler encounters a template definition, it verifies the syntactic correctness of all state-

ments not depending on template parameters. I.e., it must have seen all class definitions, all type

definitions, all function declarations etc. that are used in those statements. If the compiler hasn’t seen

the required definitions and declarations then it will reject the template’s definition. Therefore, when

submitting the above template to the compiler the numeric header file must first have been included

as this header file declares std::accumulate.

With statements depending on template parameters the compiler cannot perform those extensive syn-

tactic checks. It has no way to verify the existence of a member begin for the as yet unspecified

type Container. In these cases the compiler performs superficial checks, assuming that the required

members, operators and types eventually become available.

The location in the program’s source where the template is instantiated is called its point of instantia-

tion. At the point of instantiation the compiler deduces the actual types of the template’s parameters.

At that point it checks the syntactic correctness of the template’s statements that depend on template

type parameters. This implies that the compiler must have seen the required declarations only at the

point of instantiation. As a rule of thumb, you should make sure that all required declarations (usually:

header files) have been read by the compiler at every point of instantiation of the template. For the

template’s definition itself a more relaxed requirement can be formulated. When the definition is read

only the declarations required for statements not depending on the template’s type parameters must

have been provided.

21.14 The function selection mechanism

When the compiler encounters a function call, it must decide which function to call when overloaded

functions are available. Earlier we’ve encountered principles like ‘the most specific function is selected’.

This is a fairly intuitive description of the compiler’s function selection mechanism. In this section we’ll

have a closer look at this mechanism.

Assume we ask the compiler to compile the following main function:

int main()

{

process(3, 3);

}

Furthermore assume that the compiler has encountered the following function declarations when it’s

about to compile main:

template <typename T>

void process(T &t1, int i); // 1

template <typename T1, typename T2>

void process(T1 const &t1, T2 const &t2); // 2

template <typename T>

void process(T const &t, double d); // 3

template <typename T>

void process(T const &t, int i); // 4



template <>

void process<int, int>(int i1, int i2); // 5

void process(int i1, int i2); // 6

void process(int i, double d); // 7

void process(double d, int i); // 8

void process(double d1, double d2); // 9

void process(std::string s, int i) // 10

int add(int, int); // 11

The compiler, having read main’s statement, must now decide which function must actually be called.

It proceeds as follows:

• First, a set of candidate functions is constructed. This set contains all functions that:

– are visible at the point of the call;

– have the same names as the called function.

As function 11 has a different name, it is removed from the set. The compiler is left with a set of

10 candidate functions.

• Second, the set of viable functions is constructed. Viable functions are functions for which type

conversions exist that can be applied so as to match the types of the function’s parameters to the

types of the actual arguments.

This implies that at least the number of arguments must match the number of parameters of the

viable functions. Function 10’s first argument is a string. As a string cannot be initialized

by an int value no appropriate conversion exists and function 10 is removed from the list of

candidate functions. double parameters can be retained. Standard conversions do exists for ints

to doubles, so all functions having ordinary double parameters can be retained. Therefore, the

set of viable functions consists of functions 1 through 9.

At this point the compiler tries to determine the types of the template type parameters. This step is

outlined in the following subsection.

21.14.1 Determining the template type parameters

Having determined the set of candidate functions and from that set the set of viable functions the

compiler must now determine the actual types of the template type parameters.

It may use any of the three standard template parameter transformation procedures (cf. section 21.4)

when trying to match actual types to template type parameters. In this process it concludes that no

type can be determined for the T in function 1’s T &t1 parameter as the argument 3 is a constant int

value. Thus function 1 is removed from the list of viable functions. The compiler is now confronted with

the following set of potentially instantiated function templates and ordinary functions:

void process(T1 [= int] const &t1, T2 [= int] const &t2); // 2

void process(T [= int] const &t, double d); // 3

void process(T [= int] const &t, int i); // 4

void process<int, int>(int i1, int i2); // 5

void process(int i1, int i2); // 6

void process(int i, double d); // 7



void process(double d1, double d2); // 9

The compiler associates a direct match count value to each of the viable functions. The direct match

count counts the number of arguments that can be matched to function parameters without an (auto-

matic) type conversion. E.g., for function 2 this count equals 2, for function 7 it is 1 and for function 9

it is 0. The functions are now (decrementally) sorted by their direct match count values:

match

count

void process(T1 [= int] const &t1, T2 [= int] const &t2); 2 // 2

void process(T [= int] const &t, int i); 2 // 4

void process<int, int>(int i1, int i2); 2 // 5

void process(int i1, int i2); 2 // 6

void process(T [= int] const &t, double d); 1 // 3

void process(int i, double d); 1 // 7

void process(double d, int i); 1 // 8

void process(double d1, double d2); 0 // 9

If there is no draw for the top value the corresponding function is selected and the function selection

process is completed.

When multiple functions appear at the top the compiler verifies that no ambiguity has been encoun-

tered. An ambiguity is encountered if the sequences of parameters for which type conversions were

(not) required differ. As an example consider functions 3 and 8. Using D for ‘direct match’ and C for

‘conversion’ the arguments match function 3 as D,C and function 8 as C,D. Assuming that 2, 4, 5 and

6 were not available, then the compiler would have reported an ambiguity as the sequences of argu-

ment/parameter matching procedures differ for functions 3 and 8. The same difference is encountered

comparing functions 7 and 8, but no such difference is encountered comparing functions 3 and 7.

At this point there is a draw for the top value and the compiler proceeds with the subset of associ-

ated functions (functions 2, 4, 5 and 6). With each of these functions an ‘ordinary parameter count’

is associated counting the number of non-template parameters of the functions. The functions are

decrementally sorted by this count, resulting in:

ordin. param.

count

void process(int i1, int i2); 2 // 6

void process(T [= int] const &t, int i); 1 // 4

void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2

void process<int, int>(int i1, int i2); 0 // 5

Now there is no draw for the top value. The corresponding function (process(int, int), function 6)

is selected and the function selection process is completed. Function 6 is used in main’s function call

statement.

Had function 6 not been defined, function 4 would have been used. Assuming that neither function 4

nor function 6 had been defined, the selection process would continue with functions 2 and 5:

ordin. param.

count

void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2

void process<int, int>(int i1, int i2); 0 // 5

In this situation a draw is encountered once again and the selection process continues. A ‘type of

function’ value is associated with each of the functions having the highest ordinary parameter count

and these functions are decrementally sorted by their type of function values. Value 2 is associated to

ordinary functions, value 1 to template explicit specializations and value 0 to plain function templates.



Create candidate

functions
(names match)

Create viable

functions
(#params match)

Determine

template

parameters

Sort by

direct-match count

Select the

topmost function

Type conversion

ambiguity check

Sort by

# ordinary params.

Sort by

function type

ReReport

Ambiguity

Figure 21.1: The function template selection mechanism

If there is no draw for the top value the corresponding function is selected and the function selection

process is completed. If there is a draw the compiler reports an ambiguity and cannot determine which

function to call. Assuming only functions 2 and 5 existed then this selection step would have resulted

in the following ordering:

function

type

void process<int, int>(int i1, int i2); 1 // 5

void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2

Function 5, the template explicit specialization, would have been selected. Here is a summary of the

function template selection mechanism (cf. figure Figure 21.1):

• The set of candidate functions is constructed: identical names;

• The set of viable functions is constructed: correct number of parameters and available type con-

versions;

• Template type determination, dropping templates whose type parameters cannot be determined;

• Decrementally sort the functions by their direct match count values. If there is no draw for the

top value the associated function is selected, completing the selection process.

• Inspect the functions associated with the top value for ambiguities in automatic type conversion

sequences. If different sequences are encountered report an ambiguity and terminate the selection

process.



values. If there is no draw for the top value the associated function is selected, completing the

selection process.

• Decrementally sort the functions associated with the top value by their function type values using

2 for ordinary functions, 1 for template explicit specializations and 0 for plain function templates.

If there is no draw for the top value the associated function is selected, completing the selection

process.

• Report an ambiguity and terminate the selection process.

21.15 SFINAE: Substitution Failure Is Not An Error

Consider the following struct definition:

struct Int

{

typedef int type;

};

Although at this point it may seem strange to embed a typedef in a struct, in chapter 23 we will

encounter situations where this is actually very useful. It allows us to define a variable of a type that

is required by the template. E.g., (ignore the use of typename in the following function parameter list,

but see section 22.2.1 for details):

template <typename Type>

void func(typename Type::type value)

{

}

When calling func(10) Int has to be specified explicitly since there may be many structs that define

type: the compiler needs some assistance. The correct call is func<Int>(10). Now that it’s clear

that Int is meant, and the compiler correctly deduces that value is an int.

But templates may be overloaded and our next definition is:

template <typename Type>

void func(Type value)

{}

Now, to call this function we specify func<int>(10) and again this flawlessly compiles.

But as we’ve seen in the previous section when the compiler determines which template to instantiate

it creates a list of viable functions and selects the function to instantiate by matching the parameter

types of viable functions with the provided actual argument types. To do so it has to determine the

types of the parameters and herein lies a problem.

When evaluating Type = int the compiler encounters the prototypes func(int::type) (first tem-

plate definition) and func(int) (second template definition). But there is no int::type, and so in

a way this generates an error. The error results from matching the provided template type argument

with the types used in the various template definitions.

A type-problem caused by substituting a type in a template definition is, however, not considered an

error, but merely an indication that that particular type cannot be used in that particular template.

The template is therefore removed from the list of candidate functions.

This principle is known as substitution failure is not an error (SFINAE) and it is often used by the

compiler to select not only a simple overloaded function (as shown here) but also to choose among

available template specializations (see also sections 23.6.1 and 23.9.3).



21.16 Conditional function definitions using ‘if constexpr’

In addition to the common if (cond) selection statement the if constexpr (cond) syntax is sup-

ported by the language. Although it can be used in all situations where a standard if selection state-

ment are used, its specific use is encountered inside function templates: if constexpr allows the

compiler to (conditionally) instantiate elements of a template function, depending on the compile-time

evaluation of the if constexpr’s (cond) clause.

Here is an example:

1: void positive();

2: void negative();

3:

4: template <int value>

5: void fun()

6: {

7: if constexpr (value > 0)

8: positive();

9: else if constexpr (value < 0)

10: negative();

11: }

12:

13: int main()

14: {

15: fun<4>();

16: }

• At lines 7 and 9 if constexpr statements start. Since value is a template non-type parameter

its value is compile-time available, and so are the values of the condition sections.

• In line 15 fun<4>() is called: the condition in line 7 is therefore true, and the condition in line

9 is false.

• The compiler therefore instantiates fun<4>() this way:

void fun<4>()

{

positive();

}

Note that the if constexpr statements themselves do not result in executable code: it is used by the

compiler to select which part (or parts) it should instantiate. In this case only positive, which must

be available before the program’s linking phase can properly complete.

21.17 Summary of the template declaration syntax

In this section the basic syntactic constructions for declaring templates are summarized. When defining

templates, the terminating semicolon should be replaced by a function body.

Not every template declaration may be converted into a template definition. If a definition may be

provided it is explicitly mentioned.

• A plain template declaration (a definition may be provided):

template <typename Type1, typename Type2>

void function(Type1 const &t1, Type2 const &t2);



template

void function<int, double>(int const &t1, double const &t2);

• A template using explicit types (no definition may be provided):

void (*fp)(double, double) = function<double, double>;

void (*fp)(int, int) = function<int, int>;

• A template explicit specialization (a definition may be provided):

template <>

void function<char *, char *>(char *const &t1, char *const &t2);

• A template declaration declaring friend function templates within class templates (covered in

section 22.10, no definition may be provided):

friend void function<Type1, Type2>(parameters);

21.18 Variables as templates (template variables)

In addition to function templates and class templates (cf. chapter 22) C++ supports variable templates.

Variable templates might come in handy when defining (function or class) templates defining variables

of types specified by template type parameters.

A variable template starts with a familiar template header, followed by the definition of the variable

itself. The template header specifies a type, for which a default type may also be specified. E.g.,

template<typename T = long double>

constexpr T pi = T(3.1415926535897932385);

To use this variable a type must be specified, and as long as the initialized value can be converted to

the specified type the conversion is silently performed by the compiler:

cout << pi<> << ' ' << pi<int>;

At the second insertion the long double initialization value is converted to int, and 3 is displayed.

Specializations are also supported. E.g., to show the text ‘pi’ a specialization for a char const ∗ type

can be defined:

template<>

constexpr char const *pi<char const *> = "pi";

With this specialization we can do cout << pi<char const ∗> to show pi.



Chapter 22

Class Templates

Templates can not only be constructed for functions but also for complete classes. Consider constructing

a class template when a class should be able to handle different types of data. Class templates are

frequently used in C++: chapter 12 discusses data structures like vector, stack and queue, that

are implemented as class templates. With class templates, the algorithms and the data on which the

algorithms operate are completely separated from each other. To use a particular data structure in

combination with a particular data type only the data type needs to be specified when defining or

declaring a class template object (as in stack<int> iStack).

In this chapter constructing and using class templates is discussed. In a sense, class templates com-

pete with object oriented programming (cf. chapter 14), that uses a mechanism resembling that of

templates. Polymorphism allows the programmer to postpone the implementation of algorithms by

deriving classes from base classes in which algorithms are only partially implemented. The actual

definition and processing of the data upon which the algorithms operate may be postponed until de-

rived classes are defined. Likewise, templates allow the programmer to postpone the specification of

the data upon which the algorithms operate. This is most clearly seen with abstract containers, which

completely specify the algorithms and at the same time leave the data type on which the algorithms

operate completely unspecified.

There exists an intriguing correspondence between the kind of polymorphism we’ve encountered in

chapter 14 and certain uses of class templates. In their book C++ Coding Standards (Addison-Wesley,

2005) Sutter and Alexandrescu refer to static polymorphism and dynamic polymorphism. Dynamic

polymorphism is what we use when overriding virtual members. Using vtables the function that is

actually called depends on the type of object a (base) class pointer points at. Static polymorphism is

encountered in the context of templates, and is discussed and compared to dynamic polymorphism in

section 22.12.

Generally, class templates are easier to use than polymorphism. It is certainly easier to write

stack<int> istack to create a stack of ints than to derive a new class Istack: public stack

and to implement all necessary member functions defining a similar stack of ints using object ori-

ented programming. On the other hand, for each different type for which an object of a class template

is defined another, possibly complete class must be reinstantiated. This is not required in the context

of object oriented programming where derived classes use, rather than copy, the functions that are

already available in their base classes (but see also section 22.11).

Previously we’ve already used class templates. Objects like vector<int> vi and vector<string>

vs are commonly used. The data types for which these templates are defined and instantiated are an

inherent part of such container types. It is stressed that it is the combination of a class template type

and its template parameter(s), rather than the mere class template’s type that defines or generates a

type. So vector<int> is a type as is vector<string>. Such types could very well be represented

by typedefs:

typedef std::vector<int> IntVector;

typedef std::vector<std::string> StringVector;

717



IntVector vi;

StringVector vs;

22.0.1 Template Argument Deduction

One important difference between function templates and class templates is that the template argu-

ments of function templates can normally be deduced by the compiler, whereas template arguments of

class templates may have to be specified by the user. That’s not always required, but since the template

types of class templates are an inherent part of the class template’s type it must be completely clear to

the compiler what the class template’s types are.

So, in case we have a

template <typename T>

void fun(T const &param);

we can do

vector<int> vi;

fun(vi)

and the compiler deduces T == vector<int>.

On the other hand, if we have

template <typename T>

struct Fun

{

T d_data;

Fun();

};

we cannot do

Fun fun;

since Fun is not a type, and the compiler cannot deduce what the intended type is.

Sometimes the compiler can deduce the intended types. Consider this:

vector vi{ 1, 2, 3, 4 };

In this case the compiler deduces int from the provided values. The compiler is smart enought to select

the most general type, as in this example, where double is deduced:

vector vi{ 1, 2.5 };

The compiler is doing its utmost to deduce types when they’re not explicitly specified, and it will stay

on the safe side. So the vector is a vector<int> in the first example and a vector<double> in the

second.

Although it’s nice that the compiler is willing and able to deduce types in many situations it’s at the

same time a potential source of confusion. In the first example only non-negative values are used, so



deduces vector<double>, but vector<float> could very well also have been used.

To avoid confusion, as a rule of thumb, it might be a good idea to specify the types of class templates

when defining class type objects. It requires hardly any effort and it completely clarifies what you want

and mean. So prefer

vector<int> vi{ 1, 2, 3 };

vector<double> vd{ 1, 2.5 };

over the definitions implicitly using types.

22.0.1.1 Simple Definitions

Here are some examples of how simple definitions where the compiler deduces template arguments can

(and cannot) be specified.

Starting point:

template <class ...Types> // any set of types

class Deduce

{

public:

Deduce(Types ...params); // constructors

void fun(); // a member function

};

Some definitions:

// deduce: full definition:

// --------------------------------

Deduce first{1}; // 1: int -> Deduce<int> first{1}

Deduce second; // no Types -> Deduce<> second;

Deduce &&ref = Deduce<int>{ 1 };// int -> Deduce<int> &&ref

template <class Type>

Deduce third{ static_cast<Type *>(0) };

The template third is a recipe for constructing Deduce objects from a type that’s specified for third.

The pointer’s type simply is a pointer to the specified type (so, specifying third<int> implies an

int ∗). Now that the type of third’s argument is available (i.e., an int ∗) the compiler deduces that

third{0} is a Deduce<int ∗>.

This Deduce<int ∗> object could, e.g., be used to initialize a named Deduce<int ∗> object:

auto x = third<int>; // x's full definition: Deduce<int *> x{0}

Deduce’s member functions can be used by anonymous and named objects:

x.fun(); // OK: fun called by named object

third<int>.fun(); // OK: fun called by anonymous object

Here are some examples that won’t compile:

extern Deduce object; // not an object definition

Deduce *pointer = 0; // any set of types could be intended

Deduce function(); // same.



tion is realized as follows:

• First, a list of available constructors is formed. The list contains all available ordinary construc-

tors and constructor templates (i.e, constructors defined as member templates);

• For each element of that list a parallel imaginary function is formed by the compiler (forming

function templates for constructor templates, and ordinary functions for ordinary constructors);

• The return types of these imaginary functions are the class types of the constructors, using the

template parameters of the original class template. For example, for the Deduce::Deduce con-

structor the imaginary function

template <class ...Types>

Deduce<Types ...> imaginary(Types ...params);

is formed.

• Next, ordinary argument deduction and overload resolution is applied to the set of imaginary

functions. If this results in a best match for one of these imaginary functions then that function’s

class type (or specialization) will be used. Otherwise the program is ill-formed.

Let’s apply this process to the class Deduce. The set of imaginary functions matching Deduce looks

like this:

// already encountered: matching

template <class ...Types> // Deduce(Types ...params)

Deduce<Types ...> imaginary(Types ...params);

// the copy constructor: matching

template <class ...Types> // Deduce(Deduce<Types ...> const &)

Deduce<Types ...> imaginary(Deduce<Types ...> const &other);

// the move constructor, matching

template <class ...Types> // Deduce(Deduce<Types ...> &&)

Deduce<Types ...> imaginary(Deduce<Types ...> &&tmp);

For the construction Deduce first{1} the first imaginary function wins the overload contest, re-

sulting in the template argument deduction int for class ...Types, and hence Deduce<int>

first{1} is defined.

Note that when a class template is nested under a class template, the nested class template’s name

depends on the outer class type. The outer class then provides the name qualifier for the inner class

template. In such cases template argument deduction is used for the nested class, but (as it is not used

for name qualifiers) is not used for the outer class. Here is an example: adding a nested class template

to Deduce:

template <class OuterType>

class Outer

{

public:

template <class InnerType>

struct Inner

{

Inner(OuterType);

Inner(OuterType, InnerType);

template <typename ExtraType>

Inner(ExtraType, InnerType);

};



// defining:

Outer<int>::Inner inner{2.0, 1};

In this case, the compiler uses these imaginary functions:

template <typename InnerType>

Outer<int>::Inner<InnerType> // copy constructor

imaginary(Outer<int>::Inner<InnerType> const &);

template <typename InnerType>

Outer<int>::Inner<InnerType> // move constructor

imaginary(Outer<int>::Inner<InnerType> &&);

template <typename InnerType> // first declared constructor

Outer<int>::Inner<InnerType> imaginary(int);

template <typename InnerType> // second declared constructor

Outer<int>::Inner<InnerType> imaginary(int, InnerType);

template <typename InnerType> // third declared constructor

template <typename ExtraType>

Outer<int>::Inner<InnerType> imaginary(ExtraType, InnerType);

Template argument deduction for calling imaginary(2.0, 1) results in double for its first argument

and int for its second. Overload resolution then favors the last imaginary function, and so ExtraType:

double and InnerType: int. Consequently,

Outer<int>::Inner inner{ 2.0, 1 };

is defined as:

Outer<int>::Inner<int> Inner{ 2.0, 1 };

22.0.1.2 Explicit Conversions

Have a look at the following class interface:

template <class T>

struct Class

{

std::vector<T> d_data;

struct Iterator

{

typedef T type;

bool operator!=(Iterator const &rhs);

Iterator operator++(int);

type const &operator*() const;

// ...

};

Class();

Class(T t);



Class(Iterator begin, Iterator end);

template <class Tp>

Class(Tp first, Tp second)

{}

Iterator begin();

Iterator end();

};

The implementation of the Class constructor expecting two Class::Iterator arguments would

probably be somewhat similar to the following:

template <class T>

Class<T>::Class(Iterator begin, Iterator end)

{

while (begin != end)

d_data.push_back(*begin++);

}

where d_data is some container storing T values. A Class object can now constructed from a pair of

Class::Iterators:

Class<int> source;

...

Class<int> dest{source.begin(), source.end()};

Here, the simple template argument deduction procedure fails to deduce the int template argument.

This fails:

Class dest{source.begin(), source.end()};

When attempting to instantiate a Class object by passing it Class::Iterators the compiler cannot

directly deduce from the provided arguments that a Class<Class::Iterator::type> is to be used:

type isn’t directly available. Compare this to Class’s third constructor, where

Class intObject{12};

allows the compiler to create an imaginary function

template <class Type>

Class <Type> imaginary(Type param)

in which case Type clearly is an int, and so a Class<int> object is constructed.

When we try to do this for Class(Iterator, Iterator) we get

template <class Iterator>

Class<???> imaginary(Iterator, Iterator);

and here Class’s template argument isn’t directly related to Iterator: the compiler cannot deduce

its type and consequently compilation fails.

A similar argument applies to the fourth constructor, which receives two Tp arguments, which are both

independent from Class’s template type.



lost: explicit conversions, defined as explicitly specified deduction rules which are added (below) to the

class’s interface can be used.

An explicitly specified deduction rule connects a class template constructor signature to a class tem-

plate type. It specifies the template arguments for the class template object that is constructed using

the constructor whose signature is specified. The generic syntactical form of an explicitly specified

deduction rule looks like this:

class template constructor signature -> resulting class type ;

Let’s apply this to Class(Iterator begin, Iterator end). Its signature is

template <class Iterator>

Class(Iterator begin, Iterator end)

Requiring that Iterator defines a typename type, we can now formulate a resulting class type:

Class<typename Iterator::type>

Now we can combine both in an explicitly specified deduction rule (which is added as a separate line

below Class’s interface):

template <class Iterator>

Class(Iterator begin, Iterator end) -> Class<typename Iterator::type>;

After adding this deduction rule to Class’s interface the following constructor calls successfully com-

pile:

Class src{12}; // already OK

Class dest1{src.begin(), src.end()};

// begin() and end() return Class<int>::Iterator

// objects. Typename Class<int>::Iterator::type

// is defined as int, so Class<int> dest1 is

// defined.

struct Double // used at the next construction

{

typedef double type;

// ... members ...

};

Class dest2{Double{}, Double{}};

// Here the struct Double defines

// typename double type, so

// Class<double> dest2 is defined.

Within classes the compiler uses (as before) the class itself when merely referring to the class name:

when referring to Class in the class Class, the compiler considers Class to be Class<T>. So the

headers of the declaration and definition of Class’s copy constructor look like this:

Class(Class const &other); // declaration

template <class T> // definition

Class<T>::Class(Class const &other)



// ...

}

Sometimes the default type is not what you want, in which case the required type must explicitly be

specified. Consider what happens if add a member dup to Class:

template <typename T>

template <typename Tp>

auto Class<T>::dup(Tp first, Tp second)

{

return Class{ first, second }; // probably not what you want

} // (see the following text)

Here, because we’re inside Class the compiler deduces that Class<T> must be returned. But

in the previous section we decided that, when initializing Class from iterators, Class<typename

Tp::type> should be constructed and returned. To accomplish that, the required type is explicitly

specified:

template <typename T>

template <typename Tp>

auto Class<T>::dup(Tp first, Tp second)

{ // OK: explicitly specified Class tyoe.

return Class<typename Tp::type>{ first, second };

}

As shown in this example, simple (implicit) or explicit deduction rules do not have to be used: they

can be used in many standard situations where explicitly specifying the class’s template arguments

appears to be superfluous. Template argument deduction was added to the language to simplify object

construction when using class templates. But in the end you don’t have to use these deduction rules:

it’s always still possible to explicitly specify template arguments.

22.1 Defining class templates

Having covered the construction of function templates, we’re now ready for the next step: constructing

class templates. Many useful class templates already exist. Rather than illustrating the construction of

a class template by looking at an already existing class template the construction of another potentially

useful new class template will be undertaken.

The new class implements a circular queue. A circular queue has a fixed number of max_size elements.

New elements are inserted at its back and only its head and tail elements can be accessed. Only the

head element can be removed from a circular queue. Once n elements have been appended the next

element is inserted again at the queue’s (physical) first position. The circular queue allows insertions

until it holds max_size elements. As long as a circular queue contains at least one element elements

may be removed from it. Trying to remove an element from an empty circular queue or to add another

element to a full circular queue results in exceptions being thrown. In addition to other constructors a

circular queue must offer a constructor initializing its objects for max_size elements. This constructor

must make available the memory for the max_size elements but must not call those elements default

constructors (hinting at the use of the placement new operator). A circular queue should offer value

semantics as well as a move constructor.

Please note that in the above description the actual data type that is used for the circular queue is

nowhere mentioned. This is a clear indication that our class could very well be defined as a class

template. Alternatively, the class could be defined for some concrete data type which is then abstracted

when converting the class to a class template.



CirQue (circular queue) is developed.

22.1.1 Constructing the circular queue: CirQue

The construction of a class template is illustrated in this section. Here, we’ll develop the class template

CirQue (circular queue). This class template has one template type parameter, Data, representing the

data type that is stored in the circular queue. The outline of the interface of this class template looks

like this:

template<typename Data>

class CirQue

{

// member declarations

};

A class template’s definition starts like a function template’s definition:

• The keyword template, starting a template definition or declaration.

• The angle bracket enclosed list following template: a list containing one or more comma-

separated elements is called the template parameter list. Template parameter lists may have

multiple elements, like this:

typename Type1, typename Type2, typename Type3

When a class template defines multiple template type parameters they are matched in sequence

with the list of template type arguments provided when defining objects of such a class template.

Example:

template <typename Type1, typename Type2, typename Type3>

class MultiTypes

{

...

};

MultiTypes<int, double, std::string> multiType;

// Type1 is int, Type2 is double, Type3 is std::string

• Inside the template parameter list we find the formal type name (Data for CirQue). It is a formal

(type) name, like the formal types used in function template parameter lists.

• Following the template header the class interface is defined. It may use the formal type names

defined in the template header as type names.

Once the CirQue class template has been defined it can be used to create all kinds of circular queues.

As one of its constructors expects a size_t argument defining the maximum number of elements that

can be stored in the circular queue, circular queues could be defined like this:

CirQue<int> cqi(10); // max 10 ints

CirQue<std::string> cqstr(30); // max 30 strings

As noted in the introductory section of this chapter the combination of name of the class template and

the data type for which it is instantiated defines a data type. Also note the similarity between defining

a std::vector (of some data type) and a CirQue (of some data type).

Like std::map containers class templates may be defined with multiple template type parameters.



eventually stored in memory pointed at by a pointer Data ∗d_data, initially pointing to raw memory.

New elements are added at the backside of the CirQue. A pointer Data ∗d_back is used to point

to the location where the next element is going to be stored. Likewise, Data ∗d_front points to the

location of the CirQue’s first element. Two size_t data members are used to monitor the filling state

of the CirQue: d_size represents the number of elements currently stored in the CirQue, d_maxSize

represents the maximum number of elements that the CirQue can contain. Thus, the CirQue’s data

members are:

size_t d_size;

size_t d_maxSize;

Data *d_data;

Data *d_front;

Data *d_back;

22.1.2 Non-type parameters

Function template parameters are either template type parameters or template non-type parameters

(actually, a third type of template parameter exists, the template template parameter, which is discussed

in chapter 23 (section 23.4)).

Class templates may also define non-type parameters. Like the function template non-type parameters

they must be (integral) constants whose values must be known at object instantiation time.

Different from function template non-type parameters the values of class template non-type parame-

ters are not deduced by the compiler using arguments passed to class template members.

Assume we extend our design of the class template CirQue so that it defines a second (non-type) pa-

rameter size_t Size. Our intent is to use this Size parameter in the constructor defining an array

parameter of Size elements of type Data.

The CirQue class template now becomes (only showing the relevant constructor):

template <typename Data, size_t Size>

class CirQue

{

// ... data members

public:

CirQue(Data const (&arr)[Size]);

...

};

template <typename Data, size_t Size>

CirQue<Data, Size>::CirQue(Data const (&arr)[Size])

:

d_maxSize(Size),

d_size(0),

d_data(operator new(Size * sizeof(Data))),

d_front(d_data),

d_back(d_data),

{

std::copy(arr, arr + Size, back_inserter(*this));

}

Unfortunately, this setup doesn’t satisfy our needs as the values of template non-type parameters are

not deduced by the compiler. When the compiler is asked to compile the following main function it

reports a mismatch between the required and actual number of template parameters:

int main()



int arr[30];

CirQue<int> ap{ arr };

}

/*
Error reported by the compiler:

In function `int main()':

error: wrong number of template arguments (1, should be 2)

error: provided for `template<class Data, size_t Size>

class CirQue'

*/

Defining Size as a non-type parameter having a default value doesn’t work either. The compiler always

uses the default unless its value is explicitly specified. Reasoning that Size can be 0 unless we need

another value, we might be tempted to specify size_t Size = 0 in the template’s parameter type

list. Doing so we create a mismatch between the default value 0 and the actual size of the array arr as

defined in the above main function. The compiler, using the default value, reports:

In instantiation of `CirQue<int, 0>':

...

error: creating array with size zero (`0')

So, although class templates may use non-type parameters they must always be specified like type

parameters when an object of that class is defined. Default values can be specified for those non-type

parameters causing the compiler to use the default when the non-type parameter is left unspecified.

Default template parameter values (either type or non-type template parameters) may not be speci-

fied when defining template member functions. In general: function template definitions (and thus:

class template member functions) may not be given default template (non) type arguments. If default

template arguments are to be used for class template members, they have to be specified by the class

interface.

Similar to non-type parameters of function templates default argument values for non-type class tem-

plate parameters may only be specified as constants:

• Global variables have constant addresses, which can be used as arguments for non-type parame-

ters.

• Local and dynamically allocated variables have addresses that are not known by the compiler

when the source file is compiled. These addresses can therefore not be used as arguments for

non-type parameters.

• Lvalue transformations are allowed: if a pointer is defined as a non-type parameter, an array

name may be specified.

• Qualification conversions are allowed: a pointer to a non-const object may be used with a non-type

parameter defined as a const pointer.

• Promotions are allowed: a constant of a ‘narrower’ data type may be used when specifying a

default argument for a non-type parameter of a ‘wider’ type (e.g., a short can be used when an

int is called for, a long when a double is called for).

• Integral conversions are allowed: if a size_t parameter is specified, an int may be used as well.

• Variables cannot be used to specify template non-type parameters as their values are not constant

expressions. Variables defined using the const modifier, however, may be used as their values

never change.



has failed so far, we’re not yet out of options. In the next section a method is described that does allow

us to reach our goal.

22.1.3 Member templates

Our previous attempt to define a template non-type parameter that is initialized by the compiler to the

number of elements of an array failed because the template’s parameters are not implicitly deduced

when a constructor is called. Instead, they must explicitly be specified when an object of the class

template is defined. As the template arguments are specified just before the template’s constructor

is called the compiler doesn’t have to deduce anything and it can simply use the explicitly specified

template arguments.

In contrast, when function templates are used, the actual template parameters are deduced from the

arguments used when calling the function. This opens up an alley leading to the solution of our prob-

lem. If the constructor itself is turned into a function template (having its own template header), then

the compiler will be able to deduce the non-type parameter’s value and there is no need anymore to

specify it explicitly using a class template non-type parameter.

Members (functions or nested classes) of class templates that are themselves templates are called

member templates.

Member templates are defined as any other template, including its own template header.

When converting our earlier CirQue(Data const (&array)[Size]) constructor into a member

template the class template’s Data type parameter can still be used, but we must provide the member

template with a non-type parameter of its own. Its declaration in the (partially shown) class interface

looks like this:

template <typename Data>

class CirQue

{

public:

template <size_t Size>

explicit CirQue(Data const (&arr)[Size]);

};

Its implementation becomes:

template <typename Data>

template <size_t Size>

CirQue<Data>::CirQue(Data const (&arr)[Size])

:

d_size(0),

d_maxSize(Size),

d_data(static_cast<Data *>(operator new(sizeof(arr)))),

d_front(d_data),

d_back(d_data)

{

std::copy(arr, arr + Size, std::back_inserter(*this));

}

The implementation uses the STL’s copy algorithm and a back_inserter adapter to insert the array’s

elements into the CirQue. To use the back_inserter CirQue must define two (public) typedefs (cf.

section 18.2.2):

typedef Data value_type;

typedef value_type const &const_reference;



• Two template headers must be used: the class template’s template header is specified first

followed by the member template’s template header;

• Normal access rules apply: the member template can be used by programs to construct an CirQue

object of a given data type. As usual for class templates, the data type must be specified when the

object is constructed. To construct a CirQue object from the array int array[30] we define:

CirQue<int> object(array);

• Any member can be defined as a member template, not just a constructor;

• When a template member is implemented below its class interface, the template class header

must precede the function template header of the member template;

• The implementation of the member template must specify its proper scope. The member template

is defined as a member of the class CirQue, instantiated for the formal template parameter type

Data;

• The template parameter names in the declaration and implementation must be identical;

• The member template should be defined inside its proper namespace environment. The organiza-

tion of files defining class templates within a namespace should therefore be:

namespace SomeName

{

template <typename Type, ...> // class template definition

class ClassName

{

...

};

template <typename Type, ...> // non-inline member definition(s)

ClassName<Type, ...>::member(...)

{

...

}

} // namespace closes

A potentially occurring problem remains. Assume that in addition to the above member template

a CirQue<Data>::CirQue(Data const ∗data) has been defined. Some (here not further elabo-

rated) protocol could be defined allowing the constructor to determine the number of elements that

should be stored in the CirQue object. When we now define

CirQue<int> object{ array };

it is this latter constructor, rather than the member template, that the compiler will use.

The compiler selects this latter constructor as it is a more specialized version of a constructor of the

class CirQue than the member template (cf. section 21.14). Problems like these can be solved by

defining the constructor CirQue(Data const ∗data) into a member template as well or by defining

a constructor using two parameters, the second parameter defining the number of elements to copy.

When using the former constructor (i.e., the member template) it must define a template type parame-

ter Data2. Here ‘Data’ cannot be used as template parameters of a member template may not shadow

template parameters of its class. Using Data2 instead of Data takes care of this subtlety. The following

declaration of the constructor CirQue(Data2 const ∗) could appear in CirQue’s header file:

template <typename Data>



{

template <typename Data2>

explicit CirQue(Data2 const *data);

}

Here is how the two constructors are selected in code defining two CirQue objects:

int main()

{

int array[30];

int *iPtr = array;

CirQue<int> ac{ array }; // calls CirQue(Data const (&arr)[Size])

CirQue<int> acPtr{ iPtr }; // calls CirQue(Data2 const *)

}

22.1.4 CirQue’s constructors and member functions

It’s time to return to Cirque’s design and construction again.

The class CirQue offers various member functions. Normal design principles should be adhered to

when constructing class template members. Class template type parameters should preferably be de-

fined as Type const &, rather than Type, to prevent unnecessary copying of large data structures.

Template class constructors should use member initializers rather than member assignment within

the body of the constructors. Member function definitions should preferably not be provided in-class

but below the class interface. Since class template member functions are function templates their defi-

nitions should be provided in the header file offering the class interface. They may be given the inline

attribute.

CirQue declares several constructors and (public) members (their definitions are provided as well; all

definitions are provided below the class interface).

Here are the constructors and the destructor:

• explicit CirQue(size_t maxSize = 0):

Constructor initializing a CirQue capable of storing max_size Data elements. As the construc-

tor’s parameter is given a default argument value this constructor can also be used as a default

constructor, allowing us to define, e.g., vectors of CirQues. The constructor initializes the Cirque

object’s d_data member to a block of raw memory and d_front and d_back are initialized to

d_data. As class template member functions are themselves function templates their implemen-

tations outside of the class template’s interface must start with the class template’s template

header. Here is the implementation of the CirQue(size_t) constructor:

template<typename Data>

CirQue<Data>::CirQue(size_t maxSize)

:

d_size(0),

d_maxSize(maxSize),

d_data(

maxSize == 0 ?

0

:

static_cast<Data *>(

operator new(maxSize * sizeof(Data)))

),

d_front(d_data),

d_back(d_data)



• CirQue(CirQue<Data> const &other):

The copy constructor has no special features. It uses a private support member inc to increment

d_back (see below) and placement new to copy the other’s Data elements to the current object.

The implementation of the copy constructor is straightforward:

template<typename Data>

CirQue<Data>::CirQue(CirQue<Data> const &other)

:

d_size(other.d_size),

d_maxSize(other.d_maxSize),

d_data(

d_maxSize == 0 ?

0

:

static_cast<Data *>(

operator new(d_maxSize * sizeof(Data)))

),

d_front(d_data + (other.d_front - other.d_data))

{

Data const *src = other.d_front;

d_back = d_front;

for (size_t count = 0; count != d_size; ++count)

{

new(d_back) Data(*src);

d_back = inc(d_back);

if (++src == other.d_data + d_maxSize)

src = other.d_data;

}

}

• CirQue(CirQue<Data> &&tmp):

The move constructor merely initializes the current object’s d_data pointer to 0 and swaps (see

the member swap, below) the temporary object with the current object. CirQue’s destructor in-

spects d_data and immediately returns when it’s zero. Implementation:

template<typename Data>

CirQue<Data>::CirQue(CirQue<Data> &&tmp)

:

d_data(0)

{

swap(tmp);

}

• CirQue(CirQue(Data const (&arr)[Size])):

This constructor is declared as a member template, providing the Size non-type parameter. It

allocates room for Size data elements and copies arr’s content to the newly allocated mem-

ory.Implementation:

template <typename Data>

template <size_t Size>

CirQue<Data>::CirQue(Data const (&arr)[Size])

:

d_size(0),

d_maxSize(Size),

d_data(static_cast<Data *>(operator new(sizeof(arr)))),

d_front(d_data),

d_back(d_data)

{



}

• CirQue(CirQue(Data const ∗data, size_t size)):

This constructor acts very much like the previous one, but is provided with a pointer to the first

Data element and with a size_t providing the number of elements to copy. In our current design

the member template variant of this constructor is left out of the design. As the implementation

of this constructor is very similar to that of the previous constructor, it is left as an exercise to the

reader.

• ~CirQue():

The destructor inspects the d_data member. If it is zero then nothing has been allocated and the

destructor immediately returns. This may occur in two situations: the circular queue contains

no elements or the information was grabbed from a temporary object by some move operation,

setting the temporary’s d_data member to zero. Otherwise d_size elements are destroyed by

explicitly calling their destructors followed by returning the element’s raw memory to the common

pool. Implementation:

template<typename Data>

CirQue<Data>::~CirQue()

{

if (d_data == 0)

return;

for (; d_size--; )

{

d_front->~Data();

d_front = inc(d_front);

}

operator delete(d_data);

}

Here are Cirque’s members:

• CirQue &operator=(CirQue<Data> const &other):

The copy assignment operator has a standard implementation:

template<typename Data>

CirQue<Data> &CirQue<Data>::operator=(CirQue<Data> const &rhs)

{

CirQue<Data> tmp(rhs);

swap(tmp);

return *this;

}

• CirQue &operator=(CirQue<Data> &&tmp):

The move assignment operator also has a standard implementation. As its implementation

merely calls swap it is defined as an inline function template:

template<typename Data>

inline CirQue<Data> &CirQue<Data>::operator=(CirQue<Data> &&tmp)

{

swap(tmp);

return *this;

}

• void pop_front():

removes the element pointed at by d_front from the CirQue. Throws an exception if the CirQue

is empty. The exception is thrown as a CirQue<Data>::EMPTY value, defined by the enum



itly calling the destructor of the element that is removed):

template<typename Data>

void CirQue<Data>::pop_front()

{

if (d_size == 0)

throw EMPTY;

d_front->~Data();

d_front = inc(d_front);

--d_size;

}

• void push_back(Data const &object):

adds another element to the CirQue. Throws a CirQue<Data>::FULL exception if the CirQue

is full. The exceptions that can be thrown by a CirQue are defined in its Exception enum:

enum Exception

{

EMPTY,

FULL

};

A copy of object is installed in the CirQue’s raw memory using placement new and its d_size

is incremented.

template<typename Data>

void CirQue<Data>::push_back(Data const &object)

{

if (d_size == d_maxSize)

throw FULL;

new (d_back) Data(object);

d_back = inc(d_back);

++d_size;

}

• void swap(CirQue<Data> &other):

swaps the current CirQue object with another CirQue<Data> object;

template<typename Data>

void CirQue<Data>::swap(CirQue<Data> &other)

{

static size_t const size = sizeof(CirQue<Data>);

char tmp[size];

memcpy(tmp, &other, size);

memcpy(reinterpret_cast<char *>(&other), this, size);

memcpy(reinterpret_cast<char *>(this), tmp, size);

}

The remaining public members all consist of one-liners and were implemented as inline function tem-

plates:

• Data &back():

returns a reference to the element pointed at by d_back (undefined result if the CirQue is empty):

template<typename Data>



{

return d_back == d_data ? d_data[d_maxSize - 1] : d_back[-1];

}

• Data &front():

returns reference to the element pointed at by d_front (undefined result if the CirQue is empty);

template<typename Data>

inline Data &CirQue<Data>::front()

{

return *d_front;

}

• bool empty() const:

returns true if the CirQue is empty;

template<typename Data>

inline bool CirQue<Data>::empty() const

{

return d_size == 0;

}

• bool full() const:

returns true if the CirQue is full;

template<typename Data>

inline bool CirQue<Data>::full() const

{

return d_size == d_maxSize;

}

• size_t size() const:

returns the number of elements currently stored in the CirQue;

template<typename Data>

inline size_t CirQue<Data>::size() const

{

return d_size;

}

• size_t maxSize() const:

returns the maximum number of elements that can be stored in the CirQue;

template<typename Data>

inline size_t CirQue<Data>::maxSize() const

{

return d_maxSize;

}

Finally, the class has one private member, inc, returning a cyclically incremented pointer into CirQue’s

raw memory:

template<typename Data>

Data *CirQue<Data>::inc(Data *ptr)

{

++ptr;

return ptr == d_data + d_maxSize ? d_data : ptr;

}



When objects of a class template are instantiated, only the definitions of all the template’s member

functions that are actually used must have been seen by the compiler.

That characteristic of templates could be refined to the point where each definition is stored in a sepa-

rate function template definition file. In that case only the definitions of the function templates that are

actually needed would have to be included. However, it is hardly ever done that way. Instead, the usual

way to define class templates is to define the interface and to define the remaining function templates

immediately below the class template’s interface (defining some functions inline).

Now that the class CirQue has been defined, it can be used. To use the class its object must be instan-

tiated for a particular data type. In the following example it is initialized for data type std::string:

#include "cirque.h"

#include <iostream>

#include <string>

using namespace std;

int main()

{

CirQue<string> ci(4);

ci.push_back("1");

ci.push_back("2");

cout << ci.size() << ' ' << ci.front() << ' ' << ci.back() << '\n';

ci.push_back("3");

ci.pop_front();

ci.push_back("4");

ci.pop_front();

ci.push_back("5");

cout << ci.size() << ' ' << ci.front() << ' ' << ci.back() << '\n';

CirQue<string> copy(ci);

copy.pop_front();

cout << copy.size() << ' ' << copy.front() << ' ' << copy.back() << '\n';

int arr[] = {1, 3, 5, 7, 9};

CirQue<int> ca(arr);

cout << ca.size() << ' ' << ca.front() << ' ' << ca.back() << '\n';

// int *ap = arr;

// CirQue<int> cap(ap);

}

This program produces the following output:

2 1 2

3 3 5

2 4 5

5 1 9

22.1.6 Default class template parameters

Different from function templates, template parameters of template classes may be given default ar-

gument values. This holds true for both template type- and template non-type parameters. If default

template arguments were defined and if a class template object is instantiated without specifying ar-

guments for its template parameters then the template parameter’s defaults are used.



of the class. E.g., for the class template CirQue the template’s type parameter list could have been

altered by specifying int as its default type:

template <typename Data = int>

Even though default arguments can be specified, the compiler must still be informed that object defini-

tions refer to templates. When instantiating class template objects using default template arguments

the type specifications may be omitted but the angle brackets must be retained. Assuming a default

type for the CirQue class, an object of that class may be defined as:

CirQue<> intCirQue(10);

Default template arguments cannot be specified when defining template members. So, the definition

of, e.g., the push_back member must always begin with the same template specification:

template <typename Data>

When a class template uses multiple template parameters, all may be given default values. Like default

function arguments, once a default value is used all remaining template parameters must also use

their default values. A template type specification list may not start with a comma, nor may it contain

multiple consecutive commas.

22.1.7 Declaring class templates

Class templates may also be declared. This may be useful in situations where forward class declarations

are required. To declare a class template, simply remove its interface (the part between the curly

braces):

template <typename Data>

class CirQue;

Default template arguments may also be specified when declaring class templates. However, default

template arguments cannot be specified for both the declaration and the definition of a class template.

As a rule of thumb default template arguments should be omitted from declarations, as class template

declarations are never used when instantiating objects but are only occasionally used as forward ref-

erences. Note that this differs from default parameter value specifications for member functions in

ordinary classes. Such defaults are always specified when declaring the member functions in the class

interface.

22.1.8 Preventing template instantiations

In C++ templates are instantiated when the address of a function template or class template object is

taken or when a function template or class template is used. As described in section 22.1.7 it is possible

to (forward) declare a class template to allow the definition of a pointer or reference to that template

class or to allow it being used as a return type.

In other situations templates are instantiated when they are being used. If this happens many times

(i.e., in many different source files) then this may slow down the compilation process considerably.

Fortunately, C++ allows programmers to prevent templates from being instantiated, using the extern

template syntax. Example:

extern template class std::vector<int>;



properly compiles:

#include <vector>

#include <iostream>

using namespace std;

extern template class vector<int>;

void vectorUser()

{

vector<int> vi;

cout << vi.size() << '\n';

}

But be careful:

• The declaration by itself does not make the class definition available. The vector header file still

needs to be included to make the features of the class vector known to the compiler. But due to

the extern template declaration none of the used members will be instantiated for the current

compilation unit;

• The compiler assumes (as it always does) that what is declared has been implemented elsewhere.

In this case the compiler encounters an implicit declaration: the features of the vector class that

are actually used by the above program are not individually declared but they are declared as

a group, using the extern template declaration. This not only holds true for explicitly used

members but hidden members (copy constructors, move constructors, conversion operators, con-

structors called during promotions, to name a few): all are assumed by the compiler to have been

instantiated elsewhere;

• Although the above source file compiles, the instantiations of the templates must be available

before the linker can build the final program. To accomplish this one or more source files may be

constructed in which all required instantiations are made available.

In a stand-alone program one might postpone defining the required members and wait for the

linker to complain about unresolved external references. These may then be used to create a

series of instantiation declarations which are then linked to the program to satisfy the linker.

Not a very simple task, though, as the declarations must strictly match the way the members

are declared in the class interface. An easier approach is to define an instantiation source file in

which all facilities that are used by the program are actually instantiated in a function that is

never called by the program. By adding this instantiation function to the source file containing

main we can be sure that all required members are instantiated as well. Here is an example of

how this can be done:

#include <vector>

#include <iostream>

extern void vectorUser();

int main()

{

vectorUser();

}

// this part is never called. It is added to make sure all required

// features of declared templates will also be instantiated.

namespace

{

void instantiator()



std::vector<int> vi;

vi.size();

}

}

• Last, but certainly not least: a fully matching instantiation declaration of a class template (e.g.,

for std::vector<int>) looks like this:

template class std::vector<int>;

Adding this to a source file, however, will instantiate the full class, i.e., all its members are now

instantiated. This may not what you want, as it might needlessly inflate your final executable.

• On the other hand, if it is known that the required template members have already been instanti-

ated elsewhere, then an extern template declaration can be used to prevent member instantiations

in the current compilation unit, which may speed up compilation. E.g.,

// the compiler assumes that required members of

// vector<int> have already been instantiated elsewhere

extern template class std::vector<int>;

int main()

{

std::vector<int> vi(5); // constructor and operator[]

++vi[0]; // are NOT instantiated

}

22.1.9 Generic lambda expressions

Generic lambda expressions may use auto to define their parameters. When used, a lambda expression

is instantiated by looking at the actual types of arguments. Since auto is generic, different parameters

defined using auto can be instantiated to different types. Here is an example (assuming all required

headers and namespace declaration were specified):

1: int main()

2: {

3: auto lambda = [](auto lhs, auto rhs)

4: {

5: return lhs + rhs;

6: };

7:

8: vector<int> values {1, 2, 3, 4, 5};

9: vector<string> text {"a", "b", "c", "d", "e"};

10:

11: cout <<

12: accumulate(values.begin(), values.end(), 0, lambda) << '\n' <<

13: accumulate(text.begin(), text.end(), string{}, lambda) << '\n';

14: }

The generic lambda function is defined in lines 3 through 6, and is assigned to the lambda identifier.

Then, lambda is passed to accumulate in lines 12 and 13. In line 12 it is instantiated to add int

values, in line 13 to add std::string values: the same lambda is instantiated to two completely

different functors, which are only locally available in main.

Generic lambda expressions are in fact class templates. To illustrate: the above example of a generic

lambda expression could also have been implemented using the following class template:

struct Lambda



template <typename LHS, typename RHS>

auto operator()(LHS const &lhs, RHS const &rhs) const

{

return lhs + rhs;

}

};

auto lambda = Lambda{};

This identity implies that using auto in the lambda expression’s parameter list obeys the rules of

template argument deduction (cf. section 21.4), which are somewhat different from the way auto

normally operates.

Another extension is the way generic lambda expressions capture outer scope variables. Previously

variables could only be captured by value or by reference. As a consequence an outer scope variable of

a type that only supports move construction could not be passed by value to a lambda function. This

restriction was dropped, allowing variables to be initialized from arbitrary expressions. This not only

allows move-initialization of variables in the lambda introducer, but with generic lambdas variables

may also be initialized if they do not have a correspondingly named variable in the lambda expression’s

outer scope. In this case initializer expressions can be used as follows:

auto fun = [value = 1]

{

return value;

};

This lambda function (of course) returns 1: the declared capture deduces the type from the initializer

expression as if auto had been used.

To use move-initialization std::move should be used. E.g., a unique_ptr only supports move-

assignment. Here it is used to return one of its values via a lambda function:

std::unique_ptr<int> ptr(new int(10));

auto fun = [value = std::move(ptr)]

{

return *value;

};

In generic lambda expressions the keyword auto indicates that the compiler determines which types

to use when the lambda function is instantiated. A generic lambda expression therefore is a class

template, even though it doesn’t look like one. As an example, the following lambda expression defines

a generic class template, which can be used as shown:

char const *target = "hello";

auto lambda =

[target](auto const &str)

{

return str == target;

};

vector<string> vs{stringVectorFactory()};

find_if(vs.begin(), vs.end(), lambda);

This works fine, but if you define lambda this way then you should be prepared for complex error

messages if the types of the derefenced iterators and lambda’s (silently assumed) str type don’t match.



lambda expressions: class templates could also have been used. In lines 1 through 9 a generic lambda

expression accumulate is defined, defining a second paramater which is used as a function: its argu-

ment therefore should be usable as a function. A functor definitely is, an the second generic lambda

expression lambda, defined in lines 11 through 14 provides it. In line 21 accumulate and lambda are

instantiated so that they operate on (a vector of) ints, in line 22 they are instantiated for processing

(a vector of) strings:

1: auto accumulate(auto const &container, auto function)

2: {

3: auto accu = decltype(container[0]){};

4:

5: for (auto &value: container)

6: accu = function(accu, value);

7:

8: return accu;

9: }

10:

11: auto lambda = [](auto lhs, auto rhs)

12: {

13: return lhs + rhs;

14: };

15:

16: int main()

17: {

18: vector<int> values = {1, 2, 3, 4, 5};

19: vector<string> text = {"a", "b", "c", "d", "e"};

20:

21: cout << accumulate(values, lambda) << '\n' <<

22: accumulate(text, lambda) << '\n';

23: }

In some situations generic lambdas are a bit too generic, resulting in verbose implementations which

are not required by templates in general. Consider a generic lambda that specifies an auto &it pa-

rameter, but in addition it should specify a parameter value of type ValueType that should be de-

fined by it’s class. Such a parameter requires the use of a decltype (and maybe also the use of

std::decay_t) to retrieve it’s actual type. Inside the lambda’s body a using declaration can be spec-

ified to make the type available, but that again requires a verbose specification using std::decay_t

and decltype. Here is an example:

auto generic =

[](auto &it,

typename std::decay_t<decltype(it)>::ValueType value)

{

using Type = std::decay_t<decltype(it)>;

typename Type::ValueType val2{ value };

Type::staticMember();

};

To avoid this kind of verbosity generic lambda functions can also be defined like ordinary tempates,

in which case the template header immediately follows the lambda-introducer. Using this alternative

form the definition of the generic generic lambda simply and straightforwardly becomes:

auto generic =

[]<typename Type>(Type &it, typename Type::ValueType value)

{

typename Type::ValueType val2{ value };

Type::staticMember();

};



22.2 Static data members

When static members are defined in class templates, they are defined for every new type for which the

class template is instantiated. As they are static members, there will only be one member per type for

which the class template is instantiated. For example, in a class like:

template <typename Type>

class TheClass

{

static int s_objectCounter;

};

There will be one TheClass<Type>::objectCounter for each different Type specification. The fol-

lowing object definitions result in the instantiation of just one single static variable, shared among the

two objects:

TheClass<int> theClassOne;

TheClass<int> theClassTwo;

Mentioning static members in interfaces does not mean these members are actually defined. They

are only declared and must be defined separately. With static members of class templates this is no

different. The definitions of static members are usually provided immediately following (i.e., below) the

template class interface. For example, the static member s_objectCounter’s definition, positioned

just below its class interface, looks like this:

template <typename Type> // definition, following

int TheClass<Type>::s_objectCounter = 0; // the interface

Here s_objectCounter is an int and is thus independent of the template type parameter Type.

Multiple instantiations of s_objectCounter for identical Types cause no problem, as the linker will

remove all but one instantiation from the final executable (cf. section 21.5).

In list-like constructions, where a pointer to objects of the class itself is required, the template type

parameter Type must be used when defining the static variable. Example:

template <typename Type>

class TheClass

{

static TheClass *s_objectPtr;

};

template <typename Type>

TheClass<Type> *TheClass<Type>::s_objectPtr = 0;

As usual, the definition can be read from the variable name back to the beginning of the definition:

s_objectPtr of the class TheClass<Type> is a pointer to an object of TheClass<Type>.

When a static variable of a template’s type parameter’s type is defined, it should of course not be given

the initial value 0. The default constructor (e.g., Type()) is usually more appropriate. Example:

template <typename Type> // s_type's definition

Type TheClass<Type>::s_type = Type();

22.2.1 Extended use of the keyword ‘typename’

Until now the keyword typename has been used to indicate a template type parameter. However, it is

also used to disambiguate code inside templates. Consider the following function template:



Type function(Type t)

{

Type::Ambiguous *ptr;

return t + *ptr;

}

When this code is processed by the compiler, it complains with an -at first sight puzzling- error message

like:

4: error: 'ptr' was not declared in this scope

The error message is puzzling as it was the programmer’s intention to declare a pointer to a

type Ambiguous defined within the class template Type. But the compiler, confronted with

Type::Ambiguous may interpret the statement in various ways. Clearly it cannot inspect Type it-

self trying to uncover Type’s true nature as Type is a template type. Because of this Type’s actual

definition isn’t available yet.

The compiler is confronted with two possibilities: either Type::Ambiguous is a static member of the

as yet mysterious template Type, or it is a subtype of Type. As the standard specifies that the compiler

must assume the former, the statement

Type::Ambiguous *ptr;

is interpreted as a multiplication of the static member Type::Ambiguous and the (now undeclared)

entity ptr. The reason for the error message should now be clear: in this context ptr is unknown.

To disambiguate code in which an identifier refers to a subtype of a template type parameter the

keyword typename must be used. Accordingly, the above code is altered into:

template <typename Type>

Type function(Type t)

{

typename Type::Ambiguous *ptr;

return t + *ptr;

}

Classes fairly often define subtypes. When such subtypes appear inside template definitions as sub-

types of template type parameters the typename keyword must be used to identify them as subtypes.

Example: a class template Handler defines a typename Container as its template type parameter.

It also defines a data member storing the iterator returned by the container’s begin member. In ad-

dition Handler offers a constructor accepting any container supporting a begin member. Handler’s

class interface could then look like this:

template <typename Container>

class Handler

{

Container::const_iterator d_it;

public:

Handler(Container const &container)

:

d_it(container.begin())

{}

};



• The typename Container represents any container supporting iterators.

• The container presumably supports a member begin. The initialization

d_it(container.begin()) clearly depends on the template’s type parameter, so it’s only

checked for basic syntactic correctness.

• Likewise, the container presumably supports a subtype const_iterator, defined in the class

Container.

The final consideration is an indication that typename is required. If this is omitted and a Handler is

instantiated the compiler produces a peculiar compilation error:

#include "handler.h"

#include <vector>

using namespace std;

int main()

{

vector<int> vi;

Handler<vector<int> > ph{ vi };

}

/*
Reported error:

handler.h:4: error: syntax error before `;' token

*/

Clearly the line

Container::const_iterator d_it;

in the class Handler causes a problem. It is interpreted by the compiler as a static member instead of

a subtype. The problem is solved using typename:

template <typename Container>

class Handler

{

typename Container::const_iterator d_it;

...

};

An interesting illustration that the compiler indeed assumes X::a to be a member a of the class X is

provided by the error message we get when we try to compile main using the following implementation

of Handler’s constructor:

Handler(Container const &container)

:

d_it(container.begin())

{

size_t x = Container::ios_end;

}

/*
Reported error:

error: `ios_end' is not a member of type `std::vector<int,
std::allocator<int> >'

*/



return a Type value, but a Type::Ambiguous value. Again, a subtype of a template type is referred

to, and typename must be used:

template <typename Type>

typename Type::Ambiguous function(Type t)

{

return t.ambiguous();

}

Using typename in the specification of a return type is further discussed in section 23.1.1.

Typenames can be embedded in typedefs. As is often the case, this reduces the complexities of dec-

larations and definitions appearing elsewhere. In the next example the type Iterator is defined as a

subtype of the template type Container. Iterator may now be used without requiring the use of the

keyword typename:

template <typename Container>

class Handler

{

typedef typename Container::const_iterator Iterator;

Iterator d_it;

...

};

22.3 Specializing class templates for deviating types

The class CirQue can be used for many different types. Their common characteristic is that they can

simply be pointed at by the class’s d_data member. But this is not always as simple as it looks. What if

Data turns out to be a vector<int>? For such data types the vanilla CirQue implementation cannot

be used and a specialization could be considered. When considering a specialization one should also

consider inheritance. Often a class derived from the class template accepting the incompatible data

structure as its argument but otherwise equal to the original class template can easily be designed.

The developmental advantage of inheritance over specialization is clear: the inherited class inherits

the members of its base class while the specialization inherits nothing. All members defined by the

original class template must be implemented again by the class template’s specialization.

The specialization considered here is a true specialization in that the data members and representation

used by the specialization greatly differ from the original CirQue class template. Therefore all mem-

bers defined by the orginal class template must be modified to fit the specialization’s data organization.

Like function template specializations class template specializations start with a template header that

may or may not have an empty template parameter list. If the template parameters are directly special-

ized by the specialization it remains empty (e.g., CirQue’s template type parameter Data is specialized

for char ∗ data). But the template parameter list may show typename Data when specializing for a

vector<Data>, i.e., a vector storing any type of data. This leads to the following principle:

A template specialization is recognized by the template argument list following a function

or class template’s name and not by an empty template parameter list. Class template

specializations may have non-empty template parameter lists. If so, a partial class template

specialization is defined.

A completely specialized class has the following characteristics:

• The class template specialization must be provided after the generic class template definition. As

it is a specialization the compiler must first have seen the original class template;



• All of the class’s template parameters are given explicit type names or (for the non-type parame-

ters) explicit values. These explicitations are provided in a template parameter specification list

(surrounded by angle brackets) that is inserted immediately after the specialized template’s class

name;

• All members of the specialized class template use specialized types and values where original

template parameters are used in the original template definition;

• All original template’s members (maybe with the exception of some constructors) should be rede-

fined by the specialization. If a member is left out of the specialization, it cannot be used for a

specialized class template object;

• The specialization may define additional members (but maybe shouldn’t as it breaks the one-to-

one correspondence between the original and specialized class template);

• Member functions of specialized class templates may be declared by the specializing class and im-

plemented below their class interface. If their implementations follow the class interface they may

not begin with a template <> header, but must immediately start with the member function’s

header.

22.3.1 Example of a class specialization

Here is an example of a completely specialized CirQue class, specialized for a vector<int>. All

members of the specialized class are declared, but only non-trivial implementations of its members are

provided. The specialized class uses a copy of the vector passed to the constructor and implements a

circular queue using its vector data member:

#ifndef INCLUDED_CIRQUEVECTOR_H_

#define INCLUDED_CIRQUEVECTOR_H_

#include <vector>

#include "cirque.h"

template<>

class CirQue<std::vector<int>>

{

typedef std::vector<int> IntVect;

IntVect d_data;

size_t d_size;

typedef IntVect::iterator iterator;

iterator d_front;

iterator d_back;

public:

typedef int value_type;

typedef value_type const &const_reference;

enum Exception

{

EMPTY,

FULL

};

CirQue();

CirQue(IntVect const &iv);



CirQue &operator=(CirQue<IntVect> const &other);

int &back();

int &front();

bool empty() const;

bool full() const;

size_t maxSize() const;

size_t size() const;

void pop_front();

void push_back(int const &object);

void swap(CirQue<IntVect> &other);

private:

iterator inc(iterator const &iter);

};

CirQue<std::vector<int>>::CirQue()

:

d_size(0)

{}

CirQue<std::vector<int>>::CirQue(IntVect const &iv)

:

d_data(iv),

d_size(iv.size()),

d_front(d_data.begin()),

d_back(d_data.begin())

{}

CirQue<std::vector<int>>::CirQue(CirQue<IntVect> const &other)

:

d_data(other.d_data),

d_size(other.d_size),

d_front(d_data.begin() + (other.d_front - other.d_data.begin())),

d_back(d_data.begin() + (other.d_back - other.d_data.begin()))

{}

CirQue<std::vector<int>> &CirQue<std::vector<int>>::operator=(

CirQue<IntVect> const &rhs)

{

CirQue<IntVect> tmp(rhs);

swap(tmp);

}

void CirQue<std::vector<int>>::swap(CirQue<IntVect> &other)

{

char tmp[sizeof(CirQue<IntVect>)];

memcpy(tmp, &other, sizeof(CirQue<IntVect>));

memcpy(reinterpret_cast<char *>(&other), this, sizeof(CirQue<IntVect>));

memcpy(reinterpret_cast<char *>(this), tmp, sizeof(CirQue<IntVect>));

}

void CirQue<std::vector<int>>::pop_front()

{

if (d_size == 0)

throw EMPTY;

d_front = inc(d_front);

--d_size;

}

void CirQue<std::vector<int>>::push_back(int const &object)

{



throw FULL;

*d_back = object;

d_back = inc(d_back);

++d_size;

}

inline int &CirQue<std::vector<int>>::back()

{

return d_back == d_data.begin() ? d_data.back() : d_back[-1];

}

inline int &CirQue<std::vector<int>>::front()

{

return *d_front;

}

CirQue<std::vector<int>>::iterator CirQue<std::vector<int>>::inc(

CirQue<std::vector<int>>::iterator const &iter)

{

iterator tmp(iter + 1);

tmp = tmp == d_data.end() ? d_data.begin() : tmp;

return tmp;

}

#endif

The next example shows how to use the specialized CirQue class:

static int iv[] = {1, 2, 3, 4, 5};

int main()

{

vector<int> vi(iv, iv + 5);

CirQue<vector<int>> ci(vi);

cout << ci.size() << ' ' << ci.front() << ' ' << ci.back() << '\n';

ci.pop_front();

ci.pop_front();

CirQue<vector<int>> cp;

cp = ci;

cout << cp.size() << ' ' << cp.front() << ' ' << cp.back() << '\n';

cp.push_back(6);

cout << cp.size() << ' ' << cp.front() << ' ' << cp.back() << '\n';

}

/*
Displays:

5 1 5

3 3 5

4 3 6

*/

22.4 Partial specializations

In the previous section class template specializations were introduced. In this section we’ll introduce

a variant of this specialization, both in number and type of template parameters that are specialized.



Function templates cannot be partially specialized: there is no need for that, as a ‘partially special-

ized function template’ merely is a function template that is tailored to particular types of some of its

parameters. Since function templates can be overloaded, ‘partially specializing’ a function template

simply means that overloads have to be defined for those specialized parameter types.

With partial specializations a subset (any subset) of template type parameters are given specific values.

It is also possible to use a class template partial specialization when the intent is to specialize the class

template, but to parameterize the data type that is processed by the specialization.

To start our discussion with an example of the latter use of a partial class template specializa-

tion consider the class CirQue<vector<int>> developed in the previous section. When designing

CirQue<vector<int>> you may have asked yourself how many specializations you’d have to imple-

ment. One for vector<int>, one for vector<string>, one for vector<double>? As long as the

data types handled by the vector used by the class CirQue<vector<...>> behaves like an int

(i.e., is a value-type of class) the answer is: zero. Instead of defining full specializations for each new

data type the data type itself can be parameterized, resulting in a partial specialization:

template <typename Data>

class CirQue<std::vector<Data>>

{

...

};

The above class is a specialization as a template argument list is appended to the CirQue class name.

But as the class template itself has a non-empty template parameter list it is in fact recognized as a

partial specialization. There is one characteristic that distinguishes the implementation (subsequent

to the class template’s interface) of a class template member function of a partial specialization from

the implementation of a member function of a full specialization. Implementations of partially special-

ized class template member functions receive a template header. No template headers are used when

implementing fully specialized class template members.

Implementing the partial specialization for CirQue is not difficult and is left as an exercise for the

reader (hints: simply change int into Data in the CirQue<vector<int>> specialization of the

previous section). Remember to prefix the type iterator by typename (as in typedef typename

DataVect::iterator iterator) (as discussed in section 22.2.1).

In the next subsections we’ll concentrate on specializing class template non-type template parameters.

These partial specializations are now illustrated using some simple concepts defined in matrix algebra,

a branch of linear algebra.

22.4.1 Intermezzo: some simple matrix algebraic concepts

In this section some simple matrix algebraic terms are introduced. These terms are used in the next

sections to illustrate and discuss partial specializations of class templates. Readers proficient in matrix

algebra may skip this section without loss of continuity.

A matrix is commonly thought of as a table of some rows and columns, filled with numbers. Immediately

we recognize an opening for using templates: the numbers might be plain double values, but they could

also be complex numbers, for which our complex container (cf. section 12.5) might prove useful. Our

class template is therefore provided with a DataType template type parameter. It is specified when a

matrix is constructed. Some simple matrices using double values, are:

1 0 0 An identity matrix,

0 1 0 (a 3 x 3 matrix).

0 0 1

1.2 0 0 0 A rectangular matrix,



1 2 4 8 A matrix of one row

(a 1 x 4 matrix), also known as a

`row vector' of 4 elements.

(column vectors are analogously defined)

Various operations are defined on matrices. They may, for example be added, subtracted or multi-

plied. Here we will not focus on these operations. Rather, we concentrate on some simple operations:

computing marginals and sums.

Marginals are the sums of row elements or the sums of column elements of a matrix. These two kinds

of marginals are also known as, respectively, row marginals and column marginals.

• Row marginals are obtained by adding, for each row, all the row’s elements and putting these

(Rows) sums in corresponding elements of a (column) vector of Rows elements.

• Column marginals are obtained by adding, for each column, all the column’s elements and putting

these (Columns) sums in corresponding elements of a (row) vector of Columns elements.

• The sum of all elements of a matrix can of course be computed as the sum of the elements of one

of its marginals.

The following example shows a matrix, its marginals, and the sum of its values:

-------------------------------------

row

matrix marginals

---------

1 2 3 6

4 5 6 15

---------

column 5 7 9 21 (sum)

marginals

-------------------------------------

22.4.2 The Matrix class template

We’ll start out by introducing a class template defining a matrix. Having defined this class template

we’ll continue with defining several specializations.

Since matrices consist of well defined numbers of rows and columns (the dimensions of the matrix), that

normally do not change when matrices are used, we might consider specifying their values as template

non-type parameters. The DataType = double will be used in the majority of cases. Therefore,

double can be selected as the template’s default type argument. Since it’s a sensible default, the

DataType template type parameter is used last in the template type parameter list.

Our template class Matrix begins its life as:

template <size_t Rows, size_t Columns, typename DataType = double>

class Matrix

...

What do we want our class template to offer?

• It needs a place to store its matrix elements. This can be defined as an array of ‘Rows’ rows each

containing ‘Columns’ elements of type DataType. It can be an array, rather than a pointer, since



matrix), as well as a vector of Row elements (a column of the matrix) is often used, the class could

use typedefs to represent them. The class interface’s initial section thus contains:

typedef Matrix<1, Columns, DataType> MatrixRow;

typedef Matrix<Rows, 1, DataType> MatrixColumn;

MatrixRow d_matrix[Rows];

• It should offer constructors: a default constructor and (e.g.,) a constructor initializing the matrix

from a stream. A copy or move constructor is not required as the class does not use pointers.

Likewise, no overloaded assignment operator or destructor is required. Implementations:

template <size_t Rows, size_t Columns, typename DataType>

Matrix<Rows, Columns, DataType>::Matrix()

{

std::fill(d_matrix, d_matrix + Rows, MatrixRow());

}

template <size_t Rows, size_t Columns, typename DataType>

Matrix<Rows, Columns, DataType>::Matrix(std::istream &str)

{

for (size_t row = 0; row < Rows; row++)

for (size_t col = 0; col < Columns; col++)

str >> d_matrix[row][col];

}

• The class’s operator[] member (and its const variant) only handles the first index, returning

a reference to a complete MatrixRow. How elements in a MatrixRow can be retrieved is shortly

covered. To keep the example simple, no array bound check has been implemented:

template <size_t Rows, size_t Columns, typename DataType>

Matrix<1, Columns, DataType>

&Matrix<Rows, Columns, DataType>::operator[](size_t idx)

{

return d_matrix[idx];

}

• Now we get to the interesting parts: computing marginals and the sum of all elements in a

Matrix. We’ll define the type MatrixColumn as the type containing the row marginals of a

matrix, and the type MatrixRow as the type containing the column marginals of a matrix.

There is also the sum of all the elements of a matrix. This sum of all the elements of a matrix is

a number that itself can be thought of as a 1 x 1 matrix.

Marginals can be considered as special forms of matrices. To represent these marginals we can

construct partial specializations defining the class templates MatrixRow and MatrixColumn ob-

jects; and we construct a partial specialization handling 1 x 1 matrices. These partial special-

izations are used to compute marginals and the sum of all the elements of a matrix.

Before concentrating on these partial specializations themselves we’ll use them here to implement

the members computing the marginals and the sum of all elements of a matrix:

template <size_t Rows, size_t Columns, typename DataType>

Matrix<1, Columns, DataType>

Matrix<Rows, Columns, DataType>::columnMarginals() const

{

return MatrixRow(*this);

}

template <size_t Rows, size_t Columns, typename DataType>

Matrix<Rows, 1, DataType>



{

return MatrixColumn(*this);

}

template <size_t Rows, size_t Columns, typename DataType>

DataType Matrix<Rows, Columns, DataType>::sum() const

{

return rowMarginals().sum();

}

22.4.3 The MatrixRow partial specialization

Class template partial specializations can be defined for any (subset) of template parameters. They can

be defined for template type parameters and for template non-type parameters alike. Our first partial

specialization defines a row of a generic Matrix, mainly (but not only) used for the construction of

column marginals. Here is how such a partial specialization is designed:

• The partial specialization starts with a template header defining all template parameters that

are not specialized in the partial specialization. This template header cannot specify any defaults

(like DataType = double) since defaults were already specified by the generic class template

definition. The specialization must follow the definition of the generic class template’s definition,

or the compiler complains that it doesn’t know what class is being specialized. Following the

template header, the class’s interface starts. It’s a class template (partial) specialization so the

class name must be followed by a template argument list specifying the template arguments

used by the partial specialization. The arguments specify explicit types or values for some of

the template’s parameters. Remaining types are simply copied from the class template partial

specialization’s template parameter list. E.g., the MatrixRow specialization specifies 1 for the

generic class template’s Rows non-type parameter (as we’re talking here about a single row). Both

Columns and DataType remain to be specified. The MatrixRow partial specialization therefore

starts as follows:

template <size_t Columns, typename DataType> // no default allowed

class Matrix<1, Columns, DataType>

• A MatrixRow holds the data of a single row. So it needs a data member storing Columns values

of type DataType. Since Columns is a constant value, the d_row data member can be defined as

an array:

DataType d_column[Columns];

• The class template partial specialization’s constructors require some attention. The default con-

structor is simple. It merely initializes the MatrixRow’s data elements using DataType’s default

constructor:

template <size_t Columns, typename DataType>

Matrix<1, Columns, DataType>::Matrix()

{

std::fill(d_column, d_column + Columns, DataType());

}

Another constructor is needed initializing a MatrixRow object with the column marginals of a

generic Matrix object. This requires us to provide the constructor with a non-specialized Matrix

parameter.

The rule of thumb here is to define a member template that allows us to keep the general nature

of the parameter. The generic Matrix template requires three template parameters. Two of these

were already provided by the template specialization. The third parameter is mentioned in the



generic matrix it is simply called Rows.

Here then is the implementation of the second constructor, initializing the MatrixRow’s data with

the column marginals of a generic Matrix object:

template <size_t Columns, typename DataType>

template <size_t Rows>

Matrix<1, Columns, DataType>::Matrix(

Matrix<Rows, Columns, DataType> const &matrix)

{

std::fill(d_column, d_column + Columns, DataType());

for (size_t col = 0; col < Columns; col++)

for (size_t row = 0; row < Rows; row++)

d_column[col] += matrix[row][col];

}

The constructor’s parameter is a reference to a Matrix template using the additional Row tem-

plate parameter as well as the template parameters of the partial specialization.

• We don’t really require additional members to satisfy our current needs. To access the data el-

ements of the MatrixRow an overloaded operator[]() is of course useful. Again, the const

variant can be implemented like the non-const variant. Here is its implementation:

template <size_t Columns, typename DataType>

DataType &Matrix<1, Columns, DataType>::operator[](size_t idx)

{

return d_column[idx];

}

Now that we have defined the generic Matrix class and the partial specialization defining a single

row the compiler selects the row’s specialization whenever a Matrix is defined using Row = 1. For

example:

Matrix<4, 6> matrix; // generic Matrix template is used

Matrix<1, 6> row; // partial specialization is used

22.4.4 The MatrixColumn partial specialization

The partial specialization for a MatrixColumn is constructed similarly. Let’s present its high-

lights (the full Matrix class template definition as well as all its specializations are provided in the

cplusplus.yo.zip archive (that can be obtained from the C++ Annotations’ Gitlab1 website) in the

file yo/classtemplates/examples/matrix.h):

• The class template partial specialization once again starts with a template header. Now the class

interface specifies a fixed value for the second template parameter of the generic class template.

This illustrates that we can construct partial specializations for every single template parameter;

not just for the first or the last:

template <size_t Rows, typename DataType>

class Matrix<Rows, 1, DataType>

• Its constructors are implemented completely analogously to the way the MatrixRow constructors

were implemented. Their implementations are left as an exercise to the reader (and they can be

found in matrix.h).

1https://fbb-git.gitlab.io/cppannotations/



vector. It’s simply implemented using the accumulate generic algorithm:

template <size_t Rows, typename DataType>

DataType Matrix<Rows, 1, DataType>::sum()

{

return std::accumulate(d_row, d_row + Rows, DataType());

}

22.4.5 The 1x1 matrix: avoid ambiguity

The reader might wonder what happens if we define the following matrix:

Matrix<1, 1> cell;

Is this a MatrixRow or a MatrixColumn specialization? The answer is: neither.

It’s ambiguous, precisely because both the columns and the rows could be used with a (different) tem-

plate partial specialization. If such a Matrix is actually required, yet another specialized template

must be designed.

Since this template specialization can be useful to obtain the sum of the elements of a Matrix, it’s

covered here as well.

• This class template partial specialization also needs a template header, this time only specifying

DataType. The class definition specifies two fixed values: 1 for the number of rows and 1 for the

number of columns:

template <typename DataType>

class Matrix<1, 1, DataType>

• The specialization defines the usual batch of constructors. Constructors expecting a more generic

Matrix type are again implemented as member templates. For example:

template <typename DataType>

template <size_t Rows, size_t Columns>

Matrix<1, 1, DataType>::Matrix(

Matrix<Rows, Columns, DataType> const &matrix)

:

d_cell(matrix.rowMarginals().sum())

{}

template <typename DataType>

template <size_t Rows>

Matrix<1, 1, DataType>::Matrix(Matrix<Rows, 1, DataType> const &matrix)

:

d_cell(matrix.sum())

{}

• Since Matrix<1, 1> is basically a wrapper around a DataType value, we need members to

access that latter value. A type conversion operator might be useful, but we also defined a get

member to obtain the value if the conversion operator isn’t used by the compiler (which happens

when the compiler is given a choice, see section 11.3). Here are the accessors (leaving out their

const variants):

template <typename DataType>

Matrix<1, 1, DataType>::operator DataType &()

{



}

template <typename DataType>

DataType &Matrix<1, 1, DataType>::get()

{

return d_cell;

}

Finally, the main function shown below illustrates how the Matrix class template and its partial spe-

cializations can be used:

#include <iostream>

#include "matrix.h"

using namespace std;

int main(int argc, char **argv)

{

Matrix<3, 2> matrix(cin);

Matrix<1, 2> colMargins(matrix);

cout << "Column marginals:\n";

cout << colMargins[0] << " " << colMargins[1] << '\n';

Matrix<3, 1> rowMargins(matrix);

cout << "Row marginals:\n";

for (size_t idx = 0; idx < 3; idx++)

cout << rowMargins[idx] << '\n';

cout << "Sum total: " << Matrix<1, 1>(matrix) << '\n';

}

/*
Generated output from input: 1 2 3 4 5 6

Column marginals:

9 12

Row marginals:

3

7

11

Sum total: 21

*/

22.5 Variadic templates

Up to this point we’ve encountered templates defining a fixed number of template parameters. However,

templates may also defined as variadic templates, allowing any number of arguments to be passed to

their instantiations.

Variadic templates are defined for function templates and for class templates. Variadic templates allow

us to specify an arbitrary number of template arguments of any type.

Variadic templates were added to the language to prevent us from having to define many overloaded

templates and to be able to create type safe variadic functions.

Although C (and C++) support variadic functions, their use has always been deprecated in C++ as those

functions are notoriously type-unsafe. Variadic function templates can be used to process objects that

until now couldn’t be processed properly by C-style variadic functions.



name). A variadic class template Variadic could be declared as follows:

template<typename ...Params> class Variadic;

Assuming the class template’s definition is available then this template can be instantiated using any

number of template arguments. Example:

class Variadic<

int,

std::vector<int>,

std::map<std::string, std::vector<int>>

> v1;

The template argument list of a variadic template can also be empty. Example:

class Variadic<> empty;

If this is considered undesirable using an empty template argument list can be prevented by providing

one or more fixed parameters. Example:

template<typename First, typename ...Rest>

class tuple;

C’s function printf is a well-known example of a type-unsafe function. It is turned into a type-safe

function when it is implemented as a variadic function template. Not only does this turn the function

into a type-safe function but it is also automatically extended to accept any type that can be defined by

C++. Here is a possible declaration of a variadic function template printcpp:

template<typename ...Params>

void printcpp(std::string const &strFormat, Params ...parameters);

The ellipsis (...) used in the declaration serves two purposes:

• In the template header it is written to the left of a template parameter name where it declares a

parameter pack. A parameter pack allows us to specify any number of template arguments when

instantiating the template. Parameter packs can be used to bind type and non-type template

arguments to template parameters.

• In a template implementation it appears to the right of the template pack’s parameter name.

In that case it represents a series of template arguments that are subsequently matched with a

function parameter that in turn is provided to the right of the ellipsis. Here the ellipsis is known

as the unpack operator as it ‘unpacks’ a series of arguments in a function’s argument list thereby

implicitly defining its parameters.

C++ offers no syntax to access the individual template arguments directly. However, the arguments

can be visited recursively. An example is provided in the next section. The number of arguments is

determined using a new invocation of the sizeof operator:

template<typename ...Params>

struct StructName

{

enum: size_t { s_size = sizeof ...(Params) };

};

// StructName<int, char>::s_size -- initialized to 2



The arguments associated with a variadic template parameter are not directly available to the imple-

mentation of a function or class template. We have to resort to other means to obtain them.

By defining a partial specialization of a variadic template, explicitly defining an additional template

type parameter, we can associate the first template argument of a parameter pack with this additional

(first) type parameter. The setup of such a variadic function template (e.g., printcpp, see the previous

section) is as follows:

• The printcpp function receives at least a format string. Following the format string any number

of additional arguments may be specified.

• If there are no arguments trailing the format string then there is no need to use a function tem-

plate. An overloaded (non-template) function is defined to handle this situation.

• A variadic function template handles all remaining situations. In this case there is always at

least one argument trailing the format string. That argument’s type is matched with the variadic

template function’s first (ordinary) template type parameter First. The types of any remaining

arguments are bound to the template function’s second template parameter, which is a parameter

pack.

• The variadic function template processes the argument trailing the format string. Then it recur-

sively calls itself passing the format string and the parameter pack to the recursive call

• If the recursive call merely receives the format string the overloaded (non-template) function is

called (cf. section 21.14) ending the recursion. Otherwise the parameter pack’s first argument is

matched with the recursive call’s First parameter. As this reduces the size of the recursive call’s

parameter pack the recursion eventually stops.

The overloaded non-template function prints the remainder of the format string, en passant checking

for any left-over format specifications:

void printcpp(string const &format)

{

size_t left = 0;

size_t right = 0;

while (true)

{

if ((right = format.find('%', right)) == string::npos)

break;

if (format.find("%%", right) != right)

throw std::runtime_error(

"printcpp: missing arguments");

++right;

cout << format.substr(left, right - left);

left = ++right;

}

cout << format.substr(left);

}

Here is the variadic function template’s implementation:

template<typename First, typename ...Params>

void printcpp(std::string const &format, First value, Params ...params)

{

size_t left = 0;

size_t right = 0;



{

if ((right = format.find('%', right)) == string::npos) // 1

throw std::runtime_error("printcpp: too many arguments");

if (format.find("%%", right) != right) // 2

break;

++right;

cout << format.substr(left, right - left);

left = ++right;

}

cout << format.substr(left, right - left) << value;

printcpp(format.substr(right + 1), params...);

}

• At 1 the format string is searched for a parameter specification %. If none is found then the

function is called with too many arguments and it throws an exception;

• At 2 it verifies that it has not encountered %%. If only a single % has been seen the while-loop

ends, the format string is inserted into cout up to the % followed by value, and the recursive call

receives the remaing part of the format string as well as the remaining parameter pack;

• If %% was seen the format string is inserted up to the second %, which is ignored, and processing

of the format string continues beyond the %%.

Make sure that the overloaded function is at least declared before the compiler processes the function

template’s definition or it won’t call the overloaded function printcpp when compiling the function

template.

Different from C’s printf function printcpp only recognizes % and %% as format specifiers. The above

implementation does not recognize, e.g., field widths. Type specifiers like %c and %x are of course not

needed as ostream’s insertion operator is aware of the types of the arguments that are inserted into

the ostream. Extending the format specifiers so that field widths etc. are recognized by this printcpp

implementation is left as an exercise to the reader. Here is an example showing how printcpp can be

called:

printcpp("Hello % with %%main%% called with % args"

" and a string showing %\n",

"world", argc, "A String"s);

22.5.2 Perfect forwarding

Consider string’s member insert. String::insert has several overloaded implementations. It

can be used to insert text (completely or partially) provided by a string or by a char const ∗ argu-

ment; to insert single characters a specified number of times; iterators can be used to specify the range

of characters to be inserted; etc., etc.. All in all, string offers as many as five overloaded insert

members.

Assume the existence of a class Inserter that is used to insert information into all kinds of objects.

Such a class could have a string data member into which information can be inserted. Inserter’s

interface only partially has to copy string’s interface to realize this: only string::insert’s inter-

faces must be duplicated. The members duplicating interfaces often contain one statement (calling the

appropriate member function of the object’s data member) and are for this reason often implemented

in-line. Such wrapper functions merely forward their parameters to the matching member functions of

the object’s data member.

Another example is found in factory functions that also frequently forward their parameters to the

constructors of objects that they return.



through rvalue references and variadic templates. With perfect forwarding the arguments passed to

functions are ‘perfectly forwarded’ to nested functions. Forwarding is called perfect as the arguments

are forwarded in a type-safe way. To use perfect forwarding nested functions must define parameter

lists matching the forwarding parameters both in types and number.

Perfect forwarding is easily implemented:

• The forwarding function is defined as a template

(usually a variadic template, but single argument forwarding is also possible. To define and

forward a single argument omit the ellipsis from the following code);

• The forwarding function’s parameter list is an rvalue reference parameter pack (e.g., Params

&&...params);

• std::forward is used to forward the forwarding function’s arguments to the nested function,

keeping track of their types and number. Before forward can be used the <utility> header

file must be included.

• The nested function is called using this stanza to specify its arguments:

std::forward<Params>(params)....

In the next example perfect forwarding is used to implement one member Inserter::insert that

can be used to call any of the five overloaded string::insert members. The insert function

that’s actually called now simply depends on the types and number of arguments that are passed to

Inserter::insert:

class Inserter

{

std::string d_str; // somehow initialized

public:

// constructors not implemented,

// but see below

Inserter();

Inserter(std::string const &str);

Inserter(Inserter const &other);

Inserter(Inserter &&other);

template<typename ...Params>

void insert(Params &&...params)

{

d_str.insert(std::forward<Params>(params)...);

}

};

A factory function returning an Inserter can also easily be implemented using perfect forwarding.

Rather than defining four overloaded factory functions a single one now suffices. By providing the fac-

tory function with an additional template type parameter specifying the class of the object to construct

the factory function is turned into a completely general factory function:

template <typename Class, typename ...Params>

Class factory(Params &&...params)

{

return Class(std::forward<Params>(params)...);

}

Here are some examples showing its use:

Inserter inserter(factory<Inserter>("hello"));



Inserter copy(factory<Inserter>(inserter));

The function std::forward is provided by the standard library. It performs no magic, but merely

returns params as a nameless object. That way it acts like std::move that also removes the name

from an object, returning it as a nameless object. The unpack operator has nothing to do with the use

of forward but merely tells the compiler to apply forward to each of the arguments in turn. Thus it

behaves similarly to C’s ellipsis operator used by variadic functions.

Perfect forwarding was introduced in section 21.4.5: a template function defining a Type &&param,

with Type being a template type parameter converts Type && to Tp & if the function is called with

an argument of type Tp &. Otherwise it binds Type to Tp, with param being defined as Tp &&param.

As a result an lvalue argument binds to an lvalue-type (Tp &), while an rvalue argument binds to an

rvalue-type (Tp &&).

The function std::forward merely passes the argument (and its type) on to the called function or

object. Here is its simplified implementation:

typedef <type T>

T &&forward(T &&a)

{

return a;

}

Since T && turns into an lvalue reference when forward is called with an lvalue (or lvalue reference)

and remains an rvalue reference if forward is called with an rvalue reference, and since forward

(like std::move) anonymizes the variable passed as argument to forward, the argument value is

forwarded while passing its type from the function’s parameter to the called function’s argument.

This is called perfect forwarding as the nested function can only be called if the types of the arguments

that were used when calling the ‘outer’ function (e.g., factory) exactly match the types of the param-

eters of the nested function (e.g., Class’s constructor). Perfect forwarding therefore is a tool to realize

type safety.

A cosmetic improvement to forward requires users of forward to specify the type to use rather than

to have the compiler deduce the type as a result of the function template parameter type deduction’s

process. This is realized by a small support struct template:

template <typename T>

struct identity

{

typedef T type;

};

This struct merely defines identity::type as T, but as it is a struct it must be specified explicitly.

It cannot be determined from the function’s argument itself. The subtle modification to the above

implementation of forward thus becomes (cf. section 22.2.1 for an explanation of the use of typename):

typedef <type T>

T &&forward(typename identity<T>::type &&arg)

{

return arg;

}

Now forward must explicitly state arg’s type, as in:

std::forward<Params>(params)



of parameter packs. Because of the special way rvalue references to template type parameters are

treated (cf. section 21.4.5) they can profitably be used to forward individual function parameters as

well. Here is an example showing how an argument to a function can be forwarded from a template to

a function that is itself passed to the template as a pointer to an (unspecified) function:

template<typename Fun, typename ArgType>

void caller(Fun fun, ArgType &&arg)

{

fun(std::forward<ArgType>(arg));

}

A function display(ostream &out) and increment(int &x) may now both be called through

caller. Example:

caller(display, cout);

int x = 0;

caller(increment, x);

22.5.3 The unpack operator

The unpack operator is used to obtain template arguments in many situations. No mechanism other

than recursion (as shown in section 22.5.1) is available to obtain the individual types and values of a

variadic template.

The unpack operator can also be used to define template classes that are derived from any number of

base classes. Here is how it’s done:

template <typename ...BaseClasses>

class Combi: public BaseClasses... // derive from base classes

{

public:

// specify base class objects

// to its constructor using

// perfect forwarding

Combi(BaseClasses &&...baseClasses)

:

BaseClasses(baseClasses)... // use base class initializers

{} // for each of the base

}; // classes

This allows us to define classes that combine the features of any number of other classes. If the class

Combi is derived of classes A, B, and C then Combi is-an A, B, and C. It should of course be given

a virtual destructor. A Combi object can be passed to functions expecting pointers or references to

any of its base class type objects. Here is an example defining Combi as a class derived from a vector

of complex numbers, a string and a pair of ints and doubles (using uniform intializers in a sequence

matching the sequence of the types specified for the used Combi type):

typedef Combi<

vector<complex<double>>, string, pair<int, double>

> MultiTypes;

MultiTypes mt = { {3.5, 4}, "mt", {1950, 1.72} };

The same construction can also be used to define template data members supporting variadic type lists

such as tuples (cf. section 22.6). Such a class could be designed along these lines:



struct Multi

{

std::tuple<Types...> d_tup; // define tuple for Types types

Multi(Types ...types)

: // initialize d_tup from Multi's

d_tup(std::forward<Types>(types)...) // arguments

{}

};

The ellipses that are used when forwarding parameter packs are essential. The compiler considers

their omission an error. In the following struct definition it was the intent of the programmer to

pass a parameter pack on to a nested object construction but ellipses were omitted while specifying the

template parameters, resulting in a parameter packs not expanded with ‘...’ error message:

template <int size, typename ...List>

struct Call

{

Call(List &&...list)

{

Call<size - 1, List &&> call(std::forward<List>(list)...);

}

};

Instead of the above definition of the call object the programmer should have used:

Call<size - 1, List &&...> call(std::forward<List>(list)...);

22.5.4 Non-type variadic templates

Variadic templates not necessarily define template types. Non-types can also be used with variadic

templates. The following function template accepts any series of int values, forwarding these values

to a class template. The class template defines an enum value resultwhich is returned by the function,

unless no int values were specified, in which case 0 is returned.

template <int ... Ints>

int forwarder()

{

return computer<Ints ...>::result; // forwarding the Ints

}

template <> // specialization if no ints are provided

int forwarder<>()

{

return 0;

}

// use as:

cout << forwarder<1, 2, 3>() << ' ' << forwarder<>() << '\n';

The sizeof operator can be used for variadic non-type parameters as well: sizeof...(Ints) would

return 3 when used in the first function template for forwarder<1, 2, 3>().

Variadic non-type parameters are used to define variadic literal operators, introduced in section 23.3.



Functions accepting variable numbers of arguments (of possibly varying types) are commonly handled

using variadic templates. Implementations usually process the first argument, passing the remaining

arguments to an overloaded function, which is defined by the compiler for these remaining argument

types. One of the overloaded versions, accepting zero or one argument, ends the compiler’s recursive

implementations.

Sometimes the arguments must be combined using binary operators (like arg1 + arg2 + ...). In

those cases a folding expression can be used instead of combining the arguments using a traditional

variadic template.

All binary operators (including the assignment, compound assignment and comma operators) can be

used in folding expressions.

• A unary left fold is a fold expression that looks like this:

(... op expr)

where op is the binary operator that is used in the fold expression, and expr is an expression

formulated in terms of the function parameter representing the variadic arguments. Here is an

example:

template <typename ReturnType, typename ...Params>

ReturnType sum(Params ...params)

{

return (... + params);

}

If a more elaborate expression than just the designator of the variadic arguments is used then the

expression must be clearly demarcated, e.g., by surrounding in with parentheses:

return (... + (2 * params));

In a unary fold expression all the function’s arguments matching the types of the parameter pack

are combined using specified operator. E.g.,

sum<int>(1, 2, 3);

returns 6.

There are no special restrictions that apply to function templates using fold expressions. Directly

returning the result of the fold expression is OK, but the result could also be used in another expression

(maybe inserting its value into an ostream), or when initializing a variable or object. Also, the types of

the arguments do not have to be identical: the only requirement is that the fully expanded expression

(in the example: 1 + 2 + 3 is a valid expression).

• A unary right fold is a fold expression that results in the same expression as its unary left fold

alternative, but swaps the ellipses and the params identifier:

(expr op ...)

Together, unary left folds and unary right folds are called unary folds.

• A binary fold is a fold expression of the following form:

(expr1 op ... op expr2)



identifier. The other one can be any other valid expression (as with unary folds, both expressions

must be clearly demarcated). In addition, both operators must be identical.

If a binary operator has been overloaded, it will be used where applicable. A well-known example is of

course operator<< as defined for std::ostream objects. A binary fold defined for operator<< will

not only do shifts, but can also be used to insert a series of arguments into cout:

template <class ...Pack>

ostream &out2(ostream &out, Pack &&...args)

{

return (out << ... << args);

};

Here is another interesting example: a fold expression for the comma operator:

verb(

template <class ...Pack>

void call(Pack &&...args)

{

... , args());

};

This unary fold calls each of its arguments in sequence. Arguments could be function addresses, func-

tion object or lambda functions. Note the use of the rvalue reference when defining the variadic pa-

rameter list which prevents copying of function objects that might be passed to call. Assuming that

struct Functor defines a functor, and that void function() has been defined, then call could be

called this way:

Functor functor;

call(functor, function, functor,

[]()

{

// ...

}

);

Finally: don’t forget the parentheses surrounding fold expressions: they are required!

22.6 Tuples

C++ offers a generalized pair container: the tuple, covered in this section. Before tuples can be used

the header file <tuple> must be included.

Whereas std::pair containers have limited functionality and only support two members, tuples have

slightly more functionality and may contain an unlimited number of different data types. In that

respect a tuple can be considered the ‘template’s answer to C’s struct’.

A tuple’s generic declaration (and definition) uses the variadic template notation:

template <class ...Types>

class tuple;

Here is an example of its use:

typedef std::tuple<int, double &, std::string, char const *> tuple_idsc;



double pi = 3.14;

tuple_idsc idsc(59, pi, "hello", "fixed");

// access a field:

std::get<2>(idsc) = "hello world";

The std::get<idx>(tupleObject) function template returns a reference to the idxth (zero based)

field of the tuple tupleObject. The index is specified as the function template’s non-type template

argument.

Type-based tuple addressing () can be used for tuple types used once in a tuple definition (if the same

type is used repeatedly referring to that type introduces an ambiguity). The next example shows how

to refer to the elements in the above example by type:

get<int>(idsc) // 59

get<double &>(idsc) // 3.14

get<string>(idsc) // "hello"s

get<char const *>(idsc) // "fixed"

Tuples may be constructed without specifying initial values. Primitive types are initialized to zeroes;

class type fields are initialized by their default constructors. Be aware that in some situations the

construction of a tuple may succeed but its use may fail. Consider:

tuple<int &> empty;

cout << get<0>(empty);

Here the tuple empty cannot be used as its int & field is an undefined reference. However, empty’s

construction succeeds.

Tuples may be assigned to each other if their type lists are identical; if supported by their constituent

types copy constructors are available as well. Copy construction and assignment is also available

if a right-hand type can be converted to its matching left-hand type or if the left-hand type can be

constructed from the matching right-hand type. Tuples (matching in number and (convertible) types)

can be compared using relational operators as long as their constituent types support comparisons. In

this respect tuples are like pairs.

Tuples offer the following static elements (using compile-time initialization):

• std::tuple_size<Tuple>::value returns the number of types defined for the tuple type

Tuple. Example:

cout << tuple_size<tuple_idsc>::value << '\n'; // displays: 4

• std::tuple_element<idx, Tuple>::type returns the type of element idx of Tuple. Exam-

ple:

tuple_element<2, tuple_idsc>::type text; // defines std::string text

The unpack operator can also be used to forward the arguments of a constructor to a tuple data member.

Consider a class Wrapper that is defined as a variadic template:

template <typename ...Params>

class Wrapper

{

...

public:

Wrapper(Params &&...params);

};



are used when initializing an object of the class Wrapper using perfect forwarding. Comparable to

the way a class may inherit from its template types (cf. section 22.5.3) it may forward its types and

constructor arguments to its tuple data member:

template <typename ...Params>

class Wrapper

{

std::tuple<Params...> d_tuple; // same types as used for

// Wrapper itself

public:

Wrapper(Params &&...params)

: // initialize d_tuple with

// Wrapper's arguments

d_tuple(std::forward<Params>(params)...)

{}

};

22.6.1 Tuples and structured bindings

Structured bindings were introduced in section 3.3.7.1. That section concentrated on associating struc-

tured binding declarations with data members of structs, returned as POD values.

Structured bindings, however, can also be used in a much more generic way, by associating them with

tuples. By doing so structured bindings don’t have to be associated with data members, but they may

hold values returned by class members.

The association between structured binding declarations and tuples is very strong. In fact it is so strong

that the standard explicitly allows users to define tuple specializations, even though tuple specializa-

tions live in the standard namespace, which otherwise is off-limits to programmers (except, of course,

when using its features).

In order to allow structured bindings to be associated with class members the following steps must be

performed:

• The class must be provided with overloaded get member templates, using int (or another in-

tegral type) specializations, where each specialization returns a class element (e.g., a member

function).

The availability of if constexpr clauses makes it easy to combine all these specializations into

a single member template.

Alternatively, a function template defined outside of the class can be defined, which allows asso-

ciating structured bindings with class members even if you’re not the class’s author. In this case

the function defines a ClassType [cv] &object parameter.

• A specialization of std::tuple_size<Type> is provided, defining static size_t const

value as the number of index values that can be specified with the get<idx> function. Al-

though defining entities in the standard namespace is normally off limits to ordinary programs,

in this special case such specializations are allowed by the b(C++) standard.

• A specialization of std::tuple_element<idx, Type> is provided, defining type as the type

matching the return type of get<idx>.

The flexibility that is achieved by being able to use structured bindings this way is enormous. As long

as a class offers members returning values those members can be associated with structured binding

variables. The member functions don’t even have to return values that are immediately available (e.g,

as data members accessors) but their return values could also be computed on the spot, by simply

referring to the corresponding structured binding variable.



these classes:

class Euclid

{

size_t d_x;

size_t d_y;

public:

Euclid(size_t x = 0, size_t y = 0);

double distance() const; // sqrt(d_x * d_x + d_y * d_y)

};

class Data

{

std::string d_text{ "hello from Data" };

Euclid d_euclid;

public:

void setXY(size_t x, size_t y);

Euclid factory() const;

double distance() const;

std::string const &text() const;

};

The first step towards allowing structured bindings for Data consists of defining a (member) termplate

get. If Data is our own class we can add a member template get. Alternatively, if we’re only interested

in accessing Data’s public members we could derive a class DataGet from Data, and provide that class

with the get mmber template. Yet another possibility is to define a free get function template. The

get function must return whatever we’re interested in. To make the appropriate selection we use an

integral type (int, size_t, ...) selector value, and the function template thus only has a non-type

template parameter. Rather than defining several specializations using the if constexpr clause is

advised, as it greatly simplifies the function’s definition.

Our get function defines selector 0 for factory, selector 1 for distance and selector 2 for text.

The distance member simply returns d_euclid.distance(), and Euclid::distance is run-time

evaluated using its d_x and d_y values. Thus, distance is an example of a function that will be

run-time evaluated when we’re referring, later on, to the third structured bindings variable.

Here’s the definition of the member template get:

template <size_t Nr>

auto get() const

{

if constexpr (Nr == 0)

return factory();

if constexpr (Nr == 1)

return distance();

if constexpr (Nr == 2)

return text();

static_assert(Nr >= 0 and Nr < 3);

}

This function is still suboptimal. Consider its specialization for value 2: it returns Data::text(). As

auto merely inspects the returned data type, get<2>() returns a std::string, rather than (text’s)

return type, which is a std::string const &. To use the return types that are actually returned by



auto:

template <size_t Nr>

decltype(auto) get() const

...

When defining get as a free function template it must be provided with a parameter Data const

&data (or Data &data if members are used that may modify data’s data members), returning the

parameter’s member functions. E.g.,

// get as a free function template:

template <size_t Nr>

decltype(auto) get(Data const &data)

{

if constexpr (Nr == 0)

return data.factory();

if constexpr (Nr == 1)

return data.distance();

... // (etc)

}

Now that step 1 has been completed, we turn our attention to the std::tuple specializations.

These specializations are defined inside the std namespace (using namespace std { ... } or

std::tuple...).

The specialization of std::tuple_size for Data defines static size_t const value as the num-

ber of index values that can be specified with the get<idx> function:

template<>

struct std::tuple_size<Data>

{

static size_t const value = 3;

};

The specialization of std::tuple_element for Data returns the types matching the various return

types of the get member template. Its implementation also provides a nice example where declval is

used: the return type of the get<Nr> specialization must be determined. But to obtain that return type

a Data object is required, which isn’t available by just mentioning Data in tupe_element’s special-

ization. However, declval<Data>() defines an rvalue reference, which can be passed to get<Nr>.

But the function’s return value isn’t required, so the object doesn’t have to be constructed. Only its

return type is needed. Hence, by surrounding the get<Nr> call by decltype no object is constructed,

and merely its return type is used:

template<size_t Nr>

struct std::tuple_element<Nr, Data>

{

using type = decltype( declval<Data>().get<Nr>() );

// if get<Nr> is a free function use:

// decltype( get<Nr>( declval<Data>() ) );

};

As tuple_size and tuple_element are directly associated with the class Data their definitions

should be provided in Data’s header file, below Data’s class interface.



range-based for-loop:

int main()

{

Data data;

auto &[ ef, dist, txt ] = data;

// or maybe:

// auto &&[ ef, dist, txt ] = Data{};

cout << dist << ' ' << txt << '\n';

Data array[5];

for (auto &[ ef, dist, txt]: array)

cout << "for: " << dist << ' ' << txt << '\n';

}

22.7 Computing the return type of function objects

As amply illustrated in chapter 19 function objects play an important role with generic algorithms.

Like generic algorithms themselves, function objects can be generically defined as members of class

templates. If the function call operators (operator()) of such classes define parameters then the

types of those parameters may also be abstracted by defining the function call operators themselves as

member templates. Example:

template <typename Class>

class Filter

{

Class obj;

public:

template <typename Param>

Param operator()(Param const &param) const

{

return obj(param);

}

};

The template class Filter is a wrapper around Class, filtering Class’s function call operator through

its own function call operator. In the above example the return value of Class’s function call operator

is simply passed on, but any other manipulation is of course also possible.

A type that is specified as Filter’s template type argument may of course have multiple function call

operators:

struct Math

{

int operator()(int x);

double operator()(double x);

};

Math objects can now be filtered using Filter<Math> fm using Math’s first or second function call

operator, depending on the actual argument type. With fm(5) the int-version is used, with fm(12.5)

the double-version is used.

However, this scheme doesn’t work if the function call operators have different return and argument

types. Because of this the following class Convert cannot be used with Filter:



{

double operator()(int x); // int-to-double

std::string operator()(double x); // double-to-string

};

This problem can be tackled successfully by the class template

std::result_of<Functor(Typelist)>. Before using std::result_of the header file

<functional> must be included.

The result_of class template offers a typedef (type), representing the type that is returned by

Functor<TypeList>. It can be used as follows to improve the implementation of Filter:

template <typename Class>

class Filter

{

Class obj;

public:

template <typename Arg>

typename std::result_of<Class(Arg)>::type

operator()(Arg const &arg) const

{

return obj(arg);

}

};

Using this definition, Filter<Convert> fc can be constructed. Now fc(5) returns a double, while

fc(4.5) returns a std::string.

The class Convert must define the relationships between its function call operators and their return

types. Predefined function objects (like those in the standard template library) already do so, but self-

defined function objects must do this explicitly.

If a function object class defines only one function call operator it can define its return type by a

typedef. If the above class Convert would only define the first of its two function call operators

then the typedef (in the class’s public section) should be:

typedef double type;

If multiple function call operators are defined, each with its own signature and return type, then the

association between signature and return type is set up as follows (all in the class’s public section):

• define a generic struct result like this:

template <typename Signature>

struct result;

• For each function call signature define a specialization of struct result. Convert’s first func-

tion call operator gives rise to:

template <typename Class>

struct result<Class(int)>

{

typedef double type;

};

and Convert’s second function call operator to:

template <typename Class>



{

typedef std::string type;

};

• In cases where function call operators have multiple arguments the specifications should again

provide for the correct signatures. A function call operator called with an int and a double,

returning a size_t gets:

template <typename Class>

struct result<Class(int, double)>

{

typedef size_t type;

};

22.8 Instantiating class templates

Class templates are instantiated when an object of a class template is defined. When a class template

object is defined or declared its template parameters must explicitly be specified.

Template parameters are also specified when default template parameter values are specified albeit

that in that case the compiler provides the defaults (cf. section 22.4 where double is used as the

default type to use for the template’s DataType parameter). The actual values or types of template

parameters are never deduced from arguments as is done with function template parameters. So to

define a Matrix of complex-valued elements, the following syntax is used:

Matrix<3, 5, std::complex> complexMatrix;

Since the class template Matrix uses a default data type a matrix of double-valued elements can be

defined like this:

Matrix<3, 5> doubleMatrix;

A class template object may be declared using the keyword extern. For example, to declare the matrix

complexMatrix use:

extern Matrix<3, 5, std::complex> complexMatrix;

A class template declaration suffices to compile return values or parameters that are of class template

types. Example: the following source file may be compiled, although the compiler hasn’t seen the defi-

nition of the Matrix class template. Generic classes and (partial) specializations may all be declared. A

function expecting or returning a class template object, reference, or parameter automatically becomes

a function template itself. This is necessary to allow the compiler to tailor the function to the types of

various actual arguments that may be passed to the function:

#include <cstddef>

template <size_t Rows, size_t Columns, typename DataType = double>

class Matrix;

template <size_t Columns, typename DataType>

class Matrix<1, Columns, DataType>;

Matrix<1, 12> *function(Matrix<2, 18, size_t> &mat);



member functions must be known to the compiler when the template is instantiated. This does not

mean that all members of a template class are instantiated or must have been seen when a class tem-

plate object is defined. The compiler only instantiates those members that are actually used. This is

illustrated by the following simple class Demo that has two constructors and two members. When we

use one constructor and call one member in main note the sizes of the resulting object file and exe-

cutable program. Next the class definition is modified in that the unused constructor and member are

commented out. Again we compile and link the program. Now observe that these latter sizes are iden-

tical to the former sizes. There are other ways to illustrate that only used members are instantiated.

The nm program could be used. It shows the symbolic content of object files. Using nm we’ll reach the

same conclusion: only template member functions that are actually used are instantiated. Here is the

class template Demo that was used for our little experiment. In main only the first constructor and the

first member function are called and thus only these members were instantiated:

#include <iostream>

template <typename Type>

class Demo

{

Type d_data;

public:

Demo();

Demo(Type const &value);

void member1();

void member2(Type const &value);

};

template <typename Type>

Demo<Type>::Demo()

:

d_data(Type())

{}

template <typename Type>

void Demo<Type>::member1()

{

d_data += d_data;

}

// the following members should be commented out before

// compiling for the 2nd time:

template <typename Type>

Demo<Type>::Demo(Type const &value)

:

d_data(value)

{}

template <typename Type>

void Demo<Type>::member2(Type const &value)

{

d_data += value;

}

int main()

{

Demo<int> demo;

demo.member1();

}



22.9 Processing class templates and instantiations

In section 21.13 the distinction between code depending on template parameters and code not depend-

ing on template parameters was introduced. The same distinction also holds true when class templates

are defined and used.

Code not depending on template parameters is verified by the compiler when the template is defined.

If a member function in a class template uses a qsort function, then qsort does not depend on a

template parameter. Consequently, qsort must be known to the compiler when it encounters qsort’s

function call. In practice this implies that the <cstdlib> header file must have been read by the

compiler before it is able to compile the class template definition.

On the other hand, if a template defines a <typename Ret> template type parameter to parameterize

the return type of some template member function as in:

Ret member();

then the compiler may encounter member or the class to which member belongs in the following loca-

tions:

• the location where a class template object is defined. This is called the point of instantiation of

the class template object. The compiler must have read the class template’s implementation and

has performed a basic check for syntactic correctness of member functions like member. It won’t

accept a definition or declaration like Ret && ∗member, because C++ does not support functions

returning pointers to rvalue references. Furthermore, it checks whether the actual type name

that is used for instantiating the object is valid. This type name must be known to the compiler

at the object’s point of instantiation.

• the location where the template member function is used. This is called the template member

function’s point of instantiation. Here the Ret parameter must have been specified (or deduced)

and at this point member’s statements that depend on the Ret template parameter are checked

for syntactic correctness. For example, if member contains a statement like

Ret tmp(Ret(), 15);

then this is in principle a syntactically valid statement. However, when Ret = int the statement

fails to compile as int does not have a constructor expecting two int arguments. Note that this

is not a problem when the compiler instantiates an object of member’s class. At the point of

instantiation of the object its member function ‘member’ is not instantiated and so the invalid int

construction remains undetected.

22.10 Declaring friends

Friend functions are normally constructed as support (free) functions of a class that cannot be imple-

mented and declared as class members. The insertion operator for output streams is a well known

example. Friend classes are most often seen in the context of nested classes. Here the inner class de-

clares the outer class as its friend (or the other way around). Again we see a support mechanism: the

inner class is constructed to support the outer class.

Like ordinary classes, class templates may declare other functions and classes as their friends. Con-

versely, ordinary classes may declare template classes as their friends. Here too, the friend is con-

structed as a special function or class augmenting or supporting the functionality of the declaring

class. Although the friend keyword can be used by any type of class (ordinary or template) when

using class templates the following cases should be distinguished:

• A class template may declare an ordinary function or class as its friend. This is a common friend

declaration, such as the insertion operator for ostream objects.



case, the friend’s template parameters may have to be specified.

If the actual values of the friend’s template parameters must be equal to the template param-

eters of the class declaring the friend, the friend is said to be a bound friend class or function

template. In this case the template parameters of the template specifying the friend declaration

determine (bind) the values of the template parameters of the friend class or function. Bound

friends result in a one-to-one correspondence between the template’s parameters and the friend’s

template parameters.

• In the most general case a class template may declare another function template or class template

to be its friend, irrespective of the friend’s actual template arguments.

In this case an unbound friend class or function template is declared. The template parameters

of the friend class or function template remain to be specified and are not related in some pre-

defined way to the template parameters of the class declaring the friend. If a class template has

data members of various types, specified by its template parameters and another class should

be allowed direct access to these data members we want to specify any of the current template

arguments when specifying such a friend. Rather than specifying multiple bound friends, a single

generic (unbound) friend may be declared, specifying the friend’s actual template parameters only

when this is required.

• The above cases, in which a template is declared as a friend, may also be encountered when

ordinary classes are used:

– The ordinary class declaring ordinary friends has already been covered (chapter 15).

– The equivalent of bound friends occurs if an ordinary class specifies specific actual template

parameters when declaring its friend.

– The equivalent of unbound friends occurs if an ordinary class declares a generic template as

its friend.

22.10.1 Non-templates used as friends in templates

A class template may declare an ordinary function, ordinary member function or ordinary class as its

friend. Such a friend may access the class template’s private members.

Concrete classes and ordinary functions can be declared as friends, but before a single member function

of a class can be declared as a friend, the compiler must have seen the class interface declaring that

member. Let’s consider the various possibilities:

• A class template may declare an ordinary function to be its friend. It is not completely clear

why we would like to declare an ordinary function as a friend. Usually we pass an object of the

class declaring the friend to such a function. With class templates this requires us to provide the

(friend) function with a template parameter without specifying its types. As the language does

not support constructions like

void function(std::vector<Type> &vector)

unless function itself is a template, it is not immediately clear how and why such a friend

should be constructed. One reason could be to allow the function access to the class’s private

static members. In addition such friends could instantiate objects of classes that declare them as

their friends. This would allow the friend functions direct access to such object’s private members.

For example:

template <typename Type>

class Storage

{

friend void basic();

static size_t s_time;

std::vector<Type> d_data;



Storage();

};

template <typename Type>

size_t Storage<Type>::s_time = 0;

template <typename Type>

Storage<Type>::Storage()

{}

void basic()

{

Storage<int>::s_time = time(0);

Storage<double> storage;

std::sort(storage.d_data.begin(), storage.d_data.end());

}

• Declaring an ordinary class to be a class template’s friend probably finds more applications. Here

the ordinary (friend) class may instantiate any kind of object of the class template. The friend

class may then access all private members of the instantiated class template:

template <typename Type>

class Composer

{

friend class Friend;

std::vector<Type> d_data;

public:

Composer();

};

class Friend

{

Composer<int> d_ints;

public:

Friend(std::istream &input);

};

inline::Friend::Friend(std::istream &input)

{

std::copy(std::istream_iterator<int>(input),

std::istream_iterator<int>(),

back_inserter(d_ints.d_data));

}

• Alternatively, just a single member function of an ordinary class may be declared as a friend.

This requires that the compiler has read the friend class’s interface before declaring the friend.

Omitting the required destructor and overloaded assignment operators, the following shows an

example of a class whose member sorter is declared as a friend of the class Composer:

template <typename Type>

class Composer;

class Friend

{

Composer<int> *d_ints;

public:

Friend(std::istream &input);

void sorter();

};

template <typename Type>



{

friend void Friend::sorter();

std::vector<Type> d_data;

public:

Composer(std::istream &input)

{

std::copy(std::istream_iterator<int>(input),

std::istream_iterator<int>(),

back_inserter(d_data));

}

};

inline Friend::Friend(std::istream &input)

:

d_ints(new Composer<int>{ input })

{}

inline void Friend::sorter()

{

std::sort(d_ints->d_data.begin(), d_ints->d_data.end());

}

In this example Friend::d_ints is a pointer member. It cannot be a Composer<int> object as

the Composer class interface hasn’t yet been seen by the compiler when it reads Friend’s class

interface. Disregarding this and defining a data member Composer<int> d_ints results in

the compiler generating the error

error: field `d_ints' has incomplete type

‘Incomplete type’, as the compiler at this points knows of the existence of the class Composer, but

as it hasn’t seen Composer’s interface it doesn’t know what size the d_ints data member has.

22.10.2 Templates instantiated for specific types as friends

With bound friend class or function templates there is a one-to-one mapping between the template

arguments of the friend templates and the template arguments of the class templates declaring them

as friends. In this case, the friends themselves are templates too. Here are the various possibilities:

• A function template is a friend of a class template. In this case we don’t experience the problems

we encountered with ordinary functions declared as friends of class templates. Since the friend

function template itself is a template it may be provided with the required template arguments

allowing it to become the declaring class’s friend. The various declarations are organized like this:

– The class template declaring the bound template friend function is defined;

– The (friend) function template is defined, now having access to all the class template’s (pri-

vate) members.

The bound template friend declaration specifies the required template arguments immediately

following the template’s function name. Without the template argument list affixed to the function

name it would remain an ordinary friend function. Here is an example showing a bound friend

to create a subset of the entries of a dictionary. For real life examples, a dedicated function object

returning !key1.find(key2) is probably more useful. For the current example, operator== is

acceptable:

template <typename Key, typename Value>

class Dictionary

{



subset<Key, Value>(Key const &key,

Dictionary<Key, Value> const &dict);

std::map<Key, Value> d_dict;

public:

Dictionary();

};

template <typename Key, typename Value>

Dictionary<Key, Value>

subset(Key const &key, Dictionary<Key, Value> const &dict)

{

Dictionary<Key, Value> ret;

std::remove_copy_if(dict.d_dict.begin(), dict.d_dict.end(),

std::inserter(ret.d_dict, ret.d_dict.begin()),

std::bind2nd(std::equal_to<Key>(), key));

return ret;

}

• By declaring a full class template as a class template’s friend, all members of the friend class may

access all private members of the class declaring the friend. As the friend class only needs to be

declared, the organization of the declaration is much easier than when function templates are

declared as friends. In the following example a class Iterator is declared as a friend of a class

Dictionary. Thus, the Iterator is able to access Dictionary’s private data. There are some

interesting points to note here:

– To declare a class template as a friend, that class only needs to be declared as a class template

before it is declared as a friend:

template <typename Key, typename Value>

class Iterator;

template <typename Key, typename Value>

class Dictionary

{

friend class Iterator<Key, Value>;

– However, members of the friend class may already be used, even though the compiler hasn’t

seen the friend class’s interface yet:

template <typename Key, typename Value>

template <typename Key2, typename Value2>

Iterator<Key2, Value2> Dictionary<Key, Value>::begin()

{

return Iterator<Key, Value>(*this);

}

template <typename Key, typename Value>

template <typename Key2, typename Value2>

Iterator<Key2, Value2> Dictionary<Key, Value>::subset(Key const &key)

{

return Iterator<Key, Value>(*this).subset(key);

}

– Of course, the friend class’s interface must eventually be seen by the compiler. Since it’s a

support class for Dictionary it can safely define a std::map data member that is initialized

by the friend class’s constructor. The constructor may then access the Dictionary’s private

data member d_dict:

template <typename Key, typename Value>

class Iterator



std::map<Key, Value> &d_dict;

public:

Iterator(Dictionary<Key, Value> &dict)

:

d_dict(dict.d_dict)

{}

– The Iterator member begin may return a map iterator. Since the compiler does not know

what the instantiation of the map looks like, a map<Key, Value>::iterator is a template

subtype. So it cannot be used as-is, but it must be prefixed by typename (see the function

begin’s return type in the next example):

template <typename Key, typename Value>

typename std::map<Key, Value>::iterator Iterator<Key, Value>::begin()

{

return d_dict.begin();

}

• In the previous example we might decide that only a Dictionary should be able to construct an

Iterator (maybe because we conceptually consider Iterator to be a sub-type of Dictionary).

This is easily accomplished by defining Iterator’s constructor in its private section, and by

declaring Dictionary to be a friend of Iterator. Consequently, only a Dictionary can cre-

ate an Iterator. By declaring the constructor of a specific Dictionary type as a friend of

Iterator’s we declare a bound friend. This ensures that only that particular type of Dictionary

can create Iterators using template parameters identical to its own. Here is how it’s done:

template <typename Key, typename Value>

class Iterator

{

friend Dictionary<Key, Value>::Dictionary();

std::map<Key, Value> &d_dict;

Iterator(Dictionary<Key, Value> &dict);

public:

In this example, Dictionary’s constructor is Iterator’s friend. The friend is a template mem-

ber. Other members can be declared as a class’s friend as well. In those cases their prototypes

must be used, also specifying the types of their return values. Assuming that

std::vector<Value> sortValues()

is a member of Dictionary then the matching bound friend declaration is:

friend std::vector<Value> Dictionary<Key, Value>::sortValues();

• A class template may define free members, which should have access to the data of instantiations

of the class template, but only for matching types. An example is a class template for which the

free member operator== must be available. If this is required for a template ClassTemplate,

requiring a typename Type template type argument, then a free member

template<typename Type>

bool operator==(ClassTemplate<Type> const &lhs,

ClassTemplate<Type> const &rhs);

must have been declared prior to ClassTemplate’s interface itself. Within the class interface

operator== may then be declared as a friend, specifying operator== as a specialized function

template (note the <> following the function name) like this:

template <typename Type>

class ClassTemplate



friend bool operator==<>(ClassTemplate<Type> const &lhs,

ClassTemplate<Type> const &rhs);

...

};

Now that the class has been declared, operator==’s implementation may follow.

Finally, the following example can be used as a prototype for situations where bound friends are useful:

template <typename T> // a function template

void fun(T *t)

{

t->not_public();

};

template<typename X> // a free member function template

bool operator==(A<X> const &lhs, A<X> const &rhs);

template <typename X> // a class template

class A

{ // fun() is used as friend bound to A,

// instantiated for X, whatever X may be

friend void fun<A<X>>(A<X> *);

// operator== is a friend for A<X> only

friend bool operator==<>(A<X> const &lhs, A<X> const &rhs);

int d_data = 10;

public:

A();

private:

void not_public();

};

template <typename X>

A<X>::A()

{

fun(this);

}

template <typename X>

void A<X>::not_public()

{}

template<typename X> // may access lhs/rhs's private data

bool operator==(A<X> const &lhs, A<X> const &rhs)

{

return lhs.d_data == rhs.d_data;

}

int main()

{

A<int> a;

fun(&a); // fun instantiated for A<int>.

}

22.10.3 Unbound templates as friends

When a friend is declared as an unbound friend it merely declares an existing template to be its friend

(no matter how it is instantiated). This may be useful in situations where the friend should be able to



object’s private members. Functions, classes, and member functions may all be declared as unbound

friends.

Here are the syntactic conventions declaring unbound friends:

• Declaring a function template as an unbound friend: any instantiation of the function template

may instantiate objects of the template class and may access its private members. Assume the

following function template has been defined

template <typename Iterator, typename Class, typename Data>

Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

This function template can be declared as an unbound friend in the following class template

Vector2:

template <typename Type>

class Vector2: public std::vector<std::vector<Type> >

{

template <typename Iterator, typename Class, typename Data>

friend Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

...

};

If the function template is defined inside some namespace this namespace must be mentioned as

well. Assuming that ForEach is defined in the namespace FBB its friend declaration becomes:

template <typename Iterator, typename Class, typename Data>

friend Class &FBB::ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

The following example illustrates the use of an unbound friend. The class Vector2 stores vectors

of elements of template type parameter Type. Its processmember allows ForEach to call its pri-

vate rows member. The rows member, in turn, uses another ForEach to call its private columns

member. Consequently, Vector2 uses two instantiations of ForEach which is a clear hint for

using an unbound friend. It is assumed that Type class objects can be inserted into ostream

objects (the definition of the ForEach function template can be found in the cplusplus.yo.zip

archive that can be retrieved from https://fbb-git.gitlab.io/cppannotations/). Here is

the program:

template <typename Type>

class Vector2: public std::vector<std::vector<Type> >

{

typedef typename Vector2<Type>::iterator iterator;

template <typename Iterator, typename Class, typename Data>

friend Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

public:

void process();

private:

void rows(std::vector<Type> &row);

void columns(Type &str);

};

template <typename Type>



{

ForEach<iterator, Vector2<Type>, std::vector<Type> >

(this->begin(), this->end(), *this, &Vector2<Type>::rows);

}

template <typename Type>

void Vector2<Type>::rows(std::vector<Type> &row)

{

ForEach(row.begin(), row.end(), *this,

&Vector2<Type>::columns);

std::cout << '\n';

}

template <typename Type>

void Vector2<Type>::columns(Type &str)

{

std::cout << str << " ";

}

using namespace std;

int main()

{

Vector2<string> c;

c.push_back(vector<string>(3, "Hello"));

c.push_back(vector<string>(2, "World"));

c.process();

}

/*
Generated output:

Hello Hello Hello

World World

*/

• Analogously, a full class template may be declared as friend. This allows all instantiations of the

friend’s member functions to instantiate objects of the class template declaring the friend class.

In this case, the class declaring the friend should offer functionality that is useful to different

instantiations of its friend class (i.e., instantiations using different template arguments). The

syntactic convention is comparable to the convention used when declaring an unbound friend

function template:

template <typename Type>

class PtrVector

{

template <typename Iterator, typename Class>

friend class Wrapper; // unbound friend class

};

All members of the class template Wrapper may now instantiate PtrVectors using any actual

type for its Type parameter. This allows the Wrapper instantiation to access all of PtrVector’s

private members.

• When only some members of a class template need access to private members of another class

template (e.g., the other class template has private constructors and only some members of the

first class template need to instantiate objects of the second class template), then the latter class

template may declare only those members of the former class template requiring access to its



ever, the compiler must be informed that the friend member’s class is indeed a class. A forward

declaration of that class must therefore be provided. In the next example PtrVector declares

Wrapper::begin as its friend. Note the forward declaration of the class Wrapper:

template <typename Iterator>

class Wrapper;

template <typename Type>

class PtrVector

{

template <typename Iterator> friend

PtrVector<Type> Wrapper<Iterator>::begin(Iterator const &t1);

...

};

22.10.4 Extended friend declarations

Through extended friend declarations, which are also available for class templates, template type pa-

rameters can be declared as friends. A template type argument, however, does not necessarily have to

be a type for which the keyword friend makes sense, like int. In those cases the friend declaration is

simply ignored.

Consider the following class template, declaring Friend as a friend:

template <typename Friend>

class Class

{

friend Friend;

void msg(); // private, displays some message

};

Now, an actual Friend class may access all of Class’s members

class Concrete

{

Class<Concrete> d_class;

Class<std::string> d_string;

public:

void msg()

{

d_class.msg(); // OK: calls private Class<Concrete>::msg()

//d_string.msg(); // fails to compile: msg() is private

}

};

A declaration like Class<int> intClass is also OK, but here the friend declaration is simply ig-

nored. After all, there are no ‘int members’ to access Class<int>’s private members.

22.11 Class template derivation

Class templates can be used for inheritance purposes as well. When a class template is used in class

derivation, the following situations should be distinguished:



itself will partially be a class template, but this is somewhat hidden from view when an object of

the derived class is defined.

• An existing class template is used as the base class when deriving another class template. Here

the class template characteristics remain clearly visible.

• An ordinary class is used as the base class when deriving a template class. This interesting hybrid

allows us to construct class templates that are partially compiled.

These three variants of class template derivation are elaborated in this and the upcoming sections.

Consider the following base class:

template<typename T>

class Base

{

T const &t;

public:

Base(T const &t);

};

The above class is a class template that can be used as a base class for the following derived class

template Derived:

template<typename T>

class Derived: public Base<T>

{

public:

Derived(T const &t);

};

template<typename T>

Derived<T>::Derived(T const &t)

:

Base(t)

{}

Other combinations are also possible. The base class may be instantiated by specifying template argu-

ments, turning the derived class into an ordinary class (showing a class object’s definition as well):

class Ordinary: public Base<int>

{

public:

Ordinary(int x);

};

inline Ordinary::Ordinary(int x)

:

Base(x)

{}

Ordinary ordinary{ 5 };

This approach allows us to add functionality to a class template, without the need for constructing a

derived class template.

Class template derivation pretty much follows the same rules as ordinary class derivation, not involv-

ing class templates. Some subtleties that are specific for class template derivation may easily cause



The reasons for using this are discussed in section 23.1. In the upcoming sections the focus will be on

the class derivation proper.

22.11.1 Deriving ordinary classes from class templates

When an existing class template is used as a base class for deriving an ordinary class, the class template

parameters are specified when defining the derived class’s interface. If in a certain context an existing

class template lacks a particular functionality, then it may be useful to derive an ordinary class from

a class template. For example, although the class map can easily be used in combination with the

find_if() generic algorithm (section 19.1.17), it requires the construction of a class and at least two

additional function objects of that class. If this is considered too much overhead then extending a class

template with tailor-made functionality might be considered.

Example: a program executing commands entered at the keyboard might accept all unique initial

abbreviations of the commands it defines. E.g., the command list might be entered as l, li, lis

or list. By deriving a class Handler from

map<string, void (Handler::*)(string const &cmd)>

and by defining a member function process(string const &cmd) to do the actual command pro-

cessing a program might simply execute the following main() function:

int main()

{

string line;

Handler cmd;

while (getline(cin, line))

cmd.process(line);

}

The class Handler itself is derived from a std::map, in which the map’s values are pointers to

Handler’s member functions, expecting the command line entered by the user. Here are Handler’s

characteristics:

• The class is derived from a std::map, expecting the command associated with each command-

processing member as its keys. Since Handler uses the map merely to define associations

between the commands and the processing member functions and to make available map’s

typedefs, private derivation is used:

class Handler: private std::map<std::string,

void (Handler::*)(std::string const &cmd)>

• The actual association can be defined using static private data members: s_cmds is an array

of Handler::value_type values, and s_cmds_end is a constant pointer pointing beyond the

array’s last element:

static value_type s_cmds[];

static value_type *const s_cmds_end;

• The constructor simply initializes the map from these two static data members. It could be imple-

mented inline:

inline Handler::Handler()

:

std::map<std::string,



(s_cmds, s_cmds_end)

{}

• The member process iterates along the map’s elements. Once the first word on the command

line matches the initial characters of the command, the corresponding command is executed. If

no such command is found, an error message is issued:

void Handler::process(std::string const &line)

{

istringstream istr(line);

string cmd;

istr >> cmd;

for (iterator it = begin(); it != end(); it++)

{

if (it->first.find(cmd) == 0)

{

(this->*it->second)(line);

return;

}

}

cout << "Unknown command: " << line << '\n';

}

22.11.2 Deriving class templates from class templates

Although it’s perfectly acceptable to derive an ordinary class from a class template, the resulting class

of course has limited generality compared to its template base class. If generality is important, it’s

probably a better idea to derive a class template from a class template. This allows us to extend an

existing class template with new functionality or to override the functionality of the existing class

template.

The class template SortVector presented below is derived from the existing class template

std::vector. It allows us to perform a hierarchic sort of its elements using any ordering of any

data members its data elements may contain. To accomplish this there is but one requirement.

SortVector’s data type must offer dedicated member functions comparing its members.

For example, if SortVector’s data type is an object of class MultiData, then MultiData should

implement member functions having the following prototypes for each of its data members which can

be compared:

bool (MultiData::*)(MultiData const &rhv)

So, if MultiData has two data members, int d_value and std::string d_text and both may be

used by a hierarchic sort, then MultiData should offer the following two members:

bool intCmp(MultiData const &rhv); // returns d_value < rhv.d_value

bool textCmp(MultiData const &rhv); // returns d_text < rhv.d_text

Furthermore, as a convenience it is assumed that operator<< and operator>> have been defined

for MultiData objects.

The class template SortVector is directly derived from the template class std::vector. Our imple-

mentation inherits all members from that base class. It also offers two simple constructors:

template <typename Type>

class SortVector: public std::vector<Type>



public:

SortVector()

{}

SortVector(Type const *begin, Type const *end)

:

std::vector<Type>(begin, end)

{}

Its member hierarchicSort is the true raison d’être for the class. It defines the hierarchic sort

criteria. It expects a pointer to a series of pointers to member functions of the class Type as well as a

size_t representing the size of the array.

The array’s first element indicates Type’s most significant sort criterion, the array’s last element

indicates the class’s least significant sort criterion. Since the stable_sort generic algorithm was

designed explicitly to support hierarchic sorting, the member uses this generic algorithm to sort

SortVector’s elements. With hierarchic sorting, the least significant criterion should be sorted first.

hierarchicSort’s implementation is therefore easy. It requires a support class SortWith whose

objects are initialized by the addresses of the member functions passed to the hierarchicSort()

member:

template <typename Type>

void SortVector<Type>::hierarchicSort(

bool (Type::**arr)(Type const &rhv) const,

size_t n)

{

while (n--)

stable_sort(this->begin(), this->end(), SortWith<Type>(arr[n]));

}

The class SortWith is a simple wrapper class around a pointer to a predicate function. Since it depends

on SortVector’s actual data type the class SortWith must also be a class template:

template <typename Type>

class SortWith

{

bool (Type::*d_ptr)(Type const &rhv) const;

SortWith’s constructor receives a pointer to a predicate function and initializes the class’s d_ptr data

member:

template <typename Type>

SortWith<Type>::SortWith(bool (Type::*ptr)(Type const &rhv) const)

:

d_ptr(ptr)

{}

Its binary predicate member (operator()) must return true if its first argument should eventually

be placed ahead of its second argument:

template <typename Type>

bool SortWith<Type>::operator()(Type const &lhv, Type const &rhv) const

{

return (lhv.*d_ptr)(rhv);

}

The following examples, which can be embedded in a main function, provides an illustration:



to fill the SortVector object from information appearing at the program’s standard input stream.

Having initialized the object its elements are displayed to the standard output stream:

SortVector<MultiData> sv;

copy(istream_iterator<MultiData>(cin),

istream_iterator<MultiData>(),

back_inserter(sv));

• An array of pointers to members is initialized with the addresses of two member functions. The

text comparison is the most significant sort criterion:

bool (MultiData::*arr[])(MultiData const &rhv) const =

{

&MultiData::textCmp,

&MultiData::intCmp,

};

• Next, the array’s elements are sorted and displayed to the standard output stream:

sv.hierarchicSort(arr, 2);

• Then the two elements of the array of pointers to MultiData’s member functions are swapped,

and the previous step is repeated:

swap(arr[0], arr[1]);

sv.hierarchicSort(arr, 2);

After compiling the program the following command can be given:

echo a 1 b 2 a 2 b 1 | a.out

This results in the following output:

a 1 b 2 a 2 b 1

====

a 1 a 2 b 1 b 2

====

a 1 b 1 a 2 b 2

====

22.11.3 Deriving class templates from ordinary classes

An ordinary class may be used as the base class for deriving a template class. The advantage of such

an inheritance tree is that the base class’s members may all be compiled beforehand. When objects of

the class template are now instantiated only the actually used members of the derived class template

must be instantiated.

This approach may be used for all class templates having member functions whose implementations do

not depend on template parameters. These members may be defined in a separate class which is then

used as a base class of the class template derived from it.

As an illustration of this approach we’ll develop such a class template below. We’ll develop a class

Table derived from an ordinary class TableType. The class Table displays elements of some type in

a table having a configurable number of columns. The elements are either displayed horizontally (the

first k elements occupy the first row) or vertically (the first r elements occupy a first column).



rate class (TableType), implementing the table’s presentation. Since the table’s elements are inserted

into a stream, the conversion to text (or string) is implemented in Table, but the handling of the

strings themselves is left to TableType. We’ll cover some characteristics of TableType shortly, con-

centrating on Table’s interface first:

• The class Table is a class template, requiring only one template type parameter: Iterator

referring to an iterator to some data type:

template <typename Iterator>

class Table: public TableType

{

• Table doesn’t need any data members. All data manipulations are performed by TableType.

• Table has two constructors. The constructor’s first two parameters are Iterators used to iterate

over the elements that must be entered into the table. The constructors require us to specify the

number of columns we would like our table to have as well as a FillDirection. FillDirection

is an enum, defined by TableType, having values HORIZONTAL and VERTICAL. To allow Table’s

users to exercise control over headers, footers, captions, horizontal and vertical separators, one

constructor has a TableSupport reference parameter. The class TableSupport is developed

at a later stage as a virtual class allowing clients to exercise this control. Here are the class’s

constructors:

Table(Iterator const &begin, Iterator const &end,

size_t nColumns, FillDirection direction);

Table(Iterator const &begin, Iterator const &end,

TableSupport &tableSupport,

size_t nColumns, FillDirection direction);

• The constructors are Table’s only two public members. Both constructors use a base class ini-

tializer to initialize their TableType base class and then call the class’s private member fill to

insert data into the TableType base class object. Here are the constructor’s implementations:

template <typename Iterator>

Table<Iterator>::Table(Iterator const &begin, Iterator const &end,

TableSupport &tableSupport,

size_t nColumns, FillDirection direction)

:

TableType(tableSupport, nColumns, direction)

{

fill(begin, end);

}

template <typename Iterator>

Table<Iterator>::Table(Iterator const &begin, Iterator const &end,

size_t nColumns, FillDirection direction)

:

TableType(nColumns, direction)

{

fill(begin, end);

}

• The class’s fill member iterates over the range of elements [begin, end), as defined by the

constructor’s first two parameters. As we will see shortly, TableType defines a protected data

member std::vector<std::string> d_string. One of the requirements of the data type to

which the iterators point is that this data type can be inserted into streams. So, fill uses an

ostringstream object to obtain the textual representation of the data, which is then appended

to d_string:

template <typename Iterator>



{

while (it != end)

{

std::ostringstream str;

str << *it++;

d_string.push_back(str.str());

}

init();

}

This completes the implementation of the class Table. Note that this class template only has three

members, two of them being constructors. Therefore, in most cases only two function templates must

be instantiated: a constructor and the class’s fill member. For example, the following defines a table

having four columns, vertically filled by strings extracted from the standard input stream:

Table<istream_iterator<string> >

table(istream_iterator<string>(cin), istream_iterator<string>(),

4, TableType::VERTICAL);

The fill-direction is specified as TableType::VERTICAL. It could also have been specified using

Table, but since Table is a class template its specification would have been slightly more complex:

Table<istream_iterator<string> >::VERTICAL.

Now that the Table derived class has been designed, let’s turn our attention to the class TableType.

Here are its essential characteristics:

• It is an ordinary class, designed to operate as Table’s base class.

• It uses various private data members, among which d_colWidth, a vector storing the width of the

widest element per column and d_indexFun, pointing to the class’s member function returning

the element in table[row][column], conditional to the table’s fill direction. TableType also

uses a TableSupport pointer and a reference. The constructor not requiring a TableSupport

object uses the TableSupport ∗ to allocate a (default) TableSupport object and then uses the

TableSupport & as the object’s alias. The other constructor initializes the pointer to 0 and

uses the reference data member to refer to the TableSupport object provided by its parame-

ter. Alternatively, a static TableSupport object could have been used to initialize the reference

data member in the former constructor. The remaining private data members are probably self-

explanatory:

TableSupport *d_tableSupportPtr;

TableSupport &d_tableSupport;

size_t d_maxWidth;

size_t d_nRows;

size_t d_nColumns;

WidthType d_widthType;

std::vector<size_t> d_colWidth;

size_t (TableType::*d_widthFun)

(size_t col) const;

std::string const &(TableType::*d_indexFun)

(size_t row, size_t col) const;

• The actual string objects populating the table are stored in a protected data member:

std::vector<std::string> d_string;

• The (protected) constructors perform basic tasks: they initialize the object’s data members. Here

is the constructor expecting a reference to a TableSupport object:

#include "tabletype.ih"



TableType::TableType(TableSupport &tableSupport, size_t nColumns,

FillDirection direction)

:

d_tableSupportPtr(0),

d_tableSupport(tableSupport),

d_maxWidth(0),

d_nRows(0),

d_nColumns(nColumns),

d_widthType(COLUMNWIDTH),

d_colWidth(nColumns),

d_widthFun(&TableType::columnWidth),

d_indexFun(direction == HORIZONTAL ?

&TableType::hIndex

:

&TableType::vIndex)

{}

• Once d_string has been filled, the table is initialized by Table::fill. The init protected

member resizes d_string so that its size is exactly rows x columns, and it determines the

maximum width of the elements per column. Its implementation is straightforward:

#include "tabletype.ih"

void TableType::init()

{

if (!d_string.size()) // no elements

return; // then do nothing

d_nRows = (d_string.size() + d_nColumns - 1) / d_nColumns;

d_string.resize(d_nRows * d_nColumns); // enforce complete table

// determine max width per column,

// and max column width

for (size_t col = 0; col < d_nColumns; col++)

{

size_t width = 0;

for (size_t row = 0; row < d_nRows; row++)

{

size_t len = stringAt(row, col).length();

if (width < len)

width = len;

}

d_colWidth[col] = width;

if (d_maxWidth < width) // max. width so far.

d_maxWidth = width;

}

}

• The public member insert is used by the insertion operator (operator<<) to insert a Table

into a stream. First it informs the TableSupport object about the table’s dimensions. Next it

displays the table, allowing the TableSupport object to write headers, footers and separators:

#include "tabletype.ih"

ostream &TableType::insert(ostream &ostr) const

{

if (!d_nRows)

return ostr;



d_tableSupport.setParam(ostr, d_nRows, d_colWidth,

d_widthType == EQUALWIDTH ? d_maxWidth : 0);

for (size_t row = 0; row < d_nRows; row++)

{

d_tableSupport.hline(row);

for (size_t col = 0; col < d_nColumns; col++)

{

size_t colwidth = width(col);

d_tableSupport.vline(col);

ostr << setw(colwidth) << stringAt(row, col);

}

d_tableSupport.vline();

}

d_tableSupport.hline();

return ostr;

}

• The cplusplus.yo.zip archive contains TableSupport’s full implementation. This implemen-

tation is found in the directory yo/classtemplates/examples/table. Most of its remaining

members are private. Among those, these two members return table element [row][column]

for, respectively, a horizontally filled table and a vertically filled table:

inline std::string const &TableType::hIndex(size_t row, size_t col) const

{

return d_string[row * d_nColumns + col];

}

inline std::string const &TableType::vIndex(size_t row, size_t col) const

{

return d_string[col * d_nRows + row];

}

The support class TableSupport is used to display headers, footers, captions and separators. It has

four virtual members to perform those tasks (and, of course, a virtual constructor):

• hline(size_t rowIndex): called just before displaying the elements in row rowIndex.

• hline(): called immediately after displaying the final row.

• vline(size_t colIndex): called just before displaying the element in column colIndex.

• vline(): called immediately after displaying all elements in a row.

The reader is referrred to the cplusplus.yo.zip archive for the full implementation of the classes

Table, TableType and TableSupport. Here is a little program showing their use:

/*
table.cc

*/

#include <fstream>

#include <iostream>

#include <string>

#include <iterator>



#include "tablesupport/tablesupport.h"

#include "table/table.h"

using namespace std;

using namespace FBB;

int main(int argc, char **argv)

{

size_t nCols = 5;

if (argc > 1)

{

istringstream iss(argv[1]);

iss >> nCols;

}

istream_iterator<string> iter(cin); // first iterator isn't const

Table<istream_iterator<string> >

table(iter, istream_iterator<string>(), nCols,

argc == 2 ? TableType::VERTICAL : TableType::HORIZONTAL);

cout << table << '\n';

}

/*
Example of generated output:

After: echo a b c d e f g h i j | demo 3

a e i

b f j

c g

d h

After: echo a b c d e f g h i j | demo 3 h

a b c

d e f

g h i

j

*/

22.12 Static Polymorphism

Chapter 14 introduced polymorphism. Polymorphism allows us to use a base class’s interface to call

implementations which are defined in derived classes. Traditionally this involves defining Vtables

for polymorphic classes, containing pointers to functions that can be overridden in derived classes.

Objects of polymorphic classes harbor hidden pointers, pointing to their class’s Vtables. This type

of polymorphism is called dynamic polymorphism, and it uses late binding as the function to call is

determined run-time, rather than compile-time.

In many cases, however, dynamic polymorphism isn’t really required. Usually the derived class ob-

jects that are passed to functions expecting base class references are invariants: at fixed locations

in programs fixed class types are used to create objects. The polymorphic nature of these objects is

used inside the functions that receive these objects, expecting references to their base classes. As

an example consider reading information from a network socket. A class SocketBuffer is derived

from std::streambuf, and the std::stream receiving a pointer to the SocketBuffer merely uses

std::streambuf’s interface. However, the implementation, by using polymorphism, in fact commu-

nicates with functions defined in SocketBuffer.



morphic base classes execution is somewhat slowed down precisely because of late-binding. Member

functions aren’t directly called, but are called indirectly via the object’s vpointer and their derived class’s

Vtable. Secondly, programs using dynamic polymorphism tend to become somewhat bloated compared

to programs using static binding. The code bloat is caused by the requirement to satisfy at link-time all

the references that are mentioned in all the object files comprising the final program. This requirement

forces the linker to link all the functions whose addresses are stored in the Vtables of all polymorphic

classes, even if these functions are never actually called.

Static polymorphism allows us to avoid these disadvantages. It can be used instead of dynamic poly-

morphism in cases where the abovementioned invariant holds. Static polymorphism, also called the

curiously recurring template pattern (CRTP), is an example of template meta programming (see also

chapter 23 for additional examples of template meta programming).

Whereas dynamic polymorphism is based on the concepts of vpointers, Vtables, and function overriding,

static polymorphism capitalizes on the fact that function templates (c.q., member templates) are only

compiled into executable code when they are actually called. This allows us to write code in which

functions are called which are completely non-existent at the time we write our code. This, however,

shouldn’t worry us too much. After all, we use a comparable approach when calling a purely virtual

function of an abstract base class. The function is really called, but which function is eventually called

is determined later in time. With dynamic polymorphism it is determined run-time, with static poly-

morphism it is determined compile-time.

There’s no need to consider static and dynamic polymorphism as mutually exclusive variants of poly-

morphism. Rather, both can be used together, combining their strengths.

This section contains several subsections.

• First, the syntax used with static polymorphism is introduced and illustrated;

• Next, it is shown how classes that use dynamic polymorphism can be converted to classes that

use static polymorphism;

• Finally it is illustrated how static polymorphism can be used to reduce implementation effort.

Static polymorphism allows us to implement only once what would have to be implemented re-

peatedly when only dynamic polymorphism is used.

22.12.1 An example of static polymorphism

With static polymorphism a class template takes the role of a base class in dynamic polymorphism.

This class template declares several members, which are comparable to members of a polymorphic base

class: they are either support members or they call members that are overridden in derived classes.

In the context of dynamic polymorphism these overridable members are the base class’s virtual mem-

bers. In the context of static polymorphism there are no virtual members. Instead, the statically

polymorphic base class (referred to as the ‘base class’ below) declares a template type parameter (re-

ferred to as the ‘derived class type’ below). Next, the base class’s interfacing members call members of

the derived class type.

Here is a simple example: a class template acting as a base class. Its public interface consists of one

member. But different from dynamic polymorphism there’s no reference in the class’s interface to any

member showing polymorphic behavior (i.e, no ‘virtual’ members are declared):

template <class Derived>

struct Base

{

void interface();

}



reference or pointer to the base class, but it may call members that must be available in the derived

class type at the point where interface is called. Before we can call members of the derived class

type an object of the derived class type must be available. This object is obtained through inheritance.

The derived class type is going to be derived from the base class. Thus Base’s this pointer is also

Derived’s this pointer.

Forget about polymorphism for a second: when we have a class Derived: public Base then (be-

cause of inheritance) a static_cast<Derived ∗> can be used to cast a Base ∗ to a Derived object.

A dynamic_cast of course doesn’t apply, as we don’t use dynamic polymorphism. But a static_cast

is appropriate since our Base ∗ does in fact point to a Derived class object.

So, to call a Derived class member from inside interface we can use the following implementation

(remember that Base is a base class of Derived):

template<class Derived>

void Base<Derived>::interface()

{

static_cast<Derived *>(this)->polymorphic();

}

It’s remarkable that, when the compiler is given this implementation it cannot determine whether

Derived is really derived from Base. Neither can it determine whether the class Derived indeed

offers a member polymorphic. The compiler simply assumes this to be true. If so, then the provided

implementation is syntactically correct. One of the key characteristics of using templates is that the

implementation’s viability is eventually determined at the function’s point of instantiation (cf. section

21.6). At that point the compiler will verify that, e.g., the function polymorphic really is available.

Thus, in order to use the above scheme we must ensure that

• derived class type is actually derived from the base class and

• that the derived class type defines a member ‘polymorphic’.

The first requirement is satisfied by using the curiously recurring template pattern:

class First: public Base<First>

In this curious pattern the class First is derived from Base, which itself is instantiated for First.

This is acceptable, as the compiler already has determined that the type First exists. At this point

that is all it needs.

The second requirement is simply satisfied by defining the member polymorphic. In chapter 14 we

saw that virtual and overriding members belong to the class’s private interface. We can apply the same

philosophy here, by placing polymorphic in First’s private interface, allowing it to be accessed from

the base class by declaring

friend void Base<First>::interface();

First’s complete class interface can now be designed, followed by polymorphic’s implementation:

class First: public Base<First>

{

friend void Base<First>::interface();

private:

void polymorphic();

};



{

std::cout << "polymorphic from First\n";

}

Note that the class First itself is not a class template: its members can be separately compiled and

stored in, e.g., a library. Also, as is the case with dynamic polymorphism, the member polymorphic

has full access to all of First’s data members and member functions.

Multiple classes can now be designed like First, each offering their own implementation of

polymorphic. E.g., the member Second::polymorphic of the class Second, designed like First,

could be implemented like this:

void Second::polymorphic()

{

std::cout << "polymorphic from Second\n";

}

The polymorphic nature of Base becomes apparent once a function template is defined in which

Base::interface is called. Again, the compiler simply assumes a member interface exists when

it reads the definition of the following function template:

template <class Class>

void fun(Class &object)

{

object.interface();

}

Only where this function is actually called will the compiler verify the viability of the generated

code. In the following main function a First object is passed to fun: First declares interface

through its base class, and First::polymorphic is called by interface. The compiler will at this

point (i.e., where fun is called) check whether first indeed has a member polymorphic. Next a

Second object is passed to fun, and here again the compiler checks whether Second has a member

Second::polymorphic:

int main()

{

First first;

fun(first);

Second second;

fun(second);

}

There are also downsides to using static polymorphism:

• First, the sentence ‘a Second object is passed to fun’ formally isn’t correct, since fun is a function

template the functions fun called as fun(first) and fun(second) are different functions, not

just calls of one function with different arguments. With static polymorphism every instantiation

using its own template parameters results in completely new code which is generated when the

template (e.g., fun) is instantiated. This is something to consider when creating statically poly-

morphic base classes. If the base class defines data members and member functions, and if these

additional members are used by derived class types, then each member has its own instantiation

for each derived class type. This also results in code bloat, albeit of a different kind than observed

with dynamic polymorphism. This kind of code bloat can often be somewhat reduced by deriving

the base class from its own (ordinary, non-template) base class, encapsulating all elements of the

statically polymorphic base class that do not depend on its template type parameters.



new operator) then the types of the returned pointers are all different. In addition, the types

of the pointers to their statically polymorphic base classes differ from each other. These latter

pointers are different because they are pointers to Base<Derived>, representing different types

for different Derived types. Consequently, and different from dynamic polymorphism, these

pointers cannot be collected in, e.g., a vector of shared pointers to base class pointers. There

simply isn’t one base class pointer type. Thus, because of the different base class types, there’s no

direct statically polymorphic equivalent to virtual destructors.

• Third, as illustrated in the next section, designing static polymorphic classes using multiple levels

of inheritance is not a trivial task.

Summarizing, static polymorphism is best used in situations where a small number of different derived

class types are used, where a fixed number of derived class objects are used, and where the statically

polymorphic base classes themselves are lean (possibly encapsulating some of their code in ordinary

base classes of their own).

22.12.2 Converting dynamic polymorphic classes to static polymorphic
classes

So you’ve decided that you want to convert some of your dynamically polymorphic classes into statically

polymorphic classes. Now what?

In chapter 14 the base class Vehicle and some derived classes were introduced. Vehicle, Car and

Truck’s interfaces look like this (regarding the members that are involved in their polymorphic behav-

iors):

class Vehicle

{

public:

int mass() const;

private:

virtual int vmass() const;

};

class Car: public Vehicle

{

private:

int vmass() const override;

};

class Truck: public Car

{

private:

int vmass() const override;

};

When converting dynamically polymorphic classes to statically polymorphic classes we must realize

that polymorphic classes show two important characteristics:

• they define facilities (data members, member functions) that are inherited by derived classes (e.g.,

Vecicle::mass) (i.e., the inheritable interface), and

• derived classes implement the redefinable interface in a way that suits their purpose (e.g.,

Truck::vmass).



seen in the previous section, a statically polymorphic derived class derives from its base class by using

its own class type as argument to the base class’s type parameter. This works fine if there’s only one

level of inheritance (i.e., one base class, and one or more classes that are directly derived from that base

class).

With multiple levels of inheritance (e.g., Truck -> Car -> Vehicle) Truck’s inheritance specifica-

tion becomes a problem. Here’s an intial attempt to use atatic polymorphism and multiple levels of

inheritance:

template <class Derived>

class Vehicle

{

public:

void mass()

{

static_cast<Derived *>(this)->vmass();

}

};

class Car: public Vehicle<Car>

{

friend void Vehicle<Car>::mass();

void vmass();

};

class Truck: public Car

{

void vmass();

};

• If Truck inherits from Car, then Truck implicitly derives from Vehicle<Car>, as Car derives

from Vehicle<Car>. Consequently, when Truck{}.mass() is called it is not Truck::vmass

that’s activated, but Car’s vmass function. But Truck must derive from Car in order to use Car’s

protected features and to add Car’s public features to its own public interface.

• Multiple inheritance also doesn’t solve the issue: when inheriting Truck from Vehicle<Truck>

and from Car results in a class Truck that also inherits from Vehicle<Car> (through Truck’s

Car base class), and compilation fails as the compiler encounters an ambiguity when instantiating

Vehicle::mass: should it call Class::vmass or should it call Truck::vmass?

To solve this problem (i.e., to ensure that Truck{}.mass() calls Truck::vmass) the redefinable in-

terface must be separated from the inheritable interface.

In derived classes the protected and public interfaces of (direct or indirect) base classes are made

available using standard inheritance. This is shown in the left-hand side of figure 22.1.

The left-hand side classes are used as base classes for the next level of inheritance (except for

TruckBase, but TruckBase could be used as base class for yet another level of class inheritance).

This line of inheritance declares the inheritable interface of the classes.

Each of the classes to the left is a base class of a single class to the right: VehicleBase is a base class

for Vehicle, TruckBase for Truck. The classes to the left contain all members that are completely

independent of the elements that are involved in realizing the static polymorphism. As that’s a mere

design principle to realize multiple levels of static polymorphism the common data hiding principles are

relaxed, and the left-hand side classes declare their matching right-hand side derived class templates

as friend, to allow full access to all members of a left-hand side class, including the private members,

from the matching derived class template to the right. E.g., VehicleBase declares Vechicle as its

friend:



VehicleBase

CarBase: 

       VehicleBase

TruckBase:

        CarBase

template <class Derived>

class Vehicle: VehicleBase

Car: CarBase, 

        Vehicle<Car>

Truck: TruckBase

          Vehicle<Truck>

Classes implementing

the redefinable interface

Classes implementing

the inheritable interface

Figure 22.1: Vehicle Static Polymorphic Class Design



{

template <class Derived>

friend class Vehicle;

// all members originally in Vehicle, but not involved

// in realizing static polymorphism are declared here. E.g.,

size_t d_massFactor = 1;

};

The top level class to the left (VehicleBase) lays the foundation of static polymorphism, by defining

that part of the interface that uses the statically redefinable functions. E.g, using the curiously recur-

ring template pattern it defines a class member mass that calls the function vmass of its derived class

(in addition it can use all members of its non-class template base class). E.g,:

template <class Derived>

class Vehicle: public VehicleBase

{

public:

int mass() const

{

return d_massFactor *
static_cast<Derived const *>(this)->vmass();

}

};

Which function actually is called when vmass is called depends on the implementation in the class

Derived, which is handled by the remaining classes, shown below Vehicle, which are all derived

from Vehicle (as well as from their own ...Base class). These classes use the curiously recurring

template pattern. E.g.,

class Car: public CarBase, public Vehicle<Car>

So, if Car now implements its own vmass function, which can use any of its own (i.e., CarBase’s

members), then that function is called when calling a Vehicle’s mass function. E.g.,

template <class Vehicle>

void fun(Vehicle &vehicle)

{

cout << vehicle.mass() << '\n';

}

int main()

{

Car car;

fun(car); // Car's vmass is called

Truck truck;

fun(truck); // Truck's vmass is called

}

Now that we’ve analyzed the design of statically polymorphic classes using multiple levels of inheri-

tance let’s summarize the steps that took to implement static polymorphism

• First, starting at the base class, the class Vehicle. Vehicle’s non-redefinable interface is

moved to a class VehicleBase, and Vehicle itself is turned into a statically polymorphic base

class. In general all members of the original polymorphic base class that do not use or implement

virtual members should be moved to the XBase class.



bers, that are now in VehicleBase.

• Vehicle’s members refer to the redefinable interface. I.e., its members call members of its

Derived template type parameter. In this implementation Vehicle does not implement its own

vmass member. We cannot define Vehicle<Vehicle>, and with static polymorphism the base

class is essentially comparable to an abstract base class. If this is inconvenient then a default

class can be specified for Vehicle’s Derived class, implementing the redefinable interface of

the original polymorphic base class (allowing for definitions like Vehicle<> vehicle).

• Likewise the remaining classes have their members not involved in static polymorphism moved to

a base class. E.g., class Car moves these members to CarBase and Truck moves those members

to TruckBase.

• A standard linear line of inheritance is used from VehicleBase to CarBase and from there to

TruckBase.

• Each of the remaining classes (here: Car and Truck) is a class template that derives from its base

classes, and also, using the curiously recurrent template pattern, from Vehicle.

• Each of these remaining classes can now implement its own version of the redefinable interface,

as used by the members of Vehicle.

This design pattern can be extended to any level of inheritance: for each new level a base class

is constructed, deriving from the most deeply nested XXXBase class so far, and deriving from

Vehicle<XXX>, implementing its own ideas about the redefinable interface.

Functions that are used in combination with statically polymorphic classes themselves must be func-

tion templates. E.g.,

template <class Vehicle>

void fun(Vehicle &vehicle)

{

cout << vehicle.mass() << '\n';

}

Here, Vehicle is just a formal name. When an object is passed to fun it must offer a member mass,

or compilation will fail. If the object is in fact a Car or Truck, then their Vehicle<Type> static

base class member mass is called, which in turn uses static polymorphism to call the member vmass

as implemented by the actually passed class type. The following main function displays, respectively,

1000 and 15000:

int main()

{

Car car;

fun(car);

Truck truck;

fun(truck);

}

Note that this program implements fun twice, rather than once in the case of dynamic polymorphism.

The same holds true for the Vehicle class template: two implementations, one for the Car type, and

one for the Truck type. The statically polymorphic program will be slightly faster, though.

(A compilable example using static polymorphism is found in the C++ Annotations’s source distribu-

tion’s file yo/classtemplates/examples/staticpolymorphism/polymorph.cc.)



Static polymorphism may profitably be used to avoid reimplementing code in an otherwise dynamic

polymorphic environment.

Consider the situation where we have a class containing a container of pointers to some polymorphic

base class type (like the class Vehicle from chapter 14). How to copy such a container to another

container? We’re not hinting at using shared pointers here, but would like to make a full copy. Clearly,

we’ll need to duplicate the objects the pointers point at, and assign these new pointers to the copied

object’s container.

The prototype design patttern is commonly used to create copies of objects of polymorphic classes, given

pointers to their base classes.

To apply the prototype design pattern we have to implement newCopy in all derived classes. Not by

itself a big deal, but static polymorphism can nicely be used here to avoid having to reimplement this

function for each derived class.

We start off with an abstract base class VehicleBase declaring a pure virtual member newCopy:

struct VehicleBase

{

virtual ~VehicleBase();

VehicleBase *clone() const; // calls newCopy

// declare any additional members defining the

// public user interface here

private:

VehicleBase *newCopy() const = 0;

};

Next we define a static polymorphic class CloningVehicle which is derived from VehicleBase

(note that we thus combine dynamic and static polymorphism). This class provides the generic im-

plementation of newCopy. This is possible because all derived classes can use this implementation.

Also, CloningVehicle will be re-implemented for each concrete type of vehicle that is eventually

used: a Car, a Truck, an AmphibiousVehicle, etc, etc. CloningVehicle thus isn’t shared (like

VehicleBase), but instantiated for each new type of vehicle.

The core characteristic of a statically polymorphic class is that it can use its class template type pa-

rameter via a static_cast of its own type. A member function like newCopy is implemented always

the same way, viz., by using the derived class’s copy constructor. Here is the class CloningVehicle:

template <class Derived>

class CloningVehicle: public VehicleBase

{

VehicleBase *newCopy() const

{

return new Derived(*static_cast<Derived const *>(this));

}

};

And we’re done. All types of vehicles should now be derived from CloningVehicle, which automati-

cally provides them with their own implementation of newCopy. E.g., a class Car looks like this:

class Car: public CloningVehicle<Car>

{

// Car's interface, no need to either

// declare or implement newCopy,



};

Having defined a std::vector<VehicleBase ∗> original we could create a copy of original

like this:

for(auto pointer: original)

duplicate.push_back(pointer->clone());

Irrespective of the actual type of vehicle to which the pointers point, their clone members will return

pointers to newly allocated copies of objects of their own types.

22.13 Class templates and nesting

When a class is nested within a class template, it automatically becomes a class template itself. The

nested class may use the template parameters of the surrounding class, as shown by the following

skeleton program. Within a class PtrVector, a class iterator is defined. The nested class receives

its information from its surrounding class, a PtrVector<Type> class. Since this surrounding class

should be the only class constructing its iterators, iterator’s constructor is made private and the

surrounding class is given access to the private members of iterator using a bound friend declaration.

Here is the initial section of PtrVector’s class interface:

template <typename Type>

class PtrVector: public std::vector<Type *>

This shows that the std::vector base class stores pointers to Type values, rather than the values

themselves. Of course, a destructor is now required as the (externally allocated) memory for the Type

objects must eventually be freed. Alternatively, the allocation might be part of PtrVector’s tasks,

when it stores new elements. Here it is assumed that PtrVector’s clients do the required allocations

and that the destructor is implemented later on.

The nested class defines its constructor as a private member, and allows PtrVector<Type> objects

access to its private members. Therefore only objects of the surrounding PtrVector<Type> class type

are allowed to construct their iterator objects. However, PtrVector<Type>’s clients may construct

copies of the PtrVector<Type>::iterator objects they use.

Here is the nested class iterator, using a (required) friend declaration. Note the use of the

typename keyword: since std::vector<Type ∗>::iterator depends on a template parameter,

it is not yet an instantiated class. Therefore iterator becomes an implicit typename. The compiler

issues a warning if typename has been omitted. Here is the class interface:

class iterator

{

friend class PtrVector<Type>;

typename std::vector<Type *>::iterator d_begin;

iterator(PtrVector<Type> &vector);

public:

Type &operator*();

};

The implementation of the members shows that the base class’s begin member is called to initialize

d_begin. PtrVector<Type>::begin’s return type must again be preceded by typename:

template <typename Type>



:

d_begin(vector.std::vector<Type *>::begin())

{}

template <typename Type>

Type &PtrVector<Type>::iterator::operator*()

{

return **d_begin;

}

The remainder of the class is simple. Omitting all other functions that might be implemented, the

function begin returns a newly constructed PtrVector<Type>::iterator object. It may call the

constructor since the class iterator declared its surrounding class as its friend:

template <typename Type>

typename PtrVector<Type>::iterator PtrVector<Type>::begin()

{

return iterator(*this);

}

Here is a simple skeleton program, showing how the nested class iterator might be used:

int main()

{

PtrVector<int> vi;

vi.push_back(new int(1234));

PtrVector<int>::iterator begin = vi.begin();

std::cout << *begin << '\n';

}

Nested enumerations and nested typedefs can also be defined by class templates. The class Table, men-

tioned before (section 22.11.3) inherited the enumeration TableType::FillDirection. Had Table

been implemented as a full class template, then this enumeration would have been defined in Table

itself as:

template <typename Iterator>

class Table: public TableType

{

public:

enum FillDirection

{

HORIZONTAL,

VERTICAL

};

...

};

In this case, the actual value of the template type parameter must be specified when referring to a

FillDirection value or to its type. For example (assuming iter and nCols are defined as in section

22.11.3):

Table<istream_iterator<string> >::FillDirection direction =

argc == 2 ?



:

Table<istream_iterator<string> >::HORIZONTAL;

Table<istream_iterator<string> >

table(iter, istream_iterator<string>(), nCols, direction);

22.14 Constructing iterators

In section 18.2 the iterators used with generic algorithms were introduced. We’ve seen that several

types of iterators were distinguished: InputIterators, ForwardIterators, OutputIterators, Bidirection-

alIterators and RandomAccessIterators.

To ensure that an object of a class is interpreted as a particular type of iterator, the class must be

derived from the class std::iterator. Before a class can be derived from this class the <iterator>

header file must be included.

In section 18.2 the characteristics of iterators were discussed. All iterators should support (using

Iterator as the generic name of the designed iterator class and Type to represent the (possibly const,

in which case the associated operator should be a const member as well) data type to which Iterator

objects refer):

• a prefix increment operator (Iterator &operator++());

• a dereference operator (Type &operator∗());

• a ’pointer to’ operator (Type ∗operator->());

• comparison operators testing the (in)equality of two iterator objects (bool

operator==(Iterator const &other), bool operator!=(Iterator const &other)).

When iterators are to be used in the context of generic algorithms they must meet additional require-

ments. This is caused by the fact that generic algorithms perform checks on the types of the iterators

they receive. Simple pointers are usually accepted, but if an iterator-object is used it must be able to

specify the kind of iterator it represents.

When deriving a class from the class iterator the type of iterator is defined by the class template’s

first parameter, and the data type to which the iterator refers is defined by the class template’s second

parameter.

The type of iterator that is implemented by the derived class is specified using a so-called iterator_tag,

provided as the first template argument of the class iterator. For the five basic iterator types, these

tags are:

• std::input_iterator_tag. This tag defines an InputIterator. Iterators of this type allow

reading operations, iterating from the first to the last element of the series to which the iterator

refers.

The InputIterator dereference operator should be declared as follows:

Type const &operator*() const;

Except for the standard operators there are no further requirements for InputIterators.

• std::output_iterator_tag. This tag defines an OutputIterator. Iterators of this type allow

for assignment operations, iterating from the first to the last element of the series to which the

iterator refers.

The OutputIterator dereference operator should allow assignment to the data its dereference op-

erator refers to. Therefore, the OutputIterator dereference operator should be declared as follows:

Type &operator*();



• std::forward_iterator_tag. This tag defines a ForwardIterator. Iterators of this type allow

reading and assignment operations, iterating from the first to the last element of the series to

which the iterator refers.

The ForwardIterator dereference operator should allow assignment to the data its dereference

operator refers to. Therefore, the ForwardIterator dereference operator should be declared as

follows:

Type &operator*();

Except for the standard operators there are no further requirements for ForwardIterators.

• std::bidirectional_iterator_tag. This tag defines a BidirectionalIterator. Iterators of

this type allow reading and assignment operations, iterating step by step, possibly in alternating

directions, over all elements of the series to which the iterator refers.

The Bidirectional dereference operator should allow assignment to the data its dereference oper-

ator refers to and it should allow stepping backward. BidirectionalIterator should therefore, in

addition to the standard operators required for iterators, offer the following operators:

Type &operator*();

Iterator &operator--();

• std::random_access_iterator_tag. This tag defines a RandomAccessIterator. Iterators of

this type allow reading and assignment operations, iterating, possibly in alternating directions,

over all elements of the series to which the iterator refers using any available (random) stepsize.

RandomIterator class dereference operators should allow assignment to the data they refer to,

and, in addition to the standard operators required for iterators, offer the following operators:

– Type &operator∗(), allowing assignment to the data the dereference operator refers to;

– Iterator &operator--(), allowing single steps backward;

– Type operator-(Iterator const &rhs) const, returning the number of data ele-

ments between the current and rhs iterator (returning a negative value if rhs refers to a

data element beyond the data element this iterator refers to);

– Iterator operator+(int step) const, returning an iterator referring to a data ele-

ment step data elements beyond the data element this iterator refers to;

– Iterator operator-(int step) const, returning an iterator referring to a data ele-

ment step data elements before the data element this iterator refers to;

– bool operator<(Iterator const &rhs) const, returning true if the data element

this iterator refers to is located before the data element the rhs iterator refers to.

Each iterator tag assumes that a certain set of operators is available. The RandomAccessIterator is the

most complex of iterators, as it implies all other iterators.

Note that iterators are always defined over a certain range ([begin, end)). Increment and decrement

operations may result in undefined behavior of the iterator if the resulting iterator value would refer

to a location outside of this range.

Often, iterators only access the elements of the series to which they refer. Internally, an iterator may

use an ordinary pointer but it is hardly ever necessary for the iterator to allocate its own memory.

Therefore, as the assignment operator and the copy constructor do not have to allocate any memory,

their default implementations usually suffice. For the same reason iterators usually don’t require de-

structors.

Most classes offering members returning iterators do so by having members construct the required

iterators that are thereupon returned as objects by those member functions. As the caller of these

member functions only has to use or sometimes copy the returned iterator objects, there is usually no

need to provide any publicly available constructor, except for the copy constructor. Therefore these



iterator objects, the iterator class usually declares the outer class as its friend.

In the following sections the construction of a RandomAccessIterator, the most complex of all iterators,

and the construction of a reverse RandomAccessIterator is discussed. The container class for which a

random access iterator must be developed may actually store its data elements in many different ways

(e.g., using containers or pointers to pointers). Therefore it is difficult to construct a template iterator

class which is suitable for a large variety of container classes.

In the following sections the available std::iterator class is used to construct an inner class rep-

resenting a random access iterator. The reader may follow the approach illustrated there to construct

iterator classes for other contexts. An example of such a template iterator class is provided in section

24.5.

The random access iterator developed in the next sections reaches data elements that are only accessi-

ble through pointers. The iterator class is designed as an inner class of a class derived from a vector of

string pointers.

22.14.1 Implementing a ‘RandomAccessIterator’

In the chapter about containers (chapter 12) it was noted that containers own the information they

contain. If they contain objects, then those objects are destroyed once the containers are destroyed. As

pointers are not objects their use in containers is discouraged (STL’s unique_ptr and shared_ptr

type objects may be used, though). Although discouraged, we might be able to use pointer data types in

specific contexts. In the following class StringPtr, an ordinary class is derived from the std::vector

container that uses std::string ∗ as its data type:

#ifndef INCLUDED_STRINGPTR_H_

#define INCLUDED_STRINGPTR_H_

#include <string>

#include <vector>

class StringPtr: public std::vector<std::string *>

{

public:

StringPtr(StringPtr const &other);

~StringPtr();

StringPtr &operator=(StringPtr const &other);

};

#endif

This class needs a destructor: as the object stores string pointers, a destructor is required to destroy the

strings once the StringPtr object itself is destroyed. Similarly, a copy constructor and an overloaded

assignment operator are required. Other members (in particular: constructors) are not explicitly de-

clared here as they are not relevant to this section’s topic.

Assume that we want to be able to use the sort generic algorithm with StringPtr objects. This algo-

rithm (see section 19.1.58) requires two RandomAccessIterators. Although these iterators are available

(via std::vector’s begin and endmembers), they return iterators to std::string ∗s, which cannot

sensibly be compared.

To remedy this, we may define an internal type StringPtr::iterator, not returning iterators to

pointers, but iterators to the objects these pointers point to. Once this iterator type is available, we

can add the following members to our StringPtr class interface, hiding the identically named, but

useless members of its base class:



StringPtr::iterator end(); // returns iterator beyond the last

// element

Since these two members return the (proper) iterators, the elements in a StringPtr object can easily

be sorted:

int main()

{

StringPtr sp; // assume sp is somehow filled

sort(sp.begin(), sp.end()); // sp is now sorted

}

To make this all work, the type StringPtr::iterator must be defined. As suggested by its

type name, iterator is a nested type of StringPtr. To use a StringPtr::iterator in com-

bination with the sort generic algorithm it must also be a RandomAccessIterator. Therefore,

StringPtr::iterator itself must be derived from the existing class std::iterator.

To derive a class from std::iterator, both the iterator type and the data type the iterator points to

must be specified. Caveat: our iterator takes care of the string ∗ dereferencing; so the required data

type is std::string, and not std::string ∗. The class iterator therefore starts its interface as:

class iterator:

public std::iterator<std::random_access_iterator_tag, std::string>

Since its base class specification is quite complex, we could consider associating this type with a shorter

name using the following typedef:

typedef std::iterator<std::random_access_iterator_tag, std::string>

Iterator;

In practical situations, if the type (Iterator) is used only once or twice, the type definition only adds

clutter to the interface, and is better not used.

Now we’re ready to redesign StringPtr’s class interface. It offers members returning (reverse) itera-

tors, and a nested iterator class. Here is its interface:

class StringPtr: public std::vector<std::string *>

{

public:

class iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;

iterator begin();

iterator end();

reverse_iterator rbegin();

reverse_iterator rend();

};

class StringPtr::iterator: public

std::iterator<std::random_access_iterator_tag, std::string>

{

friend class StringPtr;

friend bool operator==(iterator const &lhs, iterator const &rhs);

friend int operator-(iterator const &lhs, iterator const &rhs);



friend iterator operator+(iterator const &lhs, int step);

friend iterator operator-(iterator const &lhs, int step);

std::vector<std::string *>::iterator d_current;

iterator(std::vector<std::string *>::iterator const &current);

public:

iterator &operator--();

iterator operator--(int);

iterator &operator++();

iterator operator++(int);

iterator &operator+=(int step); // increment over `n' steps

iterator &operator-=(int step); // decrement over `n' steps

std::string &operator*() const;

std::string *operator->() const;// access the fields of the

// struct an iterator points

// to. E.g., it->length()

};

As usual, the interface offers hooks for a more detailed study of the class.

First we have a look at StringPtr::iterator’s characteristics:

• iterator defines StringPtr as its friend, so iterator’s constructor may remain private. Only

the StringPtr class itself is now able to construct iterators, which seems like a sensible thing

to do. Under the current implementation, copy-construction should of course also be possible.

Furthermore, since an iterator is already provided by StringPtr’s base class, we can use that

iterator to access the information stored in the StringPtr object.

• StringPtr::begin and StringPtr::end may simply return iterator objects. They are im-

plemented like this:

inline StringPtr::iterator StringPtr::begin()

{

return iterator(this->std::vector<std::string *>::begin());

}

inline StringPtr::iterator StringPtr::end()

{

return iterator(this->std::vector<std::string *>::end());

}

• All of iterator’s remaining members are public. It’s very easy to implement them, mainly

manipulating and dereferencing the available iterator d_current. A RandomAccessIterator

(which is the most complex of iterators) requires a series of operators. They usually have very

simple implementations, making them good candidates for inline-members:

– iterator &operator++(); the pre-increment operator:

inline StringPtr::iterator &StringPtr::iterator::operator++()

{

++d_current;

return *this;

}

– iterator operator++(int); the post-increment operator:

inline StringPtr::iterator StringPtr::iterator::operator++(int)



return iterator(d_current++);

}

– iterator &operator--(); the pre-decrement operator:

inline StringPtr::iterator &StringPtr::iterator::operator--()

{

--d_current;

return *this;

}

– iterator operator--(int); the post-decrement operator:

inline StringPtr::iterator StringPtr::iterator::operator--(int)

{

return iterator(d_current--);

}

– iterator &operator=(iterator const &other); the overloaded assignment operator.

Since iterator objects do not allocate any memory themselves, the default assignment op-

erator can be used.

– bool operator==(iterator const &rhv) const; testing the equality of two

iterator objects:

inline bool operator==(StringPtr::iterator const &lhs,

StringPtr::iterator const &rhs)

{

return lhs.d_current == rhs.d_current;

}

– bool operator!=(iterator const &rhv) const; testing the inequality of two

iterator objects:

inline bool operator!=(StringPtr::iterator const &lhs,

StringPtr::iterator const &rhs)

{

return not (lhs == rhs);

}

– bool operator<(iterator const &rhv) const; testing whether the left-hand side it-

erator points to an element of the series located before the element pointed to by the right-

hand side iterator:

inline bool operator<(StringPtr::iterator const &lhs,

StringPtr::iterator const &rhs)

{

return lhs.d_current < rhs.d_current;

}

– int operator-(iterator const &rhv) const; returning the number of elements be-

tween the element pointed to by the left-hand side iterator and the right-hand side iterator

(i.e., the value to add to the left-hand side iterator to make it equal to the value of the right-

hand side iterator):

inline int operator-(StringPtr::iterator const &lhs,

StringPtr::iterator const &rhs)

{

return lhs.d_current - rhs.d_current;

}

– Type &operator∗() const; returning a reference to the object to which the current itera-

tor points. With an InputIterator and with all const_iterators, the return type of this

overloaded operator should be Type const &. This operator returns a reference to a string.

This string is obtained by dereferencing the dereferenced d_current value. As d_current



∗

string itself:

inline std::string &StringPtr::iterator::operator*() const

{

return **d_current;

}

– iterator operator+(int stepsize) const; this operator advances the current itera-

tor by stepsize:

inline StringPtr::iterator operator+(StringPtr::iterator const &lhs,

int step)

{

StringPtr::iterator ret{ lhs };

ret.d_current += step; // avoids ambiguity

return ret;

}

– iterator operator-(int stepsize) const; this operator decreases the current itera-

tor by stepsize:

inline StringPtr::iterator operator-(StringPtr::iterator const &lhs,

int step)

{

StringPtr::iterator ret{ lhs };

ret.d_current -= step; // avoids ambiguity

return ret;

}

– iterator(iterator const &other); iterators may be constructed from existing itera-

tors. This constructor doesn’t have to be implemented, as the default copy constructor can be

used.

– std::string ∗operator->() const is an additionally added operator. Here only one

dereference operation is required, returning a pointer to the string, allowing us to access the

members of a string via its pointer.

inline std::string *StringPtr::iterator::operator->() const

{

return *d_current;

}

– Two more additionally added operators are operator+= and operator-=. They are not

formally required by RandomAccessIterators, but they come in handy anyway:

inline StringPtr::iterator &StringPtr::iterator::operator+=(int step)

{

d_current += step;

return *this;

}

inline StringPtr::iterator &StringPtr::iterator::operator-=(int step)

{

d_current -= step;

return *this;

}

The interfaces required for other iterator types are simpler, requiring only a subset of the inter-

face required by a random access iterator. E.g., the forward iterator is never decremented and

never incremented over arbitrary step sizes. Consequently, in that case all decrement operators and

operator+(int step) can be omitted from the interface. Of course, the tag to use would then be

std::forward_iterator_tag. The tags (and the set of required operators) vary accordingly for the

other iterator types.



Once we’ve implemented an iterator, the matching reverse iterator can be implemented in a jiffy. Com-

parable to the std::iterator a std::reverse_iterator exists, that nicely implements the reverse

iterator for us once we have defined an iterator class. Its constructor merely requires an object of the

iterator type for which we want to construct a reverse iterator.

To implement a reverse iterator for StringPtr we only need to define the reverse_iterator type in

its interface. This requires us to specify only one line of code, which must be inserted after the interface

of the class iterator:

typedef std::reverse_iterator<iterator> reverse_iterator;

Also, the well known members rbegin and rend are added to StringPtr’s interface. Again, they can

easily be implemented inline:

inline StringPtr::reverse_iterator StringPtr::rbegin()

{

return reverse_iterator(end());

}

inline StringPtr::reverse_iterator StringPtr::rend()

{

return reverse_iterator(begin());

}

Note the arguments the reverse_iterator constructors receive: the begin point of the reversed

iterator is obtained by providing reverse_iterator’s constructor with the value returned by the

member end: the endpoint of the normal iterator range; the endpoint of the reversed iterator is obtained

by providing reverse_iterator’s constructor with the value returned by the member begin: the

begin point of the normal iterator range.

The following small program illustrates the use of StringPtr’s RandomAccessIterator:

#include <iostream>

#include <algorithm>

#include "stringptr.h"

using namespace std;

int main(int argc, char **argv)

{

StringPtr sp;

while (*argv)

sp.push_back(new string{ *argv++ });

sort(sp.begin(), sp.end());

copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));

cout << "\n======\n";

sort(sp.rbegin(), sp.rend());

copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));

cout << '\n';

}

/*
when called as:

a.out bravo mike charlie zulu quebec



generated output:

a.out bravo charlie mike quebec zulu

======

zulu quebec mike charlie bravo a.out

*/

Although it is thus possible to construct a reverse iterator from a normal iterator, the opposite does not

hold true: it is not possible to initialize a normal iterator from a reverse iterator.

Assume we would like to process all lines stored in vector<string> lines up to any trailing empty

lines (or lines only containing blanks) it might contain. How should we proceed? One approach is to

start the processing from the first line in the vector, continuing until the first of the trailing empty

lines. However, once we encounter an empty line it does of course not have to be the first line of the set

of trailing empty lines. In that case, we’d better use the following algorithm:

• First, use

rit = find_if(lines.rbegin(), lines.rend(), NonEmpty());

to obtain a reverse_iterator rit pointing to the last non-empty line.

• Next, use

for_each(lines.begin(), --rit, Process());

to process all lines up to the first empty line.

However, we can’t mix iterators and reverse iterators when using generic algorithms. So how can

we initialize the second iterator using the available reverse_iterator? The solution is not very

difficult, as an iterator may be initialized from a pointer. Although the reverse iterator rit is not a

pointer, &∗(rit - 1) or &∗+NOTRANS(-{}-{})rit is. So we use

for_each(lines.begin(), &*--rit, Process());

to process all the lines up to the first of the set of trailing empty lines. In general, if rit is a

reverse_iterator pointing to some element and we need an iterator to point to that element,

we may use &∗rit to initialize the iterator. Here, the dereference operator is applied to reach the el-

ement the reverse iterator refers to. Then the address operator is applied to obtain its address with

which we can initialize the iterator.

When defining a const_reverse_iterator (e.g., matching a const_iterator class), then the

const_iterator’s operator∗ member should be a member returning a non-modifiable value

or object. Since a const_reverse_iterator uses the iterator’s operator-- member, we’re

running against a small conceptual conflict. On the one hand, a std::input_iterator_tag

is inappropriate, since we must allow decrementing the iterator. On the other hand, a

std::bidirectional_iterator is inappropriate, since we don’t allow modification of the data.

Iterator tags are primarily conceptual. If const_iterators and const_reverse_iterators only

allow increment operations, then an input_iterator_tag most closely matches the iterator’s in-

tended use. Hence this tag is used below.

Furthermore, in line with the nature of a input_iterator_tag our const_iterator should not

offer an operator--. This, of course, causes problems: a reverse iterator must be able to use the

iterator’s operator-- member. This can easily be solved by stashing the iterator’s operator-- in the

iterator’s private section, and declaring std::reverse_iterator<(const_)iterator> its friend

(note that declaring a (const_)reverse_iterator that is derived from std::reverse_iterator

doesn’t solve the issue: it is std::reverse_iterator that calls the iterator’s operator--, not a

class that is derived from it).



and subsequently dereferencing a const_reverse_iterator, the compiler generates an error mes-

sage like the following (using Type = int):

error: invalid initialization of non-const reference of type

'std::reverse_iterator<const_iterator>::reference {aka int&}' from an rvalue

of type 'int'

return *--__tmp;

This message is caused by std::reverse_iterator by default expecting that the iterator’s

operator∗ returns a reference to a modifiable Type.

To control such default expectancies, iterators can use typedefs to fine-tune these expectancies. The

following typedefs are interpreted by std::reverse_iterator:

pointer - the type of the pointer to the data

(e.g., Type *)

const_pointer - the type of a pointer to immutable data

(e.g., Type const *)

reference - the type of a reference to the data

(e.g., Type &)

const_reference - the type of a reference to immmutable data

(e.g., Type const &)

difference_type - the type representing differences between

pointers (by default `ptrdiff_t')

The mentioned error can simply be prevented by declaring ‘typedef int const &reference’ in the

iterator class. Alternatively, int const may be specified as the data type for the std::iterator’s

base class.

To define a iterator, const_iterator, reverse_iterator and const_reverse_iterator for

a class Data the following framework can be used:

#include <string>

#include <iterator>

class Data

{

std::string *d_data;

size_t d_n;

public:

class iterator;

class const_iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;

typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

};

class Data::iterator: public std::iterator<std::input_iterator_tag,

std::string>

{

public:

iterator() = default;

iterator &operator++();

std::string &operator*();



friend class Data;

iterator(std::string *data, size_t idx);

friend class std::reverse_iterator<iterator>;

iterator &operator--();

};

bool operator==(Data::iterator const &lhs, Data::iterator const &rhs);

class Data::const_iterator: public std::iterator<std::input_iterator_tag,

std::string const>

{

public:

const_iterator() = default;

const_iterator &operator++();

std::string const &operator*() const;

private:

friend class Data;

const_iterator(std::string const *data, size_t idx);

friend class std::reverse_iterator<const_iterator>;

const_iterator &operator--();

};

bool operator==(Data::const_iterator const &lhs,

Data::const_iterator const &rhs);

int main()

{

Data::iterator iter;

Data::reverse_iterator riter(iter);

*riter;

Data::const_iterator citer;

Data::const_reverse_iterator criter(citer);

*criter;

};





Chapter 23

Advanced Template Use

The main purpose of templates is to provide a generic definition of classes and functions that may then

be tailored to specific types.

But templates allow us to do more than that. If not for compiler implementation limitations, templates

could be used to program, at compile-time, just about anything we use computers for. This remarkable

feat, offered by no other current-day computer language, stems from the fact that templates allow us

to do three things at compile-time:

• Templates allow us to do integer arithmetic (and to save computed values symbolically);

• Templates allow us to make compile-time decisions;

• Templates allow us to do things repeatedly.

Of course, asking the compiler to compute, e.g., prime numbers, is one thing. But it’s a completely

different thing to do so in an award winning way. Don’t expect speed records to be broken when the

compiler performs complex calculations for us. But that’s all beside the point. In the end we can ask the

compiler to compute virtually anything using C++’s template language, including prime numbers....

In this chapter these remarkable features of templates are discussed. Following a short overview of

subtleties related to templates the main characteristics of template meta programming are introduced.

In addition to template type and template non-type parameters there is a third kind of template param-

eter, the template template parameter. This kind of template parameter is introduced shortly, laying

the groundwork for the discussion of trait classes and policy classes.

This chapter ends with the discussion of several additional and interesting applications of templates:

adapting compiler error messages, conversions to class types and an elaborate example discussing

compile-time list processing.

Much of the inspiration for this chapter came from two highly recommended books: Andrei

Alexandrescu’s 2001 book Modern C++ design (Addison-Wesley) and Nicolai Josutis and David

Vandevoorde’s 2003 book Templates (Addison-Wesley).

23.1 Subtleties

In section 22.2.1 a special application of the keyword typename was discussed. There we learned that

it is not only used to define a name for a (complex) type, but also to distinguish types defined by class

templates from members defined by class templates. In this section two more applications of typename

are introduced:

815



from member functions of class templates;

• in section 23.1.2 we cover the problem of how to refer to base class templates from derived class

templates.

In addition to the special applications of typename section 23.1.3 introduces some new syntax that is

related to the extended use of the keyword typename: ::template, .template and ->template

are used to inform the compiler that a name used inside a template is itself a class template.

23.1.1 Returning types nested under class templates

In the following example a nested class, not depending on a template parameter, is defined inside a

class template. The class template member nested returns an object of this nested class. The example

uses a (deprecated) in-class member implementation. The reason for this shortly becomes clear.

template <typename T>

class Outer

{

public:

class Nested

{};

Nested nested() const

{

return Nested{};

}

};

The above example compiles flawlessly. Inside the class Outer there is no ambiguity with respect to

the meaning of nested’s return type.

However, following good practices inline and template members should be implemented below their

class interfaces (see section 7.8.1). So we remove the implementation from the interface and put it

below the interface:

template <typename T>

class Outer

{

public:

class Nested

{};

Nested nested() const;

};

template <typename T>

Outer<T>::Nested Outer<T>::nested() const

{

return Nested{};

}

Suddenly the compiler refuses to compile the nested member. Fortunately, it also suggests a solution

in its error message:

error: need `typename' before `Outer<T>::Nested' because

`Outer<T>' is a dependent scope

Outer<T>::Nested Outer<T>::nested() const

~~~~~~~~



Outer<T>::Nested) refers to a type defined by Outer<T> rather than to a member of Outer<T>,

and so typename must once again be used.

A general rule for using typename can be formulated: the keyword typename must be used whenever

a type is referred to that is a subtype of a type that itself depends on a template type parameter. When

using the inline implementation no such dependency is used as the function’s return type is simply

Nested. When implementing the function outside of the class interface (which should be considered

‘good practice’) then a specification of the class defining Nested must be provided for the function’s

return type. So it becomes Outer<T>::Nested which clearly is a type depending on a template type

parameter.

Like before, writing typename in front of Outer<T>::Nested removes the compilation error. Thus,

the correct implementation of the function nested becomes:

template <typename T>

typename Outer<T>::Nested Outer<T>::nested() const

{

return Nested();

}

23.1.2 Type resolution for base class members

Below we see two class templates. Base and Derived, Base being Derived’s base class:

#include <iostream>

template <typename T>

class Base

{

public:

void member();

};

template <typename T>

void Base<T>::member()

{

std::cout << "This is Base<T>::member()\n";

}

template <typename T>

class Derived: public Base<T>

{

public:

Derived();

};

template <typename T>

Derived<T>::Derived()

{

member();

}

This example won’t compile, and the compiler tells us something like:

error: there are no arguments to 'member' that depend on a template

parameter, so a declaration of 'member' must be available

This error causes some confusion as ordinary (non-template) base classes readily make their public

and protected members available to classes that are derived from them. This is no different for class



can’t as it doesn’t know for what type T the member function member must be initialized when called

from Derived<T>::Derived.

To appreciate why this is true, consider the situation where we have defined a specialization:

template <>

Base<int>::member()

{

std::cout << "This is the int-specialization\n";

}

Since the compiler, when Derived<SomeType>::Derived is called, does not know whether a special-

ization of member is in effect, it can’t decide (when compiling Derived<T>::Derived) for what type

to instantiate member. It can’t decide this when compiling Derived<T>::Derived as member’s call

in Derived::Derived doesn’t require a template type parameter.

In cases like these, where no template type parameter is available to determine which type to use, the

compiler must be told that it should postpone its decision about the template type parameter to use

(and therefore about the particular (here: member) function to call) until instantiation time.

This may be implemented in two ways: either by using this or by explicitly mentioning the base class,

instantiated for the derived class’s template type(s). When this is used the compiler is informed that

we’re referring to the type T for which the template was instantiated. Any confusion about which

member function to use (the derived class or base class member) is resolved in favor of the derived

class member. Alternatively, the base or derived class can explicitly be mentioned (using Base<T> or

Derived<T>) as shown in the next example. Note that with the int template type the int specializa-

tion is used.

#include <iostream>

template <typename T>

class Base

{

public:

void member();

};

template <typename T>

void Base<T>::member()

{

std::cout << "This is Base<T>::member()\n";

}

template <>

void Base<int>::member()

{

std::cout << "This is the int-specialization\n";

}

template <typename T>

class Derived: public Base<T>

{

public:

Derived();

virtual void member();

};

template <typename T>

void Derived<T>::member()

{

std::cout << "This is Derived<T>::member()\n";

}



Derived<T>::Derived()

{

this->member(); // Using `this' implies using the

// type for which T was instantiated

Derived<T>::member(); // Same: calls the Derived member

Base<T>::member(); // Same: calls the Base member

std::cout << "Derived<T>::Derived() completed\n";

}

int main()

{

Derived<double> d;

Derived<int> i;

}

/*
Generated output:

This is Derived<T>::member()

This is Derived<T>::member()

This is Base<T>::member()

Derived<T>::Derived() completed

This is Derived<T>::member()

This is Derived<T>::member()

This is the int-specialization

Derived<T>::Derived() completed

*/

The above example also illustrates the use of virtual member templates (although virtual member

templates aren’t often used). In the example Base declares a virtual void member and Derived

defines its overriding function member. In that case this->member() in Derived::Derived calls,

due to member’s virtual nature, Derived::member. The statement Base<T>::member(), however,

always calls Base’s member function and can be used to bypass dynamic polymorphism.

23.1.3 ::template, .template and ->template

In general, the compiler is able to determine the true nature of a name. As discussed, this is not always

the case and sometimes we have to advise the compiler. The typename keyword may often be used for

that purpose.

But typename cannot always come to the rescue. While parsing a source the compiler receives a series

of tokens, representing meaningful units of text encountered in the program’s source. A token could

represent, e.g., an identifier or a number. Other tokens represent operators, like =, + or <. It is

precisely the last token that may cause problems as it may have very different meanings. The correct

meaning cannot always be determined from the context in which the compiler encounters <. In some

situations the compiler does know that < does not represent the less than operator, as when a template

parameter list follows the keyword template, e.g.,

template <typename T, int N>

Clearly, in this case < does not represent a ‘less than’ operator.

The special meaning of < when it is preceded by template forms the basis for the syntactic constructs

discussed in this section.

Assume the following class has been defined:

template <typename Type>



{

public:

template <typename InType>

class Inner

{

public:

template <typename X>

void nested();

};

};

The class template Outer defines a nested class template Inner. Inner in turn defines a template

member function.

Next a class template Usage is defined, offering a member function caller expecting an object of the

above Inner type. An initial setup for Usage looks like this:

template <typename T1, typename T2>

class Usage

{

public:

void caller(Outer<T1>::Inner<T2> &obj);

...

};

The compiler won’t accept this as it interprets Outer<T1>::Inner as a class type. But there is no

class Outer<T1>::Inner. Here the compiler generates an error like:

error: 'class Outer<T1>::Inner' is not a type

To inform the compiler that Inner itself is a template, using the template type parameter <T2>, the

::template construction is required. It tells the compiler that the next < should not be interpreted

as a ‘less than’ token, but rather as a template type argument. So, the declaration is modified to:

void caller(Outer<T1>::template Inner<T2> &obj);

This still doesn’t get us where we want to be: after all Inner<T2> is a type, nested under a class

template, depending on a template type parameter. In fact, the original Outer<T1>::Inner<T2>

&obj declaration results in a series of error messages, one of them looking like this:

error: expected type-name before '&' token

As is often the case this error message nicely indicates what should be done to get it right: add

typename:

void caller(typename Outer<T1>::template Inner<T2> &obj);

Of course, caller itself is not only just declared, it must also be implemented. Assume that its imple-

mentation should call Inner’s member nested, instantiated for yet another type X. The class template

Usage should therefore receive a third template type parameter, called T3. Assume it has been defined.

To implement caller, we write:

void caller(typename Outer<T1>::template Inner<T2> &obj)

{

obj.nested<T3>();

}



‘less than’, seeing a logical expression having as its right-hand side a primary expression instead of a

function call specifying a template type T3.

To tell the compiler that is should interpret <T3> as a type to instantiate, the template keyword

must once again be used. This time it is used in the context of the member selection operator. We write

.template to inform the compiler that what follows is not a ‘less than’ operator, but rather a type

specification. The function’s final implementation becomes:

void caller(typename Outer<T1>::template Inner<T2> &obj)

{

obj.template nested<T3>();

}

Instead of defining value or reference parameters functions may also define pointer parameters. Had

obj been defined as a pointer parameter the implementation would have had to use the ->template

construction, rather than the .template construction. E.g.,

void caller(typename Outer<T1>::template Inner<T2> *ptr)

{

ptr->template nested<T3>();

}

As we’ve seen class templates can be derived from base class templates. The base class template can

declare a static member template, which is available to a class that is derived from this base class.

Such a base class might look like this:

template <typename Type>

struct Base

{

template <typename Tp>

static void fun();

};

Normally, when a base class defines a static member we can just call that member by prefixing its name

by its class name. E.g.,

int main()

{

Base<int>::fun<double>();

}

This also works fine if a class Derived is derived from Base, instantiated for a specific type:

struct Der: public Base<int>

{

static void call()

{

Base<int>::fun<int>(); // OK

fun<int>(); // also OK

};

};

However, when the derived class itself is a class template this way to call fun does not compile anymore,

as it interprets Base<Type>::fun in Base<Type>::fun<int> as a type, to be instantiated for int.



::template prefix is used:

template <typename Type>

struct Der: public Base<Type>

{

//template <typename Tp> // 'call' may be a member template

//static // 'call' may be a static member

void call()

{

// fun<int>(); // won't compile

// Base<Type>::fun<int>(); // won't compile

Base<Type>::template fun<int>(); // OK

Base<Type>::template fun<Tp>(); // OK if call is a

// member template

};

};

23.2 Template Meta Programming

23.2.1 Values according to templates

In template programming values are preferably represented by enum values. Enums are preferred over,

e.g., int const values since enums never require any linkage. They are pure symbolic values with no

memory representation whatsoever.

Consider the situation where a programmer must use a cast, say a reinterpret_cast. A problem

with a reinterpret_cast is that it is the ultimate way to turn off all compiler checks. All bets are

off, and we can write extreme but absolutely pointless reinterpret_cast statements, like

int intVar = 12;

ostream &ostr = reinterpret_cast<ostream &>(intVar);

Wouldn’t it be nice if the compiler would warn us against such oddities by generating an error message?

If that’s what we’d like the compiler to do, there must be some way to distinguish madness from weird-

ness. Let’s assume we agree on the following distinction: reinterpret casts are never acceptable if the

target type represents a larger type than the expression (source) type, since that would immediately

result in exceeding the amount of memory that’s actually available to the target type. For this rea-

son it’s clearly silly to reinterpret_cast<double ∗>(&intVar), but reinterpret_cast<char

∗>(&intVar) could be defensible.

The intent is now to create a new kind of cast, let’s call it reinterpret_to_smaller_cast. It should

only be allowed to perform a reinterpret_to_smaller_cast if the target type occupies less memory

than the source type (note that this exactly the opposite reasoning as used by Alexandrescu (2001),

section 2.1).

To start, we construct the following template:

template<typename Target, typename Source>

Target &reinterpret_to_smaller_cast(Source &source)

{

// determine whether Target is smaller than source

return reinterpret_cast<Target &>(source);

}



time error results if the required condition is not met and the error message displays the name of the

symbol. A division by zero is clearly not allowed, and noting that a false value represents a zero

value, the condition could be:

1 / (sizeof(Target) <= sizeof(Source));

The interesting part is that this condition doesn’t result in any code at all. The enum’s value is a plain

value that’s computed by the compiler while evaluating the expression:

template<typename Target, typename Source>

Target &reinterpret_to_smaller_cast(Source &source)

{

enum

{

the_Target_size_exceeds_the_Source_size =

1 / (sizeof(Target) <= sizeof(Source))

};

return reinterpret_cast<Target &>(source);

}

When reinterpret_to_smaller_cast is used to cast from int to double an error is produced by

the compiler, like this:

error: enumerator value for 'the_Target_size_exceeds_the_Source_size'

is not an integer constant

whereas no error is reported if, e.g., reinterpret_to_smaller_cast<int>(doubleVar) is re-

quested with doubleVar defined as a double.

In the above example an enum was used to compute (at compile-time) a value that is illegal if an

assumption is not met. The creative part is finding an appropriate expression.

Enum values are well suited for these situations as they do not consume any memory and their evalu-

ation does not produce any executable code. They can be used to accumulate values too: the resulting

enum value then contains a final value, computed by the compiler rather than by executable code as the

next sections illustrate. In general, programs shouldn’t do run-time what they can do at compile-time

and performing complex calculations resulting in constant values is a clear example of this principle.

23.2.1.1 Converting integral types to types

Another use of values buried inside templates is to ‘templatize’ simple scalar int values. This is useful

in situations where a scalar value (often a bool value) is available to select a specialization but a type

is required to base the selection on. This situation is shortly encountered (section 23.2.2).

Templatizing integral values is based on the fact that a class template together with its template

arguments defines a type. E.g., vector<int> and vector<double> are different types.

Turning integral values into templates is easily done. Define a template (it does not have to have any

content at all) and store the integral value in an enum:

template <int x>

struct IntType

{

enum { value = x };

};



saving us from having to type public:.

Defining the enum value ‘value’ allows us to retrieve the value used at the instantiation at no cost in

storage. Enum values are neither variables nor data members and thus have no address. They are

mere values.

It’s easy to use the struct IntType. An anonymous or named object can be defined by specifying a

value for its int non-type parameter. Example:

int main()

{

IntType<1> it;

cout << "IntType<1> objects have value: " << it.value << "\n" <<

"IntType<2> objects are of a different type "

"and have values " << IntType<2>().value << '\n';

}

Actually, neither the named object nor the anonymous object is required. As the enum is defined as a

plain value, associated with the struct IntType we merely have to specify the specific int for which

the struct IntType is defined to retrieve its ‘value’, like this:

int main()

{

cout << "IntType<100>, no object, defines `value': " <<

IntType<100>::value << "\n";

}

23.2.2 Selecting alternatives using templates

An essential characteristic of programming languages is that they allow the conditional execution of

code. For this C++ offers the if and switch statements. If we want to be able to ‘program the compiler’

this feature must also be offered by templates.

Like templates storing values templates making choices do not require any code to be executed at run-

time. The selection is purely made by the compiler, at compile-time. The essence of template meta

programming is that we are not using or relying on any executable code. The result of a template meta

program often is executable code, but that code is a function of decisions merely made by the compiler.

Template (member) functions are only instantiated when they are actually used. Consequently we

can define specializations of functions that are mutually exclusive. Thus it is possible to define a

specialization that can be compiled in situation one, but not in situation two and to define another

specialization that can be compiled in situation two, but not in situation one. Using specializations

code can be generated that is tailored to the demands of a particular situation.

A feature like this cannot be implemented in run-time executable code. For example, when designing

a generic storage class the software engineer may intend to store value class type objects as well as

objects of polymorphic class types in the final storage class. Thus the software engineer may conclude

that the storage class should contain pointers to objects, rather than the objects themselves. The initial

implementation attempt could look like this:

template <typename Type>

void Storage::add(Type const &obj)

{

d_data.push_back(

d_ispolymorphic ?

obj.clone()

:



);

}

The intent is to use the clone member function of the class Type if Type is a polymorphic class and

the standard copy constructor if Type is a value class.

Unfortunately, this scheme usually fails as value classes do not define clone member functions and

polymorphic base classes should delete their copy constructors (cf. section 7.6). It doesn’t matter to the

compiler that clone is never called for value classes and that the copy constructor is only available

in value classes and not in polymorphic classes. It merely has some code to compile, and can’t do that

because of missing members. It’s as simple as that.

23.2.2.1 Defining overloading members

Template meta programming comes to the rescue. Knowing that class template member functions are

only instantiated when used, our plan is to design overloaded add member functions of which only one

is going to be called (and thus instantiated). Our selection will be based on an additional (in addition

to Type itself) template non-type parameter that indicates whether we’ll use Storage for polymorphic

or non-polymorphic classes. Our class Storage starts like this:

template <typename Type, bool isPolymorphic>

class Storage

Initially two overloaded versions of our addmember are defined: one used with Storage objects storing

polymorphic objects (using true as its template non-type argument) and one storing value class objects

(using false as its template non-type argument).

Unfortunately we run into a small problem: functions cannot be overloaded by their argument values

but only by their argument types. But the small problem may be solved. Realizing that types are defined

by the combination of template names and their template arguments we may convert the values true

and false into types using the knowledge from section 23.2.1.1 about how to convert integral values

to types.

We’ll provide one (private) add member with an IntType<true> parameter (implementing the poly-

morphic class) and another (private) add member with an IntType<false> parameter (implement-

ing the non-polymorphic class).

In addition to these two private members a third (public) member add is defined calling the appropriate

private add member by providing an IntType argument, constructed from Storage’s template non-

type parameter.

Here are the implementations of the three add members:

// declared in Storage's private section:

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<true>)

{

d_data.push_back(obj.clone());

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<false>)

{

d_data.push_back(new Type(obj));

}



template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj)

{

add(obj, IntType<isPolymorphic>());

}

The appropriate add member is instantiated and called because a primitive value can be converted to a

type. Each of the possible template non-type values is thus used to define an overloaded class template

member function.

Since class template members are only instantiated when used only one of the overloaded private add

members is instantiated. Since the other one is never called (and thus never instantiated) compilation

errors are prevented.

23.2.2.2 Class structure as a function of template parameters

Some software engineers have reservations when thinking about the Storage class that uses pointers

to store copies of value class objects. Their argument is that value class objects can very well be stored

by value, rather than by pointer. They’d rather store value class objects by value and polymorphic class

objects by pointer.

Such distinctions frequently occur in template meta programming and the following struct IfElse

may be used to obtain one of two types, depending on a bool selector value.

First define the generic form of the template:

template<bool selector, typename FirstType, typename SecondType>

struct IfElse

{

typedef FirstType type;

};

Then define a partial specialization. The specialization represents a specific selector value (e.g., false)

and leaves the remaining types open to further specification:

template<typename FirstType, typename SecondType>

struct IfElse<false, FirstType, SecondType>

{

typedef SecondType type;

};

The former (generic) definition associates FirstType with the IfElse::type type definition, the

latter definition (partially specialized for the logical value false) associates SecondType with the

IfElse::type type definition.

The IfElse template allows us to define class templates whose data organization is conditional to

the template’s parameters. Using IfElse the Storage class may define pointers to store copies of

polymorphic class type objects and values to store value class type objects:

template <typename Type, bool isPolymorphic>

class Storage

{

typedef typename IfElse<isPolymorphic, Type *, Type>::type

DataType;



private:

void add(Type const &obj, IntType<true>);

void add(Type const &obj, IntType<false>);

public:

void add(Type const &obj);

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<true>)

{

d_data.push_back(obj.clone());

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<false>)

{

d_data.push_back(obj);

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj)

{

add(obj, IntType<isPolymorphic>());

}

The above example uses IfElse’s type, defined by IfElse as either FirstType or SecondType.

IfElse’s type defines the actual data type to use for Storage’s vector data type.

The remarkable result in this example is that the data organization of the Storage class now depends

on its template arguments. Since the isPolymorphic == true situation uses different data types

than the isPolymorphic == false situation, the overloaded private add members can utilize this

difference immediately. E.g., add(Type const &obj, IntType<false>) uses direct copy construc-

tion to store a copy of obj in d_vector.

It is also possible to make a selection from multiple types as IfElse structs can be nested. Realize that

using IfElse never has any effect on the size or execution time of the final executable program. The

final program simply contains the appropriate type, conditional to the type that’s eventually selected.

23.2.2.3 An illustrative example

The next example, defining MapType as a map having plain types or pointers for either its key or value

types, illustrates this approach:

template <typename Key, typename Value, int selector>

class Storage

{

typedef typename IfElse<

selector == 1, // if selector == 1:

map<Key, Value>, // use map<Key, Value>

typename IfElse<

selector == 2, // if selector == 2:

map<Key, Value *>, // use map<Key, Value *>

typename IfElse<

selector == 3, // if selector == 3:



// otherwise:

map<Key *, Value *> // use map<Key *, Value *>

>::type

>::type

>::type

MapType;

MapType d_map;

public:

void add(Key const &key, Value const &value);

private:

void add(Key const &key, Value const &value, IntType<1>);

...

};

template <typename Key, typename Value, int selector>

inline void Storage<selector, Key, Value>::add(Key const &key,

Value const &value)

{

add(key, value, IntType<selector>());

}

The principle used in the above examples is: if class templates may use data types that depend on

template non-type parameters, an IfElse struct can be used to select the appropriate data types.

Knowledge about the various data types may also be used to define overloaded member functions. The

implementations of these overloaded members may then be optimized to the various data types. In

programs only one of these alternate functions (the one that is optimized to the actually used data

types) will then be instantiated.

The private add functions define the same parameters as the public add wrapper function, but add a

specific IntType type, allowing the compiler to select the appropriate overloaded version based on the

template’s non-type selector parameter.

23.2.3 Templates: Iterations by Recursion

As there are no variables in template meta programming, there is no template equivalent to a for or

while statement. However, iterations can always be rewritten as recursions. Recursions are supported

by templates and so iterations can always be implemented as (tail) recursions.

To implement iterations by (tail) recursion do as follows:

• define a specialization implementing the end-condition;

• define all other steps using recursion.

• store intermediate values as enum values.

The compiler selects a more specialized template implementation over a more generic one. By the

time the compiler reaches the end-condition the recursion stops since the specialization does not use

recursion.

Most readers are probably familiar with the recursive implementation of the mathematical ‘factorial’

operator, commonly represented by the exclamation mark (!): n factorial (so: n!) returns the successive

products n ∗ (n - 1) ∗ (n - 2) ∗ ... ∗ 1, representing the number of ways n objects can be

permuted. Interestingly, the factorial operator is itself usually defined by a recursive definition:

n! = (n == 0) ?



:

n * (n - 1)!

To compute n! from a template, a template Factorial can be defined using an int n template non-

type parameter. A specialization is defined for the case n == 0. The generic implementation uses

recursion according to the factorial definition. Furthermore, the Factorial template defines an enum

value ‘value’ containing its factorial value. Here is the generic definition:

template <int n>

struct Factorial

{

enum { value = n * Factorial<n - 1>::value };

};

Note how the expression assigning a value to ‘value’ uses constant values that can be determined

by the compiler. The value n is provided, and Factorial<n - 1> is computed using template meta

programming. Factorial<n-1> in turn results in value that can be determined by the compiler (viz.

Factorial<n-1>::value). Factorial<n-1>::value represents the value defined by the type

Factorial<n - 1>. It is not the value returned by an object of that type. There are no objects here

but merely values defined by types.

The recursion ends in a specialization. The compiler selects the specialization (provided for the termi-

nating value 0) instead of the generic implementation whenever possible. Here is the specialization’s

implementation:

template <>

struct Factorial<0>

{

enum { value = 1 };

};

The Factorial template can be used to determine, compile time, the number of permutations of a

fixed number of objects. E.g.,

int main()

{

cout << "The number of permutations of 5 objects = " <<

Factorial<5>::value << "\n";

}

Once again, Factorial<5>::value is not evaluated at run-time, but at compile-time. The run-time

equivalent of the above cout statement is, therefore:

int main()

{

cout << "The number of permutations of 5 objects = " <<

120 << "\n";

}

23.3 User-defined literals

In addition to the literal operators discussed in section 11.13 C++ also offers a function template literal

operator, matching the prototype

template <char ...Chars>



This variadic non-type parameter function template defines no parameters, but merely a variadic non-

type parameter list.

Its argument must be an int constant, as is also expected by the literal operator defining an unsigned

long long int parameter. All the characters of the int constant are passed as individual char non-

type template arguments to the literal operator.

For example, if _NM2km is a literal operator function template, it can be called as 80_NM2km. The

function template is then actually called as _NM2km<’8’, ’0’>(). If this function template merely

uses template meta programming techniques and only processes integral data then its actions can be

performed completely at compile-time. To illustrate this, let’s assume NM2km only processes and returns

unsigned values.

The function template _NM2km can forward its argument to a class template, defining an enum constant

value, and that performs the required computations. Here is the implementation of the variadic literal

operator function template _NM2km:

template <char ... Chars>

size_t constexpr operator "" _NM2km()

{

return static_cast<size_t>( // forward Chars to NM2km

NM2km<0, Chars ...>::value * 1.852);

}

The class template NM2km defines three non-type parameters: acc accumulates the value, c is the

first character of the variadic non-type parameters, while ...Chars represents the remaining non-

type parameters, contained in a non-type parameter pack. Since c is, at each recursive call, the next

character from the original non-type parameter pack, the value so far multiplied by 10 plus the value

of the next character is passed as the next accumulated value to its recursive call, together with the

remaining elements of the parameter pack, represented by Chars ...:

template <size_t acc, char c, char ...Chars>

struct NM2km

{

enum

{

value = NM2km<10 * acc + c - '0', Chars ...>::value

};

};

Eventually, the parameter pack is empty. For this case a partial specialization of NM2km is available:

template <size_t acc, char c> // empty parameter pack

struct NM2km<acc, c>

{

enum

{

value = 10 * acc + c - '0'

};

};

This works fine, but of course not in cases where binary, octal, or hexadecimal values must also be

interpreted. In that case we must first determine whether the first character(s) indicate a special

number system. This can be determined by the class template NM2kmBase, that is now called from the

_NM2km literal operator:

template <char ... Chars>



{

return static_cast<size_t>( // forward Chars to NM2kmBase

NM2kmBase<Chars ...>::value * 1.852);

}

The NM2kmBase class template normally assumes the decimal number system, passing base value 10

and initial sum 0 to NM2km. The NM2km class template is provided with an additional (first) non-type

parameter representing the base value of the number system to use. Here is NM2kmBase:

template <char ...Chars>

struct NM2kmBase

{

enum

{

value = NM2km<10, 0, Chars ...>::value

};

};

Partial specializations handle the different number systems, by inspecting the first (one or two) char-

acters:

template <char ...Chars>

struct NM2kmBase<'0', Chars ...> // "0..."

{

enum

{ // octal value: base 8

value = NM2km<8, 0, Chars ...>::value

};

};

template <char ...Chars>

struct NM2kmBase<'0', 'b', Chars ...> // "0b..."

{

enum

{ // binary value: base 2

value = NM2km<2, 0, Chars ...>::value

};

};

template <char ...Chars>

struct NM2kmBase<'0', 'x', Chars ...> // "0x..."

{

enum

{ // hex value: base 16

value = NM2km<16, 0, Chars ...>::value

};

};

NM2km is implemented as before, albeit that it can now handle various number systems. The conversion

from character to numeric value is left to a small support function template, cVal:

template <char c>

int constexpr cVal()

{

return '0' <= c <= '9' ? c - '0' : 10 + c - 'a';

}



template <size_t base, size_t acc, char c, char ...Chars>

struct NM2km

{

enum

{

value = NM2km<base, base * acc + cVal<c>(),

Chars ...>::value

};

};

template <size_t base, size_t acc, char c>

struct NM2km<base, acc, c>

{

enum { value = base * acc + cVal<c>() };

};

23.4 Template template parameters

Consider the following situation: a software engineer is asked to design a storage class Storage. Data

stored in Storage objects may either make and store copies of the data or store the data as received.

Storage objects may also either use a vector or a linked list as its underlying storage medium. How

should the engineer tackle this request? Should four different Storage classes be designed?

The engineer’s first reaction could be to develop an all-in Storage class. It could have two data mem-

bers, a list and a vector, and its constructor could be provided with maybe an enum value indicating

whether the data itself or new copies should be stored. The enum value can be used to initialize a series

of pointers to member functions performing the requested tasks (e.g., using a vector to store the data

or a list to store copies).

Complex, but doable. Then the engineer is asked to modify the class: in the case of new copies a custom-

made allocation scheme should be used rather than the standard new operator. He’s also asked to allow

the use of yet another type of container, in addition to the vector and the list that were already part of

the design. Maybe a deque would be preferred or maybe even a stack.

It’s clear that the approach aiming at implementing all functionality and all possible combinations in

one class doesn’t scale. The class Storage soon becomes a monolithic giant which is hard to under-

stand, maintain, test, and deploy.

One of the reasons why the big, all-encompassing class is hard to deploy and understand is that a

well-designed class should enforce constraints: the design of the class should, by itself, disallow certain

operations, violations of which should be detected by the compiler, rather than by a program that might

terminate in a fatal error.

Think about the above request. If the class offers both an interface to access the vector data stor-

age and an interface to access the list data storage, then it’s likely that the class offers an over-

loaded operator[] member to access elements in the vector. This member, however, will be syntac-

tically present, but semantically invalid when the list data storage is selected, which doesn’t support

operator[].

Sooner or later, users of the monolithic all-encompassing class Storage will fall into the trap of using

operator[] even though they’ve selected the list as the underlying data storage. The compiler won’t

be able to detect the error, which only appears once the program is running, confusing its users.

The question remains: how should the engineer proceed, when confronted with the above questions?

It’s time to introduce policies.



A policy defines (in some contexts: prescribes) a particular kind of behavior. In C++ a policy class

defines a certain part of the class interface. It may also define inner types, member functions, and data

members.

In the previous section the problem of creating a class that might use any of a series of allocation

schemes was introduced. These allocation schemes all depend on the actual data type to use, and so

the ‘template reflex’ should kick in.

Allocation schemes should probably be defined as template classes, applying the appropriate allocation

procedures to the data type at hand. When such allocation schemes are used by the familiar STL

containers (like std::vector, std::stack, etc.), then such home-made allocation schemes should

probably be derived from std::allocator, to provide for the requirements made by these containers.

The class template std::allocator is declared by the <memory> header file and the three allocation

schemes developed here were all derived from std::allocator.

Using in-class implementations for brevity the following allocation classes could be defined:

• No special allocation takes place, Data is used ‘as is’:

template <typename Data>

class PlainAlloc: public std::allocator<Data>

{

template<typename IData>

friend std::ostream &operator<<(std::ostream &out,

PlainAlloc<IData> const &alloc);

Data d_data;

public:

PlainAlloc()

{}

PlainAlloc(Data const &data)

:

d_data(data)

{}

PlainAlloc(PlainAlloc<Data> const &other)

:

d_data(other.d_data)

{}

};

• The second allocation scheme uses the standard new operator to allocate a new copy of the data:

template <typename Data>

class NewAlloc: public std::allocator<Data>

{

template<typename IData>

friend std::ostream &operator<<(std::ostream &out,

NewAlloc<IData> const &alloc);

Data *d_data;

public:

NewAlloc()

:

d_data(0)

{}

NewAlloc(Data const &data)

:

d_data(new Data(data))



NewAlloc(NewAlloc<Data> const &other)

:

d_data(new Data(*other.d_data))

{}

~NewAlloc()

{

delete d_data;

}

};

• The third allocation scheme uses the placement new operator (see section 9.1.5), requesting mem-

ory from a common pool (the implementation of the member request, obtaining the required

amount of memory, is left as an exercise to the reader):

template<typename Data>

class PlacementAlloc: public std::allocator<Data>

{

template<typename IData>

friend std::ostream &operator<<(std::ostream &out,

PlacementAlloc<IData> const &alloc);

Data *d_data;

static char s_commonPool[];

static char *s_free;

public:

PlacementAlloc()

:

d_data(0)

{}

PlacementAlloc(Data const &data)

:

d_data(new(request()) Data(data))

{}

PlacementAlloc(PlacementAlloc<Data> const &other)

:

d_data(new(request()) Data(*other.d_data))

{}

~PlacementAlloc()

{

d_data->~Data();

}

private:

static char *request();

};

The above three classes define policies that may be selected by the user of the class Storage intro-

duced in the previous section. In addition to these classes, additional allocation schemes could be

implemented by the user as well.

To apply the proper allocation scheme to the class Storage, Storage should be designed as a class

template itself. The class also needs a template type parameter allowing users to specify the data type.

The data type to be used by a particular allocation scheme could of course be specified when specifying

the allocation scheme to use. The class Storage would then have two template type parameters, one

for the data type, one for the allocation scheme:

template <typename Data, typename Scheme>

class Storage ...



Storage<string, NewAlloc<string>> storage;

Using Storage this way is fairly complex and potentially error-prone, as it requires the user to specify

the data type twice. Instead, the allocation scheme should be specified using a new type of template

parameter, not requiring the user to specify the data type required by the allocation scheme. This

new kind of template parameter (in addition to the well-known template type parameter and template

non-type parameter) is called the template template parameter.

Starting with the C++14 standard the keyword class in the syntactical form of template tem-

plate parameters (template <parameter specifications> class Name) is no longer required.

From that standard onward, the keyword typename can also be used (e.g., template <parameter

specifications> typename Name).

23.4.2 Policy classes - II: template template parameters

Template template parameters allow us to specify a class template as a template parameter. By spec-

ifying a class template, it is possible to add a certain kind of behavior (called a policy) to an existing

class template.

To specify an allocation policy, rather than an allocation type for the class Storage we rephrase its

class template header: definition starts as follows:

template <typename Data, template <typename> class Policy>

class Storage...

The second template parameter is new. It is a template template parameter. It has the following

elements:

• The keyword template, starting the template template parameter;

• The keyword template is followed (between angle brackets) by a list of template parameters that

must be specified for the template template parameter. These parameters may be given names,

but names are usually omitted as those names cannot be used in subsequent template definitions.

On the other hand, providing formal names may help the reader of the template to understand

the kind of templates that must be specified with the template template parameter.

• Template template parameters must match, in numbers and types (i.e., template type param-

eters, template non-type parameters, template template parameters) the template parameters

that must be specified for the policy. This can be tricky, as some templates use default parame-

ters that are hardly ever changed (like the allocation schemes for containers). Programmers may

not immediately realize that these defaults exist and be confused when the compiler rejects such

templates when trying to pass them as template template parameters for which these additional

(default) parameters weren’t specified. However, language offers a solution for this problem in

the form of alias templates, introduced in section 23.5.

• Following the bracketed list the keyword class or typename must be specified.

• All parameters may be provided with default arguments. This is shown in the next example of a

hypothetical class template:

template <

template <

typename = std::string,

int = 12,

template <typename = int> class Inner = std::vector

>



>

class Demo

{

...

};

Here, the class template Demo expects a template template parameter named Policy, expecting

three template parameters: a template type parameter (by default std::string); a template

non-type parameter (by default having value 12); and Policy itself expects a template template

parameter, called Inner, by default using an int as its template type parameter.

Policy classes are often an integral part of the class under consideration. Because of this they are often

deployed as base classes. In the example the class Policy could be used as a base class of the class

Storage.

The policy operates on the class Storage’s data type. Therefore the policy is informed about that data

type as well. Our class Storage now begins like this:

template <typename Data, template <typename> class Policy>

class Storage: public Policy<Data>

This automatically allows us to use Policy’s members when implementing the members of the class

Storage.

Our home-made allocation classes do not really provide us with many useful members. Except for the

extraction operator they offer no immediate access to the data. This can easily be repaired by adding

more members. E.g., the class NewAlloc could be augmented with operators allowing access to and

modification of stored data:

operator Data &() // optionally add a `const' member too

{

return *d_data;

}

NewAlloc &operator=(Data const &data)

{

*d_data = data;

}

The other allocation classes could be given comparable members.

Let’s use the allocation schemes in some real code. The next example shows how Storage can be

defined using some data type and an allocation scheme. We start out again with a class Storage:

template <typename Data, template <typename> class Allocate>

class Storage: public std::vector<Data, Allocate<Data>>

{};

That’s all we have to do. Note that std::vector formally has two template parameters. The first one

is the vector’s data type, which is always specified; the second one is the allocator used by the vector.

Usually the allocator is left unspecified (in which case the default STL allocator is used), but here it is

mentioned explicitly, allowing us to pass our own allocation policy to Storage.

All required functionality is inherited from the vector base class, while the policy is ‘factored into the

equation’ using a template template parameter. Here’s an example showing how this is done:

Storage<std::string, NewAlloc> storage;



back_inserter(storage));

cout << "Element index 1 is " << storage[1] << '\n';

storage[1] = "hello";

copy(storage.begin(), storage.end(),

ostream_iterator<NewAlloc<std::string> >(cout, "\n"));

Since Storage objects are also std::vector objects the STL copy function can be used in combination

with the back_inserter iterator to add some data to the storage object. Its elements can be accessed

and modified using the index operator. Then NewAlloc<std::string> objects are inserted into cout

(also using the copy function).

Interestingly, this is not the end of the story. Remember that our intention was to create a class allowing

us to specify the storage type as well. What if we don’t want to use a vector, but instead would like to

use a list?

It’s easy to change Storage’s setup so that a completely different storage type can be used on request,

like a deque. To implement this, the storage class is parameterized as well, using yet another template

template parameter:

template <typename Data, template <typename> class AllocationPolicy,

template <typename, typename> class Container = std::vector>

class Storage: public Container<Data, AllocationPolicy<Data>>

{};

The earlier example using a Storage object can be used again without requiring any modifications

at all (except for the above redefinition). It clearly can’t be used with a list container, as the list

lacks operator[]. Trying to do so is immediately recognized by the compiler, producing an error if an

attempt is made to use operator[] on, e.g., a list.1 A list container, however can still be specified

as the container to use. In that case a Storage is implemented as a list, offering list’s interface,

rather than vector’s interface, to its users.

23.4.2.1 The destructor of Policy classes

In the previous section policy classes were used as base classes of template classes. This resulted in the

interesting observation that a policy class may serve as a base class of a derived class. As a policy class

may act as a base class, a pointer or reference to such a policy class can be used to point or refer to the

derived class using the policy.

This situation, although legal, should be avoided for various reasons:

• Destruction of a derived class object using the base class’s destructor requires the implementation

of a virtual destructor;

• A virtual destructor introduces overhead to a class that normally has no data members, but

merely defines behavior: suddenly a vtable is required as well as a data member pointing to

the vtable;

• Virtual member functions somewhat reduce the efficiency of code; virtual member functions use

dynamic polymorphism, which in principle is undoing the advantages of static polymorphism as

offered by templates;

• Virtual member functions in templates may result in code bloat: once an instantiation of a class’s

member is required, the class’s vtable and all its virtual members must be implemented too.

1A complete example showing the definition of the allocation classes and the class Storage as well as its use is provided in

the C++ Annotations’s distribution in the file yo/advancedtemplates/examples/storage.cc.



to refer or point to derived class objects. This is accomplished by providing policy classes with non-

virtual protected destructors. With a non-virtual destructor there is no performance penalty and since

its destructor is protected users cannot refer to classes derived from the policy class using a pointer or

reference to the policy class.

23.4.3 Structure by Policy

Policy classes usually define behavior, not structure. Policy classes are normally used to parameterize

some aspect of the behavior of classes that are derived from them. However, different policies may

require different data members. These data members may also be defined by the policy classes. Policy

classes may therefore be used to define both behavior and structure.

By providing a well-defined interface a class derived from a policy class may define member spe-

cializations using the different structures of policy classes to their advantage. For example, a plain

pointer-based policy class could offer its functionality by resorting to C-style pointer juggling, whereas

a vector-based policy class could use the vector’s members directly.

In this example a generic class template Size could be designed expecting a container-like policy using

features commonly found in containers, defining the data (and hence the structure) of the container

specified in the policy. E.g.:

template <typename Data, template <typename> class Container>

struct Size: public Container<Data>

{

size_t size()

{ // relies on the container's `size()'
// note: can't use `this->size()'

return Container<Data>::size();

}

};

A specialization can now be defined for a much simpler storage class using, e.g., plain pointers (the

implementation capitalizes on first and second, data members of std::pair. Cf. the example at

the end of this section):

template <typename Data>

struct Size<Data, Plain>: public Plain<Data>

{

size_t size()

{ // relies on pointer data members

return this->second - this->first;

}

};

Depending on the intentions of the template’s author other members could be implemented as well.

To simplify the real use of the above templates, a generic wrapper class can be constructed: it uses the

Size template matching the actually used storage type (e.g., a std::vector or some plain storage

class) to define its structure:

template <typename Data, template <typename> class Store>

class Wrapper: public Size<Data, Store>

{};

The above classes could now be used as follows (en passant showing an extremely basic Plain class):

#include <iostream>



template <typename Data>

struct Plain: public std::pair<Data *, Data *>

{};

int main()

{

Wrapper<int, std::vector> wiv;

std::cout << wiv.size() << "\n";

Wrapper<int, Plain> wis;

std::cout << wis.size() << "\n";

}

The wiv object now defines vector-data, the wis object merely defines a std::pair object’s data mem-

bers.

23.5 Alias Templates

In addition to function and class templates, C++ also uses templates to define an alias for a set of types.

This is called an alias template. Alias templates can be specialized. The name of an alias template is a

type name.

Alias templates can be used as arguments to template template parameters. This allows us to avoid

the ‘unexpected default parameters’ you may encounter when using template template parameters.

E.g., defining a template specifying a template <typename> class Container is fine, but it is

impossible to specify a container like vector or set as template template argument, as vector and

set containers also define a second template parameter, specifying their allocation policy.

Alias templates are defined like using declarations, specifying an alias for an existing (maybe partially

or fully specialized) template type. In the following example Vector is defined as an alias for vector:

template <typename Type>

using Vector = std::vector<Type>;

Vector<int> vi; // same as std::vector<int>

std::vector<int> vi2(vi); // copy construction: OK

So, what’s the point of doing this? Looking at the vector container, we see that it defines two, rather

than one, template parameters, the second parameter being the allocation policy _Alloc, by default

set to std::allocator<_Tp>:

template<typename _Tp, typename _Alloc = std::allocator<_Tp> >

class vector: ...

Now define a class template Generic defining a template template parameter:

template <typename Type, template <typename> class Container>

class Generic: public Container<Type>

{

...

};

Most likely, Generic offers members made available by the container that is actually used to cre-

ate the Generic object, and adds to those some members of it own. However, a simple container



Container> parameter; it requires a template <typename, typename> class Container>

template template parameter.

The Vector alias template, however, is defined as a template having one template type parameter, and

it uses the vector’s default allocator. Consequently, passing a Vector to Generic works fine:

Generic<int, Vector> giv; // OK

Generic<int, std::vector> err; // won't compile: 2nd argument mismatch

With the aid of a small alias template it is also possible to use a completely different kind of container,

like a map, with Generic:

template <typename Type>

using MapString = std::map<Type, std::string>;

Generic<int, MapString> gim; // uses map<int, string>

23.6 Trait classes

Scattered over the std namespace trait classes are found. E.g., most C++ programmers have

seen the compiler mentioning ‘std::char_traits<char>’ when performing an illegal operation on

std::string objects, as in std::string s(1).

Trait classes are used to make compile-time decisions about types. Trait classes allow us to apply the

proper code to the proper data type, be it a pointer, a reference, or a plain value, all this maybe in

combination with const. The particular type of data to use can be inferred from the actual type that

is specified (or implied) when the template is used. This can be fully automated, not requiring the

template writer to make any decision.

Trait classes allow us to develop a template <typename Type1, typename Type2, ...> with-

out the need to specify many specializations covering all combinations of, e.g., values, (const) pointers,

or (const) references, which would soon result in an unmaintainable exponential explosion of template

specializations (e.g., allowing these five different types for each template parameter already results in

25 combinations when two template type parameters are used: each must be covered by potentially

different specializations).

Having available a trait class, the actual type can be inferred compile time, allowing the compiler to

deduce whether or not the actual type is a pointer, a pointer to a member, or a const pointer, and to

make comparable deductions in case the actual type is, e.g., an lvalue or rvalue reference type. This

in turn allows us to write templates that define types like argument_type, first_argument_type,

second_argument_type and result_type, which are required by several generic algorithms (e.g.,

count_if()).

A trait class usually performs no behavior. I.e., it has no constructor and no members that can be called.

Instead, it defines a series of types and enum values that have certain values depending on the actual

type that is passed to the trait class template. The compiler uses one of a set of available specializations

to select the one appropriate for an actual template type parameter.

The point of departure when defining a trait template is a plain vanilla struct, defining the charac-

teristics of a plain value type like an int. This sets the stage for specific specializations, modifying the

characteristics for any other type that could be specified for the template.

To make matters concrete, assume the intent is to create a trait class BasicTraits telling us whether

a type is a plain value type, a pointer type, an lvalue reference type or an rvalue reference type (all of

which may or may not be const types).

Whatever the actually provided type, we want to be able to determine the ‘plain’ type (i.e., the type

without any modifiers, pointers or references), the ‘pointer type’ and the ‘reference type’, allowing us to



to that type.

Our point of departure, as mentioned, is a plain struct defining the required parameter. Maybe

something like this:

template <typename T>

struct Basic

{

typedef T Type;

enum

{

isPointer = false,

isConst = false,

isRef = false,

isRRef = false

};

};

Although some conclusions can be drawn by combining various enum values (e.g., a plain type is not a

pointer or a reference or an rvalue reference or a const), it is good practice to provide a full implementa-

tion of trait classes, not requiring its users to construct these logical expressions themselves. Therefore,

the basic decisions in a trait class are usually made by a nested trait class, leaving the task of creating

appropriate logical expressions to a surrounding trait class.

So, the struct Basic defines the generic form of our inner trait class. Specializations handle specific

details. E.g., a pointer type is recognized by the following specialization:

template <typename T>

struct Basic<T *>

{

typedef T Type;

enum

{

isPointer = true,

isConst = false,

isRef = false,

isRRef = false

};

};

whereas a pointer to a const type is matched with the next specialization:

template <typename T>

struct Basic<T const *>

{

typedef T Type;

enum

{

isPointer = true,

isConst = true,

isRef = false,

isRRef = false

};

};

Several other specializations should be defined: e.g., recognizing const value types or (rvalue) refer-

ence types. Eventually all these specializations are implemented as nested structs of an outer class

BasicTraits, offering the public traits class interface. The outline of the outer trait class is:



class BasicTraits

{

// Define specializations of the template `Base' here

public:

BasicTraits(BasicTraits const &other) = delete;

typedef typename Basic<TypeParam>::Type ValueType;

typedef ValueType *PtrType;

typedef ValueType &RefType;

typedef ValueType &&RvalueRefType;

enum

{

isPointerType = Basic<TypeParam>::isPointer,

isReferenceType = Basic<TypeParam>::isRef,

isRvalueReferenceType = Basic<TypeParam>::isRRef,

isConst = Basic<TypeParam>::isConst,

isPlainType = not (isPointerType or isReferenceType or

isRvalueReferenceType or isConst)

};

};

The trait class’s public interface explicitly deletes its copy constructor. As it therefore defines no con-

structor at all and as it has no static members it does not offer any run-time executable code. All the

trait class’s facilities must therefore be used compile time.

A trait class template can be used to obtain the proper type, irrespective of the template type argument

provided. It can also be used to select a proper specialization that depends on, e.g., the const-ness of a

template type. Example:

cout <<

"int: plain type? " << BasicTraits<int>::isPlainType << "\n"

"int: ptr? " << BasicTraits<int>::isPointerType << "\n"

"int: const? " << BasicTraits<int>::isConst << "\n"

"int *: ptr? " << BasicTraits<int *>::isPointerType << "\n"

"int const *: ptr? " << BasicTraits<int const *>::isPointerType <<

"\n"

"int const: const? " << BasicTraits<int const>::isConst << "\n"

"int: reference? " << BasicTraits<int>::isReferenceType << "\n"

"int &: reference? " << BasicTraits<int &>::isReferenceType << "\n"

"int const &: ref ? " << BasicTraits<int const &>::isReferenceType <<

"\n"

"int const &: const ? " << BasicTraits<int const &>::isConst << "\n"

"int &&: r-reference? " << BasicTraits<int &&>::isRvalueReferenceType <<

"\n"

"int &&: const? " << BasicTraits<int &&>::isConst << "\n"

"int const &&: r-ref ? "<< BasicTraits<int const &&>::

isRvalueReferenceType << "\n"

"int const &&: const ? "<< BasicTraits<int const &&>::isConst << "\n"

"\n";

BasicTraits<int *>::ValueType value = 12;

BasicTraits<int const *>::RvalueRefType rvalue = int(10);

BasicTraits<int const &&>::PtrType ptr = new int(14);

cout << value << ' ' << rvalue << ' ' << *ptr << '\n';



In the previous section the BasicTraits trait class was developed. Using specialized versions of a

nested struct Type modifiers, pointers, references and values could be distinguished.

Knowing whether a type is a class type or not (e.g., the type represents a primitive type) could also be

a useful bit of knowledge to a template developer. The class template developer might want to define a

specialization when the template’s type parameter represents a class type (maybe using some member

function that should be available) and another specialization for non-class types.

This section addresses the question how a trait class can distinguish class types from non-class types.

In order to distinguish classes from non-class types a distinguishing feature that can be used at compile-

time must be found. It may require some thinking to find such a distinguishing characteristic, but a

good candidate eventually is found in the pointer to members syntactic construct. Pointers to members

are only available for classes. Using the pointer to member construct as the distinguishing charac-

teristic, a specialization can be developed that uses the pointer to member if available. Another spe-

cialization (or the generic template) does something else if the pointer to member construction is not

available.

How can we distinguish a pointer to a member from ‘a generic situation’, not being a pointer to a

member? Fortunately, such a distinction is possible. A function template specialization can be defined

having a parameter which is a pointer to a member function. The generic function template then

accepts any other argument. The compiler selects the former (specialized) function when the provided

type is a class type as class types may support a pointer to a member. The interesting verb here is

‘may’: the class does not have to define a pointer to member.

Furthermore, the compiler does not actually call any function: we’re talking compile-time here. All the

compiler does is to select the appropriate function by evaluating a constant expression.

So, our intended function template now looks like this:

template <typename ClassType>

static `some returntype' fun(void (ClassType::*)());

The function’s return type (‘(some returntype)’) will be defined shortly. Let’s first have a closer look

at the function’s parameter. The function’s parameter defines a pointer to a member returning void.

Such a function does not have to exist for the concrete class-type that’s specified when the function is

used. In fact, no implementation is provided. The function fun is only declared as a static member in

the trait class. It’s not implemented and no trait class object is required to call it. What, then, is its

use?

To answer the question we now have a look at the generic function template that should be used when

the template’s argument is not a class type. The language offers a ‘worst case’ parameter in its ellipsis

parameter list. The ellipsis is a final resort the compiler may turn to if everything else fails. The

generic function template specifies a plain ellipsis in its parameter list:

template <typename NonClassType>

static `some returntype' fun(...);

It would be an error to define the generic alternative as a function expecting an int. The com-

piler, when confronted with alternatives, favors the simplest, most specified alternative over a more

complex, generic one. So, when providing fun with an argument it selects int whenever possi-

ble and it won’t select fun(void (ClassType::∗)()). When given the choice between fun(void

(ClassType::∗)()) and fun(...) it selects the former unless it can’t do that.

The question now becomes: what argument can be used for both a pointer to a member and for the

ellipsis? Actually, there is such a ‘one size fits all’ argument: 0. The value 0 can be passed as argu-

ment value to functions defining an ellipsis parameter and to functions defining a pointers-to-member

parameter.



appearing in our code as fun<Type>(0), with Type being the template type parameter of the trait

class.

Now for the return type. The function’s return type cannot be a simple value (like true or false). Our

eventual intent is to provide the trait class with an enum telling us whether the trait class’s template

argument represents a class type or not. That enum becomes something like this:

enum { isClass = some class/non-class distinguishing expression } ;

The distinguishing expression cannot be

enum { isClass = fun<Type>(0) } ;

as fun<Type>(0) is not a constant expression and enum values must be defined by constant expres-

sions so they can be determined at compile-time.

To determine isClass’s value we must find an expression allowing for compile-time discriminations

between fun<Type>(...) and fun<Type>(void (Type::∗)()).

In situations like these the sizeof operator often is our tool of choice as it is evaluated at compile-

time. By defining different sized return types for the two fun declarations we are able to distinguish

(at compile-time) which of the two fun alternatives is selected by the compiler.

The char type is by definition a type having size 1. By defining another type containing two consecutive

char values a larger type is obtained. A char [2] is of course not a type, but a char[2] can be defined

as a data member of a struct, and a struct does define a type. That struct then has a size exceeding 1.

E.g.,

struct Char2

{

char data[2];

};

Char2 can be defined as a nested type of our traits class. The two fun function template declarations

become:

template <typename ClassType>

static Char2 fun(void (ClassType::*)());

template <typename NonClassType>

static char fun(...);

Since sizeof expressions are evaluated at compile-time we can now determine isClass’s value:

enum { isClass = sizeof(fun<Type>(0)) == sizeof(Char2) };

This expression has several interesting implications:

• no fun function template is ever instantiated;

• the compiler considers Type and selects fun’s function template specialization if Type is a class

type and the generic function template if not;

• From the selected function it determines the return type and thus the return type’s size;

• Resulting in the proper evaluation of isClass.

Without requiring any instantiation the trait class can now provide an answer to the question whether

a template type argument represents a class type or not. Marvelous!



C++ offers many facilities to identify and modifiy characteristics of types. Before using these facilities

the <type_traits> header file must be included.

All facilities offered by type_traits are defined in the std namespace (omitted from the examples

given below), allowing programmers to determine various characteristics of types and values.

In the description of available type traits the following concepts are encountered:

• arithmetic type: any integral or floating point type;

• class type: not a union type, without non-static data members, without virtual members, without

virtual or non-empty base classes;

• compound type:

– arrays of objects of a given type;

– functions, which have parameters of a given type returning void or objects;

– pointers to void, to objects, to functions, or to non-static class members;

– references to objects or functions;

– class, union or enumeration types;

• fundamental type: a built-in type;

• integral type: all types whose values represent integral numbers, as well as bool and all built-in

types representing (possibly unicode) characters;

• literal type: a literal type is a scalar type; a trivial class type; or an array of literal type elements;

• is_nothrow_... type trait: a type trait to determine whether its template argument supports the

specified non-throwing member. Such type traits return false unless noexcept(true) is used

at the function’s declaration. E.g.,

struct NoThrow

{

NoThrow &operator=(SomeType const &rhs) noexept(true);

};

• trivial type: trivial types are scalar types, trivial class types, arrays of such types and cv-qualified

versions of these types;

• trivial class type: a class type having a trivial copy constructor, no non-trivial move constructor, a

trivial destructor, a trivial default constructor or at least one constexpr constructor other than

the copy or move constructor, and only has non-static data members and base classes of literal

types;

• trivial member function: trivial member functions are never declared (other than default) in

their class interfaces and (for default constructors or assignment operators) only perform byte-by-

byte actions. Here are two examples: struct Pod only has trivial members as it doesn’t explicitly

declare any member function and its data member is plain old data. struct Nonpod is not plain

old data. Although it doesn’t explictly declare any member function either, its data member is a

std::string, which itself isn’t plain old data as std::string has non-trivial constructors:

struct Pod

{

int x;

};

struct Nonpod

{

std::string s;

};



The following type traits are provided:

• add_const<typename Type>::type to add const to Type;

• add_cv<typename Type>::type to add const volatile to Type;

• add_lvalue_reference<typename Type>::type to add an lvalue reference to Type;

• add_pointer<typename Type>::type to add a pointer to Type;

• add_rvalue_reference<typename Type>::type to add an rvalue reference to Type;

• add_volatile<typename Type>::type to add volatile to Type;

• conditional<bool cond, typename TrueType, typename FalseType>::type to condi-

tionally use TrueType if cond is true, FalseType if not;

• template <typename Type> struct decay defines the typename type obtained from Type

after removing all cv-qualifiers and references from the specified template type argument. More-

over, it converts lvalue types to rvalue types, and arrays and functions to pointers. It resembles

what happens if an argument is passed to a value-type parameter.

• template <typename Type> decay_t is shorthand for typename decay<Type>::type.

• enable_if<bool cond, typename Type>::type to conditionally define Type if cond is

true;

• is_abstract<typename Type>::value to determine whether Type is an abstract type (e.g.,

an abstract base class) (type-condition applies);

• is_arithmetic<typename Type>::value to determine whether Type is an arithmetic type;

• is_array<typename Type>::value to determine whether Type is an array type;

• is_assignable<typename To, typename From>::value to determine whether an object of

type From can be assigned to an object of type To (type-condition applies);

• is_base_of<typename Base, typename Derived>::value to determine whether Base is

a base class of type Derived;

• is_class<typename Type>::value to determine whether Type is a class type;

• is_compound<typename Type>::value to determine whether Type is a compound type;

• is_const<typename Type>::value to determine whether Type is a const type;

• is_constructible<typename Type, typename ...Args>::value to determine whether

Type is constructible from arguments in the Args parameter pack (type-condition applies to all

types in Args);

• is_convertible<typename From, typename To>::value to determine whether a type

From may be converted to a type To using a static_cast;

• is_copy_assignable<typename Type>::value to determine whether Type supports copy

assignment (type-condition applies);

• is_copy_constructible<typename Type>::value to determine whether Type supports

copy construction (type-condition applies);

• is_default_constructible<typename Type>::value to determine whether Type sup-

ports a default constructor (type-condition applies);

• is_destructible<typename Type>::value to determine whether Type has a non-deleted

destructor (type-condition applies);



type), without non-static data members, virtual members, virtual or non-empty base classes (type-

condition applies);

• is_enum<typename Type>::value to determine whether Type is an enum type;

• is_floating_point<typename Type>::value to determine whether Type is a floating point

type;

• is_function<typename Type>::value to determine whether Type is a function type;

• is_fundamental<typename Type>::value to determine whether Type is a fundamental

type;

• is_integral<typename Type>::value to determine whether Type is an integral type;

• is_literal_type<typename Type>::value to determine whether Type is a literal type

(type-condition applies);

• is_lvalue_reference<typename Type>::value to determine whether Type is an lvalue

reference;

• is_member_function_pointer<typename Type>::value to determine whether Type is a

pointer to a non-static member function;

• is_member_object_pointer<typename Type>::value to determine whether Type is a

pointer to a non-static data member;

• is_member_pointer<typename Type>::value to determine whether Type is a pointer to a

member function;

• is_move_assignable<typename Type>::value to determine whether Type supports move

assignment (type-condition applies);

• is_move_constructible<typename Type>::value to determine whether Type supports

move construction (type-condition applies);

• is_nothrow_assignable<typename To, typename From>::value to determine whether

Type supports an assignment operator not throwing exceptions (type-condition applies).

• is_nothrow_constructible<typename Type, typename ...Args>::value to deter-

mine whether a Type object can be constructed from arguments of types mentioned in the

parameter pack not throwing exceptions (type-condition applies);

• is_nothrow_copy_assignable<typename Type>::value to determine whether Type sup-

ports a copy-assignment operator not throwing exceptions (type-condition applies);

• is_nothrow_copy_constructible<typename Type>::value to determine whether Type

supports copy construction not throwing exceptions (type-condition applies);

• is_nothrow_default_constructible<typename Type>::value to determine whether

Type supports a default constructor not throwing exceptions (type-condition applies);

• is_nothrow_destructible<typename Type>::value to determine whether Type supports

a destructor not throwing exceptions (type-condition applies).

• is_nothrow_move_assignable<typename Type>::value to determine whether Type sup-

ports move assignment not throwing exceptions (type-condition applies);

• is_nothrow_move_constructible<typename Type>::value to determine whether Type

supports a move constructor not throwing exceptions (type-condition applies);

• is_object<typename Type>::value to determine whether Type is an object (in contrast to

scalar) type;

• is_pod<typename Type>::value to determine whether Type is an aggregate (plain old data,

type-condition applies);



• is_polymorphic<typename Type>::value to determine whether Type is a polymorphic type

(type-condition applies);

• is_reference<typename Type>::value to determine whether Type is an (lvalue or rvalue)

reference;

• is_rvalue_reference<typename Type>::value to determine whether Type is an rvalue

reference;

• is_same<typename First, typename Second>::value to determine whether types First

and Second are identical;

• is_scalar<typename Type>::value to determine whether Type is a scalar type (in contrast

to an object type);

• is_signed<typename Type>::value to determine whether Type is a signed type;

• is_standard_layout<typename Type>::value to determine whether Type offers the stan-

dard layout (type-condition applies);

• is_trivial<typename Type>::value to determine whether Type is a trivial type (type-

condition applies);

• is_trivially_assignable<typename Dest, typename Src>::value to determine

whether an object or value of type Src can trivially be assigned to an object of type Dest

(type-condition applies);

• is_trivially_constructible<typename Type, typename ...Args>::value to deter-

mine whether Type is trivially constructible from arguments in the Args parameter pack (type-

condition applies to all types in Args);

• is_trivially_copy_assignable<typename Type>::value to determine whether Type

supports a trivial assignment operator (type-condition applies);

• is_trivially_copy_constructible<typename Type>::value to determine whether

Type is trivially copy-constructible (type-condition applies);

• is_trivially_copyable<typename Type>::value to determine whether Type is trivially

copyable (type-condition applies);

• is_trivially_default_constructible<typename Type>::value to determine whether

Type supports a trivial default constructor (type-condition applies);

• is_trivially_default_destructible<typename Type>::value to determine whether

Type supports a trivial default destructor (type-condition applies);

• is_trivially_move_assignable<typename Type>::value to determine whether Type

supports a trivial assignment operator (type-condition applies);

• is_trivially_move_constructible<typename Type>::value to determine whether

Type is trivially move-constructible (type-condition applies);

• is_union<typename Type>::value to determine whether Type is a union type;

• is_unsigned<typename Type>::value to determine whether Type is an unsigned type;

• is_void<typename Type>::value to determine whether Type is void;

• is_volatile<typename Type>::value to determine whether Type is a volatile qualified

type;

• make_signed<typename Type>::type to construct a signed type;

• make_unsigned<typename Type>::type to construct an unsigned type;



of ElementType values or objects then typedef type equals ElementType;

• remove_const<typename Type>::type to remove const from Type;

• remove_cv<typename Type>::type to remove const and/or volatile from Type;

• remove_extent<typename Type>::type if Type is an array of ElementType values or ob-

jects then typedef type equals ElementType. With multi-dimensional arrays ElementType is

the type of the array from which its first array dimension has been removed;

• remove_pointer<typename Type>::type to remove a pointer from Type;

• remove_reference<typename Type>::type to remove a reference from Type;

• remove_volatile<typename Type>::type to remove volatile from Type;

23.7 Defining ‘ErrorCodeEnum’ and ’ErrorConditionEnum’

enumerations

In section 4.3.2 the class std::error_code was introduced. One of its constructors accepts

ErrorCodeEnum values, where ErrorCodeEnum is a template type name for enumerations that we

may define ourselves containing symbols that are used as error code values. Another constructor ex-

pects an int-valued error code and a specification of an error category that uses those error codes.

Several error code enumerations and error categories are predefined by C++ but it is also possible to

define new ErrorCodeEnums and error categories. In this section constructing new ErrorCodeEnums

is covered, in the next section designing new error categories is covered.

Defining new error code enumerations is an option when using error_code objects is attractive, but

standard error code values (like the values defined by enum class errc) aren’t appropriate. For

example, when designing an interactive calculator, several errors may be encountered that are related

to the way expressions are entered by the user. For those situations you might want to develop your

own error code enumeration.

In this and the next section a bare bones approach to defining error code enumerations and error

categories is adopted. No concrete, real-life like class is developed. I think the advantage of this is that

this way it’s easier to apply the principles to new real-life situations than if you first have to abstract

the content of a real-life example yourself. Here we go:

• Our first step consists of defining our own enumeration. The enumeration contains symbols listing

causes of errors. Newly defined error code enumerations must not associate value 0 with any of

its symbols, as by convention value 0 indicates ‘no error’.

The enum class CatErr lists causes of errors that are associated with our (as yet to be de-

signed) error category:

enum class CatErr

{

Err1 = 1, // causes of errors

Err2,

Err3

};

• By itself, defining an enum class does not allow us to pass its values to error_code construc-

tors. Before we can do that the enum must be ‘promoted’ to an error_code_enum. This ‘pro-

motion’ is realized by specializing the trait class std::is_error_code_enum after which the

error_code(ErrorCodeEnum) member template and the make_error_code function accept



Normally this is not allowed, but in this case it is. The C++ standard states:

20.5.4.2.1 Namespace std

The behavior of a C++ program is undefined if it adds declarations or definitions to

namespace std or to a namespace within namespace std unless otherwise specified.

A program may add a template specialization for any standard library template to

namespace std only if the declaration depends on a user-defined type and the special-

ization meets the standard library requirements for the original template and is not

explicitly prohibited.

Here is how the is_error_code_enum trait class is specialized:

namespace std

{

template <>

struct is_error_code_enum<CatErr>: public true_type

{};

}

This completes the definition of our own error code enumeration, whose symbols are now accepted by

error_code’s constructor.

Before we’re able to design our own error category we must also have a look at ‘higher order’ causes

of errors as represented by objects of the class std::error_condition (cf. section 10.9.2). Error

conditions represent platform independent errors like syntax errors or non-existing requests.

In our bare bones implementation of an error category these higher order causes of errors are enumer-

ated in the enum class Cond enumeration. It’s defined similarly to CatErr.

• Our first step consists of defining the enumeration. As with error code enums its symbols should

not be given the value 0. Here is the enumeration Cond whose symbols presumably represent

platform independent causes of errors:

enum class Cond

{

NoCond = -1,

Cond1 = 1,

Cond2,

Cond3,

};

• By itself, defining an enum class does not allow us to pass its values to error_condition

constructors. Before we can do that the enum must be ‘promoted’ to an error_condition_enum.

Also similar to CatErr this ‘promotion’ is realized by specializing the trait class

std::is_error_condition_enum

Here is how the is_error_condition_enum trait class is specialized:

namespace std

{

template <>

struct is_error_condition_enum<Cond>: public true_type

{};

}

We’re now ready for designing our own error_category class.



In the previous section the error code enumerations CatErr and Cond were developed. The values of

these enumerations specify, respectively, the direct and the platform independent causes of errors that

may be encountered in the context of the new error category developed in this section.

Classes derived from std::error_category are designed as singleton classes and implement their

own name, message and an equivalent members. Our class Category also declares a static

member instance returning a reference to the class’s singleton object, which is compile-time ini-

tialized and is available by the time instance is called. Alternatively a dedicated function (like

Category_category), analogously to the function generic_category, returning a reference to the

Category object could be defined.

CatErr values, Cond values and textual descriptions of CatErr’s values are combined in a

std::unordered_map using CatErr as key, and a struct POD as value type. This map allows us

to retrieve the platform independent error types and the descriptions that are associated with CatErr

values.

Here is the interface of the class Category:

class Category: public std::error_category

{

static Category s_instance;

struct POD

{

Cond cond;

char const *msg;

};

static std::unordered_map<CatErr, POD> s_map;

public:

Category(Category const &other) = delete;

static Category &instance();

bool equivalent(std::error_code const &ec, int condNr)

const noexcept override;

bool equivalent(int ev, std::error_condition const &condition)

const noexcept override;

std::error_condition default_error_condition(int ev)

const noexcept override;

std::string message(int ce) const override;

char const *name() const noexcept override;

private:

Category() = default;

template <typename Enum>

static constexpr Enum as(int err);

};

Its unordered_map s_map provides the Cond values and verbal descriptions of the CatErr values

given those CatErr values:

unordered_map<CatErr, Category::POD> Category::s_map =

{

{ CatErr::Err1, { Cond::Cond1, "Err1" } },



{ CatErr::Err3, { Cond::Cond1, "Err3" } },

};

The functions make_error_code and make_error_condition return, respectively, error_code and

error_condition objects from, respectively, CatErr values and Cond values.

Their declarations can be provided below the Category class interface and their implementations pass

the Category object to their constructors:

std::error_code make_error_code(CatErr ce)

{

return { static_cast<int>(ce), Category::instance() };

}

std::error_condition make_error_condition(Cond ec)

{

return { static_cast<int>(ec), Category::instance() };

}

The member name must be defined by classes derived from error_category. It simply returns a

short string naming the category (e.g., "Category" for our Category class). Likewise, the member

message must be redefined. Its implementation usually is slightly more complex than name’s imple-

mentation: it expects a (cast to an int) CatErr value and uses that value to find the corresponding

textual description in s_map. If found the description is returned; if not found then a short fallback

message is returned:

std::string Category::message(int ce) const

{

auto iter = s_map.find(static_cast<CatErr>(ce));

return iter != s_map.end() ? iter->second.msg : "No CatErr value";

}

The member default_error_condition receives a (cast to int) CatErr value. That value is used to

find the associated Cond value. If the int received by the function does not represent a valid CatErr

value then the fallback value Cond::NoCond is used. The function returns an error_condition

object created by make_error_conditionwhich receives the determined Cond value as its argument:

std::error_condition Category::default_error_condition(int ev)

const noexcept

{

auto iter = s_map.find(as<CatErr>(ev));

return make_error_condition(

iter == s_map.end() ? Cond::NoCond : iter->second.cond

);

}

What’s left is implementing the two equivalent members. The first equivalent member (receiving

a reference to an error_code object and a (cast to int) Cond value) determines the equivalence of the

Cond value that is associated with the error_code object and the Cond value that is specified as the

function’s second argument. If these values are equal and the error_code object’s category is equal to

Category then the equivalence has been established and true is returned. Here is its implementation:

bool Category::equivalent(std::error_code const &ec, int condNr)

const noexcept



if (*this != ec.category())

return false;

if (ec.value() == 0) // no error in ec?

return condNr == 0; // then condNr must

// also be 0

auto iter = s_map.find(as<CatErr>(ec.value())); // info associated

// with ec's CatErr

return iter == s_map.end() ?

false // not found or

: // compare Cond values

iter->second.cond == as<Cond>(condNr);

}

The second equivalent member (receiving (as an int) CatErr value and an error_condition ob-

ject) determines the equivalence of an error_condition object that is constructed from the Cond

value that is associated with the CatErr value that was passed (as int) to the function and the

error_condition object that was passed to the function as its second argument.

Here a prerequisite for concluding equivalence is that the error condition’s category is Category.

If that’s the case then the function returns true if its int argument equals zero and the

condition object also indicates no error. Alternatively, if the condition argument is equal to the

error_condition object made from the Cond value associated with the CatErr value passed to the

function as its first argument the equivalence has also been established and true is returned. Here is

its implementation:

bool Category::equivalent(int ev, error_condition const &condition)

const noexcept

{

if (ev == 0) // no error? then

return condition.category() == *this and // categories must

not static_cast<bool>(condition); // be equal and

// condition must

// indicate no error

auto iter = s_map.find(as<CatErr>(ev)); // find ev's Cond

return iter == s_map.end()?

false // no such CatErr

: // or compare conditions

condition == make_error_condition(iter->second.cond);

}

So, in order to define your own category:

• define an enumeration which is ‘promoted’ to an error_code_enum;

• define an enumeration which is promoted to an error_condition_enum;

• define a new error_category class by deriving a class from std::error_category, define

it as a singleton class and override its default_error_condition, equivalent, message,

and name members.



23.8 Using ‘noexcept’ when offering the ‘strong guarantee’

When throwing exceptions while trying to achieve the strong guarantee a function’s actions are usually

split in two parts

• First, usually on a temporary object, all operations that may throw are performed (which doesn’t

affect the target object)

• Then, the target object is modified using operations that offer the nothrow guarantee.

The actions in the first step might be made move aware by using std::move (e.g., to assign the source’s

values to a (possibly temporary) destination). However, using std::move can easily affect the source

(e.g., when extending the source’s memory, moving the existing data to its new locations), which breaks

the first step’s assumption, as the target object is now modified.

In this case (and generally) the move operation should not be allowed to throw exceptions. This, in

turn, implies that it is difficult to write code which must offer a non-throwing moving constructor, if it

uses (external) data types over which the moving constructor has no control. E.g.,

template <typename Type>

class MyClass

{

Type d_f;

public:

MyClass() = default;

MyClass(MyClass &&tmp)

:

d_f(move(tmp.d_f))

{}

};

Here, MyClass’s author has no control over the design of Type. If Foreign merely has a (possibly

throwing) copy constructor, then the following code breaks the no-throw assumption underlying move

constructors:

MyClass<Foreign> s2{ move(MyClass<Foreign>()) };

If templates are able to detect whether Type has non-throwing move constructors then their imple-

mentations may be optimized by calling these move constructors (already modifying their targets in

the first part of code offering the strong guarantee) in situations where otherwise the non-modifying,

but more expensive copy constructor has to be used.

The noexcept keyword was introduced to allow such templates to perform such optimizations. As

with throw lists, checking for noexcept is a run-time check, but the consequence of violating a

noexept declaration are more serious than violating a throw list: violating noexcept results in call-

ing std::terminate, terminating the program, possibly without unwinding the stack. In the context

of the previous example, the following code is flawlessly accepted by the compiler, demonstrating that

there is no compile-time checking of noexcept:

class Foreign

{

public:

Foreign() = default;

Foreign(Foreign const &other) noexcept

{

throw 1;

}

};



terminate called after throwing an instance of 'int'

Abort

Keep in mind that the current purpose of noexcept is to allow templates to optimize their code

by using move operations where the code must also be able to offer the string exception guarantee.

Since noexcept also offers the conditional noexcept(condition) syntax (with noexcept(true)

and noexcept having identical semantics), noexcept can be made conditional to the ‘noexcepting’

nature of template types. Note that this is not possible with throw lists.

The following rules of thumb by be used to decide whether or not to use noexcept in your code:

• General rule: don’t use noexcept (this is identical to the advise given for throw lists);

• Default implementations of constructors, copy- and move-assignment operators and destructors

are provided with noexcept(true) if the compiler can deduce that composing types also offer

noexcept(true), allowing template optimizations using move operations where possible.

• Functions provided with noexcept declarations may still throw exceptions (see the example

given above). In the end noexcept merely means that if such a function throws an exception

std::terminate rather tha std::unexpected is called.

• Functions previously provided with an empty throw list (throw()) should now be provided with

noexcept(true).

• noexcept specifications are required when using the following std traits (declared in the

<type_traits> header file):

– is_nothrow_constructible

– is_nothrow_default_constructible

– is_nothrow_move_constructible

– is_nothrow_copy_constructible

– is_nothrow_assignable

– is_nothrow_move_assignable

– is_nothrow_copy_assignable

– is_nothrow_destructible

These type traits provide the member constant value which is true if the class (and possi-

bly its argument type list) matches the characteristic after which the trait was named. E.g., if

MyClass(string const &) noexcept is a constructor, then

std::is_nothrow_constructible<MyClass, string>::value

equals true. For the named members (like is_nothrow_move_constructible) parameter

types do not have to be specified, as they are implied. E.g.,

std::is_nothrow_move_constructible<MyClass>::value

returns true if the move constructor has the noexcept modifier.

23.9 More conversions to class types

23.9.1 Types to types

Although class templates may be partially specialized, function templates may not. At times this is

annoying. Assume a function template is available implementing a certain unary operator that could

be used with the transform generic algorithm (cf. section 19.1.63):



Return chop(Argument const &arg)

{

return Return{ arg };

}

Furthermore assume that if Return is std::string then the above implementation should not be

used. Instead, with std::string a second argument 1 should always be provided. If Argument is a

C++ string, this would allow us to, e.g., return a copy of arg from which its first character has been

chopped off.

Since chop is a function, it is not possible to define a partial specialization like this:

template <typename Argument> // This won't compile!

std::string chop<std::string, Argument>(Argument const &arg)

{

return std::string{ arg, 1 };

}

Although a function template cannot be partially specialized it is possible to use overloading, defining

a second, dummy, string parameter:

template <typename Argument>

std::string chop(Argument const &arg, std::string)

{

return std::string{ arg, 1 };

}

Instead of providing a string dummy argument the functions could use the IntType template (cf.

section 23.2.1.1) to select the proper overloaded version. E.g., IntType<0> could be defined as the

type of the second argument of the first overloaded chop function, and IntType<1> could be used

for the second overloaded function. From the point of view of program efficiency this is an attractive

option, as the provided IntType objects are extremely lightweight. IntType objects contain no data

at all. But there’s also an obvious disadvantage as there is no intuitively clear association between the

int value used and the intended type.

Instead of defining arbitrary IntType types it is more attractive to use another lightweight solution,

using an automatic type-to-type association. The struct TypeType is a lightweight type wrapper,

much like IntType. Here is its definition:

template <typename T>

struct TypeType

{

typedef T Type;

};

TypeType is also a lightweight type as it doesn’t have any data fields either. TypeType allows us to

use a natural type association for chop’s second argument. E.g, the overloaded functions can now be

defined as follows:

template <typename Return, typename Argument>

Return chop(Argument const &arg, TypeType<Argument> )

{

return Return{ arg };

}

template <typename Argument>



{

return std::string{ arg, 1 };

}

Using the above implementations any type can be specified for Result. If it happens to be a

std::string the appropriate overloaded version is automatically selected. The following additional

overload of the function chop capitalizes on this:

template <typename Result>

Result chop(char const *txt) // char const * could also be a 2nd

{ // template type parameter

return chop(std::string{ txt }, TypeType<Result>{});

}

Using the third chop function, the following statement produces the text ‘ello world’:

cout << chop<string>{ "hello world" } << '\n';

Template functions do not support partial specializations. But they can be overloaded. By providing

overloads with dummy type-arguments that depend on other parameters and calling these overloads

from a overloaded function that does not require the dummy type argument a situation similar to

partial specializations with class templates can often be realized.

23.9.2 An empty type

At times (cf. section 23.10) an empty struct is a useful tool. It can be used as a type acting analogously

to the final 0-byte in NTBSs. It can simply be defined as:

struct NullType

{};

23.9.3 Type convertibility

In what situations can a type T be used as a ‘stand in’ for another type U? Since C++ is a strongly typed

language the answer is surprisingly simple: Ts can be used instead of Us if a T is accepted as argument

in cases where Us are requested.

This reasoning is behind the following class which can be used to determine whether a type T can be

used where a type U is expected. The interesting part is that no code is actually generated or executed.

All decisions are made by the compiler.

In the second part of this section we’ll show how the code developed in the first part can be used to

detect whether a class B is a base class of another class D (the is_base_of template (cf. section 23.6.2)

also provides an answer to this question). The code developed here closely follows the example provided

by Alexandrescu (2001, p. 35).

First, a function test is designed accepting a type U. The function test returns a value of the as yet

unknown type Convertible:

Convertible test(U const &);

The function test is never implemented. It is only declared. If a type T can be used instead of a type

U then T can also be passed as argument to the above test function.



won’t be able to use the above test function. Instead, it uses an alternative function that has a lower

selection priority but that can always be used with any T type.

C (and C++) offer a very general parameter list, a parameter list that is always considered acceptable.

This parameter list is the familiar ellipsis which represents the worst case the compiler may encounter.

If everything else fails, then the function defining an ellipsis as its parameter list is selected.

Usually that’s not a productive alternative, but in the current situation it is exactly what is needed.

When confronted with two candidate functions, one of which defines an ellipsis parameter, the compiler

selects the function defining the ellipsis parameter only if the alternative(s) can’t be used.

Following the above reasoning an alternative function test(...) is declared as well. This alternate

function does not return a Convertible value but a NotConvertible value:

NotConvertible test(...);

If test’s argument is of type T and if T can be converted to U then test’s return type is Convertible.

Otherwise NotConvertible is returned.

This situation clearly shows similarities with the situation encountered in section 23.6.1 where the

value isClass had to be determined compile time. Here two related problems must be solved:

• how do we obtain a T argument? This is more difficult than might be expected at first sight as it

might not be possible to define a T. If type T does not define any constructor then no T object can

be defined.

• how can Convertible be distinguished from NotConvertible?

The first problem is solved by realizing that no T needs to be defined. After all, the intent is to decide

compile-time whether a type is convertible and not to define a T value or object. Defining objects is not

a compile-time but a run-time matter.

By simply declaring a function returning a T we can tell the compiler where it should assume a T:

T makeT();

This mysterious function has the magical power of enticing the compiler into thinking that a T object

comes out of it. However, this function needs a small modification before it will actually suit our

needs. If, for whatever reason, T happens to be an array then the compiler will choke on T makeT()

as functions cannot return arrays. This, however, is easily solved, as functions can return references to

arrays. So the above declaration is changed into:

T const &makeT();

Next we pass a T const & to test: following code:

test(makeT())

Now that the compiler sees test being called with a T const & argument it decides that its return

value is Convertible if a conversion is in fact possible. Otherwise it decides that its return value is

NotConvertible (as the compiler, in that case, selected test(...)).

The second problem, distinguishing Convertible from NotConvertible is solved exactly the way

isClass could be determined in section 23.6.1, viz. by making their sizes different. Having done so

the following expression determines whether T is convertible from U or not:

isConvertible = sizeof(test(makeT())) == sizeof(Convertible);



can be made.

The above can be summarized in a class template LconvertibleToR, having two template type pa-

rameters:

template <typename T, typename U>

class LconvertibleToR

{

struct Char2

{

char array[2];

};

static T const &makeT();

static char test(U const &);

static Char2 test(...);

public:

LconvertibleToR(LconvertibleToR const &other) = delete;

enum { yes = sizeof(test(makeT())) == sizeof(char) };

enum { sameType = 0 };

};

template <typename T>

class LconvertibleToR<T, T>

{

public:

LconvertibleToR(LconvertibleToR const &other) = delete;

enum { yes = 1 };

enum { sameType = 1 };

};

As the class template deletes its copy constructor no object can be created. Only its enum values can be

interrogated. The next example writes 1 0 1 0 when run from a main function:

cout <<

LconvertibleToR<ofstream, ostream>::yes << " " <<

LconvertibleToR<ostream, ofstream>::yes << " " <<

LconvertibleToR<int, double>::yes << " " <<

LconvertibleToR<int, string>::yes <<

"\n";

23.9.3.1 Determining inheritance

Now that it is possible to determine type convertibility, it’s easy to determine whether a type Base is a

(public) base class of a type Derived.

Inheritance is determined by inspecting convertibility of (const) pointers. Derived const ∗ can be

converted to Base const ∗ if

• both types are identical;

• Base is a public and unambiguous base class of Derived;

• and (usually not intended) if Base is void.

Assuming the last conversion isn’t used inheritance can be determined using the following trait class

LBaseRDerived. LBaseRDerived provides an enum yes which is 1 if the left type is a base class of

the right type and both types are different:



struct LBaseRDerived

{

LBaseRDerived(LBaseRDerived const &) = delete;

enum {

yes =

LconvertibleToR<Derived const *, Base const *>::yes &&

not LconvertibleToR<Base const *, void const *>::sameType

};

};

If code should not consider a class to be its own base class, then the trait class LBaseRtrulyDerived

can be used to perform a strict test. This trait class adds a test for type-equality:

template <typename Base, typename Derived>

struct LBaseRtrulyDerived

{

LBaseRtrulyDerived(LBaseRtrulyDerived const &) = delete;

enum {

yes =

LBaseRDerived<Base, Derived>::yes &&

not LconvertibleToR<Base const *, Derived const *>::sameType

};

};

Example: the next statement displays 1: 0, 2: 1, 3: 0, 4: 1, 5: 0 when executed from

a main function:

cout << "\n" <<

"1: " << LBaseRDerived<ofstream, ostream>::yes << ", " <<

"2: " << LBaseRDerived<ostream, ofstream>::yes << ", " <<

"3: " << LBaseRDerived<void, ofstream>::yes << ", " <<

"4: " << LBaseRDerived<ostream, ostream>::yes << ", " <<

"5: " << LBaseRtrulyDerived<ostream, ostream>::yes <<

"\n";

23.10 Template TypeList processing

This section serves two purposes. It illustrates capabilities of the various template meta-programming

techniques, which can be used as a source of inspiration when developing your own templates; and it

offers a concrete example, illustrating some of the power offered by these techniques.

This section itself was inspired by Andrei Alexandrescu’s (2001) book Modern C++ design. It diverts

from Alexandrescu’s book in its use of variadic templates which were not yet available when he wrote

his book. Even so, the algorithms used by Alexandrescu are still useful when using variadic templates.

C++ offers the tuple to store and retrieve values of multiple types. Here the focus is merely on pro-

cessing types. A simple struct TypeList is going to be used as our working horse for the upcoming

subsections. Here is its definition:

template <typename ...Types>

struct TypeList

{

TypeList(TypeList const &) = delete;

enum { size = sizeof ...(Types) };

};



short, int in a TypeList:

TypeList<char, short, int>

23.10.1 The length of a TypeList

As the number of types in a parameter pack may be obtained using the sizeof operator (cf. section

22.5) it is easy to obtain the number of types that were specified with a certain TypeList. For example,

the following statement displays the value 3:

std::cout << TypeList<int, char, bool>::size << '\n';

However, it’s illustrative to see how the number of types specified with a TypeList could be determined

if sizeof hadn’t been available.

To obtain the number of types that were specified with a TypeList the following algorithm is used:

• If the TypeList contains no types, its size equals zero;

• If the TypeList contains types, its size equals 1 plus the number of types that follow its first

type.

The algorithm uses recursion to define the length of a TypeList. In executable C++ recursion could

also be used in comparable situations. For example recursion can be used to determine the length of an

NTBS:

size_t c_length(char const *cp)

{

return *cp == 0 ? 0 : 1 + c_length(cp + 1);

}

While C++ functions usually use iteration rather than recursion, iteration is not available to template

meta programming algorithms. In template meta programming repetition must be implemented using

recursion. Furthermore, while C++ run-time code may use conditions to decide whether or not to start

the next recursion template meta programming cannot do so. Template meta programming algorithms

must resort to (partial) specializations. The specializations are used to select alternatives.

The number of types that are specified in a TypeList can be computed using the following alternate

implementation of TypeList, using a generic struct declaration and two specialization for the empty

and non-empty TypeList (cf. the above description of the algorithm):

template <typename ...Types>

struct TypeList;

template <typename Head, typename ...Tail>

struct TypeList<Head, Tail...>

{

enum { size = 1 + TypeList<Tail...>::size };

};

template <>

struct TypeList<>

{

enum { size = 0 };

};



To determine whether a particular type (called SearchType below) is present in a given TypeList, an

algorithm is used that either defines ‘index’ as -1 (if SearchType is not an element of the TypeList )

or it defines ‘index’ as the index of the first occurrence of SearchType in the TypeList. The following

algorithm is used:

• If the TypeList is empty, ‘index’ is -1;

• If the TypeList’s first element equals SearchType, ‘index’ is 0;

• Otherwise ‘index’ is:

– -1 if searching for SearchType in TypeList’s tail results in ‘index’ == -1;

– Otherwise (SearchType was found in TypeList’s tail) index is set to 1 + the index obtained

when searching for SearchType in the TypeList’s tail.

The algorithm is implemented using a variadic template struct ListSearch expecting a parameter

pack:

template <typename ...Types>

struct ListSearch

{

ListSearch(ListSearch const &) = delete;

};

Specializations handle the alternatives mentioned with the algorithm:

• If TypeList is empty, ‘index’ is -1:

template <typename SearchType>

struct ListSearch<SearchType, TypeList<>>

{

ListSearch(ListSearch const &) = delete;

enum { index = -1 };

};

• If TypeList’s head equals SearchType, ‘index’ is 0. Note that SearchType is explicitly mentioned

as the TypeList’s first element:

template <typename SearchType, typename ...Tail>

struct ListSearch<SearchType, TypeList<SearchType, Tail...>>

{

ListSearch(ListSearch const &) = delete;

enum { index = 0 };

};

• Otherwise a search is performed on the TypeList’s tail. The index value returned by this search

is stored in a tmp enum value, which is then used to determine index’s value.

template <typename SearchType, typename Head, typename ...Tail>

struct ListSearch<SearchType, TypeList<Head, Tail...> >

{

ListSearch(ListSearch const &) = delete;

enum {tmp = ListSearch<SearchType, TypeList<Tail...>>::index};

enum {index = tmp == -1 ? -1 : 1 + tmp};

};



std::cout <<

ListSearch<char, TypeList<int, char, bool>>::index << "\n" <<

ListSearch<float, TypeList<int, char, bool>>::index << "\n";

23.10.3 Selecting from a TypeList

The inverse operation of determining the index of a certain type in a TypeList is retrieving the type

given its index. This inverse operation is the topic of this section.

The algorithm is implemented using a struct TypeAt. TypeAt uses a typedef to define the type

matching a given index. But the index might be out of bounds. In that case we have several options:

• Use a static_assert to stop the compilation. This is an appropriate action if the index should

simply not be out of bounds;

• Define a local type (e.g., Null) that should not be used as a type in the TypeList. This type is

going to be returned when the index is out of bounds. Using this local type as one of the types in

a TypeList is considered an error as its would conflict with the special meaning of Null as the

type returned at an invalid index.

To prevent Null from being returned by TypeAt a static_assert is used to catch the Null

type when it is encountered while evaluating TypeAt;

• The struct TypeAt may define an enum value validIndex set to true if the index was valid and

set to false if not.

The first alternative is implemented below. The other alternatives are not difficult to implement and

are left as exercises for the reader. Here’s how TypeAt works:

• The foundation consists of a variadic template struct TypeAt, expecting an index and a

TypeList:

template <size_t index, typename Typelist>

struct TypeAt;

• If the typelist is empty a static_assert ends the compilation

template <size_t index>

struct TypeAt<index, TypeList<>>

{

static_assert(index < 0, "TypeAt index out of bounds");

typedef TypeAt Type;

};

• If the search index equals 0, define Type as the first type in the TypeList:

template <typename Head, typename ...Tail>

struct TypeAt<0, TypeList<Head, Tail...>>

{

typedef Head Type;

};

• Otherwise, Type is defined as Type defined by TypeAt<index - 1> operating on the

TypeList’s tail:

template <size_t index, typename Head, typename ...Tail>

struct TypeAt<index, TypeList<Head, Tail...>>

{

typedef typename TypeAt<index - 1, TypeList<Tail...>>::Type Type;

};



out of bounds compilation error:

typedef TypeList<int, char, bool> list3;

// TypeAt<3, list3>::Type invalid;

TypeAt<0, list3>::Type intVariable = 13;

TypeAt<2, list3>::Type boolVariable = true;

cout << "The size of the first type is " <<

sizeof(TypeAt<0, list3>::Type) << ", "

"the size of the third type is " <<

sizeof(TypeAt<2, list3>::Type) << "\n";

if (typeid(TypeAt<1, list3>::Type) == typeid(char))

cout << "The typelist's 2nd type is char\n";

if (typeid(TypeAt<2, list3>::Type) != typeid(char))

cout << "The typelist's 3nd type is not char\n";

23.10.4 Prefixing/Appending to a TypeList

Prepending or appending a type to a TypeList is easy and doesn’t require recursive template meta

programs. Two variadic template structs Append and Prefix and two specializations are all it takes.

Here are the declarations of the two variadic template structs:

template <typename ...Types>

struct Append;

template <typename ...Types>

struct Prefix;

To append or prefix a new type to a typelist, specializations expect a typelist and a type to add. Then,

they simply define a new TypeList also including the new type. The Append specialization shows

that a template pack does not have to be used as the first argument when defining another variadic

template type:

template <typename NewType, typename ...Types>

struct Append<TypeList<Types...>, NewType>

{

typedef TypeList<Types..., NewType> List;

};

template <typename NewType, typename ...Types>

struct Prefix<NewType, TypeList<Types...>>

{

typedef TypeList<NewType, Types...> List;

};

23.10.5 Erasing from a TypeList

It is also possible to erase types from a TypeList. Again, there are several possibilities, each resulting

in a different algorithm.

• The type to erase is specified, and the first occurrence of that type is removed from the TypeList;



TypeList;

• The type to erase is specified, and all occurrences of that type are removed from the TypeList.

• As a variant of erasure: we may want to erase all multiply occurring types in a TypeList, keeping

each type only once.

Doubtlessly there are other ways of erasing types from a TypeList. Which ones are eventually im-

plemented depends of course on the circumstances. As template meta programming is very powerful

most if not all algorithms can probably be implemented. As an illustration of how to erase types from

a TypeList the above-mentioned algorithms are now developed in the upcoming subsections.

23.10.5.1 Erasing the first occurrence

To erase the first occurrence of a specified EraseType from a TypeList a recursive algorithm is used

once again. The template meta program uses a generic Erase struct and several specializations. The

specializations define a type List containing the resulting TypeList after the erasure. Here is the

algorithm:

• The foundation of the algorithm consists of a struct template Erase expecting the type to erase

and a TypeList:

template <typename EraseType, typename TypeList>

struct Erase;

• If the typelist is empty, there’s nothing to erase, and an empty TypeList results:

template <typename EraseType>

struct Erase<EraseType, TypeList<>>

{

typedef TypeList<> List;

};

• If the TypeList’s head matches the type to erase, then List becomes a TypeList containing the

original TypeList’s tail types:

template <typename EraseType, typename ...Tail>

struct Erase<EraseType, TypeList<EraseType, Tail...>>

{

typedef TypeList<Tail...> List;

};

• In all other cases the erase operation is applied to the TypeList’s tail. This results in a TypeList

to which the orginal TypeList’s head must be prefixed. The TypeList returned by the prefix

operation is then returned as Erase::List:

template <typename EraseType, typename Head, typename ...Tail>

struct Erase<EraseType, TypeList<Head, Tail...>>

{

typedef typename

Prefix<Head,

typename Erase<EraseType, TypeList<Tail...>>::List

>::List List;

};



cout <<

Erase<int, TypeList<char, double, int>>::List::size << '\n' <<

Erase<char, TypeList<int>>::List::size << '\n' <<

Erase<int, TypeList<int>>::List::size << '\n' <<

Erase<int, TypeList<>>::List::size << "\n";

23.10.5.2 Erasing a type by its index

To erase a type from a TypeList by its index we again use a recursive template meta program.

EraseIdx expects a size_t index value and a TypeList from which its idxth (0-based) type must

be erased. EraseIdx defines the type List containing the resulting TypeList. Here is the algorithm:

• The foundation of the algorithm consists of a struct template EraseIdx expecting the index of

the type to erase and a TypeList:

template <size_t idx, typename TypeList>

struct EraseIdx;

• If the typelist is empty, there’s nothing to erase, and an empty TypeList results:

template <size_t idx>

struct EraseIdx<idx, TypeList<>>

{

typedef TypeList<> List;

};

• The recursion otherwise ends once idx becomes 0. At that point the TypeList’s first type is

ignored and List is initialized to a TypeList containing the types in the orginal TypeList’s

tail:

template <typename EraseType, typename ...Tail>

struct EraseIdx<0, TypeList<EraseType, Tail...>>

{

typedef TypeList<Tail...> List;

};

• In all other cases EraseIdx is applied to the TypeList’s tail, providing it with a decremented

value of idx. To the resulting TypeList the orginal TypeList’s head is prefixed. The TypeList

returned by the prefix operation is then returned as EraseIdx::List:

template <size_t idx, typename Head, typename ...Tail>

struct EraseIdx<idx, TypeList<Head, Tail...>>

{

typedef typename Prefix<

Head,

typename EraseIdx<idx - 1, TypeList<Tail...>>::List

>::List List;

};

Here is a statement showing how EraseIdx can be used:

if

(

typeid(TypeAt<2,

EraseIdx<1,



>::Type

)

== typeid(double)

)

cout << "the third type is now a double\n";

23.10.5.3 Erasing all occurrences of a type

Erasing all types EraseType from a TypeList can easily be accomplished by applying the erasure

procedure not only to the head of the TypeList but also to the TypeList’s tail.

Here is the algorithm, described in a slightly different order than Erase’s algorithm:

• If the TypeList is empty, there’s nothing to erase, and an empty TypeList results. This is

exactly what we do with Erase, so we can use inheritance to prevent us from having to duplicate

elements of a template meta program:

template <size_t idx>

struct EraseIdx<idx, TypeList<>>

{

typedef TypeList<> List;

};

• The foundation of the algorithm is therefore a struct template EraseAll expecting the type to

erase and a TypeList that is derived from Erase, thus already offering the empty TypeList

handling specialization:

template <typename EraseType, typename TypeList>

struct EraseAll: public Erase<EraseType, TypeList>

{};

• If TypeList’s head matches EraseType EraseAll is also applied to the TypeList’s tail, thus

removing all occurrences of EraseType from TypeList:

template <typename EraseType, typename ...Tail>

struct EraseAll<EraseType, TypeList<EraseType, Tail...>>

{

typedef typename EraseAll<EraseType, TypeList<Tail...>>::List List;

};

• In all other cases (i.e., TypeList’s head does not match EraseType) EraseAll is applied to the

TypeList’s tail. The returned TypeList consists of the original TypeList’s initial type and the

types of the TypeList returned by the recursive EraseAll call:

template <typename EraseType, typename Head, typename ...Tail>

struct EraseAll<EraseType, TypeList<Head, Tail...>>

{

typedef typename Prefix<

Head,

typename EraseAll<EraseType, TypeList<Tail...>>::List

>::List List;

};

Here is a statement showing how EraseAll can be used:

cout <<

"After erasing size_t from "



"it contains " <<

EraseAll<size_t,

TypeList<char, int, size_t, double, size_t>

>::List::size << " types\n";

23.10.5.4 Erasing duplicates

To remove all duplicates from a TypeList all the TypeList’s first elements must be erased from the

TypeList’s tail, applying the procedure recursively to the TypeList’s tail. The algorithm, outlined

below, merely expects a TypeList:

• First, the generic EraseDup struct template is declared. EraseDup structures define a type List

representing the TypeList that they generate. EraseDup calls expect a TypeList as their tem-

plate type parameters:

template <typename TypeList>

struct EraseDup;

• If the TypeList is empty it can be returned empty and we’re done:

template <>

struct EraseDup<TypeList<>>

{

typedef TypeList<> List;

};

• In all other cases

– EraseDup is first applied to the original TypeList’s tail. By definition this results in a

TypeList from which all duplicates have been removed;

– The TypeList returned by the previous step might contain the original TypeList’s initial

type. If so, it is removed by applying Erase on the returned TypeList, specifying the origi-

nal TypeList’s initial type as the type to remove;

– The returned TypeList consists of the original TypeList’s initial type to which the types of

the TypeList produced by the previous step are appended.

This specialization is implemented like this:

template <typename Head, typename ...Tail>

struct EraseDup<TypeList<Head, Tail...>>

{

typedef typename EraseDup<TypeList<Tail...>>::List UniqueTail;

typedef typename Erase<Head, UniqueTail>::List NewTail;

typedef typename Prefix<Head, NewTail>::List List;

};

Here is an example showing how EraseDup can be used:

cout <<

"After erasing duplicates from "

"TypeList<double, char, int, size_t, int, double, size_t>\n"

"it contains " <<

EraseDup<

TypeList<double, char, int, size_t, int, double, size_t>

>::List::size << " types\n";



23.11 Using a TypeList

In the previous sections the definition and some of the features of typelists were discussed. Most C++

programmers consider typelists both exciting and an intellectual challenge, honing their skills in the

area of recursive programming.

But there’s more to typelist than a mere intellectual challenge. In the final sections of this chapter the

following topics are covered:

• Creating classes from a typelist.

Here the aim is to construct a new class consisting of instantiations of an existing basic template

for each of the types mentioned in a provided typelist;

• Accessing data members from the thus constructed conglomerate class by index, rather than

name.

Again, much of the material covered by these sections was inspired by Alexandrescu’s (2001) book.

23.11.1 The Wrap and Multi class templates

To illustrate template meta programming concepts the template class Multi is now developed. The

class template Multi creates a new class from a template template parameter Policy defining the

data storage policy and a series of types from which Multi is eventually derived. It does so by passing

its template parameters to its base class MultiBase that in turn creates a final class inheritance tree.

Since we don’t know how many types are going to be used Multi is defined as a variadic class template

using a template pack ...Types.

In fact, the types that are specified with Multi aren’t that interesting. They primarily serve to ‘seed’

the class Policy. Therefore, rather than forwarding Multi’s types to MultiBase they are passed

to Policy and the sequence of Policy<Type> types is then forwarded to MultiBase. Multi’s con-

structor expects initialization values for its various Policy<Type>s which are perfectly forwarded to

MultiBase.

The class Multi (implementing its constructor in-class to save some space) shows how a template pack

can be wrapped into a policy. Here is Multi’s definition:

template <template <typename> class Policy, typename ...Types>

struct Multi: public MultiBase<0, Policy<Types>...>

{

typedef TypeList<Types...> PlainTypes;

typedef MultiBase<0, Policy<Types>...> Base;

enum { size = PlainTypes::size };

Multi(Policy<Types> &&...types)

:

MultiBase<0, Policy<Types>...>(

std::forward<Policy<Types>>(types)...)

{}

};

Unfortunately, the design as described contains some flaws.

• As the Policy template template parameter is defined as template <typename> class

Policy it can only accept policies expecting one type argument. Contrary to this, std::vector

is a template expecting two template arguments, the second one defining the allocation scheme

used by std::vector. This allocation scheme is hardly ever changed, and most applications



parameters must, however, be specified with the correct number and types of required template

parameters so vector can’t be specified as a policy for Multi. This can be solved by wrapping a

more complex template in a simpler wrapper template, like so:

template <class Type>

struct Vector: public std::vector<Type>

{

Vector(std::initializer_list<Type> iniValues)

:

std::vector<Type>(iniValues)

{}

};

Now Vector provides std::vector’s second parameter using its default template argument.

Alternatively, a template using declaration could be used.

• If the TypeList contains two types like int and double and the policy class is Vector, then

the MultiBase class eventually inherits from vector<int> and vector<double>. But if the

TypeList contains identical types, like two int type specifications MultiBase would inherit

from two vector<int> classes. Classes cannot be derived from identical base classes as that

would make it impossible to distinguish among their members. Regarding this, Alexandrescu

(2001) writes (p.67):

There is one major source of annoyance...: you cannot use it when you have duplicate

types in your TypeList.

.... There is no easy way to solve the ambiguity, [as the eventually derived class/FBB]

ends up inheriting [the same base class/FBB] twice.

There is a way around the problem of duplicate base class types. If instead of inheriting directly from

base classes these base classes are first wrapped in unique type defining classes, then these unique

classes can be used to access the base classes using principles of inheritance. As these unique type-

defining wrapper classes are merely classes that are derived from the ‘real’ base classes they inherit

(and thus: offer) the functionality of their base classes. A unique type defining wrapper class can be

designed after the class IntType, defined earlier. The wrapper class we’re looking combines class deriva-

tion with the uniqueness offered by IntType. The class template UWrap has two template parameters:

one non-type parameter idx and one type parameter. By ensuring that each UWrap definition uses

a unique idx value unique class types are created. These unique class types are then used as base

classes of the derived class MultiBase:

template <size_t nr, typename Type>

struct UWrap: public Type

{

UWrap(Type const &type)

:

Type(type)

{}

};

Using UWrap it’s easy to distinguish, e.g., two vector<int> classes: UWrap<0, vector<int>>

could refer to the first vector<int>, UWrap<1, vector<int>> to the second vector.

Uniqueness of the various UWrap types is assured by the class template MultiBase as discussed in the

next section.

It must also be possible to initialize a Multi class object. Its constructor therefore expects the initial-

ization values for all its Policy values. So if a Multi is defined for Vector, int, string then its

constructor can receive the matching initialization values. E.g.,

Multi<Vector, int, string> mvis({1, 2, 3}, {"one", "two", "three"});



MultiBase<0, T1, T2, T3>

MultiBase<1, T2, T3>UWrap<0, T1>

UWrap<2, T3>

UWrap<1, T2>

MultiBase<3>

MultiBase<2, T3>

Figure 23.1: Layout of a MultiBase class hierarchy

23.11.2 The MultiBase class template

The class template MultiBase is Multi’s base class. It defines a class that, eventually, is derived from

the list of Policy types that, in turn, were created by Multi using any additional types that were

passed to it.

MultiBase itself has no concept of a Policy. To MultiBase the world appears to consist of a simple

template pack whose types are used to define a class from. In addition to the PolicyTypes template

pack, MultiBase also defines a size_t nr non-type parameter that is used to create unique UWrap

types. Here is MultiBase’s generic class declaration:

template <size_t nr, typename ...PolicyTypes>

struct MultiBase;

Two specializations handle all possible MultiBase invocations. One specialization is a recursive tem-

plate. This template handles the first type of MultiBase’s template parameter pack and recursively

uses itself to handle the remaining types. The second specialization is invoked once the template pa-

rameter pack is exhausted and does nothing. Here is the definition of the latter specialization:

template <size_t nr>

struct MultiBase<nr>

{};

The recursively defined specialization is the interesting one. It performs the following tasks:

• It is derived from a unique UWrap type. The uniqueness is guaranteed by using MultiBase’s nr

parameter when defining UWrap. In addition to nr the UWrap class receives the first type of the

template parameter pack made available to MultiBase;

• It is also recursively derived from itself. The recursive MultiBase type is defined using as its first

template argument an incremented nr value (thus ensuring the uniqueness of the UWrap types

defined by recursive MultiWrap types). Its second template argument is the tail of the template

parameter pack made available to MultiBase

An illustration showing the layout of the MultiBase class hierarchy is provided in figure 23.1.

MultiBase’s constructor simply receives the initialization values that were (originally) passed to the

Multi object. Perfect forwarding is used to accomplish this. MultiBase’s constructor passes its first



tion is:

template <size_t nr, typename PolicyT1, typename ...PolicyTypes>

struct MultiBase<nr, PolicyT1, PolicyTypes...> :

public UWrap<nr, PolicyT1>,

public MultiBase<nr + 1, PolicyTypes...>

{

typedef PolicyT1 Type;

typedef MultiBase<nr + 1, PolicyTypes...> Base;

MultiBase(PolicyT1 && policyt1, PolicyTypes &&...policytypes)

:

UWrap<nr, PolicyT1>(std::forward<PolicyT1>(policyt1)),

MultiBase<nr + 1, PolicyTypes...>(

std::forward<PolicyTypes>(policytypes)...)

{}

};

23.11.3 Support templates

The Multi class template defines PlainTypes as the TypeList holding all the types of its parameter

pack. Each MultiBase derived from a UWrap type also defines a type Type representing the policy type

that was used to define the UWrap type and a type Base representing the type of its nested MultiBase

class.

These three type definitions allow us to access the types from which the Multi object was created as

well as the values of those types.

The class template typeAt, is a pure template meta program class template (it has no run-time exe-

cutable code). It expects a size_t idx template argument specifying the index of the policy type in

a Multi type object as well as a Multi class type. It defines the type Type as the Type defined by

Multi’s MultiBase<idx, ...> base class. Example:

typeAt<0, Multi<Vector, int, double>>::Type // Type is vector<int>

The class template typeAt defines (and uses) a nested class template PolType doing all the work.

PolType’s generic definition specifies two template parameters: an index used to specify the index of

the requested type and a typename initialized by a MultiBase type argument. PolType’s recursive

definition recursively reduces its index non-type parameter, passing the next base class in MultiBase’s

inheritance tree to the recursive call. As PolType eventually defines the type Type to be the requested

policy type the recursive definition defines its Type as the type defined by the recursive call. The final

(non-recursive) specialization defines the initial policy type of the MultiBase type as Type. Here is

typeAt’s definition:

template <size_t index, typename Multi>

class typeAt

{

template <size_t idx, typename MultiBase>

struct PolType;

template <size_t idx,

size_t nr, typename PolicyT1, typename ...PolicyTypes>

struct PolType<idx, MultiBase<nr, PolicyT1, PolicyTypes...>>

{

typedef typename PolType<

idx - 1, MultiBase<nr + 1, PolicyTypes...>>::Type Type;



template <size_t nr, typename PolicyT1, typename ...PolicyTypes>

struct PolType<0, MultiBase<nr, PolicyT1, PolicyTypes...>>

{

typedef PolicyT1 Type;

};

public:

typeAt(typeAt const &) = delete;

typedef typename PolType<index, typename Multi::Base>::Type Type;

};

The types specified by Multi’s parameter pack can also be retrieved using a second helper class tem-

plate: plainTypeAt. Example:

plainTypeAt<0, Multi<Vector, int, double>>::Type // Type is int

The class template plainTypeAt uses a comparable (but simpler) implementation than typeAt. It is

also a pure template meta program class template defining a nested class template At. At is imple-

mented like typeAt but it visits the types of the original template pack that was passed to Multi, and

made available by Multi as its PlainTypes type. Here is plainTypeAt’s definition:

template <size_t index, typename Multi>

class plainTypeAt

{

template <size_t idx, typename List>

struct At;

template <size_t idx, typename Head, typename ...Tail>

struct At<idx, TypeList<Head, Tail...>>

{

typedef typename At<idx - 1, TypeList<Tail...>>::Type Type;

};

template <typename Head, typename ...Tail>

struct At<0, TypeList<Head, Tail...>>

{

typedef Head Type;

};

public:

plainTypeAt(plainTypeAt const &) = delete;

typedef typename At<index, typename Multi::PlainTypes>::Type Type;

};

Arguably the neatest support template is get. This is a function template defining size_t idx as

its first template parameter and typename Multi as its second template parameter. The function

template get defines one function parameter: a reference to a Multi, so it can deduce Multi’s type by

itself. Knowing that it’s a Multi, we reason that it is also a UWrap<nr, PolicyType> and therefore

also a PolicyType, as the latter class is defined as a base class of UWrap.

Since class type objects can initialize references to their base classes the PolicyType & can be

initialized by an appropriate UWrap reference, which in turn can be initialized by a Multi object.

Since we can determine PolicyType using TypeAt (note that evaluating typename typeAt<idx,

Multi>::Type is a purely compile-time matter), the get function can very well be implemented inline

by a single return statement:

template <size_t idx, typename Multi>



{

return static_cast<

UWrap<idx, typename typeAt<idx, Multi>::Type> &>(multi);

}

The intermediate UWrap cast is required to disambiguate between identical policy types (like two

vector<int> types). As UWrap is uniquely determined by its nr template argument and this is

the number argument that is passed to get ambiguities can easily be prevented.

23.11.4 Using Multi

Now that Multi and its support templates have been developed, how can a Multi be used?

A word of warning is in place. To reduce the size of the developed classes they were designed in a

minimalist way. For example, the get function template cannot be used with Multi const objects and

there is no default, or move constructor available for Multi types. Multi was designed to illustrate

some of the possibilities of template meta programming and hopefully Multi’s implementation served

that purpose well. But can it be used? If so, how?

This section provides some annotated examples. They may be concatenated to define a series of state-

ments that could be placed in a main function’s body, which would result in a working program.

• A simple Policy could be defined:

template <typename Type>

struct Policy

{

Type d_type;

Policy(Type &&type)

:

d_type(std::forward<Type>(type))

{}

};

Policy defines a data member and it can be used to define Multi objects:

Multi<Policy, string> ms{ Policy<string>{ "hello" } };

Multi<Policy, string, string> ms2s{ Policy<string>{ "hello" },

Policy<string>{ "world" } };

typedef Multi<Policy, string, int> MPSI;

MPSI mpsi{ string{ "hello" }, 4 };

• To obtain the number of types defined by a Multi class or object either use the ::size enum

value (using the Multi class) or the .size member (using the Multi object):

cout << "There are " << MPSI::size << " types in MPSI\n"

"There are " << mpsi.size << " types in mpsi\n";

• Variables of constituting types can be defined using plainTypeAt:

plainTypeAt<0, MPSI>::Type sx = "String type";

plainTypeAt<1, MPSI>::Type ix = 12;

• Raw static casts can be used to obtain the constituent type:

cout << static_cast<Policy<string> &>(mpsi).d_type << '\n' <<

static_cast<Policy<int> &>(mpsi).d_type << '\n';



can’t distinguish between identical Policy<Type> types. In that case get still works fine:

typedef Multi<Policy, int, int> MPII;

MPII mpii{ 4, 18 };

cout << get<0>(mpii).d_type << ' ' << get<1>(mpii).d_type << '\n';

• Here is an example wrapping a std::vector in a Vector:

typedef Multi<Vector, int, double> MVID;

MVID mi{ {1, 2, 3}, {1.2, 3.4, 5.6, 7.8} };

• Such a vector can be defined by its Multi type:

typeAt<0, Multi<Vector, int>>::Type vi = {1, 2, 3};

• Knowing that a Vector is a std::vector, the reference returned by get support index operators

that can be used as left hand side or right hand side operands:

cout << get<0>(mi)[2] << '\n';

get<1>(mi)[3] = get<0>(mi)[0];

cout << get<1>(mi)[3] << '\n';

23.12 Expression Templates

Assume we are processing std::vector objects. Vectors may be assigned to each other, but that’s

about it. We’ve seen (cf. section 12.4.2) that its member functions tend to operate on the current vector,

but arithmetic operations like addition, subtraction, multiplication and the like cannot be applied to

pairs of vectors.

Implementing the, e.g., addition operator for vectors is not difficult. If VecType is our vector type, then

implementing free functions like VecType &&operator+(VecType const &lhs, VecType const

&rhs) and VecType &&operator+(VecType &&lhs, VecType const &rhs) performing the ad-

ditions is a simple exercise (cf. chapter 11).

Now consider an expression like one + two + three + four. It takes four steps to compute this

sum: first, tmp = one is computed, creating the eventual return value. The vector tmp becomes the

eventual return value. Once it is available tmp += two is computed, followed by tmp += three, and

finally by tmp += four (of course we shouldn’t implement std::vector::operator+= as the std

namespace is off-limits to us, and we shouldn’t derive a class from std::vector offering operator+=

according to Liskov’s Substitution Principle (cf. section 14.7), but we could get around that.

Here we simply assume operator+= is available).

Here’s how we might implement operator+= for VecType:

VecType &VecType::operator+=(VecType const &rhs)

{

for (size_t idx = 0, end = size(); idx != end; ++idx)

(*this)[idx] += rhs[idx];

return *this;

}

Consider this implementation: once we add VecType objects and such objects have N elements then

we have to perform 2 ∗ N index evaluations. When adding k VecType objects this adds up to 2 ∗ N

∗ k index expression evaluations (as eventually we also have to assign the elements of the resulting

temporary object to the destination object): lots of index expression evaluations.



vector element only once (which in particular applies to the temporary object). In that case, when

adding k objects, assigning the sums of their respective elements to a destination vector we have to

compute N ∗ (k + 1) index expressions (‘k’ for each of the vectors, ‘1’ for the destination vector).

For k == 1 the two methods are equally efficient in terms of index computations. But that’s not addi-

tion, that is assignment. So when adding any number of vectors, assigning their sum to a destination

vector using expression templates is more efficient than the ordinary implementation of the addition

operator. We’ll have a look at the design and implementation of expression templates in the coming

sections.

23.12.1 Designing an Expression Template

As we’ve seen, when using a standard implementation of an expression like one + two + three +

four, where the objects are vectors having n elements, then if we have k vectors we have to perform a

total of k ∗ 2 ∗ n index evaluations.

Expression templates allow us to avoid many of these evaluations. When using expression templates

these templates may access the vectors, but their elements are not accessed during addition operations.

Assuming our expression template is named ET, and we want to add one + two + three, then the

first + operator merely creates ET(one, two). Note that no addition is actually performed, ET merely

stores (constant) references to one (becoming ET’s lhs data member) and two (becoming ET’s rhs

data member). In general, ET stores references to the two arguments that are passed to its constructor.

At the next addition operator another ET is created. Its constructor arguments are, respectively, the

ET object that has just been constructed for one and two, and the vector three. Again, no addition is

performed by the ET objects.

This algorithm easily generalizes to any number of vectors. Parentheses can also be used. E.g., (one

+ two) + (three + four) results in

ET(ET(one, two), ET(three, four))

Presumably, at some point we want to obtain the sum of the vectors. For this the expression template

is provided with a conversion operator, converting the ET object to a vector, or maybe an assignment

operator doing the same.

The conversion operator looks like this:

operator ET::VecType() const

{

VecType retVal;

retVal.reserve(size());

for (size_t ix = 0, end = size(); ix != end; ++ix)

new(&retVal[ix]) value_type((*this)[ix]);

return retVal;

}

Placement new is used for efficiency reasons: there’s no need to initialize retVal with default values

first. The really interesting part, however, is hidden behind the (∗this)[idx] expression: at this

point the real addition takes place.

ET’s index operator simply adds the values returned by the corresponding index expressions of its lhs

and rhs data members. If a data member refers to a vector then the corresponding vector element is

used, adding it to the other data member’s value. If a data member itself refers to an ET object, then

that nested ET object’s index operator performs the same addition on its own data members, returning



∗

the computed sum is then stored in retVal[0] using placement new.

In this case the required number of index expression evaluations are n ∗ k (for the n elements of the

k vectors) plus n (for the n elements of retVal, adding up to (k + 1) ∗ n).

Since (k + 1) ∗ n < 2 ∗ k ∗ n for k > 1 expression templates evaluate the requested addition

more efficiently than the traditional implementation of operator+. An additional benefit of using

expression templates is that they do not create additional temporary vector objects when parenthesized

expressions are used.

23.12.2 Implementing an Expression Template

In this section we use a typedef std::vector<int> IntVect to illustrate the construction of an

expression template.

Starting point is a simple main function, in which several IntVect objects are added. E.g.,

int main()

{

IntVect one;

IntVect two;

IntVect three;

IntVect four;

// ... assume the IntVects somehow receive values

four = one + two + three + four;

}

At this point the code does not suggest that expression templates are going to be used. However,

operator+’s implementation is special: it’s a template merely returning an object constructed by

operator+:

template<typename LHS, typename RHS>

BinExpr<LHS, RHS, plus> operator+(LHS const &lhs, RHS const &rhs)

{

return BinExpr<LHS, RHS, plus>{ lhs, rhs };

}

Our expression template is called BinExpr. It has three template type parameters: two object types

and a template template parameter performing the requested operation. Its declaration looks like this:

template<typename LHS, typename RHS, template<typename> class Operation>

struct BinExpr;

Since LHS and RHS can either be the data type that is processed by the expression template, or a

BinExpr two different typenames are required. Operation is the operation that is performed by the

expression template. By using a template template parameter we can use BinExpr to perform any

operation we want, not just addition. Predefined function templates like std::plus can be used for

the standard arithmetic operators; for other operators we can define our own function templates.

BinExpr’s constructor initializes constant references to lhs and rhs. Its in-class implementation is

BinExpr(LHS const &lhs, RHS const &rhs)

:

d_lhs(lhs),



{}

To retrieve the resulting IntVect a conversion operator is defined. We already encountered its imple-

mentation (in the previous section). Here is it, as an in-class implemented BinExpr member:

operator ObjType() const

{

ObjType retVal;

retVal.reserve(size());

for (size_t idx = 0, end = size(); idx != end; ++idx)

new(&retVal[idx]) value_type((*this)[idx]);

return retVal;

}

We return to the type ObjType below. At this point it can be considered an IntVect. The member

size() simply returns d_lhs.size(): in any sequence of IntVect additions LHS eventually is an

IntVect, and so every BinExpr defines a valid size() like so:

size_t size() const

{

return d_lhs.size();

}

The only remaining member to implement is operator[]. Since it receives an index, it only needs

to perform the requested operation on the corresponding index elements of its d_lhs and d_rhs data

members. The beauty of expression templates is that if either one itself is a BinExpr that expression

template in turn calls its operator[], eventually performing the requested operation on all corre-

sponding elements of all IntVect objects. Here is its implementation:

value_type operator[](size_t ix) const

{

static Operation<value_type> operation;

return operation(d_lhs[ix], d_rhs[ix]);

}

This implementation uses another type: value_type which is the type of the elements of the vector

type that is processed by the expression template. Like ObjType before, its definition is covered below.

The static data member operation simply is an instantiation of the Operation type that is specified

when constructing an ExprType object.

In the next section we take a closer look at ObjType and value_type.

23.12.3 The BasicType trait class and ordering classes

The BinExpr expression template needs to be aware of two types before it can instantiate objects.

First, ObjType must be known, as this is the type of object that is handled by the expression template.

ObjType objects contain values, and we require that the type of these values can be determined as

ObjType::value_type. E.g., for our IntVect data type value_type is int.

In expressions like one + two + three, the BinExpr expression template receives two IntVect

objects. This is always true: the BinExpr that is first constructed receives two IntVect objects. In

this case ObjType is simply LHS, and ObjType::value_type is also available: either value_type is

already defined by LHS or BinExpr requires that it defines type value_type.



next nesting level receive at least one BinExpr argument) we need a way to determine ObjType from

a BinExpr. For this we use a trait class. The trait class BasicType receives a typename template

argument, and equates its type ObjType to the received template type argument:

template<typename Type>

struct BasicType

{

typedef Type ObjType;

};

A specialization handles the case where Type in fact is a BinExpr: template<typename LHS, type-

name RHS, template<typename> class Operation>

template<typename LHS, typename RHS, template<typename> class Operation>

struct BasicType<BinExpr<LHS, RHS, Operation>>

{

typedef typename BinExpr<LHS, RHS, Operation>::ObjType ObjType;

};

Since BinExpr requires that ObjType::value_type is a defined type, value_type has automatically

been taken care of.

As BinExpr refers to BasicType and BasicType refers to BinExpr somewhere we must provide a for-

ward declaration. As BinExpr’s declaration has already been provided, we start with that declaration,

resulting in:

BinExpr's declaration

BasicType's definition

BasicType's specialization (for BinExpr)

template<typename LHS, typename RHS, template<typename> class Operation>

class BinExpr

{

LHS const &d_lhs;

RHS const &d_rhs;

public:

typedef typename BasicType<RHS>::DataType DataType;

typedef typename DataType::value_type value_type;

// all BinExpr member functions

};

23.13 Concepts

C++ is a strongly typed language: a function add(int lhs, int rhs) doesn’t accept std::string

arguments, even though the actual operations (lhs + rhs) are identical for ints and strings.

Templates were introduced so we could design recipes for the compiler, allowing it to construct type-safe

overloaded versions of functions and classes while keeping their type-safety.

A basic addition function template adding two values looks like this:

template <typename Type>



{

return lhs + rhs;

}

When this function template is called with arguments of types that do not support operator+ then

the compiler notices this, and it will generate an error. E.g., when calling

add(std::cerr, std::cout);

the g++ compiler produces some 140 lines of error messages. It notices that there’s no operator+ for

std::ostream objects, and then tells us what else we might have done (like adding two ints), and

where the construction of the add function that should accept std::ostream arguments went wrong.

In fact, 140 lines of error messages is rather benign. Getting several hundreds of lines is quite common,

and sometimes the location of the error isn’t mentioned at the top but somewhere near the end of the

error message output.

The C++2a standard introduced concepts allowing us to specify requirements for template types. When

applying an appropriate concept to the definition of the add function template the compiler immediately

pinpoints the error, telling us where and why the error occurred in some 15 instead of 140 lines of error

messages.

The reduction of the number of lines of error messages by itself is a boon. But the fact that concepts

allow us to consciously develop our templates, realizing what the precise requirements are for their

use, is at least as important: it improves the template’s documentation, and thus our understanding of

templates.

Concepts may be considered the template’s answer to the philosphy that lies behind a strongly typed

language. By applying concepts to templates we can specify type-requirements rather than using the

traditional ‘shotgun empiricism’ approach where templates are bluntly used, knowing that the compiler

will complain if things are incorrect. In that sense concepts provide type definitions of types. Concepts

have names and can (among other) be used in template headers where the concept names replace the

traditional typename keywords.

As an opening illustration, assume that a concept Addable exists specifying that operator+ must

have been defined for the template’s type. The above function template add can now be formulated as:

template<Addable Type>

Type add(Type const &lhs, Type const &rhs)

{

return lhs + rhs;

}

From now on every type that is actually passed to add must be satisfy the Addable requirements. Here

are two expressions using add:

add("first"s, "second"s); // (1)

add(map<int, int>{}, map<int, int>{}); // (2)

Expression (1) flawlessly compiles as string objects can be added; expression (2) fails with the com-

piler reporting something like

error: use of function `Type add(const Type&, const Type&)

[with Type = std::unordered_map<int, int>]' with unsatisfied constraints

add(unordered_map<int, int>{}, unordered_map<int, int>{});

note: constraints not satisfied

Type add(const Type&, const Type&)



note: the required expression `(lh + rh)' is invalid

The error message’s final ‘note’ clearly states the cause of the problem: you can’t add maps.

The difference between the compiler’s report using concepts and not using concepts again is impressive.

When using the traditional typename Type specification in the template header the compiler produces

some 17 kB of error messages, spread out over more than 200 lines.

In the following sections we cover how concepts are defined, what kind of requirements can be formu-

lated, and how they can be used in practice.

23.13.1 Defining concepts

As a prelude before actually looking at how concepts are defined it is noted that concept names, like

class names, type names, function names, and variable names should suggest their purposes. Don’t

name a concept ‘Constraint’ or ‘Concept’, but use names like ‘Addable’ and ‘HasValueType’.

Concepts are templates. They start with a template header (the template headers shown in the exam-

ples define a single template type parameter, but multiple template parameters are also used).

In the previous section we used the concept Addable. Here is how it can be defined:

template <typename Type>

concept Addable =

requires(Type lh, Type rh)

{

lh + rh;

};

The concept’s template header is followed by the keyword concept, the concept’s name, and the as-

signment operator. Following the assignment operator requirement specifications are provided.

Semicolons end concept definitions. This concept uses a simple requirement (cf. section 23.13.2.1)

indicating that operator+ must have been defined for Addable templates’ types.

Requirements come in many forms. A very simple form consists of just a bool value, which is some-

times useful when developing a concept. Such a concept looks like this:

template <typename Type>

concept IsTrue =

true;

But in most situations requires specifications are used. They resemble function definitions having

parameter lists optionally defining variables of the types that specified in the concept’s template header

and compound statements specifying requirements.

Concepts are never instantiated. They are used compile-time to verify that template types satisfy

the imposed requirements. Thus there’s no need to use refererences in parameter lists of requires

specifications. The concept Addable simply uses

requires(Type lh, Type rh)

and there’s no need to specify

requires(Type const &lh, Type const &rh)



specific parameter definition might be appropriate.)

Here are two examples of templates using concept Addable. The first example uses Addable instead

of typedefwhen specifying the template header, the second example appends the concept specification

to the template header itself:

template<Addable Type>

Type add2(Type const &x, Type const &y)

{

return x + y;

}

template<typename Type>

requires Addable<Type>

Type add(Type const &x, Type const &y)

{

return x + y;

}

Template declarations using concepts are specified accordingly. Simply replace the function template’s

body by a semicolon.

Concepts may also be defined by extending or combining existing concepts. Nesting concepts is covered

in section 23.13.2.4.

Although concepts are templates, they cannot be specialized. If a concept should recognize specializa-

tions then these specializations must be handled by the concepts’ definitions. Section 23.13.2.3 for an

illustration

23.13.2 Requirements

The bodies of requires declarations contain define constraints to apply to template parameters. There

are four types of requirements:

• Simple requirements: constraints on facilities (like requiring the availability of operator+);

• Type requirements: requiring the availability of (sub)types (like the sub-type value_type) which

must be available when using standard push_back functions;

• Compound requirements: requiring types resulting from applying operators or returned by called

(member) functions;

• Nested requirements: defining concepts in terms of already existing concepts.

Constraints must be compile-time verifiable.

When multiple constraints are specified, they must all be compile-time verifiable, and an actual type is

only accepted by the compiler if all requirements could be satisfied.

23.13.2.1 Simple requirements

We’ve already encountered various examples of simple requirements: they specify the operations that

must be supported by the variable(s) declared in the parameter lists of requires specifications. When

the requirements refer to single variables single Type parameters suffice; when requirements involve

different types then the concept’s template head declares those different types and the requires pa-

rameter list will usually define variables of those different types. The concept BasicMath specifies

two types, and uses four simple requirements to specify the four basic arithmetic operations:



concept BasicMath =

requires(LhsType lhs, RhsType rhs)

{

lhs + rhs; // addition must be available

lhs - rhs; // subtraction must be available

lhs * rhs; // multiplication must be available

lhs / rhs; // division must be available

};

Specifying constraints does not necessarily mean that the constraints as specified literally apply to

run-time situations. To require the existence of the index operator the following simple requirement

can be used:

template <typename Type>

concept HasIndex =

requires(Type tp)

{

tp[0];

};

template <HasIndex Type>

auto idx(Type const &obj, size_t idx)

{

return obj[idx];

}

Here the stand-in argument 0 is used to specify the index operator’s argument. The argument value

used in the simple requirement really is a stand-in. The following code fragment compiles, as string

supports the index operator. Athough argument 0 is used in the simple requirement specification the

argument 5 is in fact being used:

string str;

idx(str, 5);

Other than int index types can be specified analogously. Here is an example showing how to define and

use a concept HasStrIndex requiring the availability of std::string arguments of index operators:

template <typename Type>

concept HasStrIndex =

requires(Type tp)

{

tp[std::string{}];

};

template <HasStrIndex Type>

auto value(Type &obj, std::string const &key)

{

return obj[key];

}

int main()

{

std::map<std::string, double> msd;

value(msd, "hi");

}



Sometimes templates must use sub-types of template types. Examples are templates assuming the

existence of iterator (like vector<int>::iterator) or value_type which is used when calling

std::push_back.

To specify that a sub-type must be available the concept’s requires specification needs no parameters,

but can directly refer to the subtype. It’s also possible to combine type requirements with requirements

that do define a non-empty parameter list, and so the requires’s parameter list does not have to be

empty. Here is a concept that specifies a plain type requirement:

template <typename Type>

concept HasValueType =

requires()

{

typename Type::value_type;

};

and here’s a concept that combines a simple requirement with a type requirement:

template <typename Type>

concept Iteratable =

requires(Type tp)

{

typename Type::iterator;

tp.begin();

};

template <Iteratable Type>

auto iter(Type const &obj)

{

return obj.begin();

}

Calling iter with a string argument succeeds, calling it with a queue argument results in two error

notes: no Type::iterator and no tp.begin().

Types specified in type requirements don’t necessarily have to refer to types. They may also specify be

the names of nested classes or enumerations defined by Type. When specifying enumerations they do

not have to be strongly typed.

23.13.2.3 Compound requirements

When return types of operations must satisfy certain requirements then compound requirements should

be used. Compound requirements define type constraints on expressions embedded in compound state-

ments. The C++2a standard defines several concepts that can be used to specify such requirements (see

also section 23.13.3 below). Here is an example:

template <typename Type, typename ReturnType>

concept Return =

requires(Type par)

{

// par[..] must return a `ReturnType'
{ par[0] } -> std::same_as<ReturnType>;

};

This concept can now be used to specify requirements of template type parameters. E.g.,



requires Return<Type, RetType>

Ret fun(Type tp)

{

return tp[0];

}

Here arguments passed to fun must satify two requirements:

• they must provide an index operator accepting integral argument values;

• their index operators must return std::string values.

You may have noticed that the std::same_as concept receives only one template type argument,

which (as if by magic) compares it with the type returned by the par[0] expression. When peeking at

the available concepts in section 23.13.3 you will see that several of those concepts in fact define two

template type parameters. When these concepts are used in compound requirements then the compiler

passes the deduced type of the expression in the concept’s compound statement (so that’s the type of

par[0] in the above example) to the concept’s first type, and passes the explicitly specified type to the

concept’s second type.

Knowing this we can define our own concepts to use in compound expressions. We may define our own

same_as concept as follows, using a separate class template SameTypes. SameTypes defines a bool

value ‘value’ which is used to decide about the concept’s requirement. The class template SameTypes

uses a specialization to handle the situation where both types are equal. Note that concepts themselves

cannot be specialized:

template <typename Lhs, typename Rhs>

struct SameTypes // generic: any two types

{

static bool const value = false;

};

template <typename Lhs>

struct SameTypes<Lhs, Lhs> //specialization: equal types

{

static bool const value = true;

};

template<typename Compound, typename Specified>

concept Same = SameTypes::value;

Now the concept Same can be used instead of std::same_as by merely specifying the required type:

template <typename Type, typename ReturnType>

concept Return =

requires(Type par)

{

// par[..] must return a `ReturnType'
{ par[0] } -> Same<ReturnType>;

};

Although in this case it isn’t important which actual type is used as argument for which concept type

parameter, the compiler specifies the compound expression’s type as template argument for Same’s

Compound parameter whereas ReturnType is used as template argument for Same’s Specified

parameter.

Multiple type requirements can be specified by providing multiple compound requirements as in the

following example:



concept MultiArgs =

requires(Type lhs, Type rhs)

{

{ lhs + rhs } -> std::same_as<Type>;

{ lhs += rhs } -> std::same_as<Type &>;

{ lhs.c_str() } -> std::same_as<char const *>;

};

If it is required that the compound operation doesn’t throw exceptions then noexcept can be writ-

ten immediately following the compound requirement’s late return type arrow (->). The noexcept

specification itself may then optionally be followed by a type constraint.

Finally, the late return type specifications itself is optional, in which case the compound requirement

acts like a simple requirement: it requires the existence of the expression that’s specified in the com-

pound statement. In this case: don’t forget to add the semicolon following the closing parenthesis of

the compound requirement:

template <typename Type>

concept Increment =

requires(Type par)

{

{ ++par };

// same as:

++par;

};

23.13.2.4 Nested requirements

Concepts can be nested. Being able to nest concepts is very useful as it allows us to hierarchically order

concepts and to define concepts in terms of existing concepts.

In chapter 18 iterators were introduced (section 18.2). Commonly five conceptually different iterator

types are distinguished:

• Input iterators are incrementable, and they support dereferencing to const values;

• Output iterators are like Input iterators, but they refer to non-const values;

• Forward iterators combine Input and Output iterators;

• Bidirectional iterators are like Forward iterators, but they also support decrement operators;

• RandomAccess iterators are like Bidirectional iterators, but these iterators also support addition

and subtraction by any stepsize.

All iterator types support (in)equality checks and increment operators. Thus, at the basis of all iterators

we find the requirements that iterators must be comparable and incrementable. Concepts covering

those requirements are easily constructed (see also figure 23.2):

template <typename Type>

concept Comparable =

requires (Type lhs, Type rhs)

{

lhs == rhs;

lhs != rhs;

};
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template <typename Type>

concept Incrementable =

requires (Type type)

{

++type;

type++;

};

Note that no type is specified following the lhs == rhs and lhs != rhs requirements, as those types

are implied by their operators.

Two more concepts are defined: one allowing dereferencing pointers returning constant references

and one returning modifiable references. To allow the compiler to verify those requirements we also

implicitly require the (commonly encountered) existence of typename Type::value_type:

template <typename Type>

concept Dereferenceable =

requires(Type type)

{

{ *type } -> std::same_as<typename Type::value_type &>;

};

template <typename Type>

concept ConstDereferenceable =

requires(Type type)

{

{ *type } -> std::same_as<typename Type::value_type const &>;

};

Not much of a hierarchy so far, but that changes now that we’re about to define concepts for iterators.

An input iterator is an iterator that is comparable, incrementable and const-dereferenceable. For each

of these requirements concepts were defined which can be combined using boolean operators when

defining the concept InIterator. Note that template type parameters of concepts must use the

typename keyword. Concepts’ template parameters cannot be constrained by specifying them in terms

of existing concepts (which is possible when defining function and class templates).



InIterator) illustrates how a constrained template parameter type can be specified in template head-

ers:

template <typename Type>

concept InIterator =

Comparable<Type> and Incrementable<Type> and

ConstDereferenceable<Type>;

template <InIterator Type>

void inFun(Type tp)

{}

The concept for output iterators (and its use, as in the function template outFun) is defined analogously.

This time requiring dereferenceable types rather than const-dereferenceable types:

template <typename Type>

concept OutIterator =

Comparable<Type> and Incrementable<Type> and

Dereferenceable<Type>;

template <OutIterator Type>

void outFun(Type tp)

{}

For forward iterators the concept FwdIterator is defined. A forward iterator combines the charac-

teristics of input and output iterators, and we may want to define a forward iterator by requiring the

requirements of the InIterator and OutIterator concepts.

However, there’s a slight problem. The following class (struct) defines const and non-const dereference

operators and may be therefore be passed to functions expecting input or output iterators:

struct Iterable

{

typedef int value_type;

Iterable &operator++();

Iterable operator++(int);

int const &operator*() const;

int &operator*();

};

bool operator==(Iterable const &lh, Iterable const &rh);

bool operator!=(Iterable const &lh, Iterable const &rh);

int operator-(Iterable const &lh, Iterable const &rh);

But when a function template requires ConstDerefenceable arguments then the compiler notices

that the overloaded member int &operator∗() doesn’t return an int const &. Even though

int const &operator∗() const is available compilation fails. This problem can be solved in

two ways: noting that an int & can be converted to an int const & the predefined concept

std::convertible_to instead of std::same_as can be used in ConstDereferenceable; alter-

natively its requires clause can specify Type const &type instead of just Type type. Here is a

definition of ConstDereferenceable that, when defining the concept FwdIter, can be used in com-

bination with Dereferenceable:

template <typename Type>



requires(Type const &type)

{

{ *type } -> std::same_as<typename Type::value_type const &>;

};

The final two iterator types pose no problems: the concept BiIterator requires the constraints of the

concept FwdIterator as well as decrement operators, and finally the concept RndIterator requires

the constraints of BiIterator and in addition iterator increments decrements for any step size as well

as the possibility to subtract iterators:

template <typename Type>

concept BiIterator =

FwdIterator<Type> and

requires(Type type)

{

--type;

type--;

};

template <typename Type>

concept RndIterator =

BiIterator<Type>

and

requires(Type lhs, Type rhs)

{

lhs += 0;

lhs -= 0;

lhs + 0;

lhs - 0;

{ lhs - rhs } -> std::same_as<int>;

};

23.13.3 Predefined concepts

In the previous section we covered defining concept requirements. When specifying some of the require-

ments already available concepts were used, like std::same_as. The C++2a standard provides some

30 predefined concepts which may be used to specify type requirements, to specify conversion require-

ments, and to specify more advanced requirements, sometimes accepting variadic template parameters.

The currently predefined concepts are covered in the following subsections.

23.13.3.1 Concepts specifying one template type parameter

The following concepts specify just one template type parameter. Their generic form is

template <typename Type>

concept Name =

... requirements ...

;

When used in compound requirements only their names have to be specified. For example (using the

concept std::boolean (see below)), to require that a function fun receiving an argument of some type

Type returns a boolean value, the following concept could be defined:

template<typename Type>



requires(Type param)

{

{ fun(param) } -> std::boolean;

};

• boolean:

requires that its type can be used in boolean expressions

• copy_constructible:

requires that objects of its type supports copy- and move-construction;

• copyable:

requires that objects of its type support copy- and move- construction and assignment, and that

two objects of its type can be swapped;

• default_initializable:

requires that objects of its type support default constructors;

• destructible:

requires that the destructor of its type is defined as noexcept(true);

• equality_comparable:

requires that operator== is available to compare two objects of its type;

• floating_point:

requires that its type is a floating-point type;

• integral:

requires that its type is an integral type;

• movable:

requires that its type supports moving and swapping. Note that full support for moving requires

that its type supports move construction and move assignment;

• move_constructible:

requires that its type supports move construction;

• regular:

requires that its type satisfies the requirements of the semiregular and

equality_comparable concepts;

• semiregular:

requires that its type supports default construction, copying, moving, and swapping;

• signed_integral:

requires that its type is a signed integral type;

• swappable:

requires that two objects of the same type can be swapped. The generic variant (see below) is

named swappable_with;

• unsigned_integral:

requires that its type is an unsigned integral type;

• totally_ordered:

requires that two objects of identical types can be ordered using the operators ==, !=, <,

<=, >, and >=. The requirements for ordering is strict: for any two objects one and

two either one < two, one == two, or one > two is true. The generic variant is named

totally_ordered_width.



The following concepts define two template type parameters. Their generic form is

template <typename LHS, typename RHS>

concept Name =

... requirements ...

;

When used in compound requirements the compiler deduces the type of the compound expression, and

then uses that type as LHS. In the type requirement following the compound statement only the RHS

type is specified. For example (using the concept std::same_as (see below)), to require that a function

fun, receiving an argument of some type Type, returns a std::string the following concept can be

defined:

template<typename Type>

concept StringFun =

requires(Type param)

{

{ fun(param) } -> std::same_as<std::string>;

};

• assignable_from:

requires that RHS-typed expressions can be assigned to LHS-typed expressions;

• common_reference_with:

requires that both types can be converted to an identical (reference) type. The concept is satisfied

for two identical types, but also for two types where one of them is derived from the other. E.g.,

template <typename LHS, typename RHS>

concept CommonRef = std::common_reference_with<LHS, RHS>;

template <typename T1, typename T2>

requires CommonRef<T1, T2>

void fun(T1 &&t1, T2 &&t2)

{}

struct B

{};

struct D1: public B

{

};

int main()

{

fun(4, 'a');

fun(4.5, 'a');

D1 d1;

B b;

fun(b, d1); // objects, rvalue refs:

fun(D1{}, B{}); // all OK

}

• common_with:

works like the previous concept;



requires that the LHS type can automatically be converted to the RHS type:

template <typename LHS, typename RHS>

concept Convertible =

requires(LHS lhs)

{

{ lhs } -> std::convertible_to<RHS>;

};

template <typename RHS, typename LHS>

requires Convertible<LHS, RHS>

void fun(LHS lhs)

{}

int main()

{ // note: LHS is the <...>'s type

fun<double>(12); // from int to double

fun<int>(12.5); // from double to int

fun<std::string>("a"); // from NTBS to string

// fun<std::string>(12); // constraints not satisfied

}

• derived_from:

requires that the LHS type is derived from the RHS type;

• equality_comparable_width:

requires that operators operator== and operator!= are available to compare LHS- and RHS-

type variables (in any order);

• same_as:

requires that the LHS type is the same as the RHS type. Note that this concept acts rather strictly.

For example, std::same_as<long int, int> does not satisfy the requirement. If such a strict

equality isn’t really required then convertible_to might offer a workable alternative;

• swappable_with:

requires that two objects of possibly different types can be swapped. The more restrictive variant

requiring objects of identical types is named swappable;

• totally_ordered_with:

requires that two objects of possibly different types can be ordered using the operators ==, !=,

<, <=, >, and >=. The requirements for ordering is strict: for any two objects one and two

either one < two, one == two, or one > two is true. The more restrictive variant requiring

objects of identical types is named totally_ordered.

23.13.3.3 Concepts specifying multiple template type parameters

Most predefined concepts expecting more than two parameters are variadic (cf. section 23.13.4).

• constructible_from:

requires a LHS type and a variadic template parameter representing the types from which LHS

can be constructed (which may be empty if a default constructor is suppported). Here is an exam-

ple:

template <typename LHS, typename ...Args>

concept Constructible = std::constructible_from<LHS, Args...>;

template <typename T1, typename ...Args>

requires Constructible<T1, Args...>



{

return T1( std::forward<Args>(t2)... );

}

int main()

{

std::string s{ fun<std::string>(5, 'a') };

std::string s2{ fun<std::string>() }; // slightly weird...

}

• equivalence_relation:

this concept defines three template type parameters. It is a synonym of the concept

std::relation (see below);

• invocable:

requires a LHS type and a variadic template parameter representing the types which are forwared

as arguments to the function or functor specified as invocable’s first argument. Here is an

example:

template <typename Function, typename ...Params>

void fun(Function &&fun, Params &&...params)

requires std::invocable<Function, Params ...>

{

fun(std::forward<Params>(params)...);

}

void hello(int value, char const *txt, std::string const &str)

{

std::cout << value << ' ' << txt << ' ' << str << '\n';

}

int main()

{

fun(hello, 1, "text", "string"); // promotions are still OK

// fun(hello, 1); // WC: not invocable

}

• predicate:

requires a LHS type which is a predicate (functor or function returning a bool value), expecting

arguments of the variadic template parameter RHS. Here is an example:

template <typename Container, typename Predicate>

concept Find_ifConcept =

std::predicate<Predicate, typename Container::value_type>

and

requires(Container container)

{

{ container.begin() } -> Iter;

{ container.end() } -> Iter;

{ container.size() } -> std::same_as<size_t>;

};

template <typename Container, typename Predicate>

size_t findIdx_if(Container const &cont, size_t from, Predicate const &pred)

requires Find_ifConcept<Container, Predicate>

{

auto iter = std::find_if(cont.begin() + from, cont.end(), pred);

return iter == cont.end() ? cont.size() : iter - cont.begin();

}



int main()

{

std::cout << "Index at " <<

findIdx_if(std::string{ "hello world" }, 0,

[&](int ch)

{

return ch == ' ';

}

) << '\n';

int target = 4;

fun(

[&](int value)

{

return value == target;

},

4

);

}

• regular_invocable:

synonym of invocable;

• relation:

this concept defines three template type parameters. The first parameter is a predicate whose

function call operator expects two arguments. The arguments are of the types of the second

and/or third template type parameters (any combination, any order). For example, the require-

ments of the std::relation concept are satisfied if the predicate’s first template argument is

std::less, the second argument is int and the third argument is double.

In the following example struct Less is a functor comparing the two arguments of its func-

tion call operator. Next, the function cmp accepts such a struct type as predicate, verifying that

the predicate and the arguments that are passed to the function satisfy the requirements of the

std::relation concept. If so the functor’s return value is returned.

Finally, in main cmp is first called with int and double arguments (which succeeds) and then

with an int and a NTBS arguments: for the second call the constraints are not satisfied as ints

and NTBSs can’t be compared, and consequently compilation fails:

template <typename LHS, typename RHS>

struct Less

{

bool operator()(LHS lhs, RHS rhs) const

{

return lhs < rhs;

}

};

template <template<typename LHS, typename RHS> typename Pred,

typename LHS, typename RHS>

bool cmp(LHS lhs, RHS rhs)

requires std::relation<Pred<LHS, RHS>, LHS, RHS>

{

return Pred<LHS, RHS>{}(lhs, rhs);

}

int main()

{

std::cout << cmp <Less>(5, 4.9) << '\n';

std::cout << cmp <Less>(5, "hello world") << '\n';

}



• strict_weak_order:

this concept defines three template type parameters. The first parameter is the type of a predicate

whose function call operator expects two arguments. The arguments are of the types of the second

and/or third template type parameters (any combination, any order). The concept is satisfied if

the predicate can verify that a strict weak order applies to its argument types. A relation is a

strict weak ordering if

– the predicate returns false if an object is compared to itself;

– the relation is transitive: if pred(one, two) and pred(two, three) are both true, then

pred(one, three) is also true;

23.13.4 Applying concepts to template parameter packs

As we have seen (cf. section 23.13.3.3) concepts may process template parameter packs. Such concepts

are called variadic concepts. When defining concept-protected variadic function or class templates

variadic concepts aren’t always required. Consider the following function:

template <HasSize ...Types>

void fun(Types &&...obj)

{

sum(std::forward<Types &&>(obj)...);

}

Here we see a variadic template, but it defines all its parameters as constrained types by simply men-

tioning the concept HasSize instead of just typename. The HasSize concept is very basic: it merely

requires that type.size() exists, returning a size_t:

template <typename Types>

concept HasSize =

requires (Types type)

{

{ type.size() } -> std::same_as<size_t>;

};

Once fun has verified that all its argument types satisfy the HasSize requirements no additional

checks are necessary. The fun function template merely forwards its arguments to sum, a variadic

template, that simply adds the return values of the size() members of its arguments:

size_t sum()

{

return 0;

}

template <typename First, typename ...Types>

size_t sum(First &&first, Types &&...types)

{

return first.size() + sum(std::forward<Types>(types)...);

}

The wrapper function fun isn’t really required. The variadic template function summing the various

size() values itself can also be defined so that its types themselves must satisfy the HasSize concept.

Here is the definition of the variadic function template sum2 requiring precisely that:

size_t sum2()



return 0;

}

template <HasSize First, HasSize ...Types>

size_t sum2(First &&first, Types &&...types)

{

return first.size() + sum2(std::forward<Types>(types)...);

}

And here is a main function calling fun and sum2:

int main()

{

fun(queue<int>{}, vector<int>{}, string{});

cout << sum2(queue<int>{}, vector<int>{}, string{}) << '\n';

}

On the other hand, the predefined concept std::constructible_from is a variadic concept, as it

accepts a LHS template parameter and a RHS parameter pack. This concept is satisfied if the LHS

parameter can be constructed from the types specified in its RHS parameter pack. After including

type_trait defining and using such a concept is not very hard:

template <typename Class, typename ...Params>

concept Constructible = std::is_constructible<Class, Params ...>::value;

template <typename Class, typename ...Params>

requires Constructible<Class, Params ...>

void fun(Class &&type, Params &&...params)

{}

The recipe for writing variadic concepts is not very complex:

• start the concept’s definition with a template header specifying a parameter pack;

• pass the parameters to a type trait handling the pack;

To use the variadic concept in a function or class template its template parameters are simply for-

warded to the concept (as shown in the above example).

When no predefined variadic type trait is available the variadic concept must use other means to deter-

mine whether its constraints are satisfied or not. In those cases define your own variadic type traits.

For illustration let’s assume we are looking for a variadic concept that can be used to verify that the

types of all the arguments that are passed to a variadic function template are integral types. In this

case there is no predefined type trait we can use, so we have to define it ourselves. We define the con-

cept IntegralOnly as a variadic concept using our self-defined type trait allIntegralTypes, and

thereupon use it when defining a function requiring that all of its arguments are integral values:

template <typename ...Types>

concept IntegralOnly = allIntegralTypes<Types ...>::value;

template <IntegralOnly ...Types>

void fun(Types ...types)

{}

The generic type trait allIntegralTypes merely specifies that it accepts any number of type param-

eters and uses specializations to handle specific cases. One specific case is the case were no types are

specified which simply defines a true static bool const value:



struct allIntegralTypes;

template <>

struct allIntegralTypes<>

{

static bool const value = true;

};

The type trait’s partial specialization does the hard work: it determines whether the first type is inte-

gral and combines that (using and) with the value made available by the struct allIntegralType

receiving the remaining types:

template <typename First, typename ...Types>

struct allIntegralTypes<First, Types ...>

{

static bool const value = std::is_integral<First>::value and

allIntegralTypes<Types ...>::value;

};

The function fun can now be called with any number of arguments. As long as the arguments are

integral types the compilation succeeds and fun can safely do its job.

23.13.5 Implementing constrained class members

When defining members of class templates outside of their class interfaces the members’ template

headers must match the class templates’ template headers. This is no different when using concepts.

In the following example the concept Addable is used when defining the class template Data. The

class Data declares a member process, implemented below the class interface. Like the class of which

it is a member its header must also specify Addable (cf. section 23.13.1):

template <Addable Type>

class Data

{

void process();

};

template <Addable Tp> // The concept must be specified,

void Data<Tp>::process() // but the formal type name

{ // doesn't have to be `Type'
...

}

Comparably, if a class template member function can only be used when a constraint has been satis-

fied (but no additional constraints apply to other class members), the class template’s header can use

typename and the (additional) constraint can be tailored to members where applicable:

template <typename Type> // generic template type parameter

class Data

{

void process() requires Addable<Type>; // additional requirement

};

template <typename X>

void Data<X>::process() requires Addable<X>

...



template headers of member implementations must match those of their declarations:

template <typename Type>

class Data

{

template <Addable Tp> // constraint applied to

void process(Tp par); // a member template

};

template <typename Type>

template <Addable Tp>

void Data<Type>::process(Tp par)

{

...

}

23.13.5.1 Constrained partial specializations

Class templates can be (partially) specialized. Specializations are commonly used to fine-tune imple-

mentations for specific types. Concepts can also be used when specializations are defined. Consider a

struct Handler having the following generic implementation:

template <typename Tp>

struct Handler

{

Handler()

{

std::cout << "Generic Handler\n";

}

};

In addition to possibly type-related specializations (like a struct Handler<Tp ∗> ...) a special-

ization requiring the availability of the addition operator on Tp can be defined by requiring the concept

Addable:

template <Addable Tp> // constrain Tp to addable types

struct Handler<Tp>

{

Handler()

{

std::cout << "Handler for types supporting operator+\n";

}

};

When used in the following program (assuming all required headers were included), the first line of the

output shows Generic Handler, while the second line shows Handler for types supporting operator+:

int main()

{

Handler<std::vector<int>>{}; // generic

Handler<int>{}; // specialized

}

The compiler, compiling main’s first statement, first looks for a specialized version of Handler. Al-

though it finds one, that specialization requires the availability of operator+. As that operator is not



able implementation, then the compiler would have reported a constraints not satisfied error.

However, there’s still the generic definition which can be used for std::vector. Therefore the com-

piler uses the generic definition (which is at the same time provides a nice illustration of the SFINAE

(cf. section 21.15) principle).

When instantiating the second Handler object the addition operator is available, and so in that case

the compiler selects the specialized version: where available, specializations are used; if not, then

generic template definitions are used.

23.13.5.2 Function- and class template declarations

Constrained function- or class-templates can be declared as usual: instead of the implementations

semicolons are used. When declaring a function- or class-template without constraint specifications

then the function or class template is unconstrained and won’t match existing constrained overloaded

versions of such function or class templates. On the other hand, concepts cannot be declared. So if a

concept definition must be used in multiple source or header files then the concept definition normally

is provided in a header file of its own which is then included by files using the concept.

Here are some simple examples illustrating how constrained function templates are declared:

template <typename Type> // advice: define concepts in

concept Addable = // separate headers.

requires(Type lh, Type rh)

{

lh + rh;

};

template <typename Type> // declares an unconstrained

void fun(); // function template

template <Addable Type> // declares a constrained overloaded

void fun(); // function template

template <typename Type> // same, requirement follows fun

void fun() requires Addable<Type>;

template <typename Type> // same, requirement precedes fun

requires Addable<Type> void fun();

When declaring class templates their requires-clauses must precede the class names. Also, when un-

constrained class templates are available the constrained class templates are in fact specializations

and must be declared accordingly:

template <typename Type> // unconstrained

struct Data; // declaration

template <Addable Type> // constrained declaration

struct Data<Type>; // (i.e., a specialization)

// template <typename Type> // same specialization

// requires Addable<Type> struct Data<Type>;

Multiple constraints can also be declared:

template <typename Type> // used concepts

concept C1 = true;



concept C2 = true;

template <C1 Type> // multiply constrained

requires C2<Type> void fun(); // function template

template <typename Type> // same, using 'and'

requires C1<Type> and C2<Type> void fun();

template <typename Type> // same, trailing 'requires'

void fun() requires C1<Type> and C2<Type>;

template <typename Type>

struct Multi;

template <C1 Type> // multiply constrained

requires C2<Type> struct Multi<Type>; // class template

Although specializations may define different constraints (e.g., there may also be a concept

Subtractable), a Data specialization for subtractable types might also be defined:

template <Subtractable Type>

struct Data<Type>

{};

But this is probably not what you want: when defining Data<vector<int>>{}, where

template<typename Type> Data is merely declared, the compiler complains about an incom-

plete type ‘struct Data<std::vector<int>>’ as it cannot use the specialization for either Addable or

Subtractable. So it falls back on the generic template, but for that one no implementation is avail-

able, and hence it’s incomplete.

Defining a template requiring two types, the first being Addable and the second template argument

being unrestricted, while a specialization is defined requiring a Subtractable type and an int, then

that also does’n work as intended. In that case, the templates might be:

template <typename t1, typename t2> requires Addable<t1>

struct Data

{};

template <Subtractable Type>

struct Data<Type, int>

{};

Here, if the first template argument isn’t a subtractable type (like a vector<int>), and the second

argument is an int then the compiler simply won’t use it because the 1st argument isn’t a subtractable

type.

Therefore it falls back to the first (generic) template definition. However, that one doesn’t work either,

because the first argument also isn’t addable, and you receive complaints about (lh + rh) being ill-

formed.

Now, as you specified int as the template’s second argument chances are that you expected a com-

plaint about (lh - rh) being ill formed, but that doesn’t happen. In other words: using concepts

still requires you to understand what’s going on. Concepts help the compiler to pinpoint reasons for

compilation failures, but in the end it’s you who has to understand what you’re doing in order to grasp

what the compiler is trying to tell you.



Chapter 24

Concrete Examples

In this chapter concrete examples of C++ programs, classes and templates are presented. Topics cov-

ered by the C++ Annotations such as virtual functions, static members, etc. are illustrated in this

chapter. The examples roughly follow the organization of earlier chapters.

As an additional topic, not just providing examples of C++ the subjects of scanner and parser generators

are covered. We show how these tools may be used in C++ programs. These additional examples assume

a certain familiarity with the concepts underlying these tools, like grammars, parse-trees and parse-

tree decoration. Once the input for a program exceeds a certain level of complexity, it’s attractive to

use scanner- and parser-generators to create the code doing the actual input processing. One of the

examples in this chapter describes the usage of these tools in a C++ environment.

24.1 Using file descriptors with ‘streambuf’ classes

24.1.1 Classes for output operations

Reading and writing from and to file descriptors are not part of the C++ standard. But on most oper-

ating systems file descriptors are available and can be considered a device. It seems natural to use the

class std::streambuf as the starting point for constructing classes interfacing such file descriptor

devices.

Below we’ll construct classes that can be used to write to a device given its file descriptor. The devices

may be files, but they could also be pipes or sockets. Section 24.1.2 covers reading from such devices;

section 24.2.3 reconsiders redirection, discussed earlier in section 6.6.2.

Using the streambuf class as a base class it is relatively easy to design classes for output

operations. The only member function that must be overridden is the (virtual) member int

streambuf::overflow(int c). This member’s responsibility is to write characters to the device.

If fd is an output file descriptor and if output should not be buffered then the member overflow()

can simply be implemented as:

class UnbufferedFD: public std::streambuf

{

public:

virtual int overflow(int c);

...

};

int UnbufferedFD::overflow(int c)

{

if (c != EOF)

901



if (write(d_fd, &c, 1) != 1)

return EOF;

}

return c;

}

The argument received by overflow is either written to the file descriptor (and returned from

overflow), or EOF is returned.

This simple function does not use output buffering. For various reasons, using a buffer is usually a

good idea (see also the next section).

When output buffering is used, the overflow member is a bit more complex as it is only called when

the buffer is full. Once the buffer is full, we first have to flush the buffer. Flushing the buffer is the

responsibility of the (virtual) function streambuf::sync. Since sync is a virtual function, classes

derived from streambuf may redefine sync to flush a buffer streambuf itself doesn’t know about.

Overriding sync and using it in overflow is not all that has to be done. When the object of the class

defining the buffer reaches the end of its lifetime the buffer may be only partially full. In that situation

the buffer must also be flushed. This is easily done by simply calling sync from the class’s destructor.

Now that we’ve considered the consequences of using an output buffer, we’re almost ready to design

our derived class. Several more features are added as well, though:

• First, we should allow the user of the class to specify the size of the output buffer.

• Second, it should be possible to construct an object of our class before the file descriptor is actually

known. Later, in section 24.2 we’ll encounter a situation where this feature is actually used.

To save some space in the C++ Annotations, the successful completion of the functions designed here

is not checked in the example code. In ‘real life’ implementations these checks should of course not be

omitted. Our class OFdnStreambuf has the following characteristics:

• Its member functions use low-level functions operating on file descriptors. So apart from

streambuf the <unistd.h> header file must have been read by the compiler before its member

functions can be compiled.

• The class is derived from std::streambuf.

• It defines three data members. These data members keep track of, respectively, the size of the

buffer, the file descriptor, and the buffer itself. Here is the full class interface

class OFdnStreambuf: public std::streambuf

{

int d_fd = -1;

size_t d_bufsize = 0;

char *d_buffer = 0;

public:

OFdnStreambuf() = default;

OFdnStreambuf(int fd, size_t bufsize = 1);

virtual ~OFdnStreambuf();

void open(int fd, size_t bufsize = 1);

private:

virtual int sync();

virtual int overflow(int c);

};



tor expecting a file descriptor and a buffer size. This constructor passes its arguments on to the

class’s open member (see below). Here are the constructors:

inline OFdnStreambuf::OFdnStreambuf(int fd, size_t bufsize)

{

open(fd, bufsize);

}

• The destructor calls sync, flushing any characters stored in the output buffer to the device. In

implementations not using a buffer the destructor can be given a default implementation:

inline OFdnStreambuf::~OFdnStreambuf()

{

if (d_buffer)

{

sync();

delete[] d_buffer;

}

}

This implementation does not close the device. It is left as an exercise to the reader to change

this class in such a way that the device is optionally closed (or optionally remains open). This

approach was adopted by, e.g., the Bobcat library1. See also section 24.1.2.2.

• The open member initializes the buffer. Using streambuf::setp, the begin and end points of

the buffer are defined. This is used by the streambuf base class to initialize streambuf::pbase,

streambuf::pptr, and streambuf::epptr:

inline void OFdnStreambuf::open(int fd, size_t bufsize)

{

d_fd = fd;

d_bufsize = bufsize == 0 ? 1 : bufsize;

delete[] d_buffer;

d_buffer = new char[d_bufsize];

setp(d_buffer, d_buffer + d_bufsize);

}

• The member sync flushes the as yet unflushed content of the buffer to the device. After the flush

the buffer is reinitialized using setp. After successfully flushing the buffer sync returns 0:

inline int OFdnStreambuf::sync()

{

if (pptr() > pbase())

{

write(d_fd, d_buffer, pptr() - pbase());

setp(d_buffer, d_buffer + d_bufsize);

}

return 0;

}

• The member streambuf::overflow is also overridden. Since this member is called from the

streambuf base class when the buffer is full it should first call sync to flush the buffer to the

device. Next it should write the character c to the (now empty) buffer. The character c should

be written using pptr and streambuf::pbump. Entering a character into the buffer should be

implemented using available streambuf member functions, rather than ‘by hand’ as doing so

might invalidate streambuf’s internal bookkeeping. Here is overflow’s implementation:

inline int OFdnStreambuf::overflow(int c)

1http://fbb-git.gitlab.io/bobcat/



sync();

if (c != EOF)

{

*pptr() = c;

pbump(1);

}

return c;

}

The next program uses the OFfdStreambuf class to copy its standard input to file descriptor

STDOUT_FILENO, which is the symbolic name of the file descriptor used for the standard output:

#include <string>

#include <iostream>

#include <istream>

#include "fdout.h"

using namespace std;

int main(int argc, char **argv)

{

OFdnStreambuf fds(STDOUT_FILENO, 500);

ostream os(&fds);

switch (argc)

{

case 1:

for (string s; getline(cin, s); )

os << s << '\n';

os << "COPIED cin LINE BY LINE\n";

break;

case 2:

cin >> os.rdbuf(); // Alternatively, use: cin >> &fds;

os << "COPIED cin BY EXTRACTING TO os.rdbuf()\n";

break;

case 3:

os << cin.rdbuf();

os << "COPIED cin BY INSERTING cin.rdbuf() into os\n";

break;

}

}

24.1.2 Classes for input operations

When classes for input operation are derived from std::streambuf, they should be provided with

an input buffer of at least one character. The one-character input buffer allows for the use of the

member functions istream::putback or istream::ungetc. Strictly speaking it is not necessary to

implement a buffer in classes derived from streambuf. But using buffers in these classes is strongly

advised. Their implementation is very simple and straightforward and the applicability of such classes

is greatly improved. Therefore, all our classes derived from the class streambuf define a buffer of at

least one character.



When deriving a class (e.g., IFdStreambuf) from streambuf using a buffer of one character, at least

its member streambuf::underflow should be overridden, as this member eventually receives all

requests for input. The member streambuf::setg is used to inform the streambuf base class of the

size and location of the input buffer, so that it is able to set up its input buffer pointers accordingly.

This ensures that streambuf::eback, streambuf::gptr, and streambuf::egptr return correct

values.

The class IFdStreambuf is designed like this:

• Its member functions use low-level functions operating on file descriptors. Therefore, in addi-

tion to streambuf, the <unistd.h> header file must have been read by the compiler before its

member functions can be compiled.

• Like most classes designed for input operations, this class is derived from std::streambuf as

well.

• The class defines two data members, one of them a fixed-sized one character buffer. The data mem-

bers are defined as protected data members so that derived classes (e.g., see section 24.1.2.3)

can access them. Here is the full class interface:

class IFdStreambuf: public std::streambuf

{

protected:

int d_fd;

char d_buffer[1];

public:

IFdStreambuf(int fd);

private:

int underflow();

};

• The constructor initializes the buffer. However, the initialization sets gptr’s return value equal to

egptr’s return value. This implies that the buffer is empty so underflow is immediately called

to fill the buffer:

inline IFdStreambuf::IFdStreambuf(int fd)

:

d_fd(fd)

{

setg(d_buffer, d_buffer + 1, d_buffer + 1);

}

• Finally underflow is overridden. The buffer is refilled by reading from the file descriptor. If this

fails (for whatever reason), EOF is returned. More sophisticated implementations could act more

intelligently here, of course. If the buffer could be refilled, setg is called to set up streambuf’s

buffer pointers correctly:

inline int IFdStreambuf::underflow()

{

if (read(d_fd, d_buffer, 1) <= 0)

return EOF;

setg(d_buffer, d_buffer, d_buffer + 1);

return static_cast<unsigned char>(*gptr());

}

The following main function shows how IFdStreambuf can be used:

int main()



IFdStreambuf fds(STDIN_FILENO);

istream is(&fds);

cout << is.rdbuf();

}

24.1.2.2 Using an n-character buffer

How complex would things get if we decided to use a buffer of substantial size? Not that complex. The

following class allows us to specify the size of a buffer, but apart from that it is basically the same

class as IFdStreambuf developed in the previous section. To make things a bit more interesting, in

the class IFdNStreambuf developed here, the member streambuf::xsgetn is also overridden, to

optimize reading a series of characters. Also a default constructor is provided that can be used in

combination with the open member to construct an istream object before the file descriptor becomes

available. In that case, once the descriptor becomes available, the open member can be used to initiate

the object’s buffer. Later, in section 24.2, we’ll encounter such a situation.

To save some space, the success of various calls was not checked. In ‘real life’ implementations, these

checks should of course not be omitted. The class IFdNStreambuf has the following characteristics:

• Its member functions use low-level functions operating on file descriptors. So apart from

streambuf the <unistd.h> header file must have been read by the compiler before its member

functions can be compiled.

• As usual, it is derived from std::streambuf.

• Like the class IFdStreambuf (section 24.1.2.1), its data members are protected. Since the buffer’s

size is configurable, this size is kept in a dedicated data member, d_bufsize:

class IFdNStreambuf: public std::streambuf

{

protected:

int d_fd = -1;

size_t d_bufsize = 0;

char* d_buffer = 0;

public:

IFdNStreambuf() = default;

IFdNStreambuf(int fd, size_t bufsize = 1);

virtual ~IFdNStreambuf();

void open(int fd, size_t bufsize = 1);

private:

virtual int underflow();

virtual std::streamsize xsgetn(char *dest, std::streamsize n);

};

• The default constructor does not allocate a buffer. It can be used to construct an object before the

file descriptor becomes known. A second constructor simply passes its arguments to open. Open

will then initialize the object so that it can actually be used:

inline IFdNStreambuf::IFdNStreambuf(int fd, size_t bufsize)

{

open(fd, bufsize);

}

• Once the object has been initialized by open, its destructor will both delete the object’s buffer and

use the file descriptor to close the device:

IFdNStreambuf::~IFdNStreambuf()



if (d_bufsize)

{

close(d_fd);

delete[] d_buffer;

}

}

Even though the device is closed in the above implementation this may not always be desirable.

In cases where the open file descriptor is already available the intention may be to use that

descriptor repeatedly, each time using a newly constructed IFdNStreambuf object. It is left as an

exercise to the reader to change this class in such a way that the device may optionally be closed.

This approach was followed in, e.g., the Bobcat library2.

• The open member simply allocates the object’s buffer. It is assumed that the calling program

has already opened the device. Once the buffer has been allocated, the base class member setg

is used to ensure that streambuf::eback streambuf::gptr and streambuf::egptr return

correct values:

void IFdNStreambuf::open(int fd, size_t bufsize)

{

d_fd = fd;

d_bufsize = bufsize == 0 ? 1 : bufsize;

delete[] d_buffer;

d_buffer = new char[d_bufsize];

setg(d_buffer, d_buffer + d_bufsize, d_buffer + d_bufsize);

}

• The overridden member underflow is implemented almost identically to IFdStreambuf’s (sec-

tion 24.1.2.1) member. The only difference is that the current class supports buffers of larger

sizes. Therefore, more characters (up to d_bufsize) may be read from the device at once:

int IFdNStreambuf::underflow()

{

if (gptr() < egptr())

return *gptr();

int nread = read(d_fd, d_buffer, d_bufsize);

if (nread <= 0)

return EOF;

setg(d_buffer, d_buffer, d_buffer + nread);

return static_cast<unsigned char>(*gptr());

}

• Finally xsgetn is overridden. In a loop, n is reduced until 0, at which point the function ter-

minates. Alternatively, the member returns if underflow fails to obtain more characters. This

member optimizes the reading of series of characters. Instead of calling streambuf::sbumpc

n times, a block of avail characters is copied to the destination, using streambuf::gbump to

consume avail characters from the buffer using one function call:

std::streamsize IFdNStreambuf::xsgetn(char *dest, std::streamsize n)

{

int nread = 0;

while (n)

{

2http://fbb-git.gitlab.io/bobcat/



{

if (underflow() == EOF)

break;

}

int avail = in_avail();

if (avail > n)

avail = n;

memcpy(dest + nread, gptr(), avail);

gbump(avail);

nread += avail;

n -= avail;

}

return nread;

}

The member function xsgetn is called by streambuf::sgetn, which is a streambuf member. Here

is an example illustrating the use of this member function with an IFdNStreambuf object:

#include <unistd.h>

#include <iostream>

#include <istream>

#include "ifdnbuf.h"

using namespace std;

int main()

{

// internally: 30 char buffer

IFdNStreambuf fds(STDIN_FILENO, 30);

char buf[80]; // main() reads blocks of 80

// chars

while (true)

{

size_t n = fds.sgetn(buf, 80);

if (n == 0)

break;

cout.write(buf, n);

}

}

24.1.2.3 Seeking positions in ‘streambuf’ objects

When devices support seek operations, classes derived from std::streambuf should override the

members streambuf::seekoff and streambuf::seekpos. The class IFdSeek, developed in this

section, can be used to read information from devices supporting seek operations. The class IFdSeek

was derived from IFdStreambuf, so it uses a character buffer of just one character. The facilities to

perform seek operations, which are added to our new class IFdSeek, ensure that the input buffer is re-

set when a seek operation is requested. The class could also be derived from the class IFdNStreambuf.

In that case the arguments to reset the input buffer must be adapted so that its second and third pa-

rameters point beyond the available input buffer. Let’s have a look at the characteristics of IFdSeek:

• As mentioned, IFdSeek is derived from IFdStreambuf. Like the latter class, IFdSeek’s member



read by the compiler before it can compile the class’s members functions. To reduce the amount of

typing when specifying types and constants from streambuf and std::ios, several typedefs

are defined by the class. These typedefs refer to types that are defined in the header file <ios>,

which must therefore also be included before the compiler can compile IFdSeek’s class interface:

class IFdSeek: public IFdStreambuf

{

typedef std::streambuf::pos_type pos_type;

typedef std::streambuf::off_type off_type;

typedef std::ios::seekdir seekdir;

typedef std::ios::openmode openmode;

public:

IFdSeek(int fd);

private:

pos_type seekoff(off_type offset, seekdir dir, openmode);

pos_type seekpos(pos_type offset, openmode mode);

};

• The class has a very basic interface. Its (only) constructor expects the device’s file descriptor. It

has no special tasks to perform and just calls its base class constructor:

inline IFdSeek::IFdSeek(int fd)

:

IFdStreambuf(fd)

{}

• The member seek_off is responsible for performing the actual seek operations. It calls lseek to

seek a new position in a device whose file descriptor is known. If seeking succeeds, setg is called

to define an already empty buffer, so that the base class’s underflow member refills the buffer at

the next input request.

IFdSeek::pos_type IFdSeek::seekoff(off_type off, seekdir dir, openmode)

{

pos_type pos =

lseek

(

d_fd, off,

(dir == std::ios::beg) ? SEEK_SET :

(dir == std::ios::cur) ? SEEK_CUR :

SEEK_END

);

if (pos < 0)

return -1;

setg(d_buffer, d_buffer + 1, d_buffer + 1);

return pos;

}

• Finally, the companion function seekpos is overridden as well: it is actually defined as a call to

seekoff:

inline IFdSeek::pos_type IFdSeek::seekpos(pos_type off, openmode mode)

{

return seekoff(off, std::ios::beg, mode);

}



using input redirection then seeking is supported (and with the exception of the first line, every other

line is shown twice):

#include "fdinseek.h"

#include <string>

#include <iostream>

#include <istream>

#include <iomanip>

using namespace std;

int main()

{

IFdSeek fds(0);

istream is(&fds);

string s;

while (true)

{

if (!getline(is, s))

break;

streampos pos = is.tellg();

cout << setw(5) << pos << ": `" << s << "'\n";

if (!getline(is, s))

break;

streampos pos2 = is.tellg();

cout << setw(5) << pos2 << ": `" << s << "'\n";

if (!is.seekg(pos))

{

cout << "Seek failed\n";

break;

}

}

}

24.1.2.4 Multiple ‘unget’ calls in ‘streambuf’ objects

Streambuf classes and classes derived from streambuf should support at least ungetting the last read

character. Special care must be taken when series of unget calls must be supported. In this section the

construction of a class supporting a configurable number of istream::unget or istream::putback

calls is discussed.

Support for multiple (say ‘n’) unget calls is implemented by reserving an initial section of the input

buffer, which is gradually filled up to contain the last n characters read. The class is implemented as

follows:

• Once again, the class is derived from std::streambuf. It defines several data members, allow-

ing the class to perform the bookkeeping required to maintain an unget-buffer of a configurable

size:

class FdUnget: public std::streambuf

{



size_t d_bufsize;

size_t d_reserved;

char *d_buffer;

char *d_base;

public:

FdUnget(int fd, size_t bufsz, size_t unget);

virtual ~FdUnget();

private:

int underflow();

};

• The class’s constructor expects a file descriptor, a buffer size and the number of characters that

can be ungot or pushed back as its arguments. This number determines the size of a reserved

area, defined as the first d_reserved bytes of the class’s input buffer.

– The input buffer will always be at least one byte larger than d_reserved. So, a certain

number of bytes may be read. Once d_reserved bytes have been read at most d_reserved

bytes can be ungot.

– Next, the starting point for reading operations is configured. It is called d_base, pointing to

a location d_reserved bytes beyond the location represented by d_buffer. This is always

the location where buffer refills start.

– Now that the buffer has been constructed, we’re ready to define streambuf’s buffer pointers

using setg. As no characters have been read yet, all pointers are set to point to d_base. If

unget is called at this point, no characters are available, and unget (correctly) fails.

– Eventually, the refill buffer’s size is determined as the number of allocated bytes minus the

size of the reserved area.

Here is the class’s constructor:

FdUnget::FdUnget(int fd, size_t bufsz, size_t unget)

:

d_fd(fd),

d_reserved(unget)

{

size_t allocate =

bufsz > d_reserved ?

bufsz

:

d_reserved + 1;

d_buffer = new char[allocate];

d_base = d_buffer + d_reserved;

setg(d_base, d_base, d_base);

d_bufsize = allocate - d_reserved;

}

• The class’s destructor simply returns the memory allocated for the buffer to the common pool:

inline FdUnget::~FdUnget()

{

delete[] d_buffer;

}

• Finally, underflow is overridden as follows:

– First underflow determines the number of characters that could potentially be ungot. If

that number of characters are ungot, the input buffer is exhausted. So this value may be any



filled up completely, and all current characters in the remaining section of the buffer have

also been read);

– Next the number of bytes to move into the reserved area is computed. This number is at

most d_reserved, but it is set equal to the actual number of characters that can be ungot if

this value is smaller;

– Now that the number of characters to move into the reserved area is known, this number of

characters is moved from the input buffer’s end to the area immediately before d_base;

– Then the buffer is refilled. This all is standard, but notice that reading starts from d_base

and not from d_buffer;

– Finally, streambuf’s read buffer pointers are set up. Eback is set to move locations before

d_base, thus defining the guaranteed unget-area, gptr is set to d_base, since that’s the

location of the first read character after a refill, and egptr is set just beyond the location of

the last character read into the buffer.

Here is underflow’s implementation:

int FdUnget::underflow()

{

size_t ungetsize = gptr() - eback();

size_t move = std::min(ungetsize, d_reserved);

memcpy(d_base - move, egptr() - move, move);

int nread = read(d_fd, d_base, d_bufsize);

if (nread <= 0) // none read -> return EOF

return EOF;

setg(d_base - move, d_base, d_base + nread);

return static_cast<unsigned char>(*gptr());

}

An example using FdUnget

The next example program illustrates the use of the class FdUnget. It reads at most 10 characters

from the standard input, stopping at EOF. A guaranteed unget-buffer of 2 characters is defined in

a buffer holding 3 characters. Just before reading a character, the program tries to unget at most

6 characters. This is, of course, not possible; but the program nicely ungets as many characters as

possible, considering the actual number of characters read:

#include "fdunget.h"

#include <string>

#include <iostream>

#include <istream>

using namespace std;

int main()

{

FdUnget fds(0, 3, 2);

istream is(&fds);

char c;

for (int idx = 0; idx < 10; ++idx)

{

cout << "after reading " << idx << " characters:\n";

for (int ug = 0; ug <= 6; ++ug)

{



{

cout

<< "\tunget failed at attempt " << (ug + 1) << "\n"

<< "\trereading: '";

is.clear();

while (ug--)

{

is.get(c);

cout << c;

}

cout << "'\n";

break;

}

}

if (!is.get(c))

{

cout << " reached\n";

break;

}

cout << "Next character: " << c << '\n';

}

}

/*
Generated output after 'echo abcde | program':

after reading 0 characters:

unget failed at attempt 1

rereading: ''

Next character: a

after reading 1 characters:

unget failed at attempt 2

rereading: 'a'

Next character: b

after reading 2 characters:

unget failed at attempt 3

rereading: 'ab'

Next character: c

after reading 3 characters:

unget failed at attempt 4

rereading: 'abc'

Next character: d

after reading 4 characters:

unget failed at attempt 4

rereading: 'bcd'

Next character: e

after reading 5 characters:

unget failed at attempt 4

rereading: 'cde'

Next character:

after reading 6 characters:

unget failed at attempt 4

rereading: 'de

'

reached

*/



Usually when extracting information from istream objects operator>>, the standard extraction op-

erator is perfectly suited for the task as in most cases the extracted fields are white-space (or otherwise

clearly) separated from each other. But this does not hold true in all situations. For example, when a

web-form is posted to some processing script or program, the receiving program may receive the form

field’s values as url-encoded characters: letters and digits are sent unaltered, blanks are sent as + char-

acters, and all other characters start with % followed by the character’s ascii-value represented by its

two digit hexadecimal value.

When decoding url-encoded information, simple hexadecimal extraction won’t work, as that extracts

as many hexadecimal characters as available, instead of just two. Since the letters a-f‘ and 0-9 are

legal hexadecimal characters, a text like My name is ‘Ed’, url-encoded as

My+name+is+%60Ed%27

results in the extraction of the hexadecimal values 60ed and 27, instead of 60 and 27. The name Ed

disappears from view, which is clearly not what we want.

In this case, having seen the %, we could extract 2 characters, put them in an istringstream object,

and extract the hexadecimal value from the istringstream object. A bit cumbersome, but doable.

Other approaches are possible as well.

The class Fistream for fixed-sized field istream defines an istream class supporting both fixed-sized

field extractions and blank-delimited extractions (as well as unformatted read calls). The class may

be initialized as a wrapper around an existing istream, or it can be initialized using the name of an

existing file. The class is derived from istream, allowing all extractions and operations supported by

istreams in general. Fistream defines the following data members:

• d_filebuf: a filebuffer used when Fistream reads its information from a named (existing) file.

Since the filebuffer is only needed in that case, and since it must be allocated dynamically, it is

defined as a unique_ptr<filebuf> object.

• d_streambuf: a pointer to Fistream’s streambuf. It points to d_filebuf when Fistream

opens a file by name. When an existing istream is used to construct an Fistream, it points to

the existing istream’s streambuf.

• d_iss: an istringstream object used for the fixed field extractions.

• d_width: a size_t indicating the width of the field to extract. If 0 no fixed field extractions is

used, but information is extracted from the istream base class object using standard extractions.

Here is the initial section of Fistream’s class interface:

class Fistream: public std::istream

{

std::unique_ptr<std::filebuf> d_filebuf;

std::streambuf *d_streambuf;

std::istringstream d_iss;

size_t d_width;

As stated, Fistream objects can be constructed from either a filename or an existing istream object.

The class interface therefore declares two constructors:

Fistream(std::istream &stream);

Fistream(char const *name,

std::ios::openmode mode = std::ios::in);



part simply uses the stream’s streambuf object:

Fistream::Fistream(istream &stream)

:

istream(stream.rdbuf()),

d_streambuf(rdbuf()),

d_width(0)

{}

When an fstream object is constructed using a filename, the istream base initializer is given a new

filebuf object to be used as its streambuf. Since the class’s data members are not initialized be-

fore the class’s base class has been constructed, d_filebuf can only be initialized thereafter. By

then, the filebuf is only available as rdbuf, returning a streambuf. However, as it is actually a

filebuf, a static_cast is used to cast the streambuf pointer returned by rdbuf to a filebuf ∗,

so d_filebuf can be initialized:

Fistream::Fistream(char const *name, ios::openmode mode)

:

istream(new filebuf()),

d_filebuf(static_cast<filebuf *>(rdbuf())),

d_streambuf(d_filebuf.get()),

d_width(0)

{

d_filebuf->open(name, mode);

}

24.1.3.1 Member functions and example

There is only one additional public member: setField(field const &). This member defines the

size of the next field to extract. Its parameter is a reference to a field class, a manipulator class

defining the width of the next field.

Since a field & is mentioned in Fistream’s interface, field must be declared before Fistream’s

interface starts. The class field itself is simple and declares Fistream as its friend. It has two

data members: d_width specifies the width of the next field, and d_newWidth which is set to true if

d_width’s value should actually be used. If d_newWidth is false, Fistream returns to its standard

extraction mode. The class field has two constructors: a default constructor, setting d_newWidth to

false, and a second constructor expecting the width of the next field to extract as its value. Here is

the class field:

class field

{

friend class Fistream;

size_t d_width;

bool d_newWidth;

public:

field(size_t width);

field();

};

inline field::field(size_t width)

:

d_width(width),

d_newWidth(true)

{}



inline field::field()

:

d_newWidth(false)

{}

Since field declares Fistream as its friend, setField may inspect field’s members directly.

Time to return to setField. This function expects a reference to a field object, initialized in one of

three different ways:

• field(): When setField’s argument is a field object constructed by its default constructor

the next extraction will use the same field width as the previous extraction.

• field(0): When this field object is used as setField’s argument, fixed-sized field extraction

stops, and the Fistream acts like any standard istream object again.

• field(x): When the field object itself is initialized by a non-zero size_t value x, then the next

field width is x characters wide. The preparation of such a field is left to setBuffer, Fistream’s

only private member.

Here is setField’s implementation:

std::istream &Fistream::setField(field const &params)

{

if (params.d_newWidth) // new field size requested

d_width = params.d_width; // set new width

if (!d_width) // no width?

rdbuf(d_streambuf); // return to the old buffer

else

setBuffer(); // define the extraction buffer

return *this;

}

The private member setBuffer defines a buffer of d_width + 1 characters and uses read to fill the

buffer with d_width characters. The buffer is an NTBS. This buffer is used to initialize the d_iss

member. Fistream’s rdbuf member is used to extract the d_str’s data via the Fistream object itself:

void Fistream::setBuffer()

{

char *buffer = new char[d_width + 1];

rdbuf(d_streambuf); // use istream's buffer to

buffer[read(buffer, d_width).gcount()] = 0; // read d_width chars,

// terminated by a 0-byte

d_iss.str(buffer);

delete[] buffer;

rdbuf(d_iss.rdbuf()); // switch buffers

}

Although setField could be used to configure Fistream to use or not to use fixed-sized field extrac-

tion, using manipulators is probably preferable. To allow field objects to be used as manipulators an

overloaded extraction operator was defined. This extraction operator accepts istream & and a field

const & objects. Using this extraction operator, statements like

fis >> field(2) >> x >> field(0);



declaration:

istream &std::operator>>(istream &str, field const &params)

{

return static_cast<Fistream *>(&str)->setField(params);

}

Declaration:

namespace std

{

istream &operator>>(istream &str, FBB::field const &params);

}

Finally, an example. The following program uses a Fistream object to url-decode url-encoded informa-

tion appearing at its standard input:

int main()

{

Fistream fis(cin);

fis >> hex;

while (true)

{

size_t x;

switch (x = fis.get())

{

case '\n':

cout << '\n';

break;

case '+':

cout << ' ';

break;

case '%':

fis >> field(2) >> x >> field(0);

// FALLING THROUGH

default:

cout << static_cast<char>(x);

break;

case EOF:

return 0;

}

}

}

/*
Generated output after:

echo My+name+is+%60Ed%27 | a.out

My name is `Ed'

*/

24.2 The ‘fork’ system call

From the C programming language the fork system call is well known. When a program needs to start

a new process, system can be used. The function system requires the program to wait for the child

process to terminate. The more general way to spawn subprocesses is to use fork.



like fork. Much of what follows in this section directly applies to the Unix operating system, and

the discussion therefore focuses on that operating system. Other systems usually provide comparable

facilities. What follows is closely related to the Template Design Pattern (cf. Gamma et al. (1995)

Design Patterns, Addison-Wesley)

When fork is called, the current program is duplicated in memory, thus creating a new process. Fol-

lowing this duplication both processes continue their execution just below the fork system call. The

two processes may inspect fork’s return value: the return value in the original process (called the

parent process) differs from the return value in the newly created process (called the child process):

• In the parent process fork returns the process ID of the (child) process that was created by the

fork system call. This is a positive integer value.

• In the child process fork returns 0.

• If fork fails, -1 is returned.

24.2.1 A basic Fork class

A basic Fork class should hide all bookkeeping details of a system call like fork from its users. The

class Fork developed here does just that. The class itself only ensures the proper execution of the fork

system call. Normally, fork is called to start a child process, usually boiling down to the execution

of a separate process. This child process may expect input at its standard input stream and/or may

generate output to its standard output and/or standard error streams. Fork does not know all this, and

does not have to know what the child process will do. Fork objects should be able to start their child

processes.

Fork’s constructor cannot know what actions its child process should perform. Similarly, it cannot

know what actions the parent process should perform. For these kind of situations, the template method

design pattern was developed. According to Gamma c.s., the template method design pattern

“Define(s) the skeleton of an algorithm in an operation, deferring some steps to subclasses.

[The] Template Method (design pattern) lets subclasses redefine certain steps of an algo-

rithm, without changing the algorithm’s structure.”

This design pattern allows us to define an abstract base class already providing the essential steps

related to the fork system call, deferring the implementation of other parts of the fork system call to

subclasses.

The Fork abstract base class has the following characteristics:

• It defines a data member d_pid. In the parent process this data member contains the child’s

process id and in the child process it has the value 0. Its public interface declares only two

members:

– a fork member function, responsible for the actual forking (i.e., it creates the (new) child

process);

– a virtual destructor ~Fork (having an empty body).

Here is Fork’s interface:

class Fork

{

int d_pid;

public:

virtual ~Fork();



protected:

int pid() const;

int waitForChild(); // returns the status

private:

virtual void childRedirections();

virtual void parentRedirections();

virtual void childProcess() = 0; // pure virtual members

virtual void parentProcess() = 0;

};

• All other non-virtual member functions are declared in the class’s protected section and can

thus only be used by derived classes. They are:

– pid(): The member function pid allows derived classes to access the system fork’s return

value:

inline int Fork::pid() const

{

return d_pid;

}

– waitForChild(): The member int waitForChild can be called by parent processes to

wait for the completion of their child processes (as discussed below). This member is declared

in the class interface. Its implementation is:

#include "fork.ih"

int Fork::waitForChild()

{

int status;

waitpid(d_pid, &status, 0);

return WEXITSTATUS(status);

}

This simple implementation returns the child’s exit status to the parent. The called system

function waitpid blocks until the child terminates.

• When fork system calls are used, parent processes and child processes must always be distin-

guished. The main distinction between these processes is that d_pid becomes the child’s process-

id in the parent process, while d_pid becomes 0 in the child process itself. Since these two pro-

cesses must always be distinguished (and present), their implementation by classes derived from

Fork is enforced by Fork’s interface: the members childProcess, defining the child process’

actions and parentProcess, defining the parent process’ actions were defined as pure virtual

functions.

• communication between parent- and child processes may use standard streams or other facilities,

like pipes (cf. section 24.2.5). To facilitate this inter-process communication, derived classes may

implement:

– childRedirections(): this member should be overridden by derived classes if any stan-

dard stream (cin, cout,) or cerr must be redirected in the child process (cf. section

24.2.3). By default it has an empty implementation;

– parentRedirections(): this member should be overridden by derived classes if any stan-

dard stream (cin, cout,) or cerr must be redirected in the parent process. By default it

has an empty implementation.



with each other via the standard streams. Here are their default definitions. Since these functions

are virtual functions they should not be implemented inline, but in their own source file:

void Fork::childRedirections()

{}

void Fork::parentRedirections()

{}

24.2.2 Parents and Children

The member function fork calls the system function fork (Caution: since the system function fork

is called by a member function having the same name, the :: scope resolution operator must be

used to prevent a recursive call of the member function itself). The function ::fork’s return value

determines whether parentProcess or childProcess is called. Maybe redirection is necessary.

Fork::fork’s implementation calls childRedirections just before calling childProcess, and

parentRedirections just before calling parentProcess:

#include "fork.ih"

void Fork::fork()

{

if ((d_pid = ::fork()) < 0)

throw "Fork::fork() failed";

if (d_pid == 0) // childprocess has pid == 0

{

childRedirections();

childProcess();

exit(1); // we shouldn't come here:

} // childProcess() should exit

parentRedirections();

parentProcess();

}

In fork.cc the class’s internal header file fork.ih is included. This header file takes care of the inclu-

sion of the necessary system header files, as well as the inclusion of fork.h itself. Its implementation

is:

#include "fork.h"

#include <cstdlib>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

Child processes should not return: once they have completed their tasks, they should terminate. This

happens automatically when the child process performs a call to a member of the exec... family, but

if the child itself remains active, then it must make sure that it terminates properly. A child process

normally uses exit to terminate itself, but note that exit prevents the activation of destructors of

objects defined at the same or more superficial nesting levels than the level at which exit is called.

Destructors of globally defined objects are activated when exit is used. When using exit to terminate

childProcess, it should either itself call a support member function defining all nested objects it

needs, or it should define all its objects in a compound statement (e.g., using a throw block) calling

exit beyond the compound statement.

Parent processes should normally wait for their children to complete. Terminating child processes

inform their parents that they are about to terminate by sending a signal that should be caught by



such child processes remain visible as so-called zombie processes.

If parent processes must wait for their children to complete, they may call the member waitForChild.

This member returns the exit status of a child process to its parent.

There exists a situation where the child process continues to live, but the parent dies. This is a fairly

natural event: parents tend to die before their children do. In our context (i.e. C++), this is called a

daemon program. In a daemon the parent process dies and the child program continues to run as a

child of the basic init process. Again, when the child eventually dies a signal is sent to its ‘step-parent’

init. This does not create a zombie as init catches the termination signals of all its (step-) children.

The construction of a daemon process is very simple, given the availability of the class Fork (cf. section

24.2.4).

24.2.3 Redirection revisited

Earlier, in section 6.6.2 streams were redirected using the ios::rdbufmember function. By assigning

the streambuf of a stream to another stream, both stream objects access the same streambuf, thus

implementing redirection at the level of the programming language itself.

This may be fine within the context of a C++ program, but once we leave that context the redirection

terminates. The operating system does not know about streambuf objects. This situation is encoun-

tered, e.g., when a program uses a system call to start a subprogram. The example program at the end

of this section uses C++ redirection to redirect the information inserted into cout to a file, and then

calls

system("echo hello world")

to echo a well-known line of text. Since echo writes its information to the standard output, this would

be the program’s redirected file if the operating system would recognize C++’s redirection.

But redirection doesn’t happen. Instead, hello world still appears at the program’s standard output

and the redirected file is left untouched. To write hello world to the redirected file redirection must

be realized at the operating system level. Some operating systems (e.g., Unix and friends) provide

system calls like dup and dup2 to accomplish this. Examples of the use of these system calls are given

in section 24.2.5.

Here is the example of the failing redirection at the system level following C++ redirection using

streambuf redirection:

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main()

{

ofstream of("outfile");

streambuf *buf = cout.rdbuf(of.rdbuf());

cout << "To the of stream\n";

system("echo hello world");

cout << "To the of stream\n";

cout.rdbuf(buf);

}

/*
Generated output: on the file `outfile'



To the of stream

On standard output:

hello world

*/

24.2.4 The ‘Daemon’ program

Applications exist in which the only purpose of fork is to start a child process. The parent process

terminates immediately after spawning the child process. If this happens, the child process continues

to run as a child process of init, the always running first process on Unix systems. Such a process is

often called a daemon, running as a background process.

Although the next example can easily be constructed as a plain C program, it was included in the C++

Annotations because it is so closely related to the current discussion of the Fork class. I thought about

adding a daemon member to that class, but eventually decided against it because the construction of a

daemon program is very simple and requires no features other than those currently offered by the class

Fork. Here is an example illustrating the construction of such a daemon program. Its child process

doesn’t do exit but throw 0 which is caught by the catch clause of the child’s main function. Doing

this ensures that any objects defined by the child process are properly destroyed:

#include <iostream>

#include <unistd.h>

#include "fork.h"

class Daemon: public Fork

{

virtual void parentProcess() // the parent does nothing.

{}

virtual void childProcess() // actions by the child

{

sleep(3);

// just a message...

std::cout << "Hello from the child process\n";

throw 0; // The child process ends

}

};

int main()

try

{

Daemon{}.fork();

}

catch(...)

{}

/*
Generated output:

The next command prompt, then after 3 seconds:

Hello from the child process

*/



Redirection at the system level requires the use of file descriptor, created by the pipe system call.

When two processes want to communicate using such file descriptors, the following happens:

• The process constructs two associated file descriptors using the pipe system call. One of the file

descriptors is used for writing, the other file descriptor is used for reading.

• Forking takes place (i.e., the system fork function is called), duplicating the file descriptors. Now

we have four file descriptors as the child process and the parent process both have their own

copies of the two file descriptors created by pipe.

• One process (say, the parent process) uses the file descriptors for reading. It should close its file

descriptor intended for writing.

• The other process (say, the child process) uses the file descriptors for writing. It should therefore

close its file descriptor intended for reading.

• All information written by the child process to the file descriptor intended for writing, can now

be read by the parent process from the corresponding file descriptor intended for reading, thus

establishing a communication channel between the child and the parent process.

Though basically simple, errors may easily creep in. Functions of file descriptors available to the two

processes (child or parent) may easily get mixed up. To prevent bookkeeping errors, the bookkeeping

may be properly set up once, to be hidden thereafter inside a class like the Pipe class developed here.

Let’s have a look at its characteristics (before using functions like pipe and dup the compiler must

have read the <unistd.h> header file):

• The pipe system call expects a pointer to two int values, representing, respectively, the file

descriptor used for reading and the file descriptor used for writing. To avoid confusion, the class

Pipe defines an enum having values associating the indices of the array of 2-ints with symbolic

constants. The two file descriptors themselves are stored in a data member d_fd. Here is the

initial section of the class’s interface:

class Pipe

{

enum RW { READ, WRITE };

int d_fd[2];

• The class only needs a default constructor. This constructor calls pipe to create a set of associated

file descriptors used for accessing both ends of a pipe:

Pipe::Pipe()

{

if (pipe(d_fd))

throw "Pipe::Pipe(): pipe() failed";

}

• The members readOnly and readFrom are used to configure the pipe’s reading end. The latter

function is used when using redirection. It is provided with an alternate file descriptor to be used

for reading from the pipe. Usually this alternate file descriptor is STDIN_FILENO, allowing cin

to extract information from the pipe. The former function is merely used to configure the reading

end of the pipe. It closes the matching writing end and returns a file descriptor that can be used

to read from the pipe:

int Pipe::readOnly()

{

close(d_fd[WRITE]);

return d_fd[READ];



void Pipe::readFrom(int fd)

{

readOnly();

redirect(d_fd[READ], fd);

close(d_fd[READ]);

}

• writeOnly and two writtenBy members are available to configure the writing end of a pipe.

The former function is only used to configure the writing end of the pipe. It closes the reading

end, and returns a file descriptor that can be used for writing to the pipe:

int Pipe::writeOnly()

{

close(d_fd[READ]);

return d_fd[WRITE];

}

void Pipe::writtenBy(int fd)

{

writtenBy(&fd, 1);

}

void Pipe::writtenBy(int const *fd, size_t n)

{

writeOnly();

for (size_t idx = 0; idx < n; idx++)

redirect(d_fd[WRITE], fd[idx]);

close(d_fd[WRITE]);

}

For the latter member two overloaded versions are available:

– writtenBy(int fd) is used to configure single redirection, so that a specific file descriptor

(usually STDOUT_FILENO or STDERR_FILENO) can be used to write to the pipe;

– (writtenBy(int const ∗fd, size_t n))may be used to configure multiple redirection,

providing an array argument containing file descriptors. Information written to any of these

file descriptors is actually written to the pipe.

• The class has one private data member, redirect, used to set up redirection through the dup2

system call. This function expects two file descriptors. The first file descriptor represents a file

descriptor that can be used to access the device’s information; the second file descriptor is an alter-

nate file descriptor that may also be used to access the device’s information. Here is redirect’s

implementation:

void Pipe::redirect(int d_fd, int alternateFd)

{

if (dup2(d_fd, alternateFd) < 0)

throw "Pipe: redirection failed";

}

Now that redirection can be configured easily using one or more Pipe objects, we’ll use Fork and Pipe

in various example programs.

24.2.6 The class ‘ParentSlurp’

The class ParentSlurp, derived from Fork, starts a child process executing a stand-alone program

(like /bin/ls). The (standard) output of the executed program is not shown on the screen but is read

by the parent process.



stream, prepending linenumbers to the lines. It is attractive to redirect the parent’s standard input

stream to allow the parent to read the output from the child process using its std::cin input stream.

Therefore, the only pipe in the program is used as an input pipe for the parent, and an output pipe for

the child.

The class ParentSlurp has the following characteristics:

• It is derived from Fork. Before starting ParentSlurp’s class interface, the compiler must have

read fork.h and pipe.h. The class only uses one data member, a Pipe object d_pipe.

• As Pipe’s constructor already defines a pipe, and as d_pipe is automatically initialized by

ParentSlurp’s default constructor, which is implicitly provided, all additional members only ex-

ist for ParentSlurp’s own benefit so they can be defined in the class’s (implicit) private section.

Here is the class’s interface:

class ParentSlurp: public Fork

{

Pipe d_pipe;

virtual void childRedirections();

virtual void parentRedirections();

virtual void childProcess();

virtual void parentProcess();

};

• The childRedirections member configures the writing end of the pipe. So, all information

written to the child’s standard output stream ends up in the pipe. The big advantage of this is

that no additional streams are needed to write to a file descriptor:

inline void ParentSlurp::childRedirections()

{

d_pipe.writtenBy(STDOUT_FILENO);

}

• The parentRedirectionsmember, configures the reading end of the pipe. It does so by connect-

ing the reading end of the pipe to the parent’s standard input file descriptor (STDIN_FILENO).

This allows the parent to perform extractions from cin, not requiring any additional streams for

reading.

inline void ParentSlurp::parentRedirections()

{

d_pipe.readFrom(STDIN_FILENO);

}

• The childProcess member only needs to concentrate on its own actions. As it only needs to

execute a program (writing information to its standard output), the member can consist of one

single statement:

inline void ParentSlurp::childProcess()

{

execl("/bin/ls", "/bin/ls", 0);

}

• The parentProcess member simply ‘slurps’ the information appearing at its standard input.

Doing so, it actually reads the child’s output. It copies the received lines to its standard output

stream prefixing line numbers to them:

void ParentSlurp::parentProcess()

{



size_t nr = 1;

while (getline(std::cin, line))

std::cout << nr++ << ": " << line << '\n';

waitForChild();

}

The following program simply constructs a ParentSlurp object, and calls its fork() member. Its

output consists of a numbered list of files in the directory where the program is started. Note that the

program also needs the fork.o, pipe.o and waitforchild.o object files (see earlier sources):

int main()

{

ParentSlurp{}.fork();

}

/*
Generated Output (example only, actually obtained output may differ):

1: a.out

2: bitand.h

3: bitfunctional

4: bitnot.h

5: daemon.cc

6: fdinseek.cc

7: fdinseek.h

...

*/

24.2.7 Communicating with multiple children

The next step up the ladder is the construction of a child-process monitor. Here, the parent process

is responsible for all its child processes, but it also must read their standard output. The user enters

information at the standard input of the parent process. A simple command language is used for this:

• start: this starts a new child process. The parent returns the child’s ID (a number) to the user.

The ID is thereupon be used to identify a particular child process;

• <nr> text sends “text” to the child process having ID <nr>;

• stop <nr> terminates the child process having ID <nr>;

• exit terminates the parent as well as all its child processes.

If a child process hasn’t received text for some time it will complain by sending a message to the parent-

process. Those messages are simply transmitted to the user by copying them to the standard output

stream.

A problem with programs like our monitor is that they allow asynchronous input from multiple sources.

Input may appear at the standard input as well as at the input-sides of pipes. Also, multiple output

channels are used. To handle situations like these, the select system call was developed.

24.2.7.1 The class ‘Selector’: interface

The select system call was developed to handle asynchronous I/O multiplexing. The select system

call is used to handle, e.g., input appearing simultaneously at a set of file descriptors.



encapsulating select in a class Selector, hiding its details and offering an intuitively attractive

interface, its use is simplified. The Selector class has these features:

• Efficiency. As most of Select’s members are very small, most members can be implemented

inline. The class requires quite a few data members. Most of these data members belong to types

that require some system headers to be included first:

#include <limits.h>

#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>

• The class interface can now be defined. The data type fd_set is a type designed to be used by

select and variables of this type contain the set of file descriptors on which select may sense

some activity. Furthermore, select allows us to fire an asynchronous alarm. To set the alarm

time, the class Selector defines a timeval data member. Other members are used for internal

bookkeeping purposes. Here is the class Selector’s interface:

class Selector

{

fd_set d_read;

fd_set d_write;

fd_set d_except;

fd_set d_ret_read;

fd_set d_ret_write;

fd_set d_ret_except;

timeval d_alarm;

int d_max;

int d_ret;

int d_readidx;

int d_writeidx;

int d_exceptidx;

public:

Selector();

int exceptFd();

int nReady();

int readFd();

int wait();

int writeFd();

void addExceptFd(int fd);

void addReadFd(int fd);

void addWriteFd(int fd);

void noAlarm();

void rmExceptFd(int fd);

void rmReadFd(int fd);

void rmWriteFd(int fd);

void setAlarm(int sec, int usec = 0);

private:

int checkSet(int *index, fd_set &set);

void addFd(fd_set *set, int fd);

};

24.2.7.2 The class ‘Selector’: implementation

Selector’s member functions serve the following tasks:



and switches off the alarm. Except for d_max, the remaining data members do not require specific

initializations:

Selector::Selector()

{

FD_ZERO(&d_read);

FD_ZERO(&d_write);

FD_ZERO(&d_except);

noAlarm();

d_max = 0;

}

• int wait(): this member blocks until the alarm times out or until activity is sensed at any of

the file descriptors monitored by the Selector object. It throws an exception when the select

system call itself fails:

int Selector::wait()

{

timeval t = d_alarm;

d_ret_read = d_read;

d_ret_write = d_write;

d_ret_except = d_except;

d_readidx = 0;

d_writeidx = 0;

d_exceptidx = 0;

d_ret = select(d_max, &d_ret_read, &d_ret_write, &d_ret_except,

t.tv_sec == -1 && t.tv_usec == -1 ? 0 : &t);

if (d_ret < 0)

throw "Selector::wait()/select() failed";

return d_ret;

}

• int nReady: this member function’s return value is only defined when wait has returned. In

that case it returns 0 for an alarm-timeout, -1 if select failed, and otherwise the number of file

descriptors on which activity was sensed:

inline int Selector::nReady()

{

return d_ret;

}

• int readFd(): this member function’s return value is also only defined after wait has returned.

Its return value is -1 if no (more) input file descriptors are available. Otherwise the next file

descriptor available for reading is returned:

inline int Selector::readFd()

{

return checkSet(&d_readidx, d_ret_read);

}

• int writeFd(): operating analogously to readFd, it returns the next file descriptor to which

output is written. It uses d_writeidx and d_ret_read and is implemented analogously to

readFd;



on which activity was sensed. It uses d_except_idx and d_ret_except and is implemented

analogously to readFd;

• void setAlarm(int sec, int usec = 0): this member activates Select’s alarm facility.

At least the number of seconds to wait for the alarm to go off must be specified. It simply assigns

values to d_alarm’s fields. At the next Select::wait call, the alarm fires (i.e., wait returns

with return value 0) once the configured alarm-interval has passed:

inline void Selector::setAlarm(int sec, int usec)

{

d_alarm.tv_sec = sec;

d_alarm.tv_usec = usec;

}

• void noAlarm(): this member switches off the alarm, by simply setting the alarm interval to a

very long period:

inline void Selector::noAlarm()

{

setAlarm(-1, -1);

}

• void addReadFd(int fd): this member adds a file descriptor to the set of input file descriptors

monitored by the Selector object. The member function wait returns once input is available at

the indicated file descriptor:

inline void Selector::addReadFd(int fd)

{

addFd(&d_read, fd);

}

• void addWriteFd(int fd): this member adds a file descriptor to the set of output file de-

scriptors monitored by the Selector object. The member function wait returns once output

is available at the indicated file descriptor. Using d_write, it is implemented analogously to

addReadFd;

• void addExceptFd(int fd): this member adds a file descriptor to the set of exception file

descriptors to be monitored by the Selector object. The member function wait returns once

activity is sensed at the indicated file descriptor. Using d_except, it is implemented analogously

to addReadFd;

• void rmReadFd(int fd): this member removes a file descriptor from the set of input file de-

scriptors monitored by the Selector object:

inline void Selector::rmReadFd(int fd)

{

FD_CLR(fd, &d_read);

}

• void rmWriteFd(int fd): this member removes a file descriptor from the set of output file

descriptors monitored by the Selector object. Using d_write, it is implemented analogously to

rmReadFd;

• void rmExceptFd(int fd): this member removes a file descriptor from the set of exception

file descriptors to be monitored by the Selector object. Using d_except, it is implemented

analogously to rmReadFd;



functions. Therefore, they are declared in the class’s private section:

• The member addFd adds a file descriptor to a fd_set:

void Selector::addFd(fd_set *set, int fd)

{

FD_SET(fd, set);

if (fd >= d_max)

d_max = fd + 1;

}

• The member checkSet tests whether a file descriptor (∗index) is found in a fd_set:

int Selector::checkSet(int *index, fd_set &set)

{

int &idx = *index;

while (idx < d_max && !FD_ISSET(idx, &set))

++idx;

return idx == d_max ? -1 : idx++;

}

24.2.7.3 The class ‘Monitor’: interface

The monitor program uses a Monitor object doing most of the work. The class Monitor’s public

interface only offers a default constructor and one member, run, to perform its tasks. All other member

functions are located in the class’s private section.

Monitor defines the private enum Commands, symbolically listing the various commands its input

language supports, as well as several data members. Among the data members are a Selector object

and a map using child order numbers as its keys and pointer to Child objects (see section 24.2.7.7)

as its values. Furthermore, Monitor has a static array member s_handler[], storing pointers to

member functions handling user commands.

A destructor should be implemented as well, but its implementation is left as an exercise to the reader.

Here is Monitor’s interface, including the interface of the nested class Find that is used to create a

function object:

class Monitor

{

enum Commands

{

UNKNOWN,

START,

EXIT,

STOP,

TEXT,

sizeofCommands

};

typedef std::map<int, std::shared_ptr<Child>> MapIntChild;

friend class Find;

class Find

{

int d_nr;



Find(int nr);

bool operator()(MapIntChild::value_type &vt) const;

};

Selector d_selector;

int d_nr;

MapIntChild d_child;

static void (Monitor::*s_handler[])(int, std::string const &);

static int s_initialize;

public:

enum Done

{};

Monitor();

void run();

private:

static void killChild(MapIntChild::value_type it);

static int initialize();

Commands next(int *value, std::string *line);

void processInput();

void processChild(int fd);

void createNewChild(int, std::string const &);

void exiting(int = 0, std::string const &msg = std::string{});

void sendChild(int value, std::string const &line);

void stopChild(int value, std::string const &);

void unknown(int, std::string const &);

};

Since there’s only one non-class type data member, the class’s constructor is a very simple function

which could be implemented inline:

inline Monitor::Monitor()

:

d_nr(0)

{}

24.2.7.4 The class ‘Monitor’: s_handler

The array s_handler, storing pointers to functions needs to be initialized as well. This can be accom-

plished in several ways:

• Since the Commands enumeration only specifies a fairly limited set of commands, compile-time

initialization could be considered:

void (Monitor::*Monitor::s_handler[])(int, string const &) =

{

&Monitor::unknown, // order follows enum Command's

&Monitor::createNewChild, // elements

&Monitor::exiting,

&Monitor::stopChild,

&Monitor::sendChild,

};



of course relatively complex maintenance. If for some reason Commands is modified, s_handler

must be modified as well. In cases like these, compile-time initialization often is asking for trou-

ble. There is a simple alternative though.

• Looking at Monitor’s interface we see a static data member s_initialize and a static member

function initialize. The static member function handles the initialization of the s_handler

array. It explicitly assigns the array’s elements and any modification in ordering of enum

Commands’ values is automatically accounted for by recompiling initialize:

void (Monitor::*Monitor::s_handler[sizeofCommands])(int, string const &);

int Monitor::initialize()

{

s_handler[UNKNOWN] = &Monitor::unknown;

s_handler[START] = &Monitor::createNewChild;

s_handler[EXIT] = &Monitor::exiting;

s_handler[STOP] = &Monitor::stopChild;

s_handler[TEXT] = &Monitor::sendChild;

return 0;

}

The member initialize is a static member and so it can be called to initialize s_initialize,

a static int variable. The initialization is enforced by placing the initialization statement in the

source file of a function that is known to be executed. It could be main, but if we’re Monitor’s

maintainers and only have control over the library containing Monitor’s code then that’s not an

option. In those cases the source file containing the destructor is a very good candidate. If a class

has only one constructor and it’s not defined inline then the constructor’s source file is a good

candidate as well. In Monitor’s current implementation the initialization statement is put in

run’s source file, reasoning that s_handler is only needed when run is used.

24.2.7.5 The class ‘Monitor’: the member ‘run’

Monitor’s core activities are performed by run. It performs the following tasks:

• Initially, the Monitor object only monitors its standard input. The set of input file descriptors to

which d_selector listens is initialized to STDIN_FILENO.

• Then, in a loop d_selector’s wait function is called. If input on cin is available, it is processed

by processInput. Otherwise, the input has arrived from a child process. Information sent by

children is processed by processChild.

• To prevent zombies, the child processes must catch their children’s termination signals. This is

discussed below.

As noted by Ben Simons (ben at mrxfx dot com) Monitor must not catch the termination

signals. Instead, the process spawning child processes has that responsibility (the underlying

principle being that a parent process is responsible for its child processes; a child process, in turn,

is responsible for its own child processes).

• As stated, run’s source file also defines and initializes s_initialize to ensure the proper ini-

tialization of the s_handler array.

Here is run’s implementation and s_initialize’s definition:

#include "monitor.ih"

int Monitor::s_initialize = Monitor::initialize();



{

d_selector.addReadFd(STDIN_FILENO);

while (true)

{

cout << "? " << flush;

try

{

d_selector.wait();

int fd;

while ((fd = d_selector.readFd()) != -1)

{

if (fd == STDIN_FILENO)

processInput();

else

processChild(fd);

}

cout << "NEXT ...\n";

}

catch (char const *msg)

{

exiting(1, msg);

}

}

}

The member function processInput reads the commands entered by the user using the program’s

standard input stream. The member itself is rather simple. It calls next to obtain the next com-

mand entered by the user, and then calls the corresponding function using the matching element of the

s_handler[] array. Here are the members processInput and next:

void Monitor::processInput()

{

string line;

int value;

Commands cmd = next(&value, &line);

(this->*s_handler[cmd])(value, line);

}

Monitor::Commands Monitor::next(int *value, string *line)

{

if (!getline(cin, *line))

exiting(1, "Monitor::next(): reading cin failed");

if (*line == "start")

return START;

if (*line == "exit" || *line == "quit")

{

*value = 0;

return EXIT;

}

if (line->find("stop") == 0)

{

istringstream istr(line->substr(4));



return !istr ? UNKNOWN : STOP;

}

istringstream istr(line->c_str());

istr >> *value;

if (istr)

{

getline(istr, *line);

return TEXT;

}

return UNKNOWN;

}

All other input sensed by d_select is created by child processes. Because d_select’s readFdmember

returns the corresponding input file descriptor, this descriptor can be passed to processChild. Using a

IFdStreambuf (see section 24.1.2.1), its information is read from an input stream. The communication

protocol used here is rather basic. For every line of input sent to a child, the child replies by sending

back exactly one line of text. This line is then read by processChild:

void Monitor::processChild(int fd)

{

IFdStreambuf ifdbuf(fd);

istream istr(&ifdbuf);

string line;

getline(istr, line);

cout << d_child[fd]->pid() << ": " << line << '\n';

}

The construction d_child[fd]->pid() used in the above source deserves some special attention.

Monitor defines the data member map<int, shared_ptr<Child>> d_child. This map contains

the child’s order number as its key, and a (shared) pointer to the Child object as its value. A shared

pointer is used here, rather than a Child object, since we want to use the facilities offered by the map,

but don’t want to copy a Child object time and again.

24.2.7.6 The class ‘Monitor’: example

Now that run’s implementation has been covered, we’ll concentrate on the various commands users

might enter:

• When the start command is issued, a new child process is started. A new element is added to

d_child by the member createNewChild. Next, the Child object should start its activities,

but the Monitor object can not wait for the child process to complete its activities, as there is no

well-defined endpoint in the near future, and the user probably wants to be able to enter more

commands. Therefore, the Child process must run as a daemon. So the forked process termi-

nates immediately, but its own child process continues to run (in the background). Consequently,

createNewChild calls the child’s fork member. Although it is the child’s fork function that

is called, it is still the monitor program wherein that fork function is called. So, the monitor

program is duplicated by fork. Execution then continues:

– At the Child’s parentProcess in its parent process;

– At the Child’s childProcess in its child process

As the Child’s parentProcess is an empty function, returning immediately, the Child’s par-

ent process effectively continues immediately below createNewChild’s cp->fork() statement.



executed by the Child’s child process. This is exactly as it should be.

In the parent process, createNewChild’s remaining code simply adds the file descriptor that’s

available for reading information from the child to the set of input file descriptors monitored by

d_select, and uses d_child to establish the association between that file descriptor and the

Child object’s address:

void Monitor::createNewChild(int, string const &)

{

Child *cp = new Child{ ++d_nr };

cp->fork();

int fd = cp->readFd();

d_selector.addReadFd(fd);

d_child[fd].reset(cp);

cerr << "Child " << d_nr << " started\n";

}

• Direct communication with the child is required for the stop <nr> and <nr> text commands.

The former command terminates child process <nr>, by calling stopChild. This function lo-

cates the child process having the order number using an anonymous object of the class Find,

nested inside Monitor. The class Find simply compares the provided nr with the children’s

order number returned by their nr members:

inline Monitor::Find::Find(int nr)

:

d_nr(nr)

{}

inline bool Monitor::Find::operator()(MapIntChild::value_type &vt) const

{

return d_nr == vt.second->nr();

}

If the child process having order number nr was found, its file descriptor is removed from

d_selector’s set of input file descriptors. Then the child process itself is terminated by the

static member killChild. The member killChild is declared as a static member function, as

it is used as function argument of the for_each generic algorithm by exiting (see below). Here

is killChild’s implementation:

void Monitor::killChild(MapIntChild::value_type it)

{

if (kill(it.second->pid(), SIGTERM))

cerr << "Couldn't kill process " << it.second->pid() << '\n';

// reap defunct child process

int status = 0;

while( waitpid( it.second->pid(), &status, WNOHANG) > -1)

;

}

Having terminated the specified child process, the corresponding Child object is destroyed and

its pointer is removed from d_child:

void Monitor::stopChild(int nr, string const &)

{

auto it = find_if(d_child.begin(), d_child.end(), Find{ nr });



if (it == d_child.end())

cerr << "No child number " << nr << '\n';

else

{

d_selector.rmReadFd(it->second->readFd());

d_child.erase(it);

}

}

• The command <nr> text sends text to child process nr using the member function

sendChild. This function also uses a Find object to locate the child-process having order number

nr, and simply inserts the text into the writing end of a pipe connected to that child process:

void Monitor::sendChild(int nr, string const &line)

{

auto it = find_if(d_child.begin(), d_child.end(), Find(nr));

if (it == d_child.end())

cerr << "No child number " << nr << '\n';

else

{

OFdnStreambuf ofdn{ it->second->writeFd() };

ostream out(&ofdn);

out << line << '\n';

}

}

• When users enter exit or quit the member exiting is called. It terminates all child processes

using the for_each generic algorithm (see section 19.1.18) to visit all elements of d_child. Then

the program itself ends:

void Monitor::exiting(int value, string const &msg)

{

for_each(d_child.begin(), d_child.end(), killChild);

if (msg.length())

cerr << msg << '\n';

throw value;

}

The program’s main function is simple and needs no further comment:

int main()

try

{

Monitor{}.run();

}

catch (int exitValue)

{

return exitValue;

}

24.2.7.7 The class ‘Child’

When the Monitor object starts a child process, it creates an object of the class Child. The Child

class is derived from the class Fork, allowing it to operate as a daemon (as discussed in the previous

section). Since Child is a daemon class, we know that its parent process must be defined as an empty



the class Child:

• The Child class has two Pipe data members, to handle communications between its own child-

and parent processes. As these pipes are used by the Child’s child process, their names refer to

the child process. The child process reads from d_in, and writes to d_out. Here is the interface

of the class Child:

class Child: public Fork

{

Pipe d_in;

Pipe d_out;

int d_parentReadFd;

int d_parentWriteFd;

int d_nr;

public:

Child(int nr);

virtual ~Child();

int readFd() const;

int writeFd() const;

int pid() const;

int nr() const;

private:

virtual void childRedirections();

virtual void parentRedirections();

virtual void childProcess();

virtual void parentProcess();

};

• The Child’s constructor simply stores its argument, a child-process order number, in its own

d_nr data member:

inline Child::Child(int nr)

:

d_nr(nr)

{}

• The Child’s child process obtains commands from its standard input stream and writes its output

to its standard output stream. Since the actual communication channels are pipes, redirections

must be used. The childRedirections member looks like this:

void Child::childRedirections()

{

d_in.readFrom(STDIN_FILENO);

d_out.writtenBy(STDOUT_FILENO);

}

• Although the parent process performs no actions, it must configure some redirections. Realizing

that the names of the pipes indicate their functions in the child process. So the parent writes to

d_in and reads from d_out. Here is parentRedirections:

void Child::parentRedirections()

{

d_parentReadFd = d_out.readOnly();

d_parentWriteFd = d_in.writeOnly();

}



its creator, the Monitor object, to access the parent-side ends of the pipes, the Monitor object

can communicate with the Child’s child process via those pipe-ends. The members readFd and

writeFd allow the Monitor object to access these pipe-ends:

inline int Child::readFd() const

{

return d_parentReadFd;

}

inline int Child::writeFd() const

{

return d_parentWriteFd;

}

• The Child object’s child process performs two tasks:

– It must reply to information appearing at its standard input stream;

– If no information has appeared within a certain time frame (the implementations uses an

interval of five seconds), then a message is written to its standard output stream.

To implement this behavior, childProcess defines a local Selector object, adding

STDIN_FILENO to its set of monitored input file descriptors.

Then, in an endless loop, childProcess waits for selector.wait() to return. When the

alarm goes off it sends a message to its standard output (hence, into the writing pipe). Other-

wise, it echoes the messages appearing at its standard input to its standard output. Here is the

childProcess member:

void Child::childProcess()

{

Selector selector;

size_t message = 0;

selector.addReadFd(STDIN_FILENO);

selector.setAlarm(5);

while (true)

{

try

{

if (!selector.wait()) // timeout

cout << "Child " << d_nr << ": standing by\n";

else

{

string line;

getline(cin, line);

cout << "Child " << d_nr << ":" << ++message << ": " <<

line << '\n';

}

}

catch (...)

{

cout << "Child " << d_nr << ":" << ++message << ": " <<

"select() failed" << '\n';

}

}

exit(0);

}

• Two accessors are defined allowing the Monitor object to obtain the Child’s process ID and its

order number:



{

return Fork::pid();

}

inline int Child::nr() const

{

return d_nr;

}

• A Child process terminates when the user enters a stop command. When an existing child pro-

cess number was entered, the corresponding Child object is removed from Monitor’s d_child

map. As a result, its destructor is called. Child’s destructor calls kill to terminate its child, and

then waits for the child to terminate. Once its child has terminated, the destructor has completed

its work and returns, thus completing the erasure from d_child. The current implementation

fails if the child process doesn’t react to the SIGTERM signal. In this demonstration program

this does not happen. In ‘real life’ more elaborate killing-procedures may be required (e.g., us-

ing SIGKILL in addition to SIGTERM). As discussed in section 10.12 it is important to ensure the

proper destruction. Here is the Child’s destructor:

Child::~Child()

{

if (pid())

{

cout << "Killing process " << pid() << "\n";

kill(pid(), SIGTERM);

int status;

wait(&status);

}

}

24.3 Adding binary operators to classes

As we’ve seen in section 11.6 binary operators expecting const & arguments can be implemented using

a member implementing the operation, only offering the basic exception guarantee. This latter function

can in turn be implemented using the binary assignment member. The following examples illustrated

this approach for a fictitious class Binary:

class Binary

{

public:

Binary();

Binary(int value);

// copy and move constructors are available by default, or

// they can be explicitly declared and implemented.

Binary &operator+=(Binary const &other) &; // see the text

Binary &&operator+=(Binary const &other) &&;

private:

void add(Binary const &rhs);

friend Binary operator+(Binary const &lhs, Binary const &rhs);

friend Binary operator+(Binary &&lhs, Binary const &rhs);

};

Eventually, the implementation of binary operators depends on the availability of the member

implementing the basic binary operation, modifying the object calling that member (i.e., void

Binary::add(Binary const &) in the example).



functions from template functions that are never instantiated. If such a template function is never

instantiated, nothing happens; if it is (accidentally) instantiated, then the compiler generates an error

message, complaining about the missing function.

This allows us to implement all binary operators, movable and non-movable, as templates. In the

following subsections we develop the class template Binops, prividing binary operators. A complete

implementation of a class Derived illustrating how addition and insertion operators can be added to

a class is provided in the file annotations/yo/concrete/examples/binopclasses.cc in the C++

Annotations’ source archive.

24.3.1 Merely using operators

In section 11.6 addition operators are implemented in terms of a support member add. This is less

attractive when developing function templates, as add is a private member, requiring us to provide

friend declarations for all function templates so they may access the private add member.

At the end of section 11.6 we saw that add’s implementation can be provided by operator+=(Class

const &rhs) &&. This operator may thereupon be used when implementing the remaining addition

operators:

inline Binary &operator+=(Binary const &rhs) &

{

return *this = Binary{*this} += rhs;

}

Binary operator+(Binary &&lhs, Binary const &rhs)

{

return std::move(lhs) += rhs;

}

Binary operator+(Binary const &lhs, Binary const &rhs)

{

return Binary{lhs} += rhs;

}

In this implementation add is no longer required. The plain binary operators are free functions, which

supposedly can easily be converted to function templates. E.g.,

template <typename Binary>

Binary operator+(Binary const &lhs, Binary const &rhs)

{

return Binary{lhs} += rhs;

}

24.3.1.1 To namespace or not to namespace?

When using the function template Binary operator+(Binary const &lhs, Binary const

&rhs), however, we may encounter a subtle and unexpected complication. Consider the following

program. When run, it displays the value 12, rather than 1:

enum Values

{

ZERO,

ONE

};



template <typename Tp>

Tp operator+(Tp const &lhs, Tp const &rhs)

{

return static_cast<Tp>(12);

};

int main()

{

cout << (ZERO + ONE); // shows 12

}

This complication can be avoided by defining the operators in their own namespace, but then all classes

using the binary operator also have to be defined in that namespace, which is not a very attractive

restriction. Fortunately, there is a better alternative: using the CRTP (cf. section 22.12).

24.3.2 The CRTP and defining operator function templates

When deriving classes from a class template Binops, using the CRTP the operators are defined for

arguments of the class Binops<Derived>: a base class receiving the derived class as its template

argument.

Thus the class Binops as well as the additional operators are defined, expecting Binops<Derived>

type of arguments:

template <class Derived>

struct Binops

{

Derived &operator+=(Derived const &rhs) &;

};

template <typename Derived>

Derived operator+(Binops<Derived> const &lhs, Derived const &rhs)

{

return Derived{static_cast<Derived> const &>(lhs) } += rhs;

}

// analogous implementation for Binops<Derived> &&lhs

This way, a class that derives from Binops, and that provides an operator+= member which is bound

to an rvalue reference object, suddenly also provides all other binary addition operators:

class Derived: public Binops<Derived>

{

...

public:

...

Derived &&operator+=(Derived const &rhs) &&

};

All, but one....

The operator that’s not available is the compound addition operator, bound to an lvalue reference. As

its function name is identical to the one in the class Derived, it is not automatically visible at the user

level.

Although this problem can simply be solved by providing the class Derived with a using

Binops<Derived>::operator+= declaration, it is not a very attractive solution, as separate using

declarations have to be provided for each binary operator that is implemented in the class Derived.



the hidden base class operator, was proposed by Wiebe-Marten Wijnja. Wiebe-Marten conjectured that

operator+=, bound to an lvalue reference could also very well be defined as a free function. In that

case no inheritance is used and therefore no function hiding occurs. Consequently, the using directive

can be avoided.

The implementation of this free operator+= function looks like this:

template <class Derived>

Derived &operator+=(Binops<Derived> &lhs, Derived const &rhs)

{

Derived tmp{ Derived{ static_cast<Derived &>(lhs) } += rhs };

tmp.swap(static_cast<Derived &>(lhs));

return static_cast<Derived &>(lhs);

}

The flexibility of this design can be further augmented once we realize that the right-hand side operand

doesn’t have to be a Derived class object. Consider operator<<: oftentimes shifts are bit-shifts,

using a size_t to specify the number of bits to shift. In fact, the type of the right-hand side operand

can completely be generalized by defining a second template type parameter, which is used to specify

the right-hand side’s operand type. It’s up to the Derived class to specify the argument type of its

operator+= (or any other binary compound operator), whereafter the compiler will deduce the types

of the right-hand side operands for the remaining binary operators. Here is the final implementation

of the free operator+= function:

template <class Derived, typename Rhs>

Derived &operator+=(Binops<Derived> &lhs, Rhs const &rhs)

{

Derived tmp{ Derived{ static_cast<Derived &>(lhs) } += rhs };

tmp.swap(static_cast<Derived &>(lhs));

return static_cast<Derived &>(lhs);

}

24.3.3 Insertion and extraction

Classes also frequently define overloaded insertion and extraction operators. Since there are no ‘com-

pound insertion operators’ the design shown so far cannot be used when overloading these operators.

Instead using standardized member function signatures is advocated: void insert(std::ostream

&out) const to insert an object into an ostream and void extract(std::istream &in) const

to extract an object from an istream. As these functions are only used by, respectively, the in-

sertion and extraction operators, they can be declared in the Derived class’s private interface. In-

stead of declaring the insertion and extraction operators friends of the class Derived a single friend

Binops<Derived> is specified. This allows Binops<Derived> to define private, inline iWrap and

eWrap members, merely calling, respectively, Derived’s insert and extract members:

template <typename Derived>

inline void Binops<Derived>::iWrap(std::ostream &out) const

{

static_cast<Derived const &>(*this).insert(out);

}

Binops<Derived> then declares the insertion and extraction operators as its friends, allowing these

operators to call, respectively, iWrap and eWrap. Note that the software engineer designing the class

Derived only has to provide a friend Binops<Derived> declaration. Here is the implementation

of the overloaded insertion operator:

template <typename Derived>



{

obj.iWrap(out);

return out;

}

This completes the coverage of the essentials of a class template Binops potentially offering binary

operators and insertion/extraction operators for any class derived from Binops. Finally, as noted at

the beginning of this section, a complete implementation of a class offering addition and insertion

operators is provided in the file annotations/yo/concrete/examples/binopclasses.cc in the

C++ Annotations’ source archive.

24.4 Distinguishing lvalues from rvalues with operator[]()

A problem with operator[] is that it can’t distinguish between its use as an lvalue and as an rvalue.

It is a familiar misconception to think that

Type const &operator[](size_t index) const

is used as rvalue (as the object isn’t modified), and that

Type &operator[](size_t index)

is used as lvalue (as the returned value can be modified).

The compiler, however, distinguishes between the two operators only by the const-status of the object

for which operator[] is called. With const objects the former operator is called, with non-const

objects the latter is always used. It is always used, irrespective of it being used as lvalue or rvalue.

Being able to distinguish between lvalues and rvalues can be very useful. Consider the situation where

a class supporting operator[] stores data of a type that is very hard to copy. With data like that

reference counting (e.g., using shared_ptrs) is probably used to prevent needless copying.

As long as operator[] is used as rvalue there’s no need to copy the data, but the information must be

copied if it is used as lvalue.

The Proxy Design Pattern (cf. Gamma et al. (1995)) can be used to distinguish between lvalues and

rvalues. With the Proxy Design Pattern an object of another class (the Proxy class) is used to act as

a stand in for the ‘real thing’. The proxy class offers functionality that cannot be offered by the data

themselves, like distinguishing between its use as lvalue or rvalue. A proxy class can be used in many

situations where access to the real data cannot or should not be directly provided. In this regard iterator

types are examples of proxy classes as they create a layer between the real data and the software using

the data. Proxy classes could also dereference pointers in a class storing its data by pointers.

In this section we concentrate on the distinction between using operator[] as lvalue and rvalue.

Let’s assume we have a class Lines storing lines from a file. Its constructor expects the name of a

stream from which the lines are read and it offers a non-const operator[] that can be used as lvalue

or rvalue (the const version of operator[] is omitted as it causes no confusion because it is always

used as rvalue):

class Lines

{

std::vector<std::string> d_line;

public:

Lines(std::istream &in);

std::string &operator[](size_t idx);

};



rvalues that we can exploit. Such distinguishing characteristics are operator= (which is always

used as lvalue) and the conversion operator (which is always used as rvalue). Rather than having

operator[] return a string & we can let it return a Proxy object that is able to distinguish between

its use as lvalue and rvalue.

The class Proxy thus needs operator=(string const &other) (acting as lvalue) and operator

std::string const &() const (acting as rvalue). Do we need more operators? The std::string

class also offers operator+=, so we should probably implement that operator as well. Plain characters

can also be assigned to string objects (even using their numeric values). As string objects can-

not be constructed from plain characters promotion cannot be used with operator=(string const

&other) if the right-hand side argument is a character. Implementing operator=(char value)

could therefore also be considered. These additional operators are left out of the current implemen-

tation but ‘real life’ proxy classes should consider implementing these additional operators as well.

Another subtlety is that Proxy’s operator std::string const &() const is not used when us-

ing ostream’s insertion operator or istream’s extraction operator as these operators are implemented

as templates not recognizing our Proxy class type. So when stream insertion and extraction is required

(it probably is) then Proxy must be given its own overloaded insertion and extraction operator. Here

is an implementation of the overloaded insertion operator inserting the object for which Proxy is a

stand-in:

inline std::ostream &operator<<(std::ostream &out, Lines::Proxy const &proxy)

{

return out << static_cast<std::string const &>(proxy);

}

There’s no need for any code (except Lines) to create or copy Proxy objects. Proxy’s constructor should

therefore be made private, and Proxy can declare Lines to be its friend. In fact, Proxy is intimately

related to Lines and can be defined as a nested class. In the revised Lines class operator[] no

longer returns a string but instead a Proxy is returned. Here is the revised Lines class, including

its nested Proxy class:

class Lines

{

std::vector<std::string> d_line;

public:

class Proxy;

Proxy operator[](size_t idx);

class Proxy

{

friend Proxy Lines::operator[](size_t idx);

std::string &d_str;

Proxy(std::string &str);

public:

std::string &operator=(std::string const &rhs);

operator std::string const &() const;

};

Lines(std::istream &in);

};

Proxy’s members are very lightweight and can usually be implemented inline:

inline Lines::Proxy::Proxy(std::string &str)

:

d_str(str)

{}

inline std::string &Lines::Proxy::operator=(std::string const &rhs)



return d_str = rhs;

}

inline Lines::Proxy::operator std::string const &() const

{

return d_str;

}

The member Lines::operator[] can also be implemented inline: it merely returns a Proxy object

initialized with the string associated with index idx.

Now that the class Proxy has been developed it can be used in a program. Here is an example using the

Proxy object as lvalue or rvalue. On the surface Lines objects won’t behave differently from Lines

objects using the original implementation, but by adding an identifying cout statement to Proxy’s

members it can be shown that operator[] behaves differently when used as lvalue or as rvalue:

int main()

{

ifstream in("lines.cc");

Lines lines(in);

string s = lines[0]; // rvalue use

lines[0] = s; // lvalue use

cout << lines[0] << '\n'; // rvalue use

lines[0] = "hello world"; // lvalue use

cout << lines[0] << '\n'; // rvalue use

}

24.5 Implementing a ‘reverse_iterator’

In section 22.14.1 the construction of iterators and reverse iterators was discussed. In that section the

iterator was constructed as an inner class in a class derived from a vector of pointers to strings.

An object of this nested iterator class handles the dereferencing of the pointers stored in the vector.

This allowed us to sort the strings pointed to by the vector’s elements rather than the pointers.

A drawback of this is that the class implementing the iterator is closely tied to the derived class as the

iterator class was implemented as a nested class. What if we would like to provide any class derived

from a container class storing pointers with an iterator handling pointer-dereferencing?

In this section a variant of the earlier (nested class) approach is discussed. Here the iterator class is de-

fined as a class template, not only parameterizing the data type to which the container’s elements point

but also the container’s iterator type itself. Once again, we concentrate on developing a RandomIterator

as it is the most complex iterator type.

Our class is named RandomPtrIterator, indicating that it is a random iterator operating on pointer

values. The class template defines three template type parameters:

• The first parameter specifies the derived class type (Class). Like before, RandomPtrIterator’s

constructor is private. Therefore friend declarations are needed to allow client classes to con-

struct RandomPtrIterators. However, a friend class Class cannot be used as template

parameter types cannot be used in friend class ... declarations. But this is a minor prob-

lem as not every member of the client class needs to construct iterators. In fact, only Class’s

begin and end members must construct iterators. Using the template’s first parameter, friend

declarations can be specified for the client’s begin and end members.

• The second template parameter parameterizes the container’s iterator type (BaseIterator);

• The third template parameter indicates the data type to which the pointers point (Type).



the constructor’s implementation:

#include <iterator>

template <typename Class, typename BaseIterator, typename Type>

class RandomPtrIterator:

public std::iterator<std::random_access_iterator_tag, Type>

{

friend RandomPtrIterator<Class, BaseIterator, Type> Class::begin();

friend RandomPtrIterator<Class, BaseIterator, Type> Class::end();

BaseIterator d_current;

RandomPtrIterator(BaseIterator const &current);

public:

bool operator!=(RandomPtrIterator const &other) const;

int operator-(RandomPtrIterator const &rhs) const;

RandomPtrIterator operator+(int step) const;

Type &operator*() const;

bool operator<(RandomPtrIterator const &other) const;

RandomPtrIterator &operator--();

RandomPtrIterator operator--(int);

RandomPtrIterator &operator++();

RandomPtrIterator operator++(int);

bool operator==(RandomPtrIterator const &other) const;

RandomPtrIterator operator-(int step) const;

RandomPtrIterator &operator-=(int step);

RandomPtrIterator &operator+=(int step);

Type *operator->() const;

};

template <typename Class, typename BaseIterator, typename Type>

RandomPtrIterator<Class, BaseIterator, Type>::RandomPtrIterator(

BaseIterator const &current)

:

d_current(current)

{}

Looking at its friend declarations, we see that the members begin and end of a class Class, return-

ing a RandomPtrIterator object for the types Class, BaseIterator and Type are granted access

to RandomPtrIterator’s private constructor. That is exactly what we want. The Class’s begin and

end members are declared as bound friends.

All RandomPtrIterator’s remaining members are public. Since RandomPtrIterator is just a gen-

eralization of the nested class iterator developed in section 22.14.1, re-implementing the required

member functions is easy and only requires us to change iterator into RandomPtrIterator and to

change std::string into Type. For example, operator<, defined in the class iterator as

inline bool operator<(StringPtr::iterator const &lhs,

StringPtr::iterator const &rhs)

{

return lhs.d_current < rhs.d_current;

}

is now implemented as:

template <typename Class, typename BaseIterator, typename Type>



RandomPtrIterator const &other) const

{

return **d_current < **other.d_current;

}

Some additional examples: operator∗, defined in the class iterator as

inline std::string &StringPtr::iterator::operator*() const

{

return **d_current;

}

is now implemented as:

template <typename Class, typename BaseIterator, typename Type>

Type &RandomPtrIterator<Class, BaseIterator, Type>::operator*() const

{

return **d_current;

}

The pre- and postfix increment operators are now implemented as:

template <typename Class, typename BaseIterator, typename Type>

RandomPtrIterator<Class, BaseIterator, Type>

&RandomPtrIterator<Class, BaseIterator, Type>::operator++()

{

++d_current;

return *this;

}

template <typename Class, typename BaseIterator, typename Type>

RandomPtrIterator<Class, BaseIterator, Type>

RandomPtrIterator<Class, BaseIterator, Type>::operator++(int)

{

return RandomPtrIterator(d_current++);

}

Remaining members can be implemented accordingly, their actual implementations are left as exercises

to the reader (or can be obtained from the cplusplus.yo.zip archive, of course).

Re-implementing the class StringPtr developed in section 22.14.1 is not difficult either. Apart from

including the header file defining the class template RandomPtrIterator, it only requires a single

modification. Its iterator typedef must now be associated with a RandomPtrIterator. Here is the

full class interface and the class’s inline member definitions:

#ifndef INCLUDED_STRINGPTR_H_

#define INCLUDED_STRINGPTR_H_

#include <vector>

#include <string>

#include "iterator.h"

class StringPtr: public std::vector<std::string *>

{

public:

typedef RandomPtrIterator

<



std::vector<std::string *>::iterator,

std::string

>

iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;

iterator begin();

iterator end();

reverse_iterator rbegin();

reverse_iterator rend();

};

inline StringPtr::iterator StringPtr::begin()

{

return iterator(this->std::vector<std::string *>::begin() );

}

inline StringPtr::iterator StringPtr::end()

{

return iterator(this->std::vector<std::string *>::end());

}

inline StringPtr::reverse_iterator StringPtr::rbegin()

{

return reverse_iterator(end());

}

inline StringPtr::reverse_iterator StringPtr::rend()

{

return reverse_iterator(begin());

}

#endif

Including StringPtr’s modified header file into the program given in section 22.14.2 results

in a program behaving identically to its earlier version. In this case StringPtr::begin and

StringPtr::end return iterator objects constructed from a template definition.

24.6 Using ‘bisonc++’ and ‘flexc++’

The example discussed below digs into the peculiarities of using parser- and scanner generators gen-

erating C++ sources. Once the input for a program exceeds a certain level of complexity, it becomes

attractive to use scanner- and parser-generators generating the code which does the actual input recog-

nition.

The examples in this and subsequent sections assume that the reader knows how to use the scanner

generator flex and the parser generator bison. Both bison and flex are well documented elsewhere.

The original predecessors of bison and flex, called yacc and lex are described in several books, e.g.

in O’Reilly’s book ‘lex & yacc’3.

Scanner- and parser generators are also available as free software. Both bison and flex are usually

part of software distributions or they can be obtained from ftp://prep.ai.mit.edu/pub/non-gnu.

Flex creates a C++ class when %option c++ is specified.

For parser generators the program bison is available. In the early 90’s Alain Coetmeur

(coetmeur@icdc.fr4) created a C++ variant (bison++) creating a parser class. Although the

bison++ program produces code that can be used in C++ programs it also shows many characteris-

3http://www.oreilly.com/catalog/lex
4mailto:coetmeur@icdc.fr



of Alain’s bison++ program, resulting in the original version of the program bisonc++. Then, in

May 2005 a complete rewrite of the bisonc++ parser generator was completed (version number 0.98).

Current versions of bisonc++ can be downloaded from https://fbb-git.gitlab.io/bisoncpp/.

Binary versions for various architectures are available as, e.g., Debian5 package (including bisonc++’s

documentation).

Bisonc++ creates a cleaner parser class than bison++. In particular, it derives the parser class from

a base-class, containing the parser’s token- and type-definitions as well as all member functions which

should not be (re)defined by the programmer. As a result of this approach, the generated parser class

is very small, declaring only members that are actually defined by the programmer (as well as some

other members, generated by bisonc++ itself, implementing the parser’s parse() member). One

member that is not implemented by default is lex, producing the next lexical token. When the direc-

tive %scanner (see section 24.6.2.1) is used, bisonc++ produces a standard implementation for this

member; otherwise it must be implemented by the programmer.

In early 2012 the program flexc++ http://flexcpp.org/ reached its initial release. Like bisonc++

it is part of the Debian linux distribution6.

Jean-Paul van Oosten (j.p.van.oosten@rug.nl<j.p.van.oosten@rug.nl>) and Richard Berendsen

(richardberendsen@xs4all.nl<richardberendsen@xs4all.nl>) started the flexc++ project in 2008

and the final program was completed by Jean-Paul and me between 2010 and 2012.

These sections of the C++ Annotations focus on bisonc++ as our parser generator and flexc++ as our

lexical scanner generator. Previous releases of the C++ Annotations were using flex as the scanner

generator.

Using flex++ and bisonc++ class-based scanners and parsers are generated. The advantage of this

approach is that the interface to the scanner and the parser tends to become cleaner than without using

class interfaces. Furthermore, classes allow us to get rid of most if not all global variables, making it

easy to use multiple parsers in one program.

Below two example programs are developed. The first example only uses flexc++. The generated

scanner monitors the production of a file from several parts. That example focuses on the lexical scan-

ner and on switching files while churning through the information. The second example uses both

flexc++ and bisonc++ to generate a scanner and a parser transforming standard arithmetic expres-

sions to their postfix notations, commonly used in code generated by compilers and in HP-calculators.

In the second example the emphasis is mainly on bisonc++ and on composing a scanner object inside

a generated parser.

24.6.1 Using ‘flexc++’ to create a scanner

The lexical scanner developed in this section is used to monitor the production of a file from several

subfiles. The setup is as follows: the input-language defines #include directives, followed by a text

string specifying the file (path) which should be included at the location of the #include.

In order to avoid complexities irrelevant to the current example, the format of the #include statement

is restricted to the form #include <filepath>. The file specified between the angle brackets should

be available at the location indicated by filepath. If the file is not available, the program terminates

after issuing an error message.

The program is started with one or two filename arguments. If the program is started with just one

filename argument, the output is written to the standard output stream cout. Otherwise, the output

is written to the stream whose name is given as the program’s second argument.

The program defines a maximum nesting depth. Once this maximum is exceeded, the program termi-

nates after issuing an error message. In that case, the filename stack indicating where which file was

included is printed.

5http://www.debian.org
6http://www.debian.org



directives in comment-lines are also ignored.

The program is created in five major steps:

• First, the file lexer is constructed, containing the input-language specifications.

• From the specifications in lexer the requirements for the class Scanner evolve. The Scanner

class derives from the base class ScannerBase generated by flexc++.

• Next, main is constructed. A Scanner object is created inspecting the command-line arguments.

If successful, the scanner’s member lex is called to produce the program’s output.

• Now that the global setup of the program has been specified, the member functions of the various

classes are implemented.

• Finally, the program is compiled and linked.

24.6.1.1 The derived class ‘Scanner’

The function matching the regular expression rules (lex) is a member of the class Scanner. Since

Scanner is derived from ScannerBase, it has access to all of ScannerBase’s protected members that

execute the lexical scanner’s regular expression matching algorithm.

Looking at the regular expressions themselves, notice that we need rules to recognize comment,

#include directives, and all remaining characters. This all is fairly standard practice. When an

#include directive is sensed, the directive is parsed by the scanner. This too is common practice. Our

lexical scanner performs the following tasks:

• As usual, preprocessor directives are not analyzed by a parser, but by the lexical scanner;

• The scanner uses a mini scanner to extract the filename from the directive, throwing a exception

if this fails;

• If the filename could be extracted, processing switches to the next stream, controlling for a maxi-

mum nesting depth.

• Once the end of the current file has been reached processing automatically returns to the previous

file, restoring the previous file name an line number. The scanner returns 0 if all files have been

processed.

24.6.1.2 The lexical scanner specification file

The lexical scanner specification file is organized comparably to the one used for flex in C contexts.

However, in C++ contexts, flexc++ creates a class Scanner, rather than just a scanner function.

Flexc++’s specification file consists of two sections:

• The specification file’s first section is flexc++’s symbol area, used to define symbols, like a mini

scanner, or options. The following options are suggested:

– %debug: includes debugging code into the code generated by flexc++. Calling the member

function setDebug(true) activates this debugging code at run-time. When activated, infor-

mation about the matching process is written to the standard output stream. The execution

of debug code is suppressed after calling the member function setDebug(false).

– %filenames: defines the base-name of the class header files generated by flexc++. By

default the class name (itself using the default Scanner) is used.



%filenames scanner

%debug

%max-depth 3

%x comment

%x include

• The specification file’s second section is a rules section in which the regular expressions and their

associated actions are defined. In the example developed here, the lexer should copy information

from the standard input stream (std::cin) to the standard output stream (std::cout). For this

the predefined macro ECHO can be used. Here are the rules:

%%

// The comment-rules: comment is ignored.

//.* // ignore eoln comment

"/*" begin(StartCondition__::comment);

<comment>{

.|\n // ignore all characters in std C comment

"*/" begin(StartCondition__::INITIAL);

}

// File switching: #include <filepath>

#include[ \t]+"<" begin(StartCondition__::include);

<include>{

[^ \t>]+ d_nextSource = matched();

">"[ \t]*\n switchSource();

.|\n throw runtime_error("Invalid include statement");

}

// The default rule: echo anything else to std::cout

.|\n echo();

24.6.1.3 Implementing ‘Scanner’

The class Scanner is generated once by flexc++. This class has access to several members defined

by its base class ScannerBase. Some of these members have public access rights and can be used

by code external to the class Scanner. These members are extensively documented in the flexc++(1)

man-page, and the reader is referred to this man-page for further information.

Our scanner performs the following tasks:

• it matches regular expressions, ignoring comment, and writing the matched text to the standard

output stream;

• it switches to other files, and returns to the previous file once a file has completely been processed,

ending the lexical scan once the end of the first input file has been reached.

The #include statements in the input allow the scanner to distill the name of the file where the scan-

ning process must continue. This file name is stored in a local variable d_nextSource and a member

stackSource handles the switch to the next source. Nothing else is required. Pushing and popping

input files is handled by the scanner’s members pushStream and popStream, provided by flexc++.

Scanner’s interface, therefore, only needs one additional function declaration: switchSource.

Switching streams is handled as follows: once the scanner has extracted a filename from an #include

directive, a switch to another file is realized by switchSource. This member calls pushStream, de-

fined by flexc++, to stack the current input stream and to switch to the stream whose name is stored



scanning mode begin(StartCondition__::INITIAL) is called. Here is its source:

#include "scanner.ih"

void Scanner::switchSource()

{

pushStream(d_nextSource);

begin(StartCondition__::INITIAL);

}

The member pushStream, defined by flexc++, handles all necessary checks, throwing an exception if

the file could not be opened or if too many files are stacked.

The member performing the lexical scan is defined by flexc++ in Scanner::lex, and this member

can be called by code to process the tokens returned by the scanner.

24.6.1.4 Using a ‘Scanner’ object

The program using our Scanner is very simple. It expects a filename indicating where to start the

scanning process.

The program first checks the number of arguments. If at least one argument was given, then that

argument is passed to Scanner’s constructor, together with a second argument "-", indicating that

the output should go to the standard output stream.

If the program receives more than one argument debug output, extensively documenting the lexical

scanner’s actions, is written to the standard output stream as well.

Next the Scanner’s lex member is called. If anything fails, a std::exception is thrown, which is

caught by main’s try-block’s catch clause. Here is the program’s source:

#include "lexer.ih"

int main(int argc, char **argv)

try

{

if (argc == 1)

{

cerr << "Filename argument required\n";

return 1;

}

Scanner scanner(argv[1], "-");

scanner.setDebug(argc > 2);

return scanner.lex();

}

catch (exception const &exc)

{

cerr << exc.what() << '\n';

return 1;

}



The final program is constructed in two steps. These steps are given for a Unix system, on which

flexc++ and the GNU C++ compiler g++ have been installed:

• First, the lexical scanner’s source is created using flexc++. For this the following command can

be given:

flexc++ lexer

• Next, all sources are compiled and linked:

g++ -Wall *.cc

Flexc++ can be downloaded from https://fbb-git.gitlab.io/flexcpp/, and requires the

bobcat library, which can be downloaded from http://fbb-git.gitlab.io/bobcat/.

24.6.2 Using ‘bisonc++’ and ‘flexc++’

Once an input language exceeds a certain level of complexity, a parser is often used to control the

complexity of the language. In this case, a parser generator can be used to generate the code verifying

the input’s grammatical correctness. The lexical scanner (preferably composed into the parser) provides

chunks of the input, called tokens. The parser then processes the series of tokens generated by the

lexical scanner.

Starting point when developing programs that use both parsers and scanners is the grammar. The

grammar defines a set of tokens that can be returned by the lexical scanner (called the scanner below).

Finally, auxiliary code is provided to ‘fill in the blanks’: the actions performed by the parser and by

the scanner are not normally specified literally in the grammar rules or lexical regular expressions,

but should be implemented in member functions, called from the parser’s rules or which are associated

with the scanner’s regular expressions.

In the previous section we’ve seen an example of a C++ class generated by flexc++. In the current

section we concentrate on the parser. The parser can be generated from a grammar specification file,

processed by the program bisonc++. The grammar specification file required by bisonc++ is similar

to the file processed by bison (or bison++, bisonc++’s predecessor, written in the early nineties by

Alain Coetmeur).

In this section a program is developed converting infix expressions, where binary operators are writ-

ten between their operands, to postfix expressions, where operators are written behind their operands.

Also, the unary operator - is converted from its prefix notation to a postfix form. The unary + oper-

ator is ignored as it requires no further actions. In essence our little calculator is a micro compiler,

transforming numeric expressions into assembly-like instructions.

Our calculator recognizes a rather basic set of operators: multiplication, addition, parentheses, and

the unary minus. We’ll distinguish real numbers from integers, to illustrate a subtlety in bison-like

grammar specifications. That’s all. The purpose of this section is, after all, to illustrate the construction

of a C++ program that uses both a parser and a lexical scanner, rather than to construct a full-fledged

calculator.

In the coming sections we’ll develop the grammar specification for bisonc++. Then, the regular ex-

pressions for the scanner are specified. Following that, the final program is constructed.

24.6.2.1 The ‘bisonc++’ specification file

The grammar specification file required by bisonc++ is comparable to the specification file required by

bison. Differences are related to the class nature of the resulting parser. Our calculator distinguishes

real numbers from integers, and supports a basic set of arithmetic operators.



• As usual, a grammar is defined. With bisonc++ this is no different, and bisonc++ grammar

definitions are for all practical purposes identical to bison’s grammar definitions.

• Having specified the grammar and (usually) some declarations bisonc++ can generate files defin-

ing the parser class and the implementation of the member function parse.

• All class members (except those that are required for the proper functioning of the member parse)

must be separately implemented. Of course, they should also be declared in the parser class’s

header. At the very least the member lex must be implemented. This member is called by parse

to obtain the next available token. However, bisonc++ offers a facility providing a standard

implementation of the function lex. The member function error(char const ∗msg) is given

a simple default implementation that may be modified by the programmer. The member function

error is called when parse detects (syntactic) errors.

• The parser can now be used in a program. A very simple example would be:

int main()

{

Parser parser;

return parser.parse();

}

The bisonc++ specification file has two sections:

• The declaration section. In this section bison’s tokens, and the priority rules for the operators are

declared. However, bisonc++ also supports several new declarations. These new declarations

are important and are discussed below.

• The rules section. The grammatical rules define the grammar. This section is identical to the

one required by bison, albeit that some members that were available in bison and bison++

are obsolete in bisonc++, while other members can be used in a wider context. For example,

ACCEPT and ABORT can be called from any member called from the parser’s action blocks to

terminate the parsing process.

Readers familiar with bison may note that there is no header section anymore. Header sections are

used by bison to provide for the necessary declarations allowing the compiler to compile the C function

generated by bison. In C++ declarations are part of or already used by class definitions. Therefore, a

parser generator generating a C++ class and some of its member functions does not require a header

section anymore.

The declaration section The declaration section contains several sets of declarations, among which

definitions of all the tokens used in the grammar and the priorities and associativities of the mathe-

matical operators. Moreover, several new and important specifications can be used here as well. Those

relevant to our current example and only available in bisonc++ are discussed here. The reader is

referred to bisonc++’s man-page for a full description.

• %baseclass-preinclude header

Use header as the pathname to the file pre-included in the parser’s base-class header. This

declaration is useful in situations where the base class header file refers to types which might

not yet be known. E.g., with %union a std::string ∗ field might be used. Since the class

std::string might not yet be known to the compiler once it processes the base class header file

we need a way to inform the compiler about these classes and types. The suggested procedure is

to use a pre-include header file declaring the required types. By default header is surrounded

by double quotes (using, e.g., #include "header"). When the argument is surrounded by angle

brackets #include <header> is included. In the latter case, quotes might be required to escape

interpretation by the shell (e.g., using -H ’<header>’).



Defines the generic name of all generated files, unless overridden by specific names. By default

the generated files use the class-name as the generic file name.

• %scanner header

Use header as the pathname to the file pre-included in the parser’s class header. This file should

define a class Scanner, offering a member int lex() producing the next token from the input

stream to be analyzed by the parser generated by bisonc++. When this option is used the parser’s

member int lex() is predefined as (assuming the default parser class name Parser is used):

inline int Parser::lex()

{

return d_scanner.lex();

}

and an object Scanner d_scanner is composed into the parser. The d_scanner object is con-

structed by its default constructor. If another constructor is required, the parser class may be

provided with an appropriate (overloaded) parser constructor after having constructed the default

parser class header file using bisonc++. By default header is surrounded by double quotes (us-

ing, e.g., #include "header"). When the argument is surrounded by angle brackets #include

<header> is included.

• %stype typename

The type of the semantic value of tokens. The specification typename should be the name of an

unstructured type (e.g., size_t). By default it is int. See YYSTYPE in bison. It should not be

used if a %union specification is used. Within the parser class, this type may be used as STYPE.

• %union union-definition

Acts identically to the bison declaration. As with bison this generates a union for the parser’s

semantic type. The union type is named STYPE. If no %union is declared, a simple stack-type may

be defined using the %stype declaration. If no %stype declaration is used, the default stacktype

(int) is used.

An example of a %union declaration is:

%union

{

int i;

double d;

};

In pre-C++11 code a union cannot contain objects as its fields, as constructors cannot be called when a

union is created. This means that a string cannot be a member of the union. A string ∗, however,

is a possible union member. It might also be possible to use unrestricted unions (cf. section 9.9), having

class type objects as fields.

As an aside: the scanner does not have to know about such a union. It can simply pass its scanned text

to the parser through its matched member function. For example using a statement like

$$.i = A2x(d_scanner.matched());

matched text is converted to a value of an appropriate type.

Tokens and non-terminals can be associated with union fields. This is strongly advised, as it prevents

type mismatches, since the compiler may then check for type correctness. At the same time, the bison

specific variables $$, $1, $2, etc. may be used, rather than the full field specification (like $$.i). A

non-terminal or a token may be associated with a union field using the <fieldname> specification.

E.g.,

%token <i> INT // token association (deprecated, see below)



%type <i> intExpr // non-terminal association

In the example developed here, both the tokens and the non-terminals can be associated with a union

field. However, as noted before, the scanner does not have to know about all this. In our opinion, it is

cleaner to let the scanner do just one thing: scan texts. The parser, knowing what the input is all about,

may then convert strings like "123" to an integer value. Consequently, the association of a union field

and a token is discouraged. Below, while describing the grammar’s rules, this is further illustrated.

In the %union discussion the %token and %type specifications should be noted. They are used to

specify the tokens (terminal symbols) that can be returned by the scanner, and to specify the return

types of non-terminals. Apart from %token the token declarators %left, %right, and %nonassoc

can be used to specify the associativity of operators. The tokens mentioned at these indicators are

interpreted as tokens indicating operators, associating in the indicated direction. The precedence of

operators is defined by their order: the first specification has the lowest priority. To overrule a certain

precedence in a certain context %prec can be used. As all this is standard bisonc++ practice, it isn’t

further elaborated here. The documentation provided with bisonc++’s distribution should be consulted

for further reference.

Here is the specification of the calculator’s declaration section:

%filenames parser

%scanner ../scanner/scanner.h

%union {

int i;

double d;

};

%token INT DOUBLE

%type <i> intExpr

%type <d> doubleExpr

%left '+'

%left '*'

%right UnaryMinus

In the declaration section %type specifiers are used, associating the intExpr rule’s value (see the

next section) to the i-field of the semantic-value union, and associating doubleExpr’s value to the

d-field. This approach, admittedly, is rather complex, as expression rules must be included for each

of the supported union types. Alternatives are definitely possible, and involve the use of polymorphic

semantic values, covered in detail in the Bisonc++ user guide7.

The grammar rules The rules and actions of the grammar are specified as usual. The grammar for

our little calculator is given below. There are quite a few rules, but they illustrate various features

offered by bisonc++. In particular, note that no action block requires more than a single line of code.

This keeps the grammar simple, and therefore enhances its readability and understandability. Even

the rule defining the parser’s proper termination (the empty line in the line rule) uses a single member

function called done. The implementation of that function is simple, but it is worth while noting that it

calls Parser::ACCEPT, showing that ACCEPT can be called indirectly from a production rule’s action

block. Here are the grammar’s production rules:

lines:

lines

line

7http://fbb-git.gitlab.io/bisoncpp/manual/bisonc++.html



line

;

line:

intExpr

'\n'

{

display($1);

}

|

doubleExpr

'\n'

{

display($1);

}

|

'\n'

{

done();

}

|

error

'\n'

{

reset();

}

;

intExpr:

intExpr '*' intExpr

{

$$ = exec('*', $1, $3);

}

|

intExpr '+' intExpr

{

$$ = exec('+', $1, $3);

}

|

'(' intExpr ')'

{

$$ = $2;

}

|

'-' intExpr %prec UnaryMinus

{

$$ = neg($2);

}

|

INT

{

$$ = convert<int>();

}

;

doubleExpr:

doubleExpr '*' doubleExpr



$$ = exec('*', $1, $3);

}

|

doubleExpr '*' intExpr

{

$$ = exec('*', $1, d($3));

}

|

intExpr '*' doubleExpr

{

$$ = exec('*', d($1), $3);

}

|

doubleExpr '+' doubleExpr

{

$$ = exec('+', $1, $3);

}

|

doubleExpr '+' intExpr

{

$$ = exec('+', $1, d($3));

}

|

intExpr '+' doubleExpr

{

$$ = exec('+', d($1), $3);

}

|

'(' doubleExpr ')'

{

$$ = $2;

}

|

'-' doubleExpr %prec UnaryMinus

{

$$ = neg($2);

}

|

DOUBLE

{

$$ = convert<double>();

}

;

This grammar is used to implement a simple calculator in which integer and real values can be negated,

added, and multiplied and in which standard priority rules can be overruled by parentheses. The

grammar shows the use of typed nonterminal symbols: doubleExpr is linked to real (double) values,

intExpr is linked to integer values. Precedence and type association is defined in the parser’s defini-

tion section.

The Parser’s header file Several class members called from the grammar are defined as member

templates. Bisonc++ generates multiple files, among which the file defining the parser’s class. Func-

tions called from the production rule’s action blocks are usually member functions of the parser. These

member functions must be declared and defined. Once bisonc++ has generated the header file defining

the parser’s class, that header file isn’t automatically rewritten, allowing the programmer to add new

members to the parser class whenever required. Here is ‘parser.h’ as used in our little calculator:



#define Parser_h_included

#include <iostream>

#include <sstream>

#include <bobcat/a2x>

#include "parserbase.h"

#include "../scanner/scanner.h"

#undef Parser

class Parser: public ParserBase

{

std::ostringstream d_rpn;

// $insert scannerobject

Scanner d_scanner;

public:

int parse();

private:

template <typename Type>

Type exec(char c, Type left, Type right);

template <typename Type>

Type neg(Type op);

template <typename Type>

Type convert();

void display(int x);

void display(double x);

void done() const;

void reset();

void error(char const *msg);

int lex();

void print();

static double d(int i);

// support functions for parse():

void executeAction(int d_ruleNr);

void errorRecovery();

int lookup(bool recovery);

void nextToken();

void print__();

};

inline double Parser::d(int i)

{

return i;

}

template <typename Type>

Type Parser::exec(char c, Type left, Type right)

{

d_rpn << " " << c << " ";

return c == '*' ? left * right : left + right;



template <typename Type>

Type Parser::neg(Type op)

{

d_rpn << " n ";

return -op;

}

template <typename Type>

Type Parser::convert()

{

Type ret = FBB::A2x(d_scanner.matched());

d_rpn << " " << ret << " ";

return ret;

}

inline void Parser::error(char const *msg)

{

std::cerr << msg << '\n';

}

inline int Parser::lex()

{

return d_scanner.lex();

}

inline void Parser::print()

{}

#endif

24.6.2.2 The ‘flexc++’ specification file

The flex-specification file used by the calculator is simple: blanks are ignored, single characters are

returned, and numeric values are returned as either Parser::INT or Parser::DOUBLE tokens.

The flexc++ directive %interactive is provided since the calculator is a program actively interacting

with its human user.

Here is the complete flexc++ specification file:

%interactive

%filenames scanner

%%

[ \t] // ignored

[0-9]+ return Parser::INT;

"."[0-9]* |

[0-9]+("."[0-9]*)? return Parser::DOUBLE;

.|\n return matched()[0];



The calculator is built using bisonc++ and flexc++. Here is the implementation of the calculator’s

main function:

#include "parser/parser.h"

using namespace std;

int main()

{

Parser parser;

cout << "Enter (nested) expressions containing ints, doubles, *, + and "

"unary -\n"

"operators. Enter an empty line to stop.\n";

return parser.parse();

}

The parser’s files parse.cc and parserbase.h are generated by the command:

bisonc++ grammar

The file parser.h is created only once, to allow the developer to add members to the Parser class occe

the need for them arises.

The program flexc++ is used to create a lexical scanner:

flexc++ lexer

On Unix systems a command like

g++ -Wall -o calc *.cc -lbobcat -s

can be used to compile and link the source of the main program and the sources produced by the scanner

and parser generators. The example uses the A2x class, which is part of the bobcat library (cf. section

24.6.1.5) (the bobcat library is available on systems offering either bisonc++ or flexc++). Bisonc++

can be downloaded from

http://fbb-git.gitlab.io/bisoncpp/.
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