Model visualization
Keras provides utility functions to plot a Keras model (using graphviz).
This will plot a graph of the model and save it to a file:
from keras.utils import plot_model
plot_model(model, to_file='model.png')
plot_model takes four optional arguments:
- show_shapes(defaults to False) controls whether output shapes are shown in the graph.
- show_layer_names(defaults to True) controls whether layer names are shown in the graph.
- expand_nested(defaults to False) controls whether to expand nested models into clusters in the graph.
- dpi(defaults to 96) controls image dpi.
You can also directly obtain the pydot.Graph object and render it yourself,
for example to show it in an ipython notebook :
from IPython.display import SVG
from keras.utils import model_to_dot
SVG(model_to_dot(model).create(prog='dot', format='svg'))
Training history visualization
The fit() method on a Keras Model returns a History object. The History.history attribute is a dictionary recording training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). Here is a simple example using matplotlib to generate loss & accuracy plots for training & validation:
import matplotlib.pyplot as plt
history = model.fit(x, y, validation_split=0.25, epochs=50, batch_size=16, verbose=1)
# Plot training & validation accuracy values
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()