
Efficient C++ finite element

computing with Rheolef

HDG methods: in development
stage

Pierre Saramito

version 7.1

Re = 10 000

Bi = 0.5 We = 0.7



Copyright (c) 2003-2018 Pierre Saramito

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation License”.



Introduction

Rheolef is a programming environment for finite element method computing. The reader is as-
sumed to be familiar with (i) the c++ programming language and (ii) the finite element method.

As a Lego game, the Rheolef bricks allow the user to solve most problems, from simple to complex
multi-physics ones, in few lines of code. The concision and readability of codes written with
Rheolef is certainly a major keypoint of this environment. Here is an example of a Rheolef code
for solving the Poisson problem with homogeneous boundary conditions:

Xh.block ("boundary");

space Xh (omega, argv[2]);

geo omega (argv[1]);

environment rheolef (argc, argv);

int main (int argc, char** argv) {

field uh (Xh);

uh ["boundary"] = 0;

problem p (a);

p.solve (lh, uh);

dout ≪ uh;

}

field lh = integrate (v);

trial u (Xh); test v (Xh);

Example: find u such that −∆u = 1 in Ω and u = 0 on ∂Ω

form a = integrate (dot(grad(u),grad(v)));

Let Ω ⊂ R
N , N = 1, 2, 3

Xh = {v ∈ H1(Ω); v|K ∈ Pk, ∀K ∈ Th}

Vh = Xh ∩H1
0 (Ω)

a(u, v) =

∫
Ω

∇u.∇v dx

(P ) : find uh ∈ Vh such that

a(uh, vh) = l(vh), ∀vh ∈ Vh

l(v) =

∫
Ω

v dx

The right column shows the one-to-one line correspondence between the code and the
variational formulation. Let us quote Stroustrup [2002], the conceptor of the c++ language:

”The time taken to write a program is at best roughly proportional to the number of
lines written, and so is the number of errors in that code. If follows that a good way
of writing correct programs is to write short programs. In other words, we need good
libraries to allow us to write correct code that performs well. This in turn means that
we need libraries to get our programs finished in a reasonable time. In many fields,
such c++ libraries exist.”

Rheolef is an attempt to provide such a library in the field of finite element methods for partial
differential equations. Rheolef provides both a c++ library and a set of unix commands for shell
programming, providing data structures and algorithms [Wirth, 1985].

• Data structures fit the variational formulation concept: field, bilinear form and functional
space, are c++ types for variables. They can be combined in algebraic expressions, as you
write it on the paper.

• Algorithms refer to the most up-to-date ones: direct an iterative sparse matrix solvers for
linear systems. They supports efficient distributed memory and parallel computations. Non-
linear c++ generic algorithms such as fixed point, damped Newton and continuation methods
are also provided.

General high order piecewise polynomial finite element approximations are implemented, together
with some mixed combinations for Stokes and incompressible elasticity. The characteristic method
can be used for diffusion-convection problems while hyperbolic systems can be discretized by the
discontinuous Galerkin method.



4 Rheolef version 7.1

Contacts

email Pierre.Saramito@imag.fr

home page http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

Please send all patches, comments and bug reports by mail to

rheolef@grenet.fr

mailto:Pierre.Saramito@imag.fr
http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef
mailto:rheolef@grenet.fr


Contents

Notations 6

1 [New] Approximation of the H(div) space 9

1.1 The Raviart-Thomas element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 [New] Hybrid discontinuous methods 13

2.1 Hybrid discontinuous Galerkin (HDG) methods . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Superconvergence of the Lagrange multiplier . . . . . . . . . . . . . . . . . 17

2.1.3 Superconvergence of the piecewise averaged solution . . . . . . . . . . . . . 19

2.1.4 Improving the solution by local postprocessing . . . . . . . . . . . . . . . . 20

2.1.5 Improving the gradient with the Raviart-Thomas element . . . . . . . . . . 23

2.2 Hybrid high order (HHO) methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 The diffusion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 The reconstruction operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 The projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 The discrete problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 30

List of example files 35

List of commands 37

Index 37

5



6 Rheolef version 7.1

Notations

Rheolef mathematics description

d d ∈ {1, 2, 3} dimension of the physical space

interpolate(Vh,expr) πVh
(expr) interpolation in the space Vh

integrate(omega,expr)

∫

Ω

expr dx integration in Ω ⊂ R
d

integrate(omega,
on local sides(expr))

∑

K∈Th

∫

∂K

expr ds integration on the local element sides

dot(u,v) u.v =

d−1∑

i=0

uivi vector scalar product

ddot(sigma,tau) σ : τ =

d−1∑

i,j=0

σi,jτi,j tensor scalar product

tr(sigma) tr(σ) =

d−1∑

i=0

σi,i trace of a tensor

trans(sigma) σT tensor transposition

sqr(phi)

norm2(phi)
φ2 square of a scalar

norm2(u) |u|2 =

d−1∑

i=0

u2i square of the vector norm

norm2(sigma) |σ|2 =
d−1∑

i,j=0

σ2
i,j square of the tensor norm

abs(phi)

norm(phi)
|φ| absolute value of a scalar

norm(u) |u| =

(
d−1∑

i=0

u2i

)1/2

vector norm

norm(sigma) |σ| =




d−1∑

i,j=0

σ2
i,j




1/2

tensor norm

grad(phi) ∇φ =

(
∂φ

∂xi

)

06i<d

gradient of a scalar field

grad(u) ∇u =

(
∂ui
∂xj

)

06i,j<d

gradient of a vector field

div(u) div(u) = tr(∇u) =

d−1∑

i=0

∂ui
∂xi

divergence of a vector field

D(u) D(u) =
(
∇u+∇uT

)
/2

symmetric part of
the gradient of a vector field

curl(u) curl(u) = ∇∧ u curl of a vector field, when d = 3



Contents 7

Rheolef mathematics description

curl(phi) curl(φ) =

(
∂φ

∂x1
,−

∂φ

∂x0

)
curl of a scalar field, when d = 2

curl(u) curl(u) =
∂u1
∂x0

−
∂u0
∂x1

curl of a vector field, when d = 2

grad s(phi)
∇sφ = P∇φ

where P = I − n⊗ n
tangential gradient of a scalar

grad s(u) ∇su = ∇uP tangential gradient of a vector

Ds(u) Ds(u) = PD(u)P symmetrized tangential gradient

div s(u) divs(u) = tr(Ds(u)) tangential divergence

unit outward normal on Γ = ∂Ω
normal() n or on an oriented surface Ω

or on an internal oriented side S

jump(phi) [[φ]] = φ|K0
− φ|K1

jump accros inter-element side
S = ∂K0 ∩K1

average(phi) {{φ}} = (φ|K0
+ φ|K1

)/2 average across S

inner(phi) φ|K0
inner trace on S

outer(phi) φ|K1
outer trace on S

h local() hK = meas(K)1/d length scale on an element K

penalty() ̟s = max

(
meas(∂K0)

meas(K0)
,
meas(∂K1)

meas(K1)

)
penalty coefficient on S

grad h(phi) (∇hφ)|K = ∇(φ|K), ∀K ∈ Th broken gradient

div h(u) (divhu)|K = div(u|K), ∀K ∈ Th broken divergence of a vector field

Dh(u) (Dh(u))|K = D(u|K), ∀K ∈ Th broken symmetric part of
the gradient of a vector field

sin(phi) sin(φ) standard mathematical functions
cos(phi) cos(φ) extended to scalar fields
tan(phi) tan(φ)
acos(phi) cos−1(φ)
asin(phi) sin−1(φ)
atan(phi) tan−1(φ)
cosh(phi) cosh(φ)
sinh(phi) sinh(φ)



8 Rheolef version 7.1

Rheolef mathematics description

tanh(phi) tanh(φ)
exp(phi) exp(φ)
log(phi) log(φ)

log10(phi) log 10(φ)
floor(phi) ⌊φ⌋ largest integral not greater than φ
ceil(phi) ⌈φ⌉ smallest integral not less than φ

min(phi,psi) min(φ, ψ)
max(phi,psi) max(φ, ψ)
pow(phi,psi) φψ

atan2(phi,psi) tan−1(ψ/φ)
fmod(phi,psi) φ− ⌊φ/ψ + 1/2⌋ψ floating point remainder

compose(f,phi) f ◦ φ = f(φ) applies an unary function f

compose(f,phi1,...,phin) f(φ1, . . . , φn) applies a n-ary function f , n > 1

compose(phi,X) φ ◦X, X(x) = x+ d(x) composition with a characteristic



Chapter 1

[New] Approximation of the H(div)
space

1.1 The Raviart-Thomas element

The aim of this chapter is to introduce to the Raviart-Thomas element Raviart and Thomas [1977]
for building an approximation of the H(div,Ω) space.

There is a subtle issue. The Rheolef implementation choice for this element bases on internal
interpolation nodes instead of moments. This choice leads to more efficient computation of degrees
of freedom, but the standard Lagrange interpolation πh no more satisfies the comutation diagram
and optimal error in the H(div,Ω) norm. Instead of the Lagrange interpolation πh, we propose
a projection operator, that satisfies these desired properties. We start building this projection
operator for a piecewise discontinuous version of this element: it allows one to build a projection
that requires only local operations and converges optimaly. Moreover, the piecewise discontinuous
Raviart-Thomas approximation is used during the post-processing stage of the hybrid discontin-
uous Galekin method, that will be developped in a forthcoming chapter.

TODO: it remains to merge degreees of freedom along sides for obtaining a projector for the
continuous Raviart-Thomas approximation, and check that the obtained projection still satisfies
the commutation diagram and converges optimaly in H(div,Ω). Indeed, even with a C1(Ω̄)
function, it is not clear that the obtained projection have degrees of freedom that matches along
internal sides.

Let

Vh =
{
vh ∈

(
L2(Ω)

)d
; vh|K ∈ RTk(K), ∀K ∈ Th

}

Qh =
{
qh ∈ L2(Ω) ; qh|K ∈ Pk, ∀K ∈ Th

}

Here, Vh represents the space of discontinuous and piecewise k-th order Raviart-Thomas RTk
vector-valued functions while Qh is the space of piecewise discontinuous polynomials.

Let πQh
denote the L2 projection from L2(Ω) into Qh. For all p ∈ L2(Ω), it is defined as

πQh
(p) = ph ∈ Qh, where qh is the solution of the following quadratic minimization problem:

ph = arg inf
qh∈Qh

∫

Ω

(p− qh)
2dx

Its solution is characterized as the unique solution of the following linear system, expressed in
variational form:

(P1): find ph ∈ Qh such that
∫

Ω

ph qh dx =

∫

Ω

p qh dx, ∀qh ∈ Qh

9



10 Rheolef version 7.1

Following Roberts and Thomas [Roberts and Thomas, 1991, p. 551-552], our aim is to define πVh

as the L2 projection from H(div,Ω) into Vh and satisfying the following commuting property:

H(div,Ω) L2(Ω)

Vh Qh

div

πVh
πQh

div

i.e.

div(πVh
(u)) = πQh

(divu), ∀u ∈ H(div,Ω) (1.1a)

In [Roberts and Thomas, 1991, p. 553], theorem 6.3, this projection operator then satisfies an
optimal error bound in the H(div,Ω) norm, i.e.:

‖u− πVh
(u)‖0,2,Ω + ‖div(u− πVh

(u))‖0,2,Ω = O(hk+1) (1.1b)

Remark that the Lagrange interpolation operator πh fromH(div,Ω) to Vh do not necessarily satisfy
the commuting property (1.1a). Indeed, this depends upon the way the Raviart-Thomas internal
degrees of freedom are chosen and implemented. When internal degrees of freedom are chosen as
integrals over polynomials of degree ℓ 6 k − 1, e.g. as in [Roberts and Thomas, 1991, p. 551],
eqn (6.8), then the Lagrange interpolation πh satisfies both (1.1a) and (1.1b), as shown Roberts
and Thomas [1991], theorem 6.1 and 6.3.

In practice, it is more efficient to choose for all the internal degrees of freedom of the Raviart-
Thomas some values of the function on a set of internal points: this implementation choice has
been chosen in Rheolef. In that case, the Lagrange interpolation πh neither satisfies the commu-
tation (1.1a) nor the bound (1.1b). More precisely, the Lagrange interpolation error is optimal
in L2 norm only while its divergence converges sub-optimally. Thus, with the present choice of the
internal degrees of freedom, there is a need to explicitly compute the projection πVh

that satisfies
both (1.1a) and (1.1b).

For all u ∈ H(div,Ω), this projection is defined as the L2 projection of u under the con-
straint (1.1a):

πVh
(u) = arg inf

vh∈Vh

‖u− vh‖
2
0,2,Ω

subject to div(vv) = πQh
(divu)

Then, uh = πVh
(u) ∈ Vh is equivalently characterized as the solution of the following saddle-point

problem:

(uh, ph) = arg inf
vh∈Vh

arg sup
qh∈Qh

L(vh, qh)

where the Lagrangian L is defined, for all (vh, qh) ∈ Vh ×Qh, by

L(vh, qh) =

∫

Ω

(
|u− vh|

2 + qhdiv(u− vh)
)
dx

The saddle-point of L is characterized as the unique solution of a linear system, expressed in
variational form. Moreover, since both Vh and Qh are spaces of piecewise discontinuous functions,
the linear system writes as a collection of local linear systems on each element.

(P ): find (uh, ph) ∈ Vh ×Qh such that, on each element K ∈ Th, we have
∫

K

(uh.vh + phdiv vh)dx =

∫

K

u.vh dx (1.2a)

∫

K

qhdivuh dx =

∫

K

qhdivu dx (1.2b)



Chapter 1. [New] Approximation of the H(div) space 11

for all (vh, qh) ∈ Vh × Qh. Observe that qh represents the Lagrange multiplier associated to the
commutation constraint (1.2b), which is equivalent to (1.1a).

Let us introduce the following forms:

a(uh, ph; vh, qh) =

∫

Ω

(uh.vh + phdiv vh + qhdivuh) dx

ℓ(vh, qh) =

∫

Ω

(u.vh + qhdivu) dx

The previous problem writes equivalently in abstract form:

(P ): find (uh, ph) ∈ Vh ×Qh such that

a(uh, ph; vh, qh) = ℓ(vh, qh), ∀(vh, qh) ∈ Vh ×Qh

Note that the matrix associated to the bilinear form a is symmetric and block-diagonal: it can thus
be efficiently inverted on the fly at the element level during the assembly process. The following
code implement this efficient approach.

Example file 1.1: commute rtd.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinus_vector.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension (),
9 k = (argc > 2) ? atoi(argv [2]) : 0;

10 space Vh (omega , "RT"+itos(k)+"d"),
11 Lh (omega , "P" +itos(k)+"d"),
12 Xh = Vh*Lh;
13 trial x (Xh); test y (Xh);
14 auto u = x[0], lambda = x[1];
15 auto v = y[0], mu = y[1];
16 integrate_option iopt;
17 iopt.invert = true;
18 form inv_a = integrate (dot(u,v) + div_h(v)* lambda + div_h(u)*mu, iopt);
19 field lh = integrate (dot(u_exact(d),v) + div_u_exact(d)*mu),
20 xh = inv_a*lh,
21 p_Vh_u = xh[0],
22 pi_h_u = interpolate(Vh,u_exact(d));
23 dout << catchmark (" p_Vh_u ") << p_Vh_u
24 << catchmark (" pi_h_u ") << pi_h_u;
25 }

How to run the program ?

make commute_rtd commute_rtd

mkgeo_grid -t 10 > square.geo ./commute_rtd square.geo | ./commute_rtd_error

The program ‘commute rt.cc’ compute both the projection πVh
(u) and the standard Lagrange

interpolation πh(u), while ‘commute rtd error.cc’ performs the computation of the corresponding
errors. The file ‘cosinus vector.h’ furnishes the function used for the present test:

u(x) =

(
cos(x0 + 2x1)
sin(x0 − 2x1)

)

These two last files are not listed here but are available in the Rheolef example directory. Observe
on Fig. 1.1 that the error for the projection πVh

(u) and its divergence behave as O(hk+1), which
is optimal. Conversely, the error for the Lagrange interpolation πh(u) is sub-optimal for the
divergence.

file://localhost/usr/share/doc/rheolef-doc/examples/commute_rtd.cc


12 Rheolef version 7.1

10−15

10−10

10−5

1

10−3 10−2 10−1 1

‖u− PVh
(u)‖0,2,Ω

1

2

3

4 = k + 1

h

k = 0
k = 1
k = 2
k = 3

10−15

10−10

10−5

1

10−3 10−2 10−1 1

‖div(u− PVh
(u))‖0,2,Ω

1

2

3

4 = k + 1

h

k = 0
k = 1
k = 2
k = 3

10−15

10−10

10−5

1

10−3 10−2 10−1 1

‖u− πh(u)‖0,2,Ω

1

2

3

4 = k + 1

h

k = 0
k = 1
k = 2
k = 3

10−15

10−10

10−5

1

10−3 10−2 10−1 1

‖div(u− πh(u))‖0,2,Ω

1

2

3 = k

h

k = 0
k = 1
k = 2
k = 3

Figure 1.1: Raviart-Thomas approximation: πVh
projection (top) and πh interpolation (bottom)

errors in L2 norm for the approximation and its divergence.

In conclusion, the projection πVh
should be used instead of the interpolation πh when we want to

build an optimal Raviart-Thomas approximation.



Chapter 2

[New] Hybrid discontinuous
methods

2.1 Hybrid discontinuous Galerkin (HDG) methods

The aim of this chapter is to introduce to hybridization of discontinuous Galerkin methods
within the Rheolef environment. For a review of hybridizable discontinuous Galerkin methods,
see Nguyen et al. [2011]. The hybridization technique allows an efficient finite element implemen-
tation of many problems of importance, such as the Navier-Stokes one. Let us start by some model
problems.

2.1.1 The Poisson problem

Let us consider the Poisson problem with mixed Dirichlet and Neumann boundary conditions:

(P ): find u, defined in Ω, such that

−∆u = f in Ω

u = gd on Γd
∂u

∂n
= gn on Γn

where ∂Ω = Γd ∪ Γn, and the interior of the two boundary domains Γd and Γn are disjoints. The
data f , gd and gn are given. Let us introduce the gradient σ = ∇u as an independent variable.
The problem writes equivalently (see e.g. Nguyen et al. [2011]):

(P ): find σ and u, defined in Ω, such that





σ −∇u = 0 in Ω

div(σ) = −f in Ω

u = gd on Γd

σ.n = gn on Γn

(2.1a)

(2.1b)

(2.1c)

(2.1d)

Let us multiply (2.1a) by a test function τ and integrate by parts on any element K:

∫

K

(σ.τ + div(τ )u) dx−

∫

∂K

(τ .n)u ds = 0

In the discontinuous Galerkin method, the trace of u on ∂K will be discontinuous across the
inter-element boundaries. The hybridization replaces this trace by a new independent variable,

13



14 Rheolef version 7.1

denoted as λ, that is only definied on sides of the mesh:
∫

K

(σ.τ + div(τ )u) dx−

∫

∂K

(τ .n)λ ds = 0 (2.2a)

The λ variable will be uni-valued on boundary inter-elements and accounts strongly for the bound-
ary condition: λ = gd on Γd. Then, let us multiply (2.1b) by a test function v with a zero average
value on K:

∫

K

div(σ) v dx = −

∫

K

f v dx

In order to weakly impose the condition u = λ on ∂K, we add a penalization term:
∫

K

div(σ) v dx− βhn
∫

∂K

hn(u− λ) v ds = −

∫

K

f v dx (2.2b)

Here, h denotes the local mesh size in the element K. The two constants β > 0 and n ∈ R

are respectively a penalization coefficient and power index. Following Cockburn et al. [2009], we
consider the three cases n = 0, 1 and −1. We have three unknowns σ, u and λ and only the two
equations (2.2a) and (2.2b). For the problem to be complete, we add an equation for λ. Observe
that (2.2b) writes equivalently, after a second integration by part on K:

−

∫

K

σ.∇v dx+

∫

∂K

(σ.n− βhn(u− λ)) v ds = −

∫

K

f v dx

The quantity involved in the integral on ∂K is denoted as σ̂ = σ − βhn(u− λ)n and refered
as the numerical flux across inter-element boundaries. As an additional equation, we impose
the continuity of the normal component of this numerical flux. On the Γn boundary domain,
the normal component of the numerical flux is imposed to be the prescribed flux gn, while the
Dirichlet condition λ = gd is precribed on the Γd boundary domain:

[[σ − βhn(u− λ)n]].n = 0 on S, ∀S ∈ S
(i)
h (2.3a)

σ.n− βhn(u− λ) = gn on Γn (2.3b)

λ = gd on Γd (2.3c)

For an internal side S = ∂K+ ∩ ∂K− ∈ S
(i)
h between two elements K1,K2 ∈ Th, relation (2.3a)

writes:

σ+.n+ − βhn(u+ − λ) + σ−.n− − βhn(u− − λ) = 0 on S

where σ± and u± are the trace on S of σ and u in K± and n± are the outer normal of K± on S.
Since S is oriented, let us choose without loss of generality n = n− = −n+. Then, the previous
relation writes:

(σ− − σ+) .n− βhn(u− + u+) + 2βhnλ = 0 on S

⇐⇒ [[σ]].n− 2βhn({{u}} − λ) = 0 on S

where we have used the jump and average across the internal side S. The previous relation,
together with (2.3c) and (2.3c), writes in variational form:

∫

S
(i)
h

([[σ]].n− 2βhn({{u}} − λ)) µ ds+

∫

∂Ω

(σ.n− βhn(u− λ)) µ ds =

∫

Γn

gn µ ds (2.4)

for all test function µ, defined on all internal sides of S
(i)
h and on all sides of the boundary domain

Γn and that vanishes on all sides of the boundary domain Γd.

Grouping (2.2a), (2.2b) and (2.4), we obtain the discrete variational formulation:



Chapter 2. [New] Hybrid discontinuous methods 15

(FV )h: find (σh, uh, λh) ∈ Th ×Xh × Λh(gd) such that
∫

Ω

σ.τ dx+

∫

Ω

divh(τ )u dx−

∫

S
(i)
h

([[τ ]].n)λ ds−

∫

∂Ω

(τ .n)λ ds = 0

∫

Ω

divh(σ) v dx− β
∑

K∈Th

∫

∂K

hnu v ds+

∫

S
(i)
h

2βhn{{v}}λ ds+

∫

∂Ω

βhnv λ ds = −

∫

Ω

f v dx

∫

S
(i)
h

(2βhn{{u}} − [[σ]].n)µ ds+

∫

∂Ω

(βhnu− σ.n)µ ds−

∫

S
(i)
h

2βhnλµ ds−

∫

∂Ω

βhnλµ ds = −

∫

Γn

gn µ ds

for all (τh, vh, τh) ∈ Th ×Xh × Λh(0), where

Th =
{
τ ∈

(
L2(Ω)

)d
; τ |K ∈ (Pk)

d, ∀K ∈ Th

}

Xh =
{
v ∈ L2(Ω) ; v|K ∈ Pk, ∀K ∈ Th

}

Mh =
{
µ ∈ L2(Sh) ; µ|S ∈ Pk, ∀S ∈ Sh

}

Λh(gd) =
{
µ ∈Mh ; µ|S = πh(gd), ∀S ⊂ Γd

}

and k > 0 is the polynomial degree. This is a symmetric system with a mixed structure. Let:

ah((σ, u), (τ , v)) =

∫

Ω

(σ.τ + divh(τ )u+ divh(σ) v) dx− β
∑

K∈Th

∫

∂K

hnu v ds

bh((τ , v), µ) =

∫

S
(i)
h

(−[[τ ]].n+ 2βhn{{v}})µ ds+

∫

∂Ω

(−τ .n+ βhn{{v}})µ ds

ch(λ, µ) =

∫

S
(i)
h

2βhnλµ ds+

∫

∂Ω

βhnλµ ds

ℓh(τ , v) = −

∫

Ω

f v dx

kh(µ) = −

∫

Γn

gn µ ds

Then, the variational formulation writes equivalently:

(FV )h: find (σh, uh, λh) ∈ Th ×Xh × Λh(gd) such that

ah((σ, u), (τ , v)) + bh((τ , v), λ) = ℓh(τ , v)

bh((σ, u), µ)− ch(λ, µ) = kh(µ)

for all (τh, vh, τh) ∈ Th ×Xh × Λh(0). Let χh = (σh, uh). This linear symmetric system admits
the following matrix structure:

(
A BT

B −C

)(
χh
λh

)
=

(
F
G

)

A carreful study shows that the A matrix has a block-diagonal structure at the element level
and can be easily inverted on the fly during the assembly process. The matrix structure writes
equivalently:

⇐⇒

{
Aχh +BTλh = F
Bχh − Cλh = G

⇐⇒

{
χh = A−1(F −BTλh)
(C +BA−1BT )λh = BA−1F −G

The second equation is solved first: the only remaining unknown is the Lagrange multiplier λh,
in a linear system involving the Schur complement matrix S = C +BA−1BT . Then, the two
variables χh = (σh, uh) are simply obtained by a direct computation.



16 Rheolef version 7.1

Example file 2.1: dirichlet hdg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod_dirichlet.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 string approx = (argc > 2) ? argv [2] : "P1d";
9 Float n = (argc > 3) ? atof(argv [3]) : 1;

10 Float beta = (argc > 4) ? atof(argv [4]) : 1;
11 space Th (omega , approx , "vector"),
12 Xh (omega , approx),
13 Yh = Th*Xh,
14 Mh (omega ["sides"], approx );
15 Mh.block(" boundary ");
16 space Wh(Mh.get_geo ()[" boundary"],approx );
17 size_t d = omega.dimension ();
18 size_t k = Xh.degree ();
19 trial x(Yh), lambda(Mh);
20 test y(Yh), mu(Mh);
21 auto sigma = x[0], u = x[1];
22 auto tau = y[0], v = y[1];
23 integrate_option iopt;
24 iopt.invert = true;
25 auto coef = beta*pow(h_local(),n);
26 form inv_a = integrate(dot(sigma ,tau) + u*div_h(tau) + v*div_h(sigma)
27 - on_local_sides(coef*u*v), iopt);
28 form b = integrate (" internal_sides",
29 (-dot(jump(sigma),normal ()) + 2*coef*average(u))*mu)
30 + integrate (" boundary", (-dot(sigma ,normal ()) + coef*u)*mu);
31 form c = integrate (" internal_sides", 2*coef*lambda*mu)
32 + integrate (" boundary", coef*lambda*mu);
33 field lh = integrate (-f(d)*v);
34 field kh(Mh ,0), lambda_h(Mh ,0);
35 lambda_h [" boundary "] = interpolate (Wh, g(d));
36 form s = c + b*inv_a*trans(b);
37 field rh = b*( inv_a*lh) - kh;
38 problem p (s);
39 p.solve (rh, lambda_h );
40 field xh = inv_a*(lh - b.trans_mult(lambda_h ));
41 dout << catchmark ("n") << n << endl
42 << catchmark ("beta") << beta << endl
43 << catchmark ("u") << xh[1]
44 << catchmark (" lambda ") << lambda_h
45 << catchmark ("sigma ") << xh[0];
46 }

The right-hand-side f and the Dirichlet boundary condition g has been chosen such that the exact
solution is given by:

u(x) =

d−1∏

i=0

sin(πxi)

The files ‘sinusprod dirichlet.h’, that defines the data f and g, and ‘sinusprod error hdg.cc’,
that compute the error in various norms, are not listed here but are available in the Rheolef
example directory.

How to run the program

The compilation and run write:

make dirichlet_hdg

mkgeo_grid -t 10 > square.geo

./dirichlet_hdg square.geo P1d > square.field

field square.field -elevation

file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_hdg.cc


Chapter 2. [New] Hybrid discontinuous methods 17

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖u− uh‖0,2,Ω

n = 1

1

2

3 = k

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖u− uh‖0,2,Ω

n = 0

1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖u− uh‖0,2,Ω

n = −1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖∇u− σh‖0,2,Ω

n = 1

1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖∇u− σh‖0,2,Ω

n = 0

1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖∇u− σh‖0,2,Ω

n = −1

1

2

3 = k

h

k = 0

k = 1

k = 2

k = 3

Figure 2.1: Hybrid discontinuous Galerkin method: Poisson problem with Dirichlet boundary
conditions in 2D geometry. Convergence vs h and k for the approximation of the solution uh and
of its gradient σh. (left) n = 1 ; (center) n = 0 ; (right) n = −1.

field square.field -elevation -mark lambda

field square.field -velocity -mark sigma

make sinusprod_error_hdg

./sinusprod_error_hdg < square.field

Fig. 2.1 plots the errors vs h and k for a two dimensional geometry. Observe that the approxima-
tion uh converges optimaly, as hk+1, in the L2 norm for any k > 0 when the power index n = 1.
When n = 1, the convergence is suboptimal, as hk only and note that the lowest order approxima-
tion k = 0 is not convergent. When n = −1, the convergence is optimal, as hk+1, only when k > 1,
while the lowest order approximation k = 0 is not convergent. The approximation σh of the gradi-
ent converges optimaly, as hk+1, for both n = 0 and 1, while it is suboptimal, as hk, when n = −1.
All these results are consistent with the approxiamtion theory of the HDG method, see Cockburn
et al. [2009] and tables 2, 3, 6.

2.1.2 Superconvergence of the Lagrange multiplier

Let πMh
denote the L2 projection from L2(Sh) intoMh. We consider the special case of computing

the projection πMh
(u) ∈Mh of the restriction to Sh of an element u ∈ L2(Sh). It is defined as

πMh
(u) = arg inf

µh∈Mh

1

2

∑

S∈Sh

∫

S

(u− µh)
2ds



18 Rheolef version 7.1

10−16

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖πMh
(u)− λh‖0,2,Sh

n = 1

2

3

4
5 = k + 2

h

k = 0
k = 1
k = 2
k = 3

10−16

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖πMh
(u)− λh‖0,2,Sh

n = 0

1

3

4

5 = k + 2

h

k = 0
k = 1
k = 2
k = 3

10−16

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖πMh
(u)− λh‖0,2,Sh

n = −1

2

3

4 = k + 1

h

k = 0
k = 1
k = 2
k = 3

Figure 2.2: Hybrid discontinuous Galerkin method: Poisson problem with Dirichlet boundary
conditions in 2D geometry. Super-convergence vs h and k for the Lagrange multiplier λh to the
L2 projection on Mh of the exact solution. (left) n = 1 ; (center) n = 0 ; (right) n = −1.

The following bilinear forms are introduced:

ms(λ, µ) =
∑

S∈Sh

∫

S

λµ ds

kh(µ) =
∑

S∈Sh

∫

S

uµ ds

Then, the projection reduces to:

find λ̄h = πMh
(u) ∈Mh such that

ms(λ̄h, µh) = kh(µh), ∀µh ∈Mh

The result of projection operator can be obtained by a resolution of a linear system. Follow-
ing [Cockburn et al., 2008, p. 1896], in order to measure the error on the set of sides Sh of the
mesh, we introduce the mesh-dependent norm ‖.‖0,2,Sh

, defined for all µ ∈ L2(Sh) by

‖µ‖20,2,Sh
=
∑

S∈Sh

∫

S

hSµ
2 ds

where hS is a characteristic length on the side S ∈ Sh. Fig. 2.2 plots the difference πMh
(u)− λh

in this mesh-dependent norm. In agrement with the theoretical results [Cockburn et al., 2008,
p. 1896], we observe the superconvergence of the multiplier λh to the L2 projection πMh

(u). More
precisely, when n = 1 the order of convergence is k + 2 for any k > 0. When n = 0, the
superconvergence occurs only when k > 1 and when n = −1 there is no superconvergence. This
error is also computed by the code ‘sinusprod error hdg.cc’.



Chapter 2. [New] Hybrid discontinuous methods 19

2.1.3 Superconvergence of the piecewise averaged solution

Example file 2.2: dirichlet hdg average.icc

1 field dirichlet_hdg_average (field uh , field lambda_h) {
2 size_t k = uh.get_space (). degree ();
3 size_t d = uh.get_geo (). dimension ();
4 space Zh (uh.get_geo(), "P0");
5 trial zeta(Zh); test xi(Zh);
6 integrate_option iopt;
7 iopt.invert = true;
8 if (k >= 1) {
9 form inv_mz = integrate (zeta*xi, iopt);

10 iopt.set_order (2*k+2);
11 field lh = integrate (uh*xi , iopt);
12 return inv_mz*lh;
13 }
14 const space& Mh = lambda_h.get_space ();
15 trial lambda (Mh); test mu (Mh);
16 form inv_ms = integrate ("sides", lambda*mu, iopt);
17 field inv_sh = inv_ms*field(Mh ,1);
18 field lh = integrate (on_local_sides(inv_sh*lambda_h*xi));
19 return (1./(d+1))* lh;
20 }

Example file 2.3: dirichlet hdg average.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "dirichlet_hdg_average.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 field uh , lambda_h;
8 din >> catchmark ("u") >> uh
9 >> catchmark (" lambda ") >> lambda_h;

10 field bar_uh = dirichlet_hdg_average (uh , lambda_h );
11 dout << catchmark ("u") << uh
12 << catchmark ("bar_u ") << bar_uh;
13 }

10−16

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖π̄h(u)− ūh‖0,2,Ω

n = 1

2

3

4 5
6 = k + 2

h

k = 0
k = 1
k = 2
k = 3
k = 4

10−16

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖π̄h(u)− ūh‖0,2,Ω

n = 0

1

3

4 6 = k + 2

h

k = 0
k = 1
k = 2
k = 3
k = 4

10−16

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖π̄h(u)− ūh‖0,2,Ω

n = −1

2

3

5 = k + 1

h

k = 0
k = 1
k = 2
k = 3
k = 4

Figure 2.3: Hybrid discontinuous Galerkin method: Poisson problem with Dirichlet boundary
conditions in 2D geometry. Super-convergence vs h and k for the piecewise average ūh of the
approximate solution. (left) n = 1 ; (center) n = 0 ; (right) n = −1.

The superconvergence of the piecewise average values of the solution obtained by the hy-
brid discontinuous Galerkin method was first observed in Cockburn et al. [2008, 2009] and
then exploited for many postprocessing application (see e.g. Nguyen et al. [2011]). The file
‘dirichlet hdg average.icc’ compute ūh = π̄h(uh, λh), the averaged solution, defined by

file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_hdg_average.icc
file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_hdg_average.cc


20 Rheolef version 7.1

(see Cockburn et al. [2008], eqn (2.9b)):

π̄h(uh, λh) =





1

d

∑

S⊂∂K

λh when k = 0

1

meas(K)

∫

K

uh dx when k > 1

The file ‘sinusprod error hdg average.cc’ that compute the error ūh − π̄h(u) is not listed here
but is available in the Rheolef example directory. The computation of the error is obtained by:

make dirichlet_hdg dirichlet_hdg_average sinusprod_error_hdg_average

mkgeo_grid -t 10 > square.geo

./dirichlet_hdg square.geo P1d | dirichlet_hdg_average | \

./sinusprod_error_hdg_average

Observe on Fig. 2.3 that, when n = 1 and for any k > 0, we obtain ūh − π̄h(u) of order k+2. This
is a remarkable result since uh is piecewise polynomial of order k and is expected to converge at
order k+1. When n = 0, for any k > 1 we also observe this superconvergence while, when k = 0,
the average value converges only at first order. Finaly, when n = −1, for any k > 1 we do no
more observe These observations are consistent with those of [Cockburn et al., 2009, p. 16] (see
also [Cockburn et al., 2008, p. 1613]).

2.1.4 Improving the solution by local postprocessing

By combining the approximation σh of the gradient ∇u, that converges at rate k+1 (see Fig. 2.1),
with the average ūh that super-converges at rate k+2 (see Fig. 2.3), it is then possible, by a local
integration inside each element, to obtain a new approximation u∗h, that is piecewise discontinuous
polynomial of order k + 1, and that converges at rate k + 2.

The postprocess step is nothing than the resolution of the following local Neumann problem in
any element K ∈ Th (see [Cockburn et al., 2010, p. 1360], eqn (5.1)):

(P ∗): find u∗, defined in K, such that




−∆u∗ = f in K

∂u∗

∂n
= σh.n on ∂K

∫

K

u∗ dx =

∫

K

ūh dx

where σh and ūh are given by the previous resolution.

For any β ∈ R, let us introduce the following functional space:

X∗
K(β) =

{
v ∈ H1(K) ;

∫

K

v dx = β

}

Then, the variational formulation of the problem writes:

(FV ∗): find u∗ ∈ XK

(∫
K
ūh dx

)
such that

∫

K

∇u∗.∇v∗ dx =

∫

K

f v∗ dx+

∫

∂K

σh.n v
∗ ds, ∀v∗ ∈ XK(0)

The linear constraint for the imposition of the average value is not easy to impose in XK(β).
Indeed, XK(β) is not a vectorial space when β 6= 0. Following the methodology previously intro-
duced for the Neumann boundary conditions for the Laplace operator, we introduce a Lagrange
multiplier denoted here as ζ, which is constant inside each element K.



Chapter 2. [New] Hybrid discontinuous methods 21

Finally, the postprocessing step compute the approximation u∗h, when σh and uh are known,as:

(FV ∗)h: find (u∗h, ζh) ∈ X∗
h × Zh such that, on each element K ∈ Th, we have





∫

K

∇u∗h.∇v
∗
h dx+

∫

K

v∗h ζh dx =

∫

K

f v∗h dx+

∫

∂K

σh.n v
∗
h ds, ∀v∗h ∈ X∗

h

∫

K

u∗h ξh dx =

∫

K

ūh ξh dx, ∀ξh ∈ X∗
h

where

X∗
h =

{
v ∈ L2(Ω) ; v|K ∈ Pk+1, ∀K ∈ Th

}

Zh =
{
ξ ∈ L2(Ω) ; ξ|K ∈ P0, ∀K ∈ Th

}

Let

a∗h(u, ζ; v, ξ) =

∫

Ω

(∇hu.∇hv + v ζ + u ξ) dx

ℓ∗h(v, ξ) =

∫

Ω

(f v + ūh ξ) dx+
∑

K∈Th

∫

∂K

(σh.n) v ds

The second step writes in this abstract setting:

(FV ∗)h: find (u∗h, ζ
∗
h) ∈ X∗

h × Zh such that

a∗h(u
∗
h, ζh; v

∗
h, ξh) = ℓ∗h(v

∗
h, ξh), ∀(v∗h, ξh) ∈ X∗

h × Zh

Note that the matrix associated to the bilinear form a∗h is symmetric and block-diagonal: it can
thus be easily be inverted on the fly at the element level. The present postprocessing stage was
first introduced in [Cockburn et al., 2010, p. 1360], eqn (5.1) as a replacement and a simplification
of those previously introduced in Cockburn et al. [2008, 2009]. The following code implement this
postprocessing.



22 Rheolef version 7.1

Example file 2.4: dirichlet hdg post.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod_dirichlet.h"
5 #include "dirichlet_hdg_average.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 Float n, beta;
9 field uh , lambda_h , sigma_h;

10 din >> catchmark ("n") >> n
11 >> catchmark ("beta") >> beta
12 >> catchmark ("u") >> uh
13 >> catchmark (" lambda ") >> lambda_h
14 >> catchmark ("sigma ") >> sigma_h;
15 field bar_uh = dirichlet_hdg_average (uh , lambda_h );
16 const geo& omega = uh.get_geo ();
17 size_t d = omega.dimension ();
18 size_t k = uh.get_space (). degree ();
19 space Xhs (omega , "P"+itos(k+1)+"d"),
20 Zhs (omega , "P0"),
21 Yhs = Xhs*Zhs;
22 trial x(Yhs); test y(Yhs);
23 auto us = x[0], zeta = x[1];
24 auto vs = y[0], xi = y[1];
25 integrate_option iopt;
26 iopt.invert = true;
27 form inv_ahs = integrate(dot(grad_h(us),grad_h(vs)) + zeta*vs + xi*us, iopt);
28 field lhs = integrate (f(d)*vs + xi*bar_uh
29 + on_local_sides(dot(sigma_h ,normal ())*vs));
30 field xhs = inv_ahs*lhs;
31 dout << catchmark ("n") << n << endl
32 << catchmark ("beta") << beta << endl
33 << catchmark ("u") << xhs [0]
34 << catchmark (" lambda ") << lambda_h
35 << catchmark ("sigma ") << sigma_h
36 << catchmark ("zeta") << xhs [1];
37 }

10
−12

10
−8

10
−4

1

10
−3

10
−2

10
−1 1

‖u− u
∗

h‖0,2,Ω

n = 1

2

3

4

5 = k + 2

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−8

10
−4

1

10
−3

10
−2

10
−1 1

‖u− u
∗

h‖0,2,Ω

n = 0

1

3

4

5 = k + 2

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−8

10
−4

1

10
−3

10
−2

10
−1 1

‖u− u
∗

h‖0,2,Ω

n = −1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

Figure 2.4: Solution post-processing of the hybrid discontinuous Galerkin method: Poisson prob-
lem with Dirichlet boundary conditions in 2D geometry. Convergence vs h and k for the post-
treated approximate solution. (left) n = 1 ; (center) n = 0 ; (right) n = −1.

How to run the program

The compilation and run write:

make dirichlet_hdg dirichlet_hdg_post ./sinusprod_error_hdg

mkgeo_grid -t 10 > square.geo

file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_hdg_post.cc


Chapter 2. [New] Hybrid discontinuous methods 23

./dirichlet_hdg square.geo P1d > square.field

./dirichlet_hdg_post < square.field > square-post.field

field square-post.field -elevation

./sinusprod_error_hdg < square.field

./sinusprod_error_hdg < square-post.field

The results are shown on Fig. 2.4. When n = 1, observe that, for any k > 0, the error for the
post-treated solution u∗h converges to zero at rate k + 2 in L2 norm, which is optimal, since u∗h is
a piecewise k + 1 degree polynomial. When n = 0, this result is obtained only for k > 1 while,
when n = −1, the convergence is suboptimal.

2.1.5 Improving the gradient with the Raviart-Thomas element

Let (σh, uh, λh) be the solution of problem (FV )h. This solution is considered here as known.
Observe that the normal component of the numerical flux σ̂h.n = σh.n− βhn(uh − λh) is con-
tinuous across any inter-element boundaries. Indeed, relation (2.3a) is imposed weakely in the
variational formulation (FV )h, with a Lagrange multiplier µh ∈ Mh which is piecewise polyno-
mial of degree k. Since σ̂h is also piecewise polynomial of degree k, the discrete version of (2.3a)
is also satisfied strongly:

σ̂h.n = [[σh − βhn(uh − λh)n]].n = 0 on S, ∀S ∈ S
(i)
h

Since any element of H(div,Ω) presents the continuity of its normal component across any inter-
element boundaries, is possible to define a new H(div,Ω) conform approximation of σ, denoted as
σ̃h, which satisfies σ̃h.n = σ̂h.n on any internal sides. Similarly to (2.3a), σ̃h also should satisfy
a discrete version of (2.3c)-(2.3c) i.e. σ̂h.n is equals to gn on Γn and to σh.n− βhn(uh − gd)
on Γd. It is characterized as the unique element σ̃h ∈ T̃h satisfying in any element K ∈ Th the
following local variational formulation [Cockburn et al., 2010, p. 1360]:

∫

K

σ̃h.γ̃h dx =

∫

K

σh.γ̃h dx, ∀γ̃h ∈ G̃h
∫

∂K

(σ̃h.n) µ̃h ds =

∫

∂K

(σh.n− βhn(uh − λh)) µ̃h ds, ∀µ̃h ∈ M̃h

where we have introduced the finite dimensional spaces

T̃h =
{
τ̃h ∈

(
L2(Ω)

)d
; τ̃h|K ∈ RTk(K), ∀K ∈ Th

}

W̃h =
{
γ̃h ∈

(
L2(Ω)

)d
; γ̃h|K ∈ Pk−1(K), ∀K ∈ Th

}

M̃h =
∏

K∈Th

{
v|∂K ; v ∈ Pk(K)

}

The space T̃h contains discontinuous and piecewise k-th order Raviart-Thomas RTk polynomial
vector-valued functions. The space M̃h contains, inside each element, the normal trace of functions
of T̃h while W̃h contains piecewise discontinuous polynomial of degree k− 1. By convention,
when k = 0, then the space W̃h is empty. Observe that dim(T̃h) = dim(W̃h) + dim(M̃h) and that
the previous local variational problem is well-posed. Let

ãh(σ̃h; [γ̃h, µ̃h]) =

∫

Ω

σ̃h.γ̃h dx+
∑

K∈Th

∑

S⊂∂K

∫

S

(σ̃h.n) µ̃h ds

ℓ̃h([γ̃h, µ̃h]) =

∫

Ω

σh.γ̃h dx+
∑

K∈Th

∫

∂K

(σh.n− βhn(uh − λh)) µ̃h ds

For known (σh, uh, λh), the postprocessing of the gradient writes:



24 Rheolef version 7.1

(F̃ V )h: find σ̃h ∈ T̃h such that ãh(σ̃h, [γ̃h, µ̃h]) = ℓ̃h([γ̃h, µ̃h]) for all (γ̃h, µ̃h) ∈ W̃h × M̃h.

A carreful study shows that the matrix associated with the ãh bilinear form has a block-diagonal
structure at the element level and can be efficiently inverted on the fly during the assembly process.
This property is due to the usage of discontinuous Raviart-Thomas approximation space T̃h. More-
over, since the normal component of σ̃h is equal to the numerical flux σ̂h.n which is continuous
across inter-element boundaries this is also the case for σ̃h.n and finally σ̃h ∈ H(div,Ω).

Example file 2.5: dirichlet hdg post rt.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 Float n, beta;
7 field sigma_h , uh , lambda_h;
8 din >> catchmark ("n") >> n
9 >> catchmark ("beta") >> beta

10 >> catchmark ("u") >> uh
11 >> catchmark (" lambda ") >> lambda_h
12 >> catchmark ("sigma ") >> sigma_h;
13 const geo& omega = uh.get_geo ();
14 size_t d = omega.dimension ();
15 size_t k = uh.get_space (). degree ();
16 string approx = (k == 0) ? "empty" : "P"+itos(k-1)+"d";
17 space Tht(omega , "RT"+itos(k)+"d");
18 space Wht(omega , approx , "vector ");
19 space Mht(omega , "trace(P"+itos(k)+"d)");
20 space Sht = Wht*Mht;
21 trial sigma_t (Tht); test tau (Sht);
22 auto tau_internal = tau[0], tau_n = tau [1];
23 auto coef = beta*pow(h_local(),n);
24 form aht = integrate (dot(sigma_t , tau_internal)
25 + on_local_sides (dot(sigma_t ,normal ())* tau_n ));
26 field lht = integrate(dot(sigma_h , tau_internal)
27 + on_local_sides ((dot(sigma_h ,normal ())
28 + coef*( lambda_h - uh))* tau_n ));
29 field sigma_ht (Tht);
30 problem p (aht);
31 p.solve (lht , sigma_ht );
32 dout << catchmark ("n") << n << endl
33 << catchmark ("beta") << beta << endl
34 << catchmark ("u") << uh
35 << catchmark (" lambda ") << lambda_h
36 << catchmark ("sigma ") << sigma_h
37 << catchmark (" sigmat ") << sigma_ht;
38 }

How to run the program

The compilation and run write:

make dirichlet_hdg dirichlet_hdg_post_rt

mkgeo_grid -t 10 > square.geo

./dirichlet_hdg square.geo P1d > square.field

./dirichlet_hdg_post_rt < square.field > square-rt.field

field square-rt.field -velocity -mark sigmat -proj P1

make sinusprod_error_hdg_post_rt

./sinusprod_error_hdg_post_rt < square-rt.field

Fig. 2.5 plots the errors vs h and k for a two dimensional geometry. Observe that, when n = 1,
the approximation σ̃h of the gradient converges to ∇u with a k + 1 rate in H(div norm, with:

‖τ‖2div,2,Ω = ‖τ‖20,2,Ω + ‖div(τ )‖20,2,Ω

file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_hdg_post_rt.cc


Chapter 2. [New] Hybrid discontinuous methods 25

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖∇u− σ̃h‖div,2,Ω

n = 1

1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖∇u− σ̃h‖div,2,Ω

n = 0

1

2

3

4 = k + 1

h

k = 0

k = 1

k = 2

k = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1 1

‖∇u− σ̃h‖div,2,Ω

n = −1

1

2 = k

3

h

k = 0

k = 1

k = 2

k = 3

Figure 2.5: Solution post-processing of the hybrid discontinuous Galerkin method: Poisson prob-
lem with Dirichlet boundary conditions in 2D geometry. Convergence vs h and k for the post-
treated gradient σ̃h approximate solution. (left) n = 1 ; (center) n = 0 ; (right) n = −1.

for any τ ∈ H(div,Ω). It means that div(σ̃h) converges to ∆u with a k + 1 rate in both L2

norm. This is optimal with respect to the classical interpolation results for the k-th order Raviart-
Thomas element (see section 1.1, page 9). When n = 0, the convergence is also optimal while,
when n = −1 it is suboptimal.

n uh σh u∗h σ̃h

1 k k + 1 k + 2 k + 1

0 k + 1 k + 1

{
1, k = 0

k + 2, k > 0
k + 1

−1

{
0, k = 0

k + 1, k > 0
k

{
0, k = 0

k + 1, k > 0
k

Table 2.1: Hybrid discontinuous Galerkin method: convergence order versus k for n ∈ {1, 0,−1}.

Fig. 2.1 summarizes the convergence orders versus the mesh size h in terms of k and n. Observe
that n = 1 allows one to obtain an optimal convergence of both the the post-processed solution u∗h
and its gradient σ̃h for any polynomial degree k > 0. When n = 0, it is optimal only for k > 1
while when n = −1 it is suboptimal. Thus the HDG method and its postprocessed stage could
be considered as a whole. It allows, by solving a linear system for the k-th piecewise polynomial
approximation of the Lagrange multiplier only, to obtain a k+2 order approximation of the solution
in L2 and a k+1 approximation of its gradient in H(div).



26 Rheolef version 7.1

2.2 Hybrid high order (HHO) methods

The aim of this chapter is to introduce to hybrid high order (HHO) methods within the Rheolef
environment. For a review of hybrid high order methods, and its link to hybrid discontinuous
Galerkin (HDG) methods, see Cockburn et al. [2016]. Let us start by some model problems.

2.2.1 The diffusion problem

Let us consider an anisotropic diffusion problem with homogeneous Dirichlet conditions:

(P ): find u, defined in Ω, such that

{
−div(a∇u) = f in Ω

u = 0 on ∂Ω

(2.5a)

(2.5b)

where the right-hand-side f and the diffusion a are given functions. The diffusion is assumed to be
bounded, symmetric, uniformly positive definite matrix-valued function. Observe that when a =
I, the problem reduces to the usual Poisson problem with homogeneous Dirichlet conditions.

2.2.2 The reconstruction operator

The cornerstone of the HHO method is the reconstruction operator. Let k > 0
and ℓ ∈ {k−1, k, k+1} be two integers and let us introduce the following finite element spaces:

Xh =
{
vh ∈ L2(Ω) ; vh|K ∈ Pℓ, ∀K ∈ Th

}

Mh =
{
µh ∈ L2(Sh) ; µh|S ∈ Pk, ∀S ∈ Sh

}

X∗
h =

{
v∗h ∈ L2(Ω) ; v∗h|K ∈ Pk+1, ∀K ∈ Th

}

The reconstruction operator [Cockburn et al., 2016, p. 637] is defined by

rh : Xh ×Mh −→ X∗
h

(uh, λh) 7−→ u∗h = rh(uh, λh)

where u∗h ∈ X∗
h is characterized by a collection of local constrained minimization problems, asso-

ciated to local Neumann problems similar to those previously introduced for the HDG method, in
subsection 2.1.4, page 20:

u∗h = arg inf
v∗
h
∈X∗

h

1

2

∫

Ω

|∇h(v
∗
h − uh)|

2
a
dx−

∑

K∈Th

∫

∂K

(λh − uh) (a∇v∗h) .n ds

subject to

∫

K

v∗h dx =

∫

K

uh dx, ∀K ∈ Th

For any symmetric definite positive matrix c, we denote by |.|c the anisotropic norm in R
d defined

by |ξ|2
c
= ξ.(cξ) for all ξ ∈ R

d. The constraint correspond to the closure for the local Neumann
problems, as otherwise the solution would be defined up to a constant. This constrained min-
imization problem is not convenient for the numerical resolution and we prefer to impose it by
introducing a Lagrange multiplier ζh ∈ Zh with

Zh =
{
ξh ∈ L2(Ω) ; ξh|K ∈ P0, ∀K ∈ Th

}

The corresponding Lagrangian writes

Lr(u
∗, ζ) =

1

2

∫

Ω

|∇h(u
∗ − uh)|

2
a
dx−

∑

K∈Th

∫

∂K

(λh − uh) (a∇u∗) .n ds

+

∫

Ω

(u∗ − uh) ζ dx (2.6)



Chapter 2. [New] Hybrid discontinuous methods 27

and the reconstruction u∗h = rh(uh, λh) is characterized as the saddle-point of the Lagrangian:

(u∗h, ζh) = arg inf
v∗
h
∈X∗

h

sup
ξhZh

Lr(v
∗
h, ξh)

Since Lr is differentiable, its saddle point is also characterized as the unique solution of the
following collection of local variational problems:

(FV ∗)h: let (uh, λh) ∈ Xh ×Mh being given, find (u∗h, ζh) ∈ X∗
h × Zh such that





∫

K

∇u∗h. (a∇v
∗
h) dx+

∫

K

v∗hζh dx =

∫

K

∇uh. (a∇v
∗
h) dx+

∫

∂K

(λh − uh) (a∇v∗h) .n ds

∫

K

u∗hξh dx =

∫

K

uhξh dx

for all K ∈ Th and all (v∗h, ξh) ∈ X∗
h × Zh. Let

a∗h(u
∗, ζ; v∗, ξ) =

∫

Ω

(∇hu
∗. (a∇hv

∗) + v∗ζ + u∗ξ) dx

b∗h(uh, λh; v
∗, ξ) =

∫

Ω

(∇huh. (a∇hv
∗) + uhξ) dx+

∑

K∈Th

∫

∂K

(λh − uh) (a∇hv
∗) .n ds

Then, the previous reconstruction problem writes:

(FV ∗)h: let (uh, λh) ∈ Xh ×Mh being given, find (u∗h, ζh) ∈ X∗
h × Zh such that

a∗h(u
∗
h, ζh; v

∗
h, ξh) = b∗h(uh, λh; v

∗
h, ξh), ∀(v∗h, ξh) ∈ X∗

h × Zh

A carreful study shows that the matrix associated to the a∗h bilinear form has a block-diagonal
structure at the element level and its inverse can be easily builded explicitely by inverting on the
fly the element matrix during the assembly process. Then, the result of reconstruction operator
can be obtained at low computational cost, by simple matrix-vector multiplication.



28 Rheolef version 7.1

Example file 2.6: reconstruction hho.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod.h"
5 #include "diffusion_isotropic.h"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 string Pkd = (argc > 2) ? argv [2] : "P0",

10 Pld = (argc > 3) ? argv [3] : Pkd;
11 space Xh (omega , Pld),
12 Mh (omega ["sides"], Pkd);
13 size_t k = Xh.degree(), l = Mh.degree(), d = omega.dimension ();
14 check_macro(l == k-1 || l == k || l == k+1,
15 "invalid (k,l) = ("<<k<<","<<l< <")");
16 space Xhs(omega , "P"+itos(k+1)+"d"),
17 Zh (omega , "P0"),
18 Yh = Xhs*Zh;
19 trial u(Xh), lambda(Mh), x(Yh);
20 test v(Xh), mu (Mh), y(Yh);
21 auto us = x[0], zeta = x[1];
22 auto vs = y[0], xi = y[1];
23 integrate_option iopt;
24 iopt.invert = true;
25 form inv_m = integrate (u*v, iopt);
26 form ms = integrate (lambda*mu);
27 field lh = integrate(u_exact(d)*v);
28 field kh = integrate(u_exact(d)*mu);
29 field uh = inv_m*lh;
30 field lambda_h(Mh);
31 problem pms (ms);
32 pms.solve (kh , lambda_h );
33 form inv_as = integrate (dot(grad_h(us),a(d)* grad_h(vs)) + us*xi
34 + vs*zeta , iopt);
35 field lhs = integrate (dot(grad_h(uh),a(d)* grad_h(vs)) + uh*xi
36 + on_local_sides ((lambda_h -uh)
37 *dot(normal(),a(d)* grad_h(vs ))));
38 field xh = inv_as*lhs;
39 dout << catchmark ("us") << xh[0];
40 }

10
−16

10
−12

10
−8

10
−4

1

10
−3

10
−2

10
−1 1

‖u∗h − u‖0,2,Ω

2

3

4

5 = k + 2

h

k = 0

k = 1

k = 2

k = 3

10−12

10−8

10−4

1

10−3 10−2 10−1 1

‖∇(u∗h − u)‖0,2,Ω

1

2

3

4 = k + 1

h

k = 0
k = 1
k = 2
k = 3

Figure 2.6: Hybrid hight-order (HHO) method: error vs h and k for the reconstruction operator.

file://localhost/usr/share/doc/rheolef-doc/examples/reconstruction_hho.cc


Chapter 2. [New] Hybrid discontinuous methods 29

How to run the program

The compilation and run write:

make reconstruction_hho sinusprod_error_hho_reconstruction

mkgeo_grid -t 10 > square.geo

./reconstruction_hho square.geo P1d P1d | ./sinusprod_error_hho_reconstruction

The code ‘reconstruction hho.cc’ first computes uh and λh as L2 projections on Xh and Mh,
respectively, of a given function:

u(x) =

d−1∏

i=0

sin(πxi)

Then, it builds the reconstruction u∗h = rh(uh, λh) and output the result. Next,
the code ‘sinusprod error hho reconstruction.cc’ shows the L2 and H1 error
for the reconstruction u∗h. The files ‘sinusprod.h’, ‘diffusion isotropic.h’, and
‘sinusprod error hho reconstruction.cc’, that defines u and a, and that compute the
errors, respectively, are not listed here but is available in the Rheolef example directory. Fig. 2.6
plots the error versus mesh size h and the polynomial order k: the convergence order is k + 2
in the L2 norm and k + 1 in the H1 one, as expected (see Cockburn et al. [2016], eqn (2.9)
or di Pietro and Ern [2015], eqn (3)).

2.2.3 The projections

Let πXh
denotes the L2 projection from L2(Ω) into Xh. For all u∗ ∈ L2(Ω), it is defined as

πXh
(u∗) = ũh ∈ Xh, where ũh is the solution of the following quadratic minimization problem:

ũh = arg inf
ṽh∈Xh

1

2

∫

Ω

(u∗ − ṽh)
2dx

Let us consider the special case of computing the projection ũh = πXh
(u∗h) ∈ Xh of an ele-

ment u∗h ∈ X∗
h. The following bilinear forms are introduced:

m(ũ, ṽ) =

∫

Ω

ũ ṽ dx

c(u∗, ṽ) =

∫

Ω

u∗ ṽ dx

Then, the projection reduces to:

let u∗h ∈ X∗
h being given, find ũh ∈ Xh such that

m(ũh, ṽh) = c(u∗h, ṽh), ∀ṽh ∈ Xh

Note that the matrix associated to the bilinear form m from Xh ×Xh to R has a block-diagonal
structure at the element level and can be easily inverted on the fly during the assembly process.
Then, the result of projection operator can be obtained by simple matrix-vector multiplication.

Let us introduce the space M̃h that contains, inside each element, the trace of functions of T̃h
while W̃h contains piecewise discontinuous polynomial of degree k.

M̃h =
∏

K∈Th

∏

S⊂∂K

Pk(S)

Note that this space to those used in the context of the HDG method, in subsection 2.1.5, page 23.

TODO: create a new basis for space(omega,"broken trace(Pkd)") that implements M̃h.



30 Rheolef version 7.1

Let πM̃h
denote the L2 projection from L2(Sh) into M̃h. We consider the special case of computing

the projection λ̃h = πM̃h
(u∗h) ∈ M̃h of the restriction to Sh of an element u∗h ∈ X∗

h. It is defined
as

λ̃h = arg inf
µ̃h∈M̃h

1

2

∑

K∈Th

∫

∂K

(u∗h − µ̃h)
2ds

The following bilinear forms are introduced:

ms(λ̃, µ̃) =
∑

K∈Th

∫

∂K

λ̃ µ̃ ds

cs(u
∗, µ̃) =

∑

K∈Th

∫

∂K

u∗ µ̃ ds

Then, the projection reduces to:

let u∗h ∈ X∗
h being given, find λ̃h ∈ M̃h such that

ms(λ̃h, µ̃h) = cs(u
∗
h, µ̃h), ∀µ̃h ∈ M̃h

Here also, the matrix associated to the bilinear form ms from M̃h× M̃h to R has a block-diagonal
structure at the element level and can be easily inverted on the fly during the assembly process.
Then, the result of projection operator can be obtained by simple matrix-vector multiplication.

2.2.4 The discrete problem statement

The discretization of the diffusion problem (2.5a)-(2.5b) by the hybrid high-order (HHO)
method [Cockburn et al., 2016, p. 639] is expressed here as a minimization problem:

(uh, λh) = argmin
(vh,µh)∈Xh×Λh(0)

J1,h(vh, µh)

with

J1,h(u, λ) =

∫

Ω

(
1

2
|∇hrh(u, λ)|

2
a
− f u

)
dx+

1

2

∑

K∈Th

∑

S⊂∂K

∫

S

βh−1
S

(
πM̃h

(I − πXh
) rh(u, λ)

)2
ds

Λh(0) =
{
µh ∈Mh ; µh|S = 0, ∀S ⊂ ∂Ω

}

The space Λh(0) is introduced in order to impose the homogeneous Dirichet condition (2.5b).
Here β > 0 is a penalization parameter, which is a constant independent of the mesh size h,
while hK denotes a local mesh characteristic length in the element K ∈ Th.

The expression of J1,h is not convenient for practical implementation, as it involves both the
reconstruction operator rh and the projections πXh

and πM̃h
. Let us introduce the reconstruction

u∗h = rh(uh, µh) as an auxilliary variable and its associated Lagrangian, defined in (2.6), into a
new Lagrangian:

L2,h(u, u
∗, λ; ζ) =

∫

Ω

(
1

2
|∇hu

∗|2
a
− f u

)
dx+

1

2

∑

K∈Th

∑

S⊂∂K

∫

S

βh−1
S

(
πM̃h

(I − πXh
)u∗

)2
ds

+
1

2

∫

Ω

|∇h(u
∗ − u)|2

a
dx−

∑

K∈Th

∫

∂K

(λ− u) (a∇u∗) .n ds

+

∫

Ω

(u∗ − u) ζ dx

and the previous minimization problem can be equivalently expressed as a saddle point one:

(uh, u
∗
h, λh; ζh) = arg inf

vh ∈ Xh

v∗h ∈ X∗

h

µh ∈ Λh(0)

sup
ξhZh

L2,h(vh, v
∗
h, µh; ξh)



Chapter 2. [New] Hybrid discontinuous methods 31

The previous expression of L2,h still involves the two projectors πXh
and πM̃h

. These explicit
call to the projectors are not convenient for the practical implementation. Let us introduce the
two additional auxilliary variables ũh = πXh

(u∗h) and δ̃h = πM̃h
(u∗h − ũh). Then, we obtain the

following Lagrangian:

Lh(u, u
∗, ũ, δ̃, λ; ζ) =

∫

Ω

(
1

2
|∇hu

∗|2
a
− f u

)
dx+

1

2

∑

K∈Th

∑

S⊂∂K

∫

S

βh−1
S δ̃2 ds

+
1

2

∫

Ω

|∇h(u
∗ − u)|2

a
dx−

∑

K∈Th

∫

∂K

(λ− u) (a∇u∗) .n ds

+

∫

Ω

(u∗ − u) ζ dx

+
1

2

∫

Ω

(ũ− u∗)2dx+
1

2

∑

K∈Th

∫

∂K

(δ̃ − u∗ + ũ)2ds

and the previous minimization problem can be equivalently expressed as a saddle point one:

(uh, u
∗
h, ũh, δ̃h, λh; ζh) = arg inf

vh ∈ Xh

v∗h ∈ X∗

h

µh ∈ Λh(0)
ṽh ∈ Xh

γh ∈ M̃h

sup
ξhZh

Lh(vh, v
∗
h, ṽh, γ̃h, µh; ξh)

Since Lh is differentiable, its saddle point is characterized as the unique solution of the following
variational problem:

(FV )h: find (uh, u
∗
h, ũh, δ̃h, ζh) ∈ Xh ×X∗

h ×Xh × M̃h × Zh and λh ∈ Λh(0) such that
{
ah([uh, u

∗
h, ũh, δ̃h, ζh]; [vh, v

∗
h, ṽh, γ̃h, ξh]) + bh([vh, v

∗
h, ṽh, γ̃h, ξh]; λh) = ℓ(vh, v

∗
h, ṽh, γ̃h, ξh)

bh([uh, u
∗
h, ũh, δ̃h, ζh]; µh) = 0

for all (vh, v
∗
h, ṽh, γ̃h, ξh) ∈ Xh ×X∗

h ×Xh × M̃h × Zh and µh ∈ Λh(0), where

ah([u, u
∗, ũ, δ̃, ζ]; [v, v∗, ṽ, γ̃, ξ])

=

∫

Ω

(
∇hu

∗.(a∇hv
∗) +∇h(u

∗ − u).(a∇h(v
∗ − v)) + (u∗ − u) ξ + (v∗ − v) ζ

+ (ũ− u∗)(ṽ − v∗)

)
dx

+
∑

K∈Th

∑

S⊂∂K

∫

S

(
βh−1

S δ̃ γ̃ + u (a∇v∗) .n+ v (a∇u∗) .n + (δ̃ − u∗ + ũ)(γ̃ − v∗ + ṽ)
)
ds

bh([u, u
∗, ũ, δ̃, ζ]; µ) = −

∑

K∈Th

∫

∂K

µ (a∇u∗) .n ds

ℓh(v, v
∗, ṽ, γ̃, ξ) =

∫

Ω

f v dx

A carreful study shows that the matrix Ah associated to the ah bilinear form is symmetric indefinite
and has a block-diagonal structure at the element level. Its inverse A−1

h can be easily builded
explicitely by inverting on the fly the element matrix during the assembly process. Let us denote
by Bh the matrix associated to the bilinear form bh and by Lh the vector associated to the right-
hand side. Let us denote χh = (uh, u

∗
h, ũh, δ̃h, ζh) for convenience. The previous problem writes

in matrix-vector form:
(
Ah BTh
Bh 0

)(
χh
λh

)
=

(
ℓh
0

)

⇐⇒

{
(BhA

−1
h BTh )λh = BhA

−1
h ℓh

χh = A−1
h (ℓh −BTh λh)



32 Rheolef version 7.1

The only remaining unknown is the Lagrange multiplier λh in a linear system involving the Schur
complement matrix Sh = BhA

−1
h BTh . Then, the groups of all variables contained in χh is simply

obtained by a direct computation. The following code implements this technics:

Example file 2.7: dirichlet hho.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "dirichlet_homogeneous.h"
5 #include "diffusion_isotropic.h"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 string Pkd = (argc > 2) ? argv [2] : "P1d",

10 Pld = (argc > 3) ? argv [3] : Pkd;
11 Float beta = (argc > 4) ? atof(argv [4]) : 1;
12 space Xh (omega , Pld),
13 Mh (omega ["sides"], Pkd);
14 Mh.block(" boundary ");
15 size_t k = Xh.degree(), l = Mh.degree(), d = omega.dimension ();
16 check_macro(l == k-1 || l == k || l == k+1,
17 "invalid (k,l) = ("<<k<<","<<l< <")");
18 space Xhs(omega , "P"+itos(k+1)+"d"),
19 Zh (omega , "P0"),
20 Mht(omega , "trace(P"+itos(k)+"d)");
21 space Yh = Xh*Xhs*Xh*Mht*Zh;
22 trial x(Yh), lambda(Mh);
23 test y(Yh), mu(Mh);
24 auto u = x[0], us = x[1], ut = x[2], deltat = x[3], zeta = x[4];
25 auto v = y[0], vs = y[1], vt = y[2], gammat = y[3], xi = y[4];
26 integrate_option iopt;
27 iopt.invert = true;
28 form inv_a = integrate(dot(grad_h(us),a(d)* grad_h(vs))
29 + dot(grad_h(us)-grad_h(u),a(d)*( grad_h(vs)-grad_h(v)))
30 + (us -u)*xi + (vs -v)*zeta + (ut -us)*(vt -vs)
31 + on_local_sides(beta/h_local ()* deltat*gammat
32 + u*dot(a(d)* grad_h(vs),normal ())
33 + v*dot(a(d)* grad_h(us),normal ())
34 + (deltat - us + ut)*( gammat - vs + vt)), iopt);
35 form b = integrate(omega ,on_local_sides(-mu*dot(a(d)* grad_h(us),normal ())));
36 // TODO: remove omega , autodetect it ?
37 field lh = integrate (f(d)*v);
38 // TODO: f -> -f ? check the FV...
39 field lambda_h(Mh ,0);
40 form s = b*inv_a*trans(b);
41 field rh = b*( inv_a*lh);
42 problem p (s);
43 p.solve (rh, lambda_h );
44 field xh = inv_a*(lh - b.trans_mult(lambda_h ));
45 dout << catchmark ("beta") << beta << endl
46 << catchmark ("u") << xh[0]
47 << catchmark ("us") << xh[1]
48 << catchmark ("ut") << xh[2]
49 << catchmark ("delta ") << xh[3]
50 << catchmark ("zeta") << xh[4]
51 << catchmark (" lambda ") << lambda_h;
52 }

Example file 2.8: dirichlet homogeneous.h

1 struct f {
2 Float operator () (const point& x) const { return 1; }
3 f(size_t =0) {}
4 };
5 struct g {
6 Float operator () (const point& x) const { return 0; }
7 g(size_t =0) {}
8 };

file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_hho.cc
file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_homogeneous.h


Chapter 2. [New] Hybrid discontinuous methods 33

As usual, the right-hand-side f and the Dirichlet boundary condition g has been chosen such that
the exact solution is given by:

u(x) =

d−1∏

i=0

sin(πxi)

The files ‘sinusprod dirichlet.h’, that defines the data f and g, and ‘sinusprod error hdg.cc’,
that compute the error in various norms, are not listed here but are available in the Rheolef
example directory.

How to run the program

The compilation and run write:

make dirichlet_hho

mkgeo_grid -t 10 > square.geo

./dirichlet_hho square.geo 1 1 > square.field

field square.field -elevation

field square.field -elevation -mark lambda



34 Rheolef version 7.1



Bibliography

B. Cockburn, B. Dong, and J. Guzmán. A superconvergent LDG-hybridizable Galerkin method
for second-order elliptic problems. Math. Comput., 77(264):1887–1916, 2008.

B. Cockburn, J. Guzmán, and H. Wang. Superconvergent discontinuous Galerkin methods for
second-order elliptic problems. Math. Comput., 78(265):1–24, 2009.

B. Cockburn, J. Gopalakrishnan, and F.-J. Sayas. A projection-based error analysis of HDG
methods. Math. Comput., 79(271):1351–1367, 2010.

B. Cockburn, D. A. di Pietro, and A. Ern. Bridging the hybrid high-order and hybridizable
discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal., 50(3):635–650, 2016.

D. A. di Pietro and A. Ern. Hybrid high-order methods for variable-diffusion problems on general
meshes. C. R. Math., 353(1):31–34, 2015.

N. C. Nguyen, J. Peraire, and B. Cockburn. Hybridizable discontinuous Galerkin methods. In
Spectral and high order methods for partial differential equations, pages 63–84. Springer, 2011.

P.-A. Raviart and J.-M. Thomas. A mixed finite element method for 2-nd order elliptic problems.
In Mathematical aspects of finite element methods, pages 292–315. Springer, 1977.

J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In P. G. Ciarlet and J.-L. Lions,
editors, Handbook of numerical analysis. Volume 2. Finite element methods (part 1), chapter 4,
pages 524–639. Elsevier, 1991.

B. Stroustrup. C++ programming styles and libraries. InformIt.com, 0:0, 2002.

N. Wirth. Algorithm + data structure = programs. Prentice Hall, NJ, USA, 1985.

35



List of example files

commute rtd.cc, 11
dirichlet hdg.cc, 15
dirichlet hdg average.cc, 19
dirichlet hdg average.icc, 19
dirichlet hdg post.cc, 21
dirichlet hdg post rt.cc, 24
dirichlet hho.cc, 32
dirichlet homogeneous.h, 32
reconstruction hho.cc, 27
commute rtd error.cc, 11
cosinus vector.h, 11
diffusion isotropic.h, 28
sinusprod.h, 28
sinusprod dirichlet.h, 16
sinusprod error hdg.cc, 16
sinusprod error hdg average.cc, 19
sinusprod error hdg post rt.cc, 24
sinusprod error hho reconstruction.cc,

28

36



Index

approximation
Raviart-Thomas, 9, 23
discontinuous
trace, 23, 29

discontinuous, 9
Raviart-Thomas, 23

boundary condition
Dirichlet, 26

convergence
error
superconvergence, 17, 19

postprocessing, 20

Lagrange
multiplier, 10

matrix
Schur complement, 15, 32

norm
in H(div), 24
mesh-dependent on Sh, 18

numerical flux, 14

operator
average, across sides, 14
jump, across sides, 14

problem
diffusion, 26

projection
commuting, 10
in H(div), 9
in L2 norm, 29

37


	Notations
	[rgb]1,0,0[New] Approximation of the H(div) space
	The Raviart-Thomas element

	[rgb]1,0,0[New] Hybrid discontinuous methods
	Hybrid discontinuous Galerkin (HDG) methods
	The Poisson problem
	Superconvergence of the Lagrange multiplier
	Superconvergence of the piecewise averaged solution
	Improving the solution by local postprocessing
	Improving the gradient with the Raviart-Thomas element

	Hybrid high order (HHO) methods
	The diffusion problem
	The reconstruction operator
	The projections
	The discrete problem statement


	List of example files
	List of commands
	Index

