Rheolef  7.1
an efficient C++ finite element environment
stress.cc

The stress tensor for the linear elasticity and Stokes problems

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main(int argc, char** argv) {
environment rheolef (argc,argv);
Float inv_lambda;
field uh;
din >> catchmark("inv_lambda") >> inv_lambda
>> catchmark("u") >> uh;
const geo& omega = uh.get_geo();
const space& Xh = uh.get_space();
string grad_approx = "P" + itos(Xh.degree()-1) + "d";
space Th (omega, grad_approx, "tensor");
size_t d = omega.dimension();
field sigma_h = (inv_lambda == 0) ?
interpolate (Th, 2*D(uh)) :
interpolate (Th, 2*D(uh) + (1/inv_lambda)*div(uh)*I);
dout << catchmark("s") << sigma_h;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
idiststream din
see the diststream page for the full documentation
Definition: diststream.h:427
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
see the space page for the full documentation
see the tensor page for the full documentation
This file is part of Rheolef.
solver_basic< Float > eye()
see the eye page for the full documentation
Definition: eye.h:74
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
Definition: interpolate.cc:233
std::string itos(std::string::size_type i)
itos: see the rheostream page for the full documentation
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type D(const Expr &expr)
D(uh): see the expression page for the full documentation.
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::divergence >>::type div(const Expr &expr)
div(uh): see the expression page for the full documentation
rheolef - reference manual
int main(int argc, char **argv)
Definition: stress.cc:28