#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2017-2018 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy. If not, see <http://www.gnu.org/licenses/>.
"""Common functionality for SEVIRI L1.5 data readers.
Introduction
------------
*The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) is the primary
instrument on Meteosat Second Generation (MSG) and has the capacity to observe
the Earth in 12 spectral channels.*
*Level 1.5 corresponds to image data that has been corrected for all unwanted
radiometric and geometric effects, has been geolocated using a standardised
projection, and has been calibrated and radiance-linearised.*
(From the EUMETSAT documentation)
Satpy provides the following readers for SEVIRI L1.5 data in different formats:
- Native: :mod:`satpy.readers.seviri_l1b_native`
- HRIT: :mod:`satpy.readers.seviri_l1b_hrit`
- netCDF: :mod:`satpy.readers.seviri_l1b_nc`
Calibration
-----------
This section describes how to control the calibration of SEVIRI L1.5 data.
Calibration to radiance
^^^^^^^^^^^^^^^^^^^^^^^
The SEVIRI L1.5 data readers allow for choosing between two file-internal
calibration coefficients to convert counts to radiances:
- Nominal for all channels (default)
- GSICS where available (IR currently) and nominal for the remaining
channels (VIS & HRV currently)
In order to change the default behaviour, use the ``reader_kwargs`` keyword
argument upon Scene creation::
import satpy
scene = satpy.Scene(filenames,
reader='seviri_l1b_...',
reader_kwargs={'calib_mode': 'GSICS'})
scene.load(['VIS006', 'IR_108'])
Furthermore, it is possible to specify external calibration coefficients
for the conversion from counts to radiances. External coefficients take
precedence over internal coefficients, but you can also mix internal and
external coefficients: If external calibration coefficients are specified
for only a subset of channels, the remaining channels will be calibrated
using the chosen file-internal coefficients (nominal or GSICS).
Calibration coefficients must be specified in [mW m-2 sr-1 (cm-1)-1].
In the following example we use external calibration coefficients for the
``VIS006`` & ``IR_108`` channels, and nominal coefficients for the
remaining channels::
coefs = {'VIS006': {'gain': 0.0236, 'offset': -1.20},
'IR_108': {'gain': 0.2156, 'offset': -10.4}}
scene = satpy.Scene(filenames,
reader='seviri_l1b_...',
reader_kwargs={'ext_calib_coefs': coefs})
scene.load(['VIS006', 'VIS008', 'IR_108', 'IR_120'])
In the next example we use external calibration coefficients for the
``VIS006`` & ``IR_108`` channels, GSICS coefficients where available
(other IR channels) and nominal coefficients for the rest::
coefs = {'VIS006': {'gain': 0.0236, 'offset': -1.20},
'IR_108': {'gain': 0.2156, 'offset': -10.4}}
scene = satpy.Scene(filenames,
reader='seviri_l1b_...',
reader_kwargs={'calib_mode': 'GSICS',
'ext_calib_coefs': coefs})
scene.load(['VIS006', 'VIS008', 'IR_108', 'IR_120'])
Calibration to reflectance
^^^^^^^^^^^^^^^^^^^^^^^^^^
When loading solar channels, the SEVIRI L1.5 data readers apply a correction for
the Sun-Earth distance variation throughout the year - as recommended by
the EUMETSAT document
`Conversion from radiances to reflectances for SEVIRI warm channels`_.
In the unlikely situation that this correction is not required, it can be
removed on a per-channel basis using
:func:`satpy.readers.utils.remove_earthsun_distance_correction`.
References:
- `MSG Level 1.5 Image Data Format Description`_
- `Radiometric Calibration of MSG SEVIRI Level 1.5 Image Data in Equivalent Spectral Blackbody Radiance`_
.. _Conversion from radiances to reflectances for SEVIRI warm channels:
https://www-cdn.eumetsat.int/files/2020-04/pdf_msg_seviri_rad2refl.pdf
.. _MSG Level 1.5 Image Data Format Description:
https://www-cdn.eumetsat.int/files/2020-05/pdf_ten_05105_msg_img_data.pdf
.. _Radiometric Calibration of MSG SEVIRI Level 1.5 Image Data in Equivalent Spectral Blackbody Radiance:
https://www-cdn.eumetsat.int/files/2020-04/pdf_ten_msg_seviri_rad_calib.pdf
"""
import numpy as np
from numpy.polynomial.chebyshev import Chebyshev
import dask.array as da
from satpy.readers.utils import apply_earthsun_distance_correction
from satpy.readers.eum_base import (time_cds_short,
issue_revision)
from satpy import CHUNK_SIZE
PLATFORM_DICT = {
'MET08': 'Meteosat-8',
'MET09': 'Meteosat-9',
'MET10': 'Meteosat-10',
'MET11': 'Meteosat-11',
'MSG1': 'Meteosat-8',
'MSG2': 'Meteosat-9',
'MSG3': 'Meteosat-10',
'MSG4': 'Meteosat-11',
}
REPEAT_CYCLE_DURATION = 15
C1 = 1.19104273e-5
C2 = 1.43877523
VISIR_NUM_COLUMNS = 3712
VISIR_NUM_LINES = 3712
HRV_NUM_COLUMNS = 11136
HRV_NUM_LINES = 11136
CHANNEL_NAMES = {1: "VIS006",
2: "VIS008",
3: "IR_016",
4: "IR_039",
5: "WV_062",
6: "WV_073",
7: "IR_087",
8: "IR_097",
9: "IR_108",
10: "IR_120",
11: "IR_134",
12: "HRV"}
VIS_CHANNELS = ['HRV', 'VIS006', 'VIS008', 'IR_016']
# Polynomial coefficients for spectral-effective BT fits
BTFIT = {}
# [A, B, C]
BTFIT['IR_039'] = [0.0, 1.011751900, -3.550400]
BTFIT['WV_062'] = [0.00001805700, 1.000255533, -1.790930]
BTFIT['WV_073'] = [0.00000231818, 1.000668281, -0.456166]
BTFIT['IR_087'] = [-0.00002332000, 1.011803400, -1.507390]
BTFIT['IR_097'] = [-0.00002055330, 1.009370670, -1.030600]
BTFIT['IR_108'] = [-0.00007392770, 1.032889800, -3.296740]
BTFIT['IR_120'] = [-0.00007009840, 1.031314600, -3.181090]
BTFIT['IR_134'] = [-0.00007293450, 1.030424800, -2.645950]
SATNUM = {321: "8",
322: "9",
323: "10",
324: "11"}
CALIB = {}
# Meteosat 8
CALIB[321] = {'HRV': {'F': 78.7599},
'VIS006': {'F': 65.2296},
'VIS008': {'F': 73.0127},
'IR_016': {'F': 62.3715},
'IR_039': {'VC': 2567.33,
'ALPHA': 0.9956,
'BETA': 3.41},
'WV_062': {'VC': 1598.103,
'ALPHA': 0.9962,
'BETA': 2.218},
'WV_073': {'VC': 1362.081,
'ALPHA': 0.9991,
'BETA': 0.478},
'IR_087': {'VC': 1149.069,
'ALPHA': 0.9996,
'BETA': 0.179},
'IR_097': {'VC': 1034.343,
'ALPHA': 0.9999,
'BETA': 0.06},
'IR_108': {'VC': 930.647,
'ALPHA': 0.9983,
'BETA': 0.625},
'IR_120': {'VC': 839.66,
'ALPHA': 0.9988,
'BETA': 0.397},
'IR_134': {'VC': 752.387,
'ALPHA': 0.9981,
'BETA': 0.578}}
# Meteosat 9
CALIB[322] = {'HRV': {'F': 79.0113},
'VIS006': {'F': 65.2065},
'VIS008': {'F': 73.1869},
'IR_016': {'F': 61.9923},
'IR_039': {'VC': 2568.832,
'ALPHA': 0.9954,
'BETA': 3.438},
'WV_062': {'VC': 1600.548,
'ALPHA': 0.9963,
'BETA': 2.185},
'WV_073': {'VC': 1360.330,
'ALPHA': 0.9991,
'BETA': 0.47},
'IR_087': {'VC': 1148.620,
'ALPHA': 0.9996,
'BETA': 0.179},
'IR_097': {'VC': 1035.289,
'ALPHA': 0.9999,
'BETA': 0.056},
'IR_108': {'VC': 931.7,
'ALPHA': 0.9983,
'BETA': 0.64},
'IR_120': {'VC': 836.445,
'ALPHA': 0.9988,
'BETA': 0.408},
'IR_134': {'VC': 751.792,
'ALPHA': 0.9981,
'BETA': 0.561}}
# Meteosat 10
CALIB[323] = {'HRV': {'F': 78.9416},
'VIS006': {'F': 65.5148},
'VIS008': {'F': 73.1807},
'IR_016': {'F': 62.0208},
'IR_039': {'VC': 2547.771,
'ALPHA': 0.9915,
'BETA': 2.9002},
'WV_062': {'VC': 1595.621,
'ALPHA': 0.9960,
'BETA': 2.0337},
'WV_073': {'VC': 1360.337,
'ALPHA': 0.9991,
'BETA': 0.4340},
'IR_087': {'VC': 1148.130,
'ALPHA': 0.9996,
'BETA': 0.1714},
'IR_097': {'VC': 1034.715,
'ALPHA': 0.9999,
'BETA': 0.0527},
'IR_108': {'VC': 929.842,
'ALPHA': 0.9983,
'BETA': 0.6084},
'IR_120': {'VC': 838.659,
'ALPHA': 0.9988,
'BETA': 0.3882},
'IR_134': {'VC': 750.653,
'ALPHA': 0.9982,
'BETA': 0.5390}}
# Meteosat 11
CALIB[324] = {'HRV': {'F': 79.0035},
'VIS006': {'F': 65.2656},
'VIS008': {'F': 73.1692},
'IR_016': {'F': 61.9416},
'IR_039': {'VC': 2555.280,
'ALPHA': 0.9916,
'BETA': 2.9438},
'WV_062': {'VC': 1596.080,
'ALPHA': 0.9959,
'BETA': 2.0780},
'WV_073': {'VC': 1361.748,
'ALPHA': 0.9990,
'BETA': 0.4929},
'IR_087': {'VC': 1147.433,
'ALPHA': 0.9996,
'BETA': 0.1731},
'IR_097': {'VC': 1034.851,
'ALPHA': 0.9998,
'BETA': 0.0597},
'IR_108': {'VC': 931.122,
'ALPHA': 0.9983,
'BETA': 0.6256},
'IR_120': {'VC': 839.113,
'ALPHA': 0.9988,
'BETA': 0.4002},
'IR_134': {'VC': 748.585,
'ALPHA': 0.9981,
'BETA': 0.5635}}
[docs]def get_cds_time(days, msecs):
"""Compute timestamp given the days since epoch and milliseconds of the day.
1958-01-01 00:00 is interpreted as fill value and will be replaced by NaT (Not a Time).
Args:
days (int, either scalar or numpy.ndarray):
Days since 1958-01-01
msecs (int, either scalar or numpy.ndarray):
Milliseconds of the day
Returns:
numpy.datetime64: Timestamp(s)
"""
if np.isscalar(days):
days = np.array([days], dtype='int64')
msecs = np.array([msecs], dtype='int64')
time = np.datetime64('1958-01-01').astype('datetime64[ms]') + \
days.astype('timedelta64[D]') + msecs.astype('timedelta64[ms]')
time[time == np.datetime64('1958-01-01 00:00')] = np.datetime64("NaT")
if len(time) == 1:
return time[0]
return time
[docs]def dec10216(inbuf):
"""Decode 10 bits data into 16 bits words.
::
/*
* pack 4 10-bit words in 5 bytes into 4 16-bit words
*
* 0 1 2 3 4 5
* 01234567890123456789012345678901234567890
* 0 1 2 3 4
*/
ip = &in_buffer[i];
op = &out_buffer[j];
op[0] = ip[0]*4 + ip[1]/64;
op[1] = (ip[1] & 0x3F)*16 + ip[2]/16;
op[2] = (ip[2] & 0x0F)*64 + ip[3]/4;
op[3] = (ip[3] & 0x03)*256 +ip[4];
"""
arr10 = inbuf.astype(np.uint16)
arr16_len = int(len(arr10) * 4 / 5)
arr10_len = int((arr16_len * 5) / 4)
arr10 = arr10[:arr10_len] # adjust size
# dask is slow with indexing
arr10_0 = arr10[::5]
arr10_1 = arr10[1::5]
arr10_2 = arr10[2::5]
arr10_3 = arr10[3::5]
arr10_4 = arr10[4::5]
arr16_0 = (arr10_0 << 2) + (arr10_1 >> 6)
arr16_1 = ((arr10_1 & 63) << 4) + (arr10_2 >> 4)
arr16_2 = ((arr10_2 & 15) << 6) + (arr10_3 >> 2)
arr16_3 = ((arr10_3 & 3) << 8) + arr10_4
arr16 = da.stack([arr16_0, arr16_1, arr16_2, arr16_3], axis=-1).ravel()
arr16 = da.rechunk(arr16, arr16.shape[0])
return arr16
mpef_product_header = MpefProductHeader().get()
[docs]class SEVIRICalibrationAlgorithm:
"""SEVIRI calibration algorithms."""
def __init__(self, platform_id, scan_time):
"""Initialize the calibration algorithm."""
self._platform_id = platform_id
self._scan_time = scan_time
[docs] def convert_to_radiance(self, data, gain, offset):
"""Calibrate to radiance."""
data = data.where(data > 0)
return (data * gain + offset).clip(0.0, None)
def _erads2bt(self, data, channel_name):
"""Convert effective radiance to brightness temperature."""
cal_info = CALIB[self._platform_id][channel_name]
alpha = cal_info["ALPHA"]
beta = cal_info["BETA"]
wavenumber = CALIB[self._platform_id][channel_name]["VC"]
return (self._tl15(data, wavenumber) - beta) / alpha
[docs] def ir_calibrate(self, data, channel_name, cal_type):
"""Calibrate to brightness temperature."""
if cal_type == 1:
# spectral radiances
return self._srads2bt(data, channel_name)
elif cal_type == 2:
# effective radiances
return self._erads2bt(data, channel_name)
else:
raise NotImplementedError('Unknown calibration type')
def _srads2bt(self, data, channel_name):
"""Convert spectral radiance to brightness temperature."""
a__, b__, c__ = BTFIT[channel_name]
wavenumber = CALIB[self._platform_id][channel_name]["VC"]
temp = self._tl15(data, wavenumber)
return a__ * temp * temp + b__ * temp + c__
def _tl15(self, data, wavenumber):
"""Compute the L15 temperature."""
return ((C2 * wavenumber) /
np.log((1.0 / data) * C1 * wavenumber ** 3 + 1.0))
[docs] def vis_calibrate(self, data, solar_irradiance):
"""Calibrate to reflectance.
This uses the method described in Conversion from radiances to
reflectances for SEVIRI warm channels: https://tinyurl.com/y67zhphm
"""
reflectance = np.pi * data * 100.0 / solar_irradiance
return apply_earthsun_distance_correction(reflectance, self._scan_time)
[docs]class SEVIRICalibrationHandler:
"""Calibration handler for SEVIRI HRIT-, native- and netCDF-formats.
Handles selection of calibration coefficients and calls the appropriate
calibration algorithm.
"""
def __init__(self, platform_id, channel_name, coefs, calib_mode, scan_time):
"""Initialize the calibration handler."""
self._platform_id = platform_id
self._channel_name = channel_name
self._coefs = coefs
self._calib_mode = calib_mode.upper()
self._scan_time = scan_time
self._algo = SEVIRICalibrationAlgorithm(
platform_id=self._platform_id,
scan_time=self._scan_time
)
valid_modes = ('NOMINAL', 'GSICS')
if self._calib_mode not in valid_modes:
raise ValueError(
'Invalid calibration mode: {}. Choose one of {}'.format(
self._calib_mode, valid_modes)
)
[docs] def calibrate(self, data, calibration):
"""Calibrate the given data."""
if calibration == 'counts':
res = data
elif calibration in ['radiance', 'reflectance',
'brightness_temperature']:
gain, offset = self.get_gain_offset()
res = self._algo.convert_to_radiance(
data.astype(np.float32), gain, offset
)
else:
raise ValueError(
'Invalid calibration {} for channel {}'.format(
calibration, self._channel_name
)
)
if calibration == 'reflectance':
solar_irradiance = CALIB[self._platform_id][self._channel_name]["F"]
res = self._algo.vis_calibrate(res, solar_irradiance)
elif calibration == 'brightness_temperature':
res = self._algo.ir_calibrate(
res, self._channel_name, self._coefs['radiance_type']
)
return res
[docs] def get_gain_offset(self):
"""Get gain & offset for calibration from counts to radiance.
Choices for internal coefficients are nominal or GSICS. If no
GSICS coefficients are available for a certain channel, fall back to
nominal coefficients. External coefficients take precedence over
internal coefficients.
"""
coefs = self._coefs['coefs']
# Select internal coefficients for the given calibration mode
internal_gain = coefs['NOMINAL']['gain']
internal_offset = coefs['NOMINAL']['offset']
if self._calib_mode == 'GSICS':
gsics_gain = coefs['GSICS']['gain']
gsics_offset = coefs['GSICS']['offset'] * gsics_gain
if gsics_gain != 0 and gsics_offset != 0:
# If no GSICS coefficients are available for a certain channel,
# they are set to zero in the file.
internal_gain = gsics_gain
internal_offset = gsics_offset
# Override with external coefficients, if any.
gain = coefs['EXTERNAL'].get('gain', internal_gain)
offset = coefs['EXTERNAL'].get('offset', internal_offset)
return gain, offset
[docs]def chebyshev(coefs, time, domain):
"""Evaluate a Chebyshev Polynomial.
Args:
coefs (list, np.array): Coefficients defining the polynomial
time (int, float): Time where to evaluate the polynomial
domain (list, tuple): Domain (or time interval) for which the polynomial is defined: [left, right]
Reference: Appendix A in the MSG Level 1.5 Image Data Format Description.
"""
return Chebyshev(coefs, domain=domain)(time) - 0.5 * coefs[0]
[docs]def calculate_area_extent(area_dict):
"""Calculate the area extent seen by a geostationary satellite.
Args:
area_dict: A dictionary containing the required parameters
center_point: Center point for the projection
resolution: Pixel resulution in meters
north: Northmost row number
east: Eastmost column number
west: Westmost column number
south: Southmost row number
[column_offset: Column offset, defaults to 0 if not given]
[row_offset: Row offset, defaults to 0 if not given]
Returns:
tuple: An area extent for the scene defined by the lower left and
upper right corners
"""
# For Earth model 2 and full disk resolution center point
# column and row is (1856.5, 1856.5)
# See: MSG Level 1.5 Image Data Format Description, Figure 7
cp_c = area_dict['center_point'] + area_dict.get('column_offset', 0)
cp_r = area_dict['center_point'] + area_dict.get('row_offset', 0)
# Calculate column and row for lower left and upper right corners.
ll_c = (area_dict['west'] - cp_c)
ll_r = (area_dict['north'] - cp_r + 1)
ur_c = (area_dict['east'] - cp_c - 1)
ur_r = (area_dict['south'] - cp_r)
aex = np.array([ll_c, ll_r, ur_c, ur_r]) * area_dict['resolution']
return tuple(aex)
[docs]def create_coef_dict(coefs_nominal, coefs_gsics, radiance_type, ext_coefs):
"""Create coefficient dictionary expected by calibration class."""
return {
'coefs': {
'NOMINAL': {
'gain': coefs_nominal[0],
'offset': coefs_nominal[1],
},
'GSICS': {
'gain': coefs_gsics[0],
'offset': coefs_gsics[1]
},
'EXTERNAL': ext_coefs
},
'radiance_type': radiance_type
}
[docs]def get_padding_area(shape, dtype):
"""Create a padding area filled with no data."""
if np.issubdtype(dtype, np.floating):
init_value = np.nan
else:
init_value = 0
padding_area = da.full(shape, init_value, dtype=dtype, chunks=CHUNK_SIZE)
return padding_area
[docs]def pad_data_horizontally(data, final_size, east_bound, west_bound):
"""Pad the data given east and west bounds and the desired size."""
nlines = final_size[0]
if west_bound - east_bound != data.shape[1] - 1:
raise IndexError('East and west bounds do not match data shape')
padding_east = get_padding_area((nlines, east_bound - 1), data.dtype)
padding_west = get_padding_area((nlines, (final_size[1] - west_bound)), data.dtype)
return np.hstack((padding_east, data, padding_west))
[docs]def pad_data_vertically(data, final_size, south_bound, north_bound):
"""Pad the data given south and north bounds and the desired size."""
ncols = final_size[1]
if north_bound - south_bound != data.shape[0] - 1:
raise IndexError('South and north bounds do not match data shape')
padding_south = get_padding_area((south_bound - 1, ncols), data.dtype)
padding_north = get_padding_area(((final_size[0] - north_bound), ncols), data.dtype)
return np.vstack((padding_south, data, padding_north))