knitpy: dynamic report generation with python
Jan Schulz
12.03.2015

This is a port of knitr (http://yihui.name/knitr/) and rmarkdown (http://
rmarkdown.rstudio.com/) to python.

For a complete description of the code format see http://rmarkdown.rstudio.com/
and replace {r...} by {python ...} and of course use python code blocks. ..

Examples

Here are some examples:
print ("Execute some code chunk and show the result")
Execute some code chunk and show the result

Codechunks which contain lines without output (e.g. assign the result or com-
ments) will be shown in the same code block:

A comment

text = "All code in the same code block until some output is produced..."
more_text = "...and some more."
print (text)

All code in the same code block until some output is produced...

print (more_text)

...and some more.

http://yihui.name/knitr/
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/

Code chunk arguments

You can use different arguments in the codechunk declaration. Using echo=False
will not show the code but only the result.

Only the output will be visible as “echo=False”

The next paragraphs explores the code chunk argument results.

If ‘hide’, knitpy will not display the code’s results in the final document. If
‘hold’, knitpy will delay displaying all output pieces until the end of the chunk.
If “asis’, knitpy will pass through results without reformatting them (useful if
results return raw HTML, etc.)

results='hold' is not yet implemented.
print("Only the input is displayed, not the output")

This is formatted as markdown:
*xThis text**x will be bold...

This text will be bold. ..

Note: with python code it is recommended to use the IPython/Jupyter display
system and an appropriate wrapper (see below) to display such output and not
results="asis". This makes it possible to convert such output if the output
can’t be included in the final format.

You can also not show codeblocks at all, but they will be run (not included
codeblock sets have_run = True):

if have_run == True:
print (" 'have_run==True': ran the codeblock before this one.")

'have_run==True': ran the codeblock before this one.

Using eval=False, one can prevent the evaluation of the codechunk

x += 1 # this 1s not executed as eval is False
X # stell 1

1

To remove/hide a codechunk completely, i.e. neither execute it nor show the
code, you can use both eval=False, include=False: nothing will be shown
between this text ...

x += 1 # this is not exzecuted and not even shown

. and this text here!

The prefix in front of text output (per default ##) can be changed via the
comment chunk option to a different string or completely removed by setting it
to a empty string ""or None:

print ("Text output")
result: Text output
print("Text output")
Text output

Inline code

You can also include code inline: “m=2" (expected: “m=2")

IPython / Jupyter display framework

The display framework is also supported.

Plots will be included as images and included in the document. The filename of
the plot is derived from the chunk label (“sinus” in this case). The code is not
shown in this case (echo=False).

Il

2 3 4 5 6 7 8 9 10

_1_0 Il Il Il

If a html or similar thing is displayed via the IPython display framework, it will
be included ‘as is’, meaning that apart from text/plain-only output, everything
else will be included without marking it up as output. Knitpy automagically
tries to include only formats which are understood by pandoc and the final
output format (in some case converting the format to one which the final output
can handle).

from IPython.core.display import display, HTML
display (HTML("strong text"))

strong text

It even handles pandas.DataFrames (be aware that not all formatting can be
converted into all output formats):

import pandas as pd

pd.set_option("display.width", 200)

s = """This is longer text"""

df = pd.DataFrame({"a":[1,2,3,4,5],"b":[s,"b","c",s,"e"]})
daf

a b
0 1 This is longer text
1 2 b

a b
2 3 c
3 4 This is longer text
4 5 e

pandas.DataFrame can be represented as text/plain or text/html, but will
default to the html version. To force plain text, use either print (df) or set the
right pandas option:

pd.set_option("display.notebook_repr_html", False)
df

a b
0 1 This is longer text
1 2 b
2 3 c
3 4 This is longer text
4 5 e

set back the display
pd.set_option("display.notebook_repr_html", True)

You can also use package like tabulate together with results="asis" or by
wrapping it with the appropriate display class:

from tabulate import tabulate

from IPython.core.display import Markdown

either print and use “results="asis"’
print(tabulate(df, list(df.columns), tablefmt="simple"))

a b
0 1 This is longer text
1 2 b
2 3 c
3 4 This is longer text
4 5 e

or use the IPython display framework to publish markdown
Markdown (tabulate(df, list(df.columns), tablefmt="simple"))

https://bitbucket.org/astanin/python-tabulate

a b
0 1 This is longer text
1 2 b
2 3 c
3 4 This is longer text
4 5 e

Note that the second version (wrapping it in Markdown) is preferred, as this
marks the output with the right mimetype and therefore can be converted—if
that’s needed—to something which the output format understands!

Unfortunately, html tables have to be tweaked for the final output format as
e.g. too width tables spill over the page margin in PDF.

Error handling

Errors in code are shown with a bold error text:

import sys
print(sys.not_available)

ERROR: AttributeError: ‘module’ object has no attribute ‘not_ available’

AttributeError Traceback (most recent call last)
<ipython-input-37-a5971246c0f7> in <module>()
--—-> 1 print(sys.not_available)

AttributeError: 'module' object has no attribute 'not_available'

for x in [J:
print("No indention...")

ERROR: Code invalid

	Examples
	Code chunk arguments
	Inline code
	IPython / Jupyter display framework
	Error handling

