
New-System-Call(libexplain) New-System-Call(libexplain)

NAME
new system call − How to add a new system call to libexplain

DESCRIPTION
Adding a new system call to libexplain is both simple and tedious.

In this example, the system call is called example, and takes two arguments, pathname and flags.

example(const char *pathname, int flags);

The libexplain library presents a C interface to the user, and explains the C system calls. It tries to avoid

dynamic memory, and has several helper functions and structures to make this simpler.

Naming Conventions

In general, one function per file. This gives the static linker more opportunity to leave things out, thus pro-

ducing smaller executables. Exceptions to make use of static common functions are acceptable. No

savings for shared libraries, of course.

Functions that write their output into a explain_string_buffer_t via the explain_string_buffer_*

functions, all have a filename of libexplain/buffer/something.

Functions that write their output to a message, message_size pair have a message path component in their

file name.

Functions that accept an errno value as an argument have an errno path component in their file name,

called errnum. If a function has both a buffer and an errno, the buffer comes first, both in the argument

list, and the file’s name. If a function has both a message+size and an errno, the message comes first, both

in the argument list, and the file’s name.

MODIFIED FILES
Note that the codegen command does most of the work for you. Pass it the function prototype (in single

quotes) and it will do most of the work.

$ bin/codegen ’example(const char *pathname, int flags);’

creating catalogue/example

$

then you mast edit the catalogue/example file to make any adjustment necessary. This file is then

used to do the boring stuff:

$ bin/codegen example

creating explain/syscall/example.c

creating explain/syscall/example.h

creating libexplain/buffer/errno/example.c

creating libexplain/buffer/errno/example.h

creating libexplain/example.c

creating libexplain/example.h

creating libexplain/example_or_die.c

creating man/man3/explain_example.3

creating man/man3/explain_example_or_die.3

creating test_example/main.c

modify explain/syscall.c

modify libexplain/libexplain.h

modify man/man1/explain.1

modify man/man3/explain.3

$

All of these files have been added to the Aegis change set. Edit the last 4 to place the appended line in their

correct positions within the files, respecting the symbol sort ordering of each file.

libexplain/libexplain.h

The libexplain/libexplain.h include file defines the user API. It, and any files it includes, are in-

stalled into $(prefix)/include by make install.

This file needs another include line. This means that the entire API is available to the user as a single

1

New-System-Call(libexplain) New-System-Call(libexplain)

include directive.

#include <libexplain/example.h>

This file is also used to decide which files are installed by the make install command.

Take care that none of those files, directly or indirectly, wind up including libexplain/config.h

which is generated by the configure script, and has no namespace protection.

This means you can’t #include <stddef.h>, or use any of the types it defines, because on older sys-

tems configure works quite hard to cope with its absence. Ditto <unistd.h> and <sys/types.h>.

explain/main.c

Include the include file for the new function, and add the function to the table.

man/man1/explain.1

Add a description of the new system call.

man/man3/libexplain.3

Add your new man pages, man/man3/explain_example.3 and man/man3/explain_example_or_die.3, to the

list. Keep the list sorted.

NEW FILES
Note that the codegen command does most of the work for you. Pass it the function prototype (in single

quotes) and it will do most of the work.

libexplain/buffer/errno/example.c

The central file for adding a new example is libexplain/buffer/errno/example.c Which defines

a function

void explain_buffer_errno_example(explain_string_buffer_t *buffer,

int errnum, const char *pathname, int flags);

The errnum argument holds the errno value. Note that calling errno usually has problems because many

systems have errno as a macro, which makes the compiler barf, and because there are times you want ac-

cess to the global errno, and having it shadowed by the argument is a nuisance.

This function writes its output into the buffer via the explain_string_buffer_printf, etc, func-

tions. First the argument list is reprinted.

The explain_string_buffer_puts_quoted function should be used to print pathnames, because

it uses full C quoting and escape sequences.

If an argument is a file descriptor, it should be called fildes, short for “file descriptor”. On systems capable

of it, the file descriptor can be mapped to a pathname using the explain_buf-

fer_fildes_to_pathname function. This makes explanations for system calls like read and write

much more informative.

Next comes a switch on the errnum value, and additional explanation is given for each errno value docu-

mented (or sometimes undocumented) for that system call. Copy-and-paste of the man page is often useful

as a basis for the text of the explanation, but be sure it is open source documentation, and not Copyright

proprietary text.

Don’t forget to check the existing libexplain/buffer/e*.h files for pre-canned explanations for

common errors. Some pre-canned explanations include

EACCES explain_buffer_eacces

EADDRINUSE explain_buffer_eaddrinuse

EAFNOSUPPORT explain_buffer_eafnosupport

EBADF explain_buffer_ebadf

EFAULT explain_buffer_efault

EFBIG explain_buffer_efbig

EINTR explain_buffer_eintr

EINVAL explain_buffer_einval_vague, etc

2

New-System-Call(libexplain) New-System-Call(libexplain)

EIO explain_buffer_eio

ELOOP explain_buffer_eloop

EMFILE explain_buffer_emfile

EMLINK explain_buffer_emlink

ENAMETOOLONG explain_buffer_enametoolong

ENFILE explain_buffer_enfile

ENOBUFS explain_buffer_enobufs

ENOENT explain_buffer_enoent

ENOMEM explain_buffer_enomem

ENOTCONN explain_buffer_enotconn

ENOTDIR explain_buffer_enotdir

ENOTSOCK explain_buffer_enotsock

EROFS explain_buffer_erofs

ETXTBSY explain_buffer_etxtbsy

EXDEV explain_buffer_exdev

libexplain/buffer/errno/example.h

This file holds the function prototype for the above function definition.

libexplain/example.h

The file contains the user visible API for the example system call. There are five function prototypes de-

clared in this file:

void explain_example_or_die(const char *pathname, int flags);

void explain_example(const char *pathname, int flags);

void explain_errno_example(int errnum, const char *pathname, int flags);

void explain_message_example(const char *message, int message_size,

const char *pathname, int flags);

void explain_message_errno_example(const char *message, int mes-

sage_size, int errnum, const char *pathname, int flags);

The function prototypes for these appear in the libexplain/example.h include file.

Each function prototype shall be accompanied by thorough Doxygen style comments. These are extracted

and placed on the web site.

The buffer functions are never part of the user visible API.

libexplain/example_or_die.c

One function per file, explain_example_or_die in this case. It simply calls example and then, if fails,

explain_example to print why, and then exit(EXIT_FAILURE).

libexplain/example.c

One function per file, explain_example in this case. It simply calls explain_errno_example to pass

in the global errno value.

libexplain/errno/example.c

One function per file, explain_errno_example in this case. It calls explain_message_er-

rno_example, using the <libexplain/global_message_buffer.h> to hold the string.

libexplain/message/example.c

One function per file, explain_message_example in this case. It simply calls explain_mes-

sage_errno_example to pass in the global errno value.

libexplain/message/errno/example.c

One function per file, explain_message_errno_example in this case. It declares and initializes a

explain_string_buffer_t instance, which ensures that the message buffer will not be exceeded,

and passes that buffer to the explain_buffer_errno_example function.

man/man3/explain_example.3

This file also documents the error explanations functions, except explain_example_or_dir. Use the

same text as you did in libexplain/example.h

3

New-System-Call(libexplain) New-System-Call(libexplain)

man/man3/explain_example_or_die.3

This file also documents the helper function. Use the same text as you did in libexplain/example.h

explain/example.c

Glue to turn the command line into arguments to a call to explain_example

explain/example.h

Function prototype for the above.

test_example/main.c

This program should call explain_explain_or_die.

NEW IOCTL REQUESTS
Each different ioctl(2) request is, in effect, yet another system call. Except that they all have appallingly

bad type safety. I have seen fugly C++ classes with less overloading than ioctl(2).

libexplain/iocontrol/request_by_number.c

This file has one include line for each ioctl(2) request. There is a table array that contains a

pointer to the explain_iocontrol_t variable declared in the include file (see next). Keep both sets of

lines sorted alphabetically, it makes it easier to detect duplicates.

libexplain/iocontrol/name.h

Where name is the name of the ioctl(2) request in lower case. This declares an global const vari-

able describing how to handle it.

libexplain/iocontrol/name.c

This defines the above global variable, and defines any static glue functions necessary to print a

representation of it. You will probably have to read the kernel source to discover the errors the

ioctl can return, and what causes them, in order to write the explanation function; they are almost

never described in the man pages.

TESTS
Write at least one separate test for each case in the errnum switch.

Debian Notes
You can check that the Debian stuff builds by using

apt-get install pbuilder

pbuiler create

pbuilder login

now copy the files from web-site/debian/ into the chroot

cd libexplain−*

dpkg−checkbuilddeps

apt−get install what dpkg−checkbuilddeps said

apt−get install devscripts

debuild

This should report success.

COPYRIGHT
libexplain version

Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

4

