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Abstract

PyX is a Python package for the creation of PostScript, PDF, and SVG files. It combines an abstraction of the
PostScript drawing model with a TeX/LaTeX interface. Complex tasks like 2d and 3d plots in publication-ready
quality are built out of these primitives.

CONTENTS 1
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CHAPTER

ONE

INTRODUCTION

PyX is a Python package for the creation of vector graphics. As such it readily allows one to generate encapsulated
PostScript files by providing an abstraction of the PostScript graphics model. Based on this layer and in combination
with the full power of the Python language itself, the user can just code any complexity of the figure wanted. PyX
distinguishes itself from other similar solutions by its TeX/LaTeX interface that enables one to make direct use of the
famous high quality typesetting of these programs.

A major part of PyX on top of the already described basis is the provision of high level functionality for complex tasks
like 2d plots in publication-ready quality.

1.1 Organisation of the PyX package

The PyX package is split into several modules, which can be categorised in the following groups

Functionality Modules
basic graphics functionality canvas, path, deco, style, color, and connector
text output via TeX/LaTeX text and box
linear transformations and units trafo and unit
graph plotting functionality graph (including submodules) and graph.axis (including submodules)
EPS file inclusion epsfile

These modules (and some other less import ones) are imported into the module namespace by using

from pyx import *

at the beginning of the Python program. However, in order to prevent namespace pollution, you may also simply use
import pyx. Throughout this manual, we shall always assume the presence of the above given import line.

3
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CHAPTER

TWO

BASIC GRAPHICS

2.1 Introduction

The path module allows one to construct PostScript-like paths, which are one of the main building blocks for the
generation of drawings. A PostScript path is an arbitrary shape consisting of straight lines, arc segments and cubic
Bézier curves. Such a path does not have to be connected but may also comprise several disconnected segments, which
will be called subpaths in the following.

Todo: example for paths and subpaths (figure)

Usually, a path is constructed by passing a list of the path primitives moveto, lineto, curveto, etc., to the
constructor of the path class. The following code snippet, for instance, defines a path p that consists of a straight line
from the point (0, 0) to the point (1, 1)

from pyx import *
p = path.path(path.moveto(0, 0), path.lineto(1, 1))

Equivalently, one can also use the predefined path subclass line and write

p = path.line(0, 0, 1, 1)

While already some geometrical operations can be performed with this path (see next section), another PyX object is
needed in order to actually being able to draw the path, namely an instance of the canvas class. By convention, we
use the name c for this instance:

c = canvas.canvas()

In order to draw the path on the canvas, we use the stroke() method of the canvas class, i.e.,

c.stroke(p)
c.writeEPSfile("line")

To complete the example, we have added a writeEPSfile() call, which writes the contents of the canvas to the
file line.eps. Note that an extension .eps is added automatically, if not already present in the given filename.
Similarly, if you want to generate a PDF or SVG file instead, use

c.writePDFfile("line")

or

c.writeSVGfile(“line”)

As a second example, let us define a path which consists of more than one subpath:

5
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cross = path.path(path.moveto(0, 0), path.rlineto(1, 1),
path.moveto(1, 0), path.rlineto(-1, 1))

The first subpath is again a straight line from (0, 0) to (1, 1), with the only difference that we now have used the
rlineto class, whose arguments count relative from the last point in the path. The second moveto instance opens
a new subpath starting at the point (1, 0) and ending at (0, 1). Note that although both lines intersect at the point
(1/2, 1/2), they count as disconnected subpaths. The general rule is that each occurrence of a moveto instance opens
a new subpath. This means that if one wants to draw a rectangle, one should not use

rect1 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.moveto(0, 1), path.lineto(1, 1),
path.moveto(1, 1), path.lineto(1, 0),
path.moveto(1, 0), path.lineto(0, 0))

which would construct a rectangle out of four disconnected subpaths (see Fig. Rectangle example a). In a better
solution (see Fig. Rectangle example b), the pen is not lifted between the first and the last point:

(a) (b) (c) (d)

Fig. 1: Rectangle example
Rectangle consisting of (a) four separate lines, (b) one open path, and (c) one closed path. (d) Filling a path always closes it

automatically.

rect2 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0),
path.lineto(0, 0))

However, as one can see in the lower left corner of Fig. Rectangle example b, the rectangle is still incomplete. It needs
to be closed, which can be done explicitly by using for the last straight line of the rectangle (from the point (0, 1) back
to the origin at (0, 0)) the closepath directive:

rect3 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0),
path.closepath())

The closepath directive adds a straight line from the current point to the first point of the current subpath and
furthermore closes the sub path, i.e., it joins the beginning and the end of the line segment. This results in the intended
rectangle shown in Fig. Rectangle example c. Note that filling the path implicitly closes every open subpath, as is
shown for a single subpath in Fig. Rectangle example d), which results from

c.stroke(rect2, [deco.filled([color.grey(0.5)])])

Here, we supply as second argument of the stroke() method a list which in the present case only consists of a
single element, namely the so called decorator deco.filled. As its name says, this decorator specifies that the
path is not only being stroked but also filled with the given color. More information about decorators, styles and other
attributes which can be passed as elements of the list can be found in Sect. Attributes: Styles and Decorations. More
details on the available path elements can be found in Sect. Path elements.

To conclude this section, we should not forget to mention that rectangles are, of course, predefined in PyX, so above
we could have as well written

6 Chapter 2. Basic graphics
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rect2 = path.rect(0, 0, 1, 1)

Here, the first two arguments specify the origin of the rectangle while the second two arguments define its width and
height, respectively. For more details on the predefined paths, we refer the reader to Sect. Predefined paths.

2.2 Path operations

Often, one wants to perform geometrical operations with a path before placing it on a canvas by stroking or filling it.
For instance, one might want to intersect one path with another one, split the paths at the intersection points, and then
join the segments together in a new way. PyX supports such tasks by means of a number of path methods, which we
will introduce in the following.

Suppose you want to draw the radii to the intersection points of a circle with a straight line. This task can be done
using the following code which results in Fig. Example: Intersection of circle with line yielding two radii

from pyx import *

c = canvas.canvas()

circle = path.circle(0, 0, 2)
line = path.line(-3, 1, 3, 2)
c.stroke(circle, [style.linewidth.Thick])
c.stroke(line, [style.linewidth.Thick])

isects_circle, isects_line = circle.intersect(line)
for isect in isects_circle:

isectx, isecty = circle.at(isect)
c.stroke(path.line(0, 0, isectx, isecty))

c.writePDFfile()

Fig. 2: Example: Intersection of circle with line yielding two radii

Here, the basic elements, a circle around the point (0, 0) with radius 2 and a straight line, are defined. Then, passing
the line, to the intersect() method of circle, we obtain a tuple of parameter values of the intersection points. The
first element of the tuple is a list of parameter values for the path whose intersect() method has been called,
the second element is the corresponding list for the path passed as argument to this method. In the present example,
we only need one list of parameter values, namely isects_circle. Using the at() path method to obtain the point
corresponding to the parameter value, we draw the radii for the different intersection points.

Another powerful feature of PyX is its ability to split paths at a given set of parameters. For instance, in order to fill
in the previous example the segment of the circle delimited by the straight line (cf. Fig. Example: Intersection of

2.2. Path operations 7
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circle with line yielding radii and circle segment), one first has to construct a path corresponding to the outline of this
segment. The following code snippet yields this segment

arc1, arc2 = circle.split(isects_circle)
if arc1.arclen() < arc2.arclen():

arc = arc1
else:

arc = arc2

isects_line.sort()
line1, line2, line3 = line.split(isects_line)

segment = line2 << arc

Fig. 3: Example: Intersection of circle with line yielding radii and circle segment

Here, we first split the circle using the split() method passing the list of parameters obtained above. Since the
circle is closed, this yields two arc segments. We then use the arclen(), which returns the arc length of the path,
to find the shorter of the two arcs. Before splitting the line, we have to take into account that the split() method
only accepts a sorted list of parameters. Finally, we join the straight line and the arc segment. For this, we make use
of the << operator, which not only adds the paths (which could be done using line2 + arc), but also joins the last
subpath of line2 and the first one of arc. Thus, segment consists of only a single subpath and filling works as expected.

An important issue when operating on paths is the parametrisation used. Internally, PyX uses a parametrisation which
uses an interval of length 1 for each path element of a path. For instance, for a simple straight line, the possible
parameter values range from 0 to 1, corresponding to the first and last point, respectively, of the line. Appending
another straight line, would extend this range to a maximal value of 2.

However, the situation becomes more complicated if more complex objects like a circle are involved. Then, one could
be tempted to assume that again the parameter value ranges from 0 to 1, because the predefined circle consists just
of one arc together with a closepath element. However, this is not the case: the actual range is much larger.
The reason for this behaviour lies in the internal path handling of PyX: Before performing any non-trivial geometrical
operation on a path, it will automatically be converted into an instance of the normpath class (see also Sect. path.
normpath). These so generated paths are already separated in their subpaths and only contain straight lines and
Bézier curve segments. XXX explain normpathparams and things like p.begin(), p.end()-1,

A more geometrical way of accessing a point on the path is to use the arc length of the path segment from the first
point of the path to the given point. Thus, all PyX path methods that accept a parameter value also allow the user to
pass an arc length. For instance,

from math import pi

r = 2
pt1 = path.circle(0, 0, r).at(r*pi)
pt2 = path.circle(0, 0, r).at(r*3*pi/2)

(continues on next page)

8 Chapter 2. Basic graphics



PyX Manual, Release 0.15

(continued from previous page)

c.stroke(path.path(path.moveto(*pt1), path.lineto(*pt2)))

will draw a straight line from a point at angle 180 degrees (in radians 𝜋) to another point at angle 270 degrees (in
radians 3𝜋/2) on a circle with radius 𝑟 = 2. Note however, that the mapping from an arc length to a point is in general
discontinuous at the beginning and the end of a subpath, and thus PyX does not guarantee any particular result for this
boundary case.

More information on the available path methods can be found in Sect. Class path — PostScript-like paths.

2.3 Attributes: Styles and Decorations

Attributes define properties of a given object when it is being used. Typically, there are different kinds of attributes
which are usually orthogonal to each other, while for one type of attribute, several choices are possible. An example
is the stroking of a path. There, linewidth and linestyle are different kind of attributes. The linewidth might be thin,
normal, thick, etc., and the linestyle might be solid, dashed etc.

Attributes always occur in lists passed as an optional keyword argument to a method or a function. Usually, attributes
are the first keyword argument, so one can just pass the list without specifying the keyword. Again, for the path
example, a typical call looks like

c.stroke(path, [style.linewidth.Thick, style.linestyle.dashed])

Here, we also encounter another feature of PyX’s attribute system. For many attributes useful default values are stored
as member variables of the actual attribute. For instance, style.linewidth.Thick is equivalent to style.
linewidth(0.04, type="w", unit="cm"), that is 0.04 width cm (see Sect. Module unit for more infor-
mation about PyX’s unit system).

Another important feature of PyX attributes is what is call attributed merging. A trivial example is the following:

# the following two lines are equivalent
c.stroke(path, [style.linewidth.Thick, style.linewidth.thin])
c.stroke(path, [style.linewidth.thin])

Here, the style.linewidth.thin attribute overrides the preceding style.linewidth.Thick declaration.
This is especially important in more complex cases where PyX defines default attributes for a certain operation. When
calling the corresponding methods with an attribute list, this list is appended to the list of defaults. This way, the
user can easily override certain defaults, while leaving the other default values intact. In addition, every attribute kind
defines a special clear attribute, which allows to selectively delete a default value. For path stroking this looks like

# the following two lines are equivalent
c.stroke(path, [style.linewidth.Thick, style.linewidth.clear])
c.stroke(path)

The clear attribute is also provided by the base classes of the various styles. For instance, style.strokestyle.
clear clears all strokestyle subclasses i.e. style.linewidth and style.linestyle. Since all attributes
derive from attr.attr, you can remove all defaults using attr.clear. An overview over the most important
attribute types provided by PyX is given in the following table.

2.3. Attributes: Styles and Decorations 9
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Attribute
category

description examples

deco.
deco

decorator specifying
the way the path is
drawn

deco.stroked, deco.filled, deco.arrow, deco.text

style.
strokestyle

style used for path
stroking

style.linecap, style.linejoin, style.miterlimit,
style.dash, style.linestyle, style.linewidth, color.
color

style.
fillstyle

style used for path fill-
ing

color.color, pattern.pattern

style.
filltype

type of path filling style.fillrule.nonzero_winding (default), style.
fillrule.even_odd

deformer.
deformer

operations changing
the shape of the path

deformer.cycloid, deformer.smoothed

text.
textattr

attributes used for
typesetting

text.halign, text.valign, text.mathmode, text.
phantom, text.size, text.parbox

trafo.
trafo

transformations ap-
plied when drawing
object

trafo.mirror, trafo.rotate, trafo.scale, trafo.
slant, trafo.translate

Todo: specify which classes in the table are in fact instances

Note that operations usually allow for certain attribute categories only. For example when stroking a path, text at-
tributes are not allowed, while stroke attributes and decorators are. Some attributes might belong to several attribute
categories like colours, which are both, stroke and fill attributes.

Last, we discuss another important feature of PyX’s attribute system. In order to allow the easy customisation of
predefined attributes, it is possible to create a modified attribute by calling of an attribute instance, thereby specifying
new parameters. A typical example is to modify the way a path is stroked or filled by constructing appropriate deco.
stroked or deco.filled instances. For instance, the code

c.stroke(path, [deco.filled([color.rgb.green])])

draws a path filled in green with a black outline. Here, deco.filled is already an instance which is modified to fill
with the given color. Note that an equivalent version would be

c.draw(path, [deco.stroked, deco.filled([color.rgb.green])])

In particular, you can see that deco.stroked is already an attribute instance, since otherwise you were not allowed
to pass it as a parameter to the draw method. Another example where the modification of a decorator is useful are
arrows. For instance, the following code draws an arrow head with a more acute angle (compared to the default value
of 45 degrees):

c.stroke(path, [deco.earrow(angle=30)])

Todo: changeable attributes

10 Chapter 2. Basic graphics
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MODULE PATH

The path module defines several important classes which are documented in the present section.

3.1 Class path — PostScript-like paths

class path.path(*pathitems)
This class represents a PostScript like path consisting of the path elements pathitems.

All possible path items are described in Sect. Path elements. Note that there are restrictions on the first path
element and likewise on each path element after a closepath directive. In both cases, no current point is
defined and the path element has to be an instance of one of the following classes: moveto, arc, and arcn.

Instances of the class path provide the following methods (in alphabetic order):

path.append(pathitem)
Appends a pathitem to the end of the path.

path.arclen()
Returns the total arc length of the path.1

path.arclentoparam(lengths)
Returns the parameter value(s) corresponding to the arc length(s) lengths.1

path.at(params)
Returns the coordinates (as 2-tuple) of the path point(s) corresponding to the parameter value(s) params.12

path.atbegin()
Returns the coordinates (as 2-tuple) of the first point of the path.1

path.atend()
Returns the coordinates (as 2-tuple) of the end point of the path.1

path.bbox()
Returns the bounding box of the path.

path.begin()
Returns the parameter value (a normpathparam instance) of the first point in the path.

path.curveradius(params)
Returns the curvature radius/radii (or None if infinite) at parameter value(s) params.2 This is the inverse of

1 This method requires a prior conversion of the path into a normpath instance. This is done automatically (using the precision epsilon set
globally using path.set()). If you need a different epsilon for a normpath, you also can perform the conversion manually.

2 In these methods, params may either be a single value or a list. In the latter case, the result of the method will be a list consisting of the results
for each parameter. The parameter itself may either be a length (or a number which is then interpreted as a user length) or an instance of the class
normpathparam. In the former case, the length refers to the arc length along the path.

11
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the curvature at this parameter. Note that this radius can be negative or positive, depending on the sign of the
curvature.1

path.end()
Returns the parameter value (a normpathparam instance) of the last point in the path.

path.extend(pathitems)
Appends the list pathitems to the end of the path.

path.intersect(opath)
Returns a tuple consisting of two lists of parameter values corresponding to the intersection points of the path
with the other path opath, respectively.1 For intersection points which are not farther apart then epsilon (default-
ing to 10−5 PostScript points), only one is returned.

path.joined(opath)
Appends opath to the end of the path, thereby merging the last subpath (which must not be closed) of the path
with the first sub path of opath and returns the resulting new path.1 Instead of using the joined() method,
you can also join two paths together with help of the << operator, for instance p = p1 << p2.

path.normpath(epsilon=None)
Returns the equivalent normpath. For the conversion and for later calculations with this normpath an
accuracy of epsilon is used. If epsilon is None, the global epsilon of the path module is used.

path.paramtoarclen(params)
Returns the arc length(s) corresponding to the parameter value(s) params.21

path.range()
Returns the maximal parameter value param that is allowed in the path methods.

path.reversed()
Returns the reversed path.1

path.rotation(params)
Returns a transformation or a list of transformations, which rotate the x-direction to the tangent vector and the
y-direction to the normal vector at the parameter value(s) params.21

path.split(params)
Splits the path at the parameter values params, which have to be sorted in ascending order, and returns a corre-
sponding list of normpath instances.1

path.tangent(params, length=1)
Return a line instance or a list of line instances, corresponding to the tangent vectors at the parameter
value(s) params.2 The tangent vector will be scaled to the length length.1

path.trafo(params)
Returns a transformation or a list of tranformations, which translate the origin to a point on the path corre-
sponding to parameter value(s) params and rotate the x-direction to the tangent vector and the y-direction to the
normal vector.1

path.transformed(trafo)
Returns the path transformed according to the linear transformation trafo. Here, trafo must be an instance of
the trafo.trafo class.1

12 Chapter 3. Module path
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3.2 Path elements

The class pathitem is the superclass of all PostScript path construction primitives. It is never used directly, but only
by instantiating its subclasses, which correspond one by one to the PostScript primitives.

Except for the path elements ending in _pt, all coordinates passed to the path elements can be given as number (in
which case they are interpreted as user units with the currently set default type) or in PyX lengths.

The following operation move the current point and open a new subpath:

class path.moveto(x, y)
Path element which sets the current point to the absolute coordinates (x, y). This operation opens a new subpath.

class path.rmoveto(dx, dy)
Path element which moves the current point by (dx, dy). This operation opens a new subpath.

Drawing a straight line can be accomplished using:

class path.lineto(x, y)
Path element which appends a straight line from the current point to the point with absolute coordinates (x, y),
which becomes the new current point.

class path.rlineto(dx, dy)
Path element which appends a straight line from the current point to the point with relative coordinates (dx, dy),
which becomes the new current point.

For the construction of arc segments, the following three operations are available:

class path.arc(x, y, r, angle1, angle2)
Path element which appends an arc segment in counterclockwise direction with absolute coordinates (x, y) of
the center and radius r from angle1 to angle2 (in degrees). If before the operation, the current point is defined,
a straight line from the current point to the beginning of the arc segment is prepended. Otherwise, a subpath,
which thus is the first one in the path, is opened. After the operation, the current point is at the end of the arc
segment.

class path.arcn(x, y, r, angle1, angle2)
Same as arc but in clockwise direction.

class path.arct(x1, y1, x2, y2, r)
Path element consisting of a line followed by an arc of radius r. The arc is part of the circle inscribed to the
angle at x1, y1 given by lines in the directions to the current point and to x2, y2. The initial line connects the
current point to the point where the circle touches the line through the current point and x1, y1. The arc then
continues to the point where the circle touches the line through x1, y1 and x2, y2.

Bézier curves can be constructed using:

class path.curveto(x1, y1, x2, y2, x3, y3)
Path element which appends a Bézier curve with the current point as first control point and the other control
points (x1, y1), (x2, y2), and (x3, y3).

class path.rcurveto(dx1, dy1, dx2, dy2, dx3, dy3)
Path element which appends a Bézier curve with the current point as first control point and the other control
points defined relative to the current point by the coordinates (dx1, dy1), (dx2, dy2), and (dx3, dy3).

Note that when calculating the bounding box (see Sect. bbox) of Bézier curves, PyX uses for performance reasons
the so-called control box, i.e., the smallest rectangle enclosing the four control points of the Bézier curve. In general,
this is not the smallest rectangle enclosing the Bézier curve.

Finally, an open subpath can be closed using:

class path.closepath
Path element which closes the current subpath.

3.2. Path elements 13
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For performance reasons, two non-PostScript path elements are defined, which perform multiple identical operations:

class path.multilineto_pt(points_pt)
Path element which appends straight line segments starting from the current point and going through the list of
points given in the points_pt argument. All coordinates have to be given in PostScript points.

class path.multicurveto_pt(points_pt)
Path element which appends Bézier curve segments starting from the current point. points_pt is a sequence of
6-tuples containing the coordinates of the two control points and the end point of a multicurveto segment.

3.3 Class normpath

The normpath class is used internally for all non-trivial path operations, cf. footnote1 in Sect. Class path —
PostScript-like paths. It represents a path as a list of subpaths, which are instances of the class normsubpath. These
normsubpaths themselves consist of a list of normsubpathitems which are either straight lines (normline)
or Bézier curves (normcurve).

A given path p can easily be converted to the corresponding normpath np by:

np = p.normpath()

Additionally, the accuracy that is used in all normpath calculations can be specified by means of the argument
epsilon, which defaults to 10−5, where units of PostScript points are understood. This default value can also be
changed using the module function path.set().

To construct a normpath from a list of normsubpath instances, they are passed to the normpath constructor:

class path.normpath(normsubpaths=[])
Construct a normpath consisting of subnormpaths, which is a list of subnormpath instances.

Instances of normpath offer all methods of regular path instances, which also have the same semantics. An
exception are the methods append() and extend(). While they allow for adding of instances of subnormpath
to the normpath instance, they also keep the functionality of a regular path and allow for regular path elements to be
appended. The latter are converted to the proper normpath representation during addition.

In addition to the path methods, a normpath instance also offers the following methods, which operate on the
instance itself, i.e., modify it in place.

normpath.join(other)
Join other, which has to be a path instance, to the normpath instance.

normpath.reverse()
Reverses the normpath instance.

normpath.transform(trafo)
Transforms the normpath instance according to the linear transformation trafo.

Finally, we remark that the sum of a normpath and a path always yields a normpath.

14 Chapter 3. Module path
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3.4 Class normsubpath

class path.normsubpath(normsubpathitems=[], closed=0, epsilon=1e-5)
Construct a normsubpath consisting of normsubpathitems, which is a list of normsubpathitem instances.
If closed is set, the normsubpathwill be closed, thereby appending a straight line segment from the first to the
last point, if it is not already present. All calculations with the normsubpath are performed with an accuracy
of epsilon (in units of PostScript points).

Most normsubpath methods behave like the ones of a path.

Exceptions are:

normsubpath.append(anormsubpathitem)
Append the normsubpathitem to the end of the normsubpath instance. This is only possible if the
normsubpath is not closed, otherwise an NormpathException is raised.

normsubpath.extend(normsubpathitems)
Extend the normsubpath instances by normsubpathitems, which has to be a list of normsubpathitem
instances. This is only possible if the normsubpath is not closed, otherwise an NormpathException is
raised.

normsubpath.close()
Close the normsubpath instance by appending a straight line segment from the first to the last point, if not
already present.

3.5 Predefined paths

For convenience, some often used paths are already predefined. All of them are subclasses of the path class.

class path.line(x0, y0, x1, y1)
A straight line from the point (x0, y0) to the point (x1, y1).

class path.curve(x0, y0, x1, y1, x2, y2, x3, y3)
A Bézier curve with control points (x0, y0), . . ., (x3, y3).

class path.rect(x, y, w, h)
A closed rectangle with lower left point (x, y), width w, and height h.

class path.circle(x, y, r)
A closed circle with center (x, y) and radius r.

3.4. Class normsubpath 15
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CHAPTER

FOUR

MODULE METAPOST.PATH

The metapost subpackage provides some of the path functionality of the MetaPost program. The metapost.
path presents the path construction facility of MetaPost.

Similarly to the normpath, there is a short length epsilon (always in Postscript points pt) used as accuracy of numer-
ical operations, such as calculating angles from short path elements, or for omitting such short path elements, etc. The
default value is 10−5 and can be changed using the module function metapost.set().

4.1 Class path — MetaPost-like paths

class metapost.path.path(pathitems, epsilon=None)
This class represents a MetaPost-like path which is created from the given list of knots and curves/lines. It can
find an optimal way through given points.

At points (knots), you can either specify a given tangent direction (angle in degrees) or a certain curlyness
(relative to the curvature at the other end of a curve), or nothing. In the latter case, both the tangent and the mock
curvature (an approximation to the real curvature, introduced by J. D. Hobby in MetaPost) will be continuous.

The shape of the cubic Bezier curves between two points is controlled by its tension, unless you choose to set
the control points manually.

All possible path items are described below. They are either Knots or Links. Note that there is no explicit
closepath class. Whether the path is open or closed depends on the type of knots used, begin endpoints or not.
Note also that the number of knots and links must be equal for closed paths, and that you cannot create a path
comprising closed subpaths.

The epsilon argument governs the accuracy of the calculations implied in creating the path (see above). The
value None means fallback to the default epsilon of the module.

Instances of the class path inherit all properties of the Postscript paths in path.

4.2 Knots

class metapost.path.beginknot(x, y, curl=1, angle=None)
The first knot, starting an open path at the coordinates (x, y). The properties of the curve in that point can either
be given by its curlyness (default) or the angle of its tangent vector (in degrees). The curl parameter is (as in
MetaPost) the ratio of the curvatures at this point and at the other point of the curve connecting it.

class metapost.path.startknot(x, y, curl=1, angle=None)
Synonym for beginknot.

class metapost.path.endknot(x, y, curl=1, angle=None)
The last knot of an open path. Curlyness and angle are the same as in beginknot.

17



PyX Manual, Release 0.15

class metapost.path.smoothknot(x, y)
This knot is the standard knot of MetaPost. It guarantees continuous tangent vectors and mock curvatures of the
two curves it connects.

Note: If one of the links is a line, the knot is changed to a roughknot with either a specified angle (if the
keepangles parameter is set in the line) or with curl=1.

class metapost.path.roughknot(x, y, left_curl=1, right_curl=None, left_angle=None,
right_angle=None)

This knot is a possibly non-smooth knot, connecting two curves or lines. At each side of the knot (left/right)
you can specify either the curlyness or the tangent angle.

Note: If one of the links is a line with the keepangles parameter set, the angles will be set eplicitly, regardless of
any curlyness set.

class metapost.path.knot(x, y)
Synonym for smoothknot.

4.3 Links

class metapost.path.line(keepangles=False)
A straight line which corresponds to the MetaPost command “–”. The option keepangles will guarantee a
continuous tangent. (The curvature may become discontinuous, however.) This behavior is achieved by turning
adjacent knots into roughknots with specified angles. Note that a smoothknot and a roughknot with given
curlyness do behave differently near a line.

class metapost.path.tensioncurve(ltension=1, latleast=False, rtension=None, ratleast=None)
The standard type of curve in MetaPost. It corresponds to the MetaPost command “..” or to “. . . ” if the atleast
parameters are set to True. The tension parameters indicate the tensions at the beginning (l) and the end (r) of
the curve. Set the parameters (l/r)atleast to True if you want to avoid inflection points.

class metapost.path.controlcurve(lcontrol, rcontrol)
A cubic Bezier curve which has its control points explicity set, similar to the path.curveto class of the
Postscript paths. The control points at the beginning (l) and the end (r) must be coordinate pairs (x, y).

class metapost.path.curve(ltension=1, latleast=False, rtension=None, ratleast=None)
Synonym for tensioncurve.
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CHAPTER

FIVE

MODULE DEFORMER: PATH DEFORMERS

The deformer module provides techniques to generate modulated paths. All classes in the deformer module can
be used as attributes when drawing/stroking paths onto a canvas. Alternatively new paths can be created by deforming
an existing path by means of the deform() method.

All classes of the deformer module provide the following methods:

class deformer.deformer

deformer.__call__((specific parameters for the class))
Returns a deformer with modified parameters

deformer.deform(path)
Returns the deformed normpath on the basis of the path. This method allows using the deformers outside of a
drawing call.

The deformer classes are the following:

class deformer.cycloid(radius, halfloops=10, skipfirst=1 * unit.t_cm, skiplast=1 * unit.t_cm, curves-
perhloop=3, sign=1, turnangle=45)

This deformer creates a cycloid around a path. The outcome looks similar to a 3D spring stretched along the
original path.

radius: the radius of the cycloid (this is the radius of the 3D spring)

halfloops: the number of half-loops of the cycloid

skipfirst and skiplast: the lengths on the original path not to be bent to a cycloid

curvesperhloop: the number of Bezier curves to approximate a half-loop

sign: for sign>=0 the cycloid starts to the left of the path, whereas for sign<0 it starts to the right.

turnangle: the angle of perspective on the 3D spring. At turnangle=0 results in a sinusoidal curve, whereas
for turnangle=90 one essentially obtains a circle.

class deformer.smoothed(radius, softness=1, obeycurv=0, relskipthres=0.01)
This deformer creates a smoothed variant of the original path. The smoothing is done on the basis of the corners
of the original path, not on a global scope! Therefore, the result might not be what one would draw by hand. At
each corner (or wherever two path elements meet) a piece of twice the radius is taken out of the original path
and replaced by a curve. This curve is determined by the tangent directions and the curvatures at its endpoints.
Both are taken from the original path, and therefore, the new curve fits into the gap in a geometrically smooth
way. Path elements that are shorter than radius × relskipthres are ignored.

The new curve smoothing the corner consists either of one or of two Bezier curves, depending on the surrounding
path elements. If there are straight lines before and after the new curve, then two Bezier curves are used. This
optimises the bending of curves in rectangular boxes or polygons. Here, the curves have an additional degree of
freedom that can be set with softness ∈ (0, 1]. If one of the concerned path elements is curved, only one Bezier
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curve is used that is (not always uniquely) determined by its geometrical constraints. There are, nevertheless,
some caveats:

A curve that strictly obeys the sign and magnitude of the curvature might not look very smooth in some cases.
Especially when connecting a curved with a straight piece, the smoothed path contains unwanted overshootings.
To prevent this, the parameter default obeycurv=0 releases the curvature constraints a little: The curvature may
then change its sign (still looks smooth for human eyes) or, in more extreme cases, even its magnitude (does
not look so smooth). If you really need a geometrically smooth path on the basis of Bezier curves, then set
obeycurv=1.

class deformer.parallel(distance, relerr=0.05, sharpoutercorners=0, dointersection=1, checkdis-
tanceparams=[0.5], lookforcurvatures=11)

This deformer creates a parallel curve to a given path. The result is similar to what is usually referred to as
the set with constant distance to the set of points on the path. It differs in one important respect, because the
distance parameter in the deformer is a signed distance. The resulting parallel normpath is constructed on the
level of the original pathitems. For each of them a parallel pathitem is constructed. Then, they are connected by
circular arcs (or by sharp edges) around the corners of the original path. Later, everything that is nearer to the
original path than distance is cut away.

There are some caveats:

• When the original path is too curved then the parallel path would contain points with infinte curvature.
The resulting path stops at such points and leaves the too strongly curved piece out.

• When the original path contains on or more self-intersections, then the resulting parallel path is not contin-
uous in the parameterisation of the original path. This may result in the surprising behaviour that a piece
that corresponding to a “later” parameter value is followed by an “earlier” one.

The parameters are the following:

distance is the minimal (signed) distance between the original and the parallel paths.

relerr is the allowed relative error in the distance.

sharpoutercorners connects the parallel pathitems by a wegde made of straight lines, instead of taking circular
arcs. This preserves the angle of the original corners.

dointersection is a boolean for performing the last step, the intersection step, in the path construction. Setting
this to 0 gives the full parallel path, which can be favourable for self-intersecting paths.

checkdistanceparams is a list of parameter values in the interval (0,1) where the distance is checked on each
parallel pathitem.

lookforcurvatures is the number of points per normpathitem where its curvature is checked for critical values.
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CHAPTER

SIX

MODULE CANVAS

In addition it contains the class canvas.clip which allows clipping of the output.

6.1 Class canvas

This is the basic class of the canvas module. Instances of this class collect visual elements like paths, other canvases,
TeX or LaTeX elements. A canvas may also be embedded in another one using its insert method. This may be
useful when you want to apply a transformation on a whole set of operations.

class canvas.canvas(attrs=[], texrunner=None, ipython_bboxenlarge=1 * unit.t_pt)
Construct a new canvas, applying the given attrs, which can be instances of trafo.trafo, canvas.clip,
style.strokestyle or style.fillstyle. The texrunner argument can be used to specify the texrun-
ner instance used for the text() method of the canvas. If not specified, it defaults to text.defaulttexrunner.
ipython_bboxenlarge defines the bboxenlarge document.page for IPython’s _repr_png_ and _repr_svg_.

Paths can be drawn on the canvas using one of the following methods:

canvas.draw(path, attrs)
Draws path on the canvas applying the given attrs. Depending on the attrs the path will be filled, stroked,
ornamented, or a combination thereof. For the common first two cases the following two convenience functions
are provided.

canvas.fill(path, attrs=[])
Fills the given path on the canvas applying the given attrs.

canvas.stroke(path, attrs=[])
Strokes the given path on the canvas applying the given attrs.

Arbitrary allowed elements like other canvas instances can be inserted in the canvas using

canvas.insert(item, attrs=[])
Inserts an instance of base.canvasitem into the canvas. If attrs are present, item is inserted into a new
canvas instance with attrs as arguments passed to its constructor. Then this canvas instance is inserted itself
into the canvas.

Text output on the canvas is possible using

canvas.text(x, y, text, attrs=[])
Inserts text at position (x, y) into the canvas applying attrs. This is a shortcut for insert(texrunner.
text(x, y, text, attrs)).

To group drawing operations, layers can be used:

canvas.layer(name, above=None, below=None)
This method creates or gets a layer with name name.
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A layer is a canvas itself and can be used to combine drawing operations for ordering purposes, i.e., what is
above and below each other. The layer name name is a dotted string, where dots are used to form a hierarchy
of layer groups. When inserting a layer, it is put on top of its layer group except when another layer instance of
this group is specified by means of the parameters above or below.

The canvas class provides access to the total geometrical size of its element:

canvas.bbox()
Returns the bounding box enclosing all elements of the canvas (see Sect. bbox).

A canvas also allows to set its TeX runner:

canvas.settexrunner(texrunner)
Sets a new texrunner for the canvas.

The contents of the canvas can be written to a file using the following convenience methods, which wrap the canvas
into a single page document.

canvas.writeEPSfile(file, **kwargs)
Writes the canvas to file using the EPS format. file either has to provide a write method or it is used as a
string containing the filename (the extension .eps is appended automatically, if it is not present). This method
constructs a single page document, passing kwargs to the document.page constructor for all kwargs starting
with page_ (without this prefix) and calls the writeEPSfile() method of this document.document
instance passing the file and all kwargs starting with write_ (without this prefix).

canvas.writePSfile(file, *args, **kwargs)
Similar to writeEPSfile() but using the PS format.

canvas.writePDFfile(file, *args, **kwargs)
Similar to writeEPSfile() but using the PDF format.

canvas.writeSVGfile(file, *args, **kwargs)
Similar to writeEPSfile() but using the SVG format.

canvas.writetofile(filename, *args, **kwargs)
Determine the file type (EPS, PS, PDF, or SVG) from the file extension of filename and call the corresponding
write method with the given arguments arg and kwargs.

canvas.pipeGS(device, resolution=100, gscmd='gs', gsoptions=[], textalphabits=4, graphicsalphabits=4,
ciecolor=False, input='eps', **kwargs)

This method pipes the content of a canvas to the ghostscript interpreter to generate other output formats. The
output is returned by means of a python BytesIO object. device specifies a ghostscript output device by a string.
Depending on the ghostscript configuration "png16", "png16m", "png256", "png48", "pngalpha",
"pnggray", "pngmono", "jpeg", and "jpeggray" might be available among others. See the output of
gs --help and the ghostscript documentation for more information.

resolution specifies the resolution in dpi (dots per inch). gs is the name of the ghostscript executable. gsoptions
is a list of additional options passed to the ghostscript interpreter. textalphabits and graphicsalphabits are
convenient parameters to set the TextAlphaBits and GraphicsAlphaBits options of ghostscript. The
addition of these options can be skipped by setting their values to None. ciecolor adds the -dUseCIEColor
flag to improve the CMYK to RGB color conversion. input can be either "eps" or "pdf" to select the input
type to be passed to ghostscript (note slightly different features available in the different input types regarding
e.g. epsfile inclusion and transparency).

kwargs are passed to the writeEPSfile()method (not counting the file parameter), which is used to generate
the input for ghostscript. By that you gain access to the document.page constructor arguments.

canvas.writeGSfile(filename=None, device=None, **kwargs)
This method is similar to pipeGS, but the content is written into the file filename. If filename is None it is auto-
guessed from the script name. If filename is “-“, the output is written to stdout. In both cases, a device needs to
be specified to define the format (and the file suffix in case the filename is created from the script name).
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If device is None, but a filename with suffix is given, PNG files will be written using the png16m device and
JPG files using the jpeg device.

All other arguments are identical to those of the canvas.pipeGS().

For more information about the possible arguments of the document.page constructor, we refer to Sect.
document.

6.2 Class clip

In addition the canvas module contains the class canvas.clip which allows for clipping of the output by passing a
clipping instance to the attrs parameter of the canvas constructor.

6.2. Class clip 23
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SEVEN

MODULE DOCUMENT

The document module contains two classes: document and page. A document consists of one or several pages.

7.1 Class page

A page is a thin wrapper around a canvas, which defines some additional properties of the page.

class document.page(canvas, pagename=None, paperformat=None, rotated=0, centered=1, fitto-
size=0, margin=1 * unit.t_cm, bboxenlarge=1 * unit.t_pt, bbox=None)

Construct a new page from the given canvas instance. A string pagename and the paperformat can be
defined. See below, for a list of known paper formats. If rotated is set, the output is rotated by 90 degrees on the
page. If centered is set, the output is centered on the given paperformat. If fittosize is set, the output is scaled to
fill the full page except for a given margin. Normally, the bounding box of the canvas is calculated automatically
from the bounding box of its elements. In any case, the bounding box is enlarged on all sides by bboxenlarge.
Alternatively, you may specify the bbox manually.

7.2 Class document

class document.document(pages=[])
Construct a document consisting of a given list of pages.

A document can be written to a file using one of the following methods:

document.writeEPSfile(file, title=None, stripfonts=True, textaspath=False, meshasbitmap=False, me-
shasbitmapresolution=300)

Write a single page document to an EPS file or to stdout if file is set to -. title is used as the document title,
stripfonts enabled font stripping (removal of unused glyphs), textaspath converts all text to paths instead of using
fonts in the output, meshasbitmap converts meshs (like 3d surface plots) to bitmaps (to reduce complexity in the
output) and meshasbitmapresolution is the resolution of this conversion in dots per inch.

document.writePSfile(file, writebbox=False, title=None, stripfonts=True, textaspath=False, meshas-
bitmap=False, meshasbitmapresolution=300)

Write document to a PS file or to to stdout if file is set to -. writebbox add the page bounding boxes to the
output. All other parameters are identical to the writeEPSfile() method.

document.writePDFfile(file, title=None, author=None, subject=None, keywords=None,
fullscreen=False, writebbox=False, compress=True, compresslevel=6,
stripfonts=True, textaspath=False, meshasbitmap=False, meshasbitmapreso-
lution=300)

Write document to a PDF file or to stdout if file is set to -. author, subject, and keywords are used for the
document author, subject, and keyword information, respectively. fullscreen enabled fullscreen mode when the
document is opened, writebbox enables writing of the crop box to each page, compress enables output stream
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compression and compresslevel sets the compress level to be used (from 1 to 9). All other parameters are
identical to the writeEPSfile().

document.writeSVGfile(file, textaspath=True, meshasbitmapresolution=300)
Write document to a SVG file or to stdout if file is set to -. The textaspath and meshasbitmapresolution
have the same meaning as in writeEPSfile(). However, not the different default for textaspath due to the
missing SVG font support by current browsers. In addition, there is no meshasbitmap flag, as meshs are always
stored using bitmaps in SVG.

document.writetofile(filename, *args, **kwargs)
Determine the file type (EPS, PS, PDF, or SVG) from the file extension of filename and call the corresponding
write method with the given arguments arg and kwargs.

7.3 Class paperformat

class document.paperformat(width, height, name=None)
Define a paperformat with the given width and height and the optional name.

Predefined paperformats are listed in the following table

instance name width height
document.paperformat.A0 A0 840 mm 1188 mm
document.paperformat.A0b 910 mm 1370 mm
document.paperformat.A1 A1 594 mm 840 mm
document.paperformat.A2 A2 420 mm 594 mm
document.paperformat.A3 A3 297 mm 420 mm
document.paperformat.A4 A4 210 mm 297 mm
document.paperformat.A5 A5 148.5 mm 210 mm
document.paperformat.Letter Letter 8.5 inch 11 inch
document.paperformat.Legal Legal 8.5 inch 14 inch
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CHAPTER

EIGHT

TEXT

8.1 Rationale

The text module is used to create text output. It seamlessly integrates Donald E. Knuths famous TeX typesetting
engine1. The module is a high-level interface to an extensive stack of TeX and font related functionality in PyX, whose
details are way beyond this manual and completely irrelevant for the typical PyX user. However, the basic concept
should be described briefly, as it provides important insights into essential properties of the whole machinery.

PyX does not apply any limitations on the text submitted by the user. Instead the text is directly passed to TeX. This
has the implication, that the text to be typeset should come from a trusted source or some special security measures
should be applied (see Typesetting insecure text). PyX just adds a light and transparent wrapper using basic TeX
functionality for later identification and output extraction. This procedure enables full access to all TeX features and
makes PyX on the other hand dependent on the error handling provided by TeX. However, a detailed and immediate
control of the TeX output allows PyX to report problems back to the user as they occur.

While we only talked about TeX so far (and will continue to do so in the rest of this section), it is important to note that
the coupling is not limited to plain TeX. Currently, PyX can also use LaTeX for typesetting, and other TeX variants
could be added in the future. What PyX really depends on is the ability of the typesetting program to generate DVI2.

As soon as some text creation is requested or, even before that, a preamble setting or macro definition is submitted, the
TeX program is started as a separate process. The input and output is bound to a SingleEngine instance. Typically,
the process will be kept alive and will be reused for all future typesetting requests until the end of the PyX process.
However, there are certain situations when the TeX program needs to be shutdown early, which are be described in
detail in the TeX ipc mode section.

Whenever PyX sends some commands to the TeX interpreter, it adds an output marker at the end, and waits for this
output marker to be echoed in the TeX output. All intermediate output is attributed to the commands just sent and will
be analysed for problems. This is done by texmessage parsers. Here, a problem could be logged to the PyX logger
at warning level, thus be reported to stderr by default. This happens for over- or underful boxes or font warnings
emitted by TeX. For other unknown problems (i.e. output not handled by any of the given texmessage parsers), a
TexResultError is raised, which creates a detailed error report including the traceback, the commands submitted
to TeX and the output returned by TeX.

PyX wraps each text to be typeset in a TeX box and adds a shipout of this box to the TeX code before forwarding it
to TeX. Thus a page in the DVI file is created containing just this output. Furthermore TeX is asked to output the box
extent. By that PyX will immediately know the size of the text without referring to the DVI. This also allows faking
the box size by TeX means, as you would expect it.

Once the actual output is requested, PyX reads the content of the DVI file, accessing the page related to the output
in question. It then does all the necessary steps to transform the DVI content to the requested output format, like
searching for virtual font files, font metrices, font mapping files, and PostScript Type1 fonts to be used in the final
output. Here a present limitation has been mentioned: PyX presently can use PostScript Type1 fonts only to generate

1 https://en.wikipedia.org/wiki/TeX
2 https://en.wikipedia.org/wiki/Device_independent_file_format
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text output. While this is a serious limitation, all the default fonts in TeX are available in Type1 nowadays and current
TeX installations are alreadily configured to use them by default.

8.2 TeX interface

class text.SingleEngine(cmd, texenc='ascii', usefiles=[], texipc=config.getboolean('text', 'texipc', 0),
copyinput=None, dvitype=False, errordetail=errordetail.default, texmes-
sages_start=[], texmessages_end=[], texmessages_preamble=[], texmes-
sages_run=[])

Base class for the TeX interface.

Note: This class cannot be used directly. It is the base class for all tex engines and provides most of the
implementation. Still, to the end user the parameters except for cmd are important, as they are preserved in
derived classes usually.

Parameters

• cmd (list of str) – command and arguments to start the TeX interpreter

• texenc (str) – encoding to use in the communication with the TeX interpreter

• usefiles (list of str) – list of supplementary files to be copied to and from the
temporary working directory (see Debugging for usage details)

• texipc (bool) – TeX ipc mode flag.

• copyinput (None or str or file) – filename or file to be used to store a copy of
all the input passed to the TeX interpreter

• dvitype (bool) – flag to turn on dvitype-like output

• errordetail (errordetail) – verbosity of the TexResultError

• texmessages_start (list of texmessage parsers) – additional message parsers at
interpreter startup

• texmessages_end (list of texmessage parsers) – additional message parsers at inter-
preter shutdown

• texmessages_preamble (list of texmessage parsers) – additional message parsers
for preamble output

• texmessages_run (list of texmessage parsers) – additional message parsers for
typset output

texmessages_start_default = [<function texmessage.start>]
default texmessage parsers at interpreter startup

texmessages_end_default = [<function texmessage.end>, <function texmessage.font_warning>, <function texmessage.rerun_warning>, <function texmessage.nobbl_warning>]
default texmessage parsers at interpreter shutdown

texmessages_preamble_default = [<function texmessage.load>]
default texmessage parsers for preamble output

texmessages_run_default = [<function texmessage.font_warning>, <function texmessage.box_warning>, <function texmessage.package_warning>, <function texmessage.load_def>, <function texmessage.load_graphics>]
default texmessage parsers for typeset output
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preamble(expr, texmessages=[])
Execute a preamble.

Parameters

• expr (str) – expression to be executed

• texmessages (list of texmessage parsers) – additional message parsers

Preambles must not generate output, but are used to load files, perform settings, define macros, etc. In
LaTeX mode, preambles are executed before \begin{document}. The method can be called multiple
times, but only prior to SingleEngine.text() and SingleEngine.text_pt().

text_pt(x_pt, y_pt, expr, textattrs=[], texmessages=[], fontmap=None, singlecharmode=False)
Typeset text.

Parameters

• x_pt (float) – x position in pts

• y_pt (float) – y position in pts

• expr (str or MultiEngineText) – text to be typeset

• textattrs (list of textattr, :class:`trafo.trafo_pt, and style.
fillstyle) – styles and attributes to be applied to the text

• texmessages (list of texmessage parsers) – additional message parsers

• fontmap (None or fontmap) – force a fontmap to be used (instead of the default
depending on the output format)

• singlecharmode (bool) – position each character separately

Returns text output insertable into a canvas.

Return type textextbox_pt

Raises TexDoneError: when the TeX interpreter has been terminated already.

text(x, y, *args, **kwargs)
Typeset text.

This method is identical to text_pt() with the only difference of using PyX lengths to position the
output.

Parameters

• x (PyX length) – x position

• y (PyX length) – y position

class text.SingleTexEngine(cmd=config.getlist('text', 'tex', ['tex']), lfs='10pt', **kwargs)
Plain TeX interface.

This class adjusts the SingleEngine to use plain TeX.

Parameters

• cmd (list of str) – command and arguments to start the TeX interpreter

• lfs (str or None) – resemble LaTeX font settings within plain TeX by loading a lfs-
file

• kwargs – additional arguments passed to SingleEngine
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An lfs-file is a file defining a set of font commands like \normalsize by font selection commands in plain
TeX. Several of those files resembling standard settings of LaTeX are distributed along with PyX in the pyx/
data/lfs directory. This directory also contains a LaTeX file to create lfs files for different settings (LaTeX
class, class options, and style files).

class text.SingleLatexEngine(cmd=config.getlist('text', 'latex', ['latex']), docclass='article', do-
copt=None, pyxgraphics=True, texmessages_docclass=[], texmes-
sages_begindoc=[], **kwargs)

LaTeX interface.

This class adjusts the SingleEngine to use LaTeX.

Parameters

• cmd (list of str) – command and arguments to start the TeX interpreter in LaTeX
mode

• docclass (str) – document class

• docopt (str or None) – document loading options

• pyxgraphics (bool) – activate graphics bundle support, see Using the graphics-bundle
with LaTeX

• texmessages_docclass (list of texmessage parsers) – additional message parsers
at LaTeX class loading

• texmessages_begindoc (list of texmessage parsers) – additional message parsers
at \begin{document}

• kwargs – additional arguments passed to SingleEngine

texmessages_docclass_default = [<function texmessage.load>]
default texmessage parsers at LaTeX class loading

texmessages_begindoc_default = [<function texmessage.load>, <function texmessage.no_aux>]
default texmessage parsers at \begin{document}

The SingleEngine classes described above do not handle restarts of the interpreter when the actuall DVI result is
required and is not available via the TeX ipc mode feature.

The MultiEngine classes below are not derived from SingleEngine even though the provide the same func-
tional interface (MultiEngine.preamble(), MultiEngine.text(), and MultiEngine.text_pt()),
but instead wrap a SingleEngine instance, and provide an automatic (or manual by the MultiEngine.
reset() function) restart of the interpreter as required.

class text.MultiEngine(cls, *args, **kwargs)
A restartable SingleEngine class

Parameters

• cls (SingleEngine class) – the class being wrapped

• args (list) – args at class instantiation

• kwargs (dict) – keyword args at at class instantiation

preamble(expr, texmessages=[])
resembles SingleEngine.preamble()

text_pt(*args, **kwargs)
resembles SingleEngine.text_pt()

text(*args, **kwargs)
resembles SingleEngine.text()

30 Chapter 8. Text



PyX Manual, Release 0.15

reset(reinit=False)
Start a new SingleEngine instance

Parameters reinit (bool) – replay preamble() calls on the new instance

After executing this function further preamble calls are allowed, whereas once a text output has been
created, preamble() calls are forbidden.

class text.TexEngine(*args, **kwargs)
A restartable SingleTexEngine class

Parameters

• args (list) – args at class instantiation

• kwargs (dict) – keyword args at at class instantiation

class text.LatexEngine(*args, **kwargs)
A restartable SingleLatexEngine class

Parameters

• args (list) – args at class instantiation

• kwargs (dict) – keyword args at at class instantiation

class text.textextbox_pt(x_pt, y_pt, left_pt, right_pt, height_pt, depth_pt, do_finish, fontmap, sin-
glecharmode, fillstyles)

Text output.

An instance of this class contains the text output generated by PyX. It is a baseclasses.canvasitem and
thus can be inserted into a canvas.

marker(name)
Return the position of a marker.

Parameters name (str) – name of the marker

Returns position of the marker

Return type tuple of two PyX lengths

This method returns the position of the marker of the given name within, previously defined by the \
PyXMarker{name} macro in the typeset text. Please do not use the @ character within your name to
prevent name clashes with PyX internal uses (although we don’t the marker feature internally right now).

Similar to generating actual output, the marker function accesses the DVI output, stopping. The TeX ipc
mode feature will allow for this access without stopping the TeX interpreter.

8.3 Module level functionality

The text module provides the public interface of the SingleEngine class by module level functions. For that, a
module level MultiEngine is created and configured by the set() function. Each time the set() function is
called, the existing module level MultiEngine is replaced by a new one.

text.defaulttextengine
the current MultiEngine instance for the module level functions

text.preamble
defaulttextengine.preamble (bound method)

text.text_pt
defaulttextengine.text_pt (bound method)
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text.text
defaulttextengine.text (bound method)

text.reset
defaulttextengine.reset (bound method)

text.set(engine=None, cls=None, mode=None, *args, **kwargs)
Setup a new module level MultiEngine

Parameters

• engine – the module level engine object to be used, i.e. TexEngine, LatexEngine,
or UnicodeEngine

• cls (Engine object, not instance) – identical to engine

deprecated use the engine argument instead

• mode (str or None) – "tex" for TexEngine or "latex" for LatexEnginewith
arbitraty capitalization

deprecated use the engine argument instead

• args (list) – args at class instantiation

• kwargs (dict) – keyword args at at class instantiation

text.escapestring(s, replace={" ": "~", "$": r"\$", "&": r"\&", " "_": r"\_", "%": r"\%", "^":
r"\string^", "~": r"\string~", "<": "{$<$}", ">": "{$>$}", "{": r"{$\{$}", "}":
r"{$\}$}", "\\": r"{$\setminus$}", "|": r"{$\mid$}"})

Escapes ASCII characters such that they can be typeset by TeX/LaTeX

8.4 TeX output parsers

While running TeX (and variants thereof) a variety of information is written to stdout like status messages, details
about file access, and also warnings and errors. PyX reads all the output and analyses it. Some of the output is triggered
as a direct response to the TeX input and is thus easy to understand for PyX. This includes page output information,
but also workflow control information injected by PyX into the input stream. PyX uses it to check the communication
and typeset progress. All the other output is handled by a list of texmessage parsers, an individual set of functions
applied to the TeX output one after the other. Each of the function receives the TeX output as a string and return it back
(maybe altered). Such a function must perform one of the following actions in response to the TeX output is receives:

1. If it does not find any text in the TeX output it feals responsible for, it should just return the unchanged string.

2. If it finds a text it is responsible for, and the message is just fine (doesn’t need to be communicated to the user),
it should just remove this text and return the rest of the TeX output.

3. If the text should be communicated to the user, a message should be written the the pyx logger at warning level,
thus being reported to the user on stderr by default. Examples are underfull and overfull box warnings or
font warnings. In addition, the text should be removed as in 2 above.

4. In case of an error, TexResultError should be raised.

This is rather uncommon, that the fourth option is taken directly. Instead, errors can just be kept in the output as
PyX considers unhandled TeX output left after applying all given texmessage parsers as an error. In addition to
the error message, information about the TeX in- and output will be added to the exception description text by the
SingleEngine according to the errordetail setting. The following verbosity levels are available:

class text.errordetail
Constants defining the verbosity of the TexResultError.
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none = 0
Without any input and output.

default = 1
Input and parsed output shortend to 5 lines.

full = 2
Full input and unparsed as well as parsed output.

exception text.TexResultError
Error raised by texmessage parsers.

To prevent any unhandled TeX output to be reported as an error, texmessage.warn or texmessage.ignore
can be used. To complete the description, here is a list of all available texmessage parsers:

class text.texmessage
Collection of TeX output parsers.

This class is not meant to be instanciated. Instead, it serves as a namespace for TeX output parsers, which are
functions receiving a TeX output and returning parsed output.

In addition, this class also contains some generator functions (namely texmessage.no_file and
texmessage.pattern), which return a function according to the given parameters. They are used to gen-
erate some of the parsers in this class and can be used to create others as well.

static start(msg)
Validate TeX/LaTeX startup message including scrollmode test.

Example:

>>> texmessage.start(r'''
... This is e-TeX (version)
... *! Undefined control sequence.
... <*> \raiseerror
... %
... ''')
''

static no_file(fileending, qualname=None)
Generator function to ignore the missing file message for fileending.

static no_aux(msg)
Ignore the missing aux file message.

static no_nav(msg)
Ignore the missing nav file message.

static end(msg)
Validate TeX shutdown message.

static load(msg)
Ignore file loading messages.

Removes text starting with a round bracket followed by a filename ignoring all further text until the cor-
responding closing bracket. Quotes and/or line breaks in the filename are handled as needed for TeX
output.

Without quoting the filename, the necessary removal of line breaks is not well defined and the different
possibilities are tested to check whether one solution is ok. The last of the examples below checks this
behavior.

Examples:
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>>> texmessage.load(r'''other (text.py) things''')
'other things'
>>> texmessage.load(r'''other ("text.py") things''')
'other things'
>>> texmessage.load(r'''other ("tex
... t.py" further (ignored)
... text) things''')
'other things'
>>> texmessage.load(r'''other (t
... ext
... .py
... fur
... ther (ignored) text) things''')
'other things'

static load_def(msg)
Ignore font definition (*.fd and *.def) loading messages.

static load_graphics(msg)
Ignore graphics file (*.eps) loading messages.

static ignore(msg)
Ignore all messages.

Should be used as a last resort only. You should write a proper TeX output parser function for the output
you observe.

static warn(msg)
Warn about all messages.

Similar to ignore, but writing a warning to the logger about the TeX output. This is considered to be
better when you need to get it working quickly as you will still be prompted about the unresolved output,
while the processing continues.

static pattern(p, warning, qualname=None)
Warn by regular expression pattern matching.

static box_warning(msg)
Warn about overfull/underfull box.

static font_warning(msg)
Warn about font substitutions of NFSS.

static package_warning(msg)
Warn about generic package messages.

static rerun_warning(msg)
Warn about rerun required message.

static nobbl_warning(msg)
Warn about no-bbl message.
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8.5 TeX/LaTeX attributes

TeX/LaTeX attributes are instances to be passed to a texrunners text() method. They stand for TeX/LaTeX
expression fragments and handle dependencies by proper ordering.

class text.halign(boxhalign, flushhalign)
Instances of this class set the horizontal alignment of a text box and the contents of a text box to be left, center
and right for boxhalign and flushhalign being 0, 0.5, and 1. Other values are allowed as well, although such
an alignment seems quite unusual.

Note that there are two separate classes boxhalign and flushhalign to set the alignment of the box and its
contents independently, but those helper classes can’t be cleared independently from each other. Some handy instances
available as class members:

halign.boxleft
Left alignment of the text box, i.e. sets boxhalign to 0 and doesn’t set flushhalign.

halign.boxcenter
Center alignment of the text box, i.e. sets boxhalign to 0.5 and doesn’t set flushhalign.

halign.boxright
Right alignment of the text box, i.e. sets boxhalign to 1 and doesn’t set flushhalign.

halign.flushleft
Left alignment of the content of the text box in a multiline box, i.e. sets flushhalign to 0 and doesn’t set
boxhalign.

halign.raggedright
Identical to flushleft.

halign.flushcenter
Center alignment of the content of the text box in a multiline box, i.e. sets flushhalign to 0.5 and doesn’t set
boxhalign.

halign.raggedcenter
Identical to flushcenter.

halign.flushright
Right alignment of the content of the text box in a multiline box, i.e. sets flushhalign to 1 and doesn’t set
boxhalign.

halign.raggedleft
Identical to flushright.

halign.left
Combines boxleft and flushleft, i.e. halign(0, 0).

halign.center
Combines boxcenter and flushcenter, i.e. halign(0.5, 0.5).

halign.right
Combines boxright and flushright, i.e. halign(1, 1).

class text.valign(valign)
Instances of this class set the vertical alignment of a text box to be top, center and bottom for valign being 0,
0.5, and 1. Other values are allowed as well, although such an alignment seems quite unusual. See the left side
of figure valign example for an example.

Some handy instances available as class members:

valign.top
valign(0)
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spam &
eggs

valign.top

valign.middle

valign.bottom

parbox.top

parbox.middle

parbox.bottom

Fig. 1: valign example

valign.middle
valign(0.5)

valign.bottom
valign(1)

valign.baseline
Identical to clearing the vertical alignment by clear to emphasise that a baseline alignment is not a box-related
alignment. Baseline alignment is the default, i.e. no valign is set by default.

class text.parbox(width, baseline=top)
Instances of this class create a box with a finite width, where the typesetter creates multiple lines in. Note, that
you can’t create multiple lines in TeX/LaTeX without specifying a box width. Since PyX doesn’t know a box
width, it uses TeXs LR-mode by default, which will always put everything into a single line. Since in a vertical
box there are several baselines, you can specify the baseline to be used by the optional baseline argument. You
can set it to the symbolic names top, parbox.middle, and parbox.bottom only, which are members of
valign. See the right side of figure valign example for an example.

Since you need to specify a box width no predefined instances are available as class members.

class text.vshift(lowerratio, heightstr='0')
Instances of this class lower the output by lowerratio of the height of the string heigthstring. Note, that you
can apply several shifts to sum up the shift result. However, there is still a clear class member to remove all
vertical shifts.

Some handy instances available as class members:

vshift.bottomzero
vshift(0) (this doesn’t shift at all)

vshift.middlezero
vshift(0.5)

vshift.topzero
vshift(1)

vshift.mathaxis
This is a special vertical shift to lower the output by the height of the mathematical axis. The mathematical axis
is used by TeX for the vertical alignment in mathematical expressions and is often usefull for vertical alignment.
The corresponding vertical shift is less than middlezero and usually fits the height of the minus sign. (It is
the height of the minus sign in mathematical mode, since that’s that the mathematical axis is all about.)

There is a TeX/LaTeX attribute to switch to TeXs math mode. The appropriate instances mathmode and
clearmathmode (to clear the math mode attribute) are available at module level.
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text.mathmode
Enables TeXs mathematical mode in display style.

The size class creates TeX/LaTeX attributes for changing the font size.

class text.size(sizeindex=None, sizename=None, sizelist=defaultsizelist)
LaTeX knows several commands to change the font size. The command names are stored in the
sizelist, which defaults to ["normalsize", "large", "Large", "LARGE", "huge", "Huge",
None, "tiny", "scriptsize", "footnotesize", "small"].

You can either provide an index sizeindex to access an item in sizelist or set the command name by sizename.

Instances for the LaTeXs default size change commands are available as class members:

size.tiny
size(-4)

size.scriptsize
size(-3)

size.footnotesize
size(-2)

size.small
size(-1)

size.normalsize
size(0)

size.large
size(1)

size.Large
size(2)

size.LARGE
size(3)

size.huge
size(4)

size.Huge
size(5)

There is a TeX/LaTeX attribute to create empty text boxes with the size of the material passed in. The appropriate
instances phantom and clearphantom (to clear the phantom attribute) are available at module level.

text.phantom
Skip the text in the box, but keep its size.

8.6 Using the graphics-bundle with LaTeX

The packages in the LaTeX graphics bundle (color.sty, graphics.sty, graphicx.sty, . . . ) make extensive
use of \\special commands. PyX defines a clean set of such commands to fit the needs of the LaTeX graphics
bundle. This is done via the pyx.def driver file, which tells the graphics bundle about the syntax of the \\special
commands as expected by PyX. You can install the driver file pyx.def into your LaTeX search path and add the
content of both files color.cfg and graphics.cfg to your personal configuration files3. After you have installed
the cfg files, please use the text module with unset pyxgraphics keyword argument which will switch off a

3 If you do not know what this is all about, you can just ignore this paragraph. But be sure that the pyxgraphics keyword argument is always
set!

8.6. Using the graphics-bundle with LaTeX 37



PyX Manual, Release 0.15

convenience hack for less experienced LaTeX users. You can then import the LaTeX graphics bundle packages and
related packages (e.g. rotating, . . . ) with the option pyx, e.g. \\usepackage[pyx]{color,graphicx}.
Note that the option pyx is only available with unset pyxgraphics keyword argument and a properly installed driver
file. Otherwise, omit the specification of a driver when loading the packages.

When you define colors in LaTeX via one of the color models gray, cmyk, rgb, RGB, hsb, then PyX will use the
corresponding values (one to four real numbers). In case you use any of the named colors in LaTeX, PyX will use
the corresponding predefined color (see module color and the color table at the end of the manual). The additional
LaTeX color model pyx allows to use a PyX color expression, such as color.cmyk(0,0,0,0) directly in LaTeX.
It is passed to PyX.

When importing Encapsulated PostScript files (eps files) PyX will rotate, scale and clip your file like you expect it.
Other graphic formats can not be imported via the graphics package at the moment.

For reference purpose, the following specials can be handled by PyX at the moment:

PyX:color_begin (model) (spec) starts a color. (model) is one of gray, cmyk, rgb, hsb,
texnamed, or pyxcolor. (spec) depends on the model: a name or some numbers

PyX:color_end ends a color.

PyX:epsinclude file= llx= lly= urx= ury= width= height= clip=0/1 includes an Encap-
sulated PostScript file (eps files). The values of llx to ury are in the files’ coordinate system and specify the
part of the graphics that should become the specified width and height in the outcome. The graphics may
be clipped. The last three parameters are optional.

PyX:scale_begin (x) (y) begins scaling from the current point.

PyX:scale_end ends scaling.

PyX:rotate_begin (angle) begins rotation around the current point.

PyX:rotate_end ends rotation.

8.7 Configuration

While the PyX configuration technically has nothing to do with the text module, we mention it here as part of the text
module since its main purpose is the configuration of various aspects related to the typesetting of text.

PyX comes with reasonable defaults which should work out of the box on most TeX installations. The default values
are defined in the PyX source code itself and are repeated in the system-wide config file in INI file format located at
pyx/data/pyxrc. This file also contains a description of each of the listed config values and is read at PyX startup.
Thus the system-wide configuration can be adjusted by editing this file.

In addition, a user-specific configuration can be setup by a ~/.pyxrc on unix-like Systems (including OS X) or
pyxrc in the directory defined by the environment variable APPDATA on MS Windows. This user-specific configu-
ration will overwrite the system-wide settings.

Yet another configuration can be set by the environment variable PYXRC. The given file will is loaded on top of the
configuration defined in the previous steps.
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8.7.1 TeX ipc mode

For output generation of typeset text and to calculate the positions of markers (see textbox_pt.marker()) the
DVI output of the TeX interpreter must be read. In contrast, the text extent (textbox_pt.left, textbox_pt.
right, textbox_pt.width, textbox_pt.height, textbox_pt.depth) is available without accessing
the DVI output, as the TeX interpreter is instructed by PyX to output it to stdout, which is read and analysed at the
typesetting step immediately.

Since TeX interpreters usually buffer the DVI output, the interpreter itself needs to be terminated to get the DVI
output. As MultiEngine instances can start a new interpreter when needed, this does not harm the functionality
and happens more or less unnoticable. Still it generates some penalty in terms of execution speed, which can become
huge for certain situations (alternation between typesetting and marker access).

One of the effects of the texipc option available in almost all present TeX interpreters is to flush the DVI output
after each page. As PyX reads the DVI output linearily, it can successfully read all output whithout stopping the TeX
interpreter. It is suggested to enable the texipc feature in the system-wide configuration if available in the TeX
interpreter being used.

8.7.2 Debugging

PyX provides various functionality to collect details about the typesetting process. First off all, PyX reads the output
generated by the TeX interpreter while it processes the text provided by the user. If the given texmessage parsers
do not validate this output, an TexResultError is raised immediately. The verbosity of this output can be adjusted
by the errordetail setting of the SingleEngine. This might help in some cases to identify an error in the text
passed for typesetting, but for more complicated problems, other help is required.

One possibility is to output the actual code passed to the TeX interpreter. For that you can pass a file name or a file
handle to the copyinput argument of the SingleEngine. You can then process the text by the TeX interpreter
yourself to reproduce the issue outside of PyX.

Similarily you can also save the log output from the TeX interpreter. For that you need to pass a log file name (with the
suffix .log) in the usefiles argument (which is a list of files) of the SingleEngine. This list of files are saved
and restored in the temporary directory used by the TeX interpreter. While originally it is meant to share, for example,
a .aux file between several runs (for which the temporary directory is different and removed after each run), it can
do the same for the .log file (where the restore feature is needless, but does not harm). PyX takes care of the proper
\jobname, hence you can choose the filename arbitrarily with the exception of the suffix, as the suffix is kept during
the save and restore.

Still, all this might not help to fully understand the problem you’re facing. For example there might be situations,
where it is not clear which TeX interpreter is actually used (when several executables are available and the path setup
within the Python interpreter differs from the one used on the shell). In those situations it might help to enable some
additional logging output created by PyX. PyX uses the logging module from the standard library and logs to a logger
named "pyx". By default, various information about executing external programms and locating files will not be
echoed, as it is written at info level, but PyX provides a simple convenience function to enable the output of this
logging level. Just call the pyxinfo() function defined on the PyX package before actually start using the package
in your Python program:

pyx.pyxinfo()
Make PyX a little verbose (for information or debugging)

This function enables info level on the "pyx" logger. It also adds some general information about the Python
interpreter, the PyX installation, and the PyX configuration to the logger.
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8.7.3 Typesetting insecure text

When typesetting text it is passed to a TeX interpreter unchanged4. This is a security problem if the text does not
come from a trusted source. While full access to all typesetting features is not considered a problem, you should bear
in mind that TeX code can be used to read data from any other file accessible to the TeX process. To surely prevent
this process from accessing any other data unrelated to the TeX installation, you can setup a chroot environment for
the TeX interpreter and configure PyX to use it. This can be achieved by setting the chroot option and adjusting the
TeX interpreter call and the filelocator configuration in the pyxrc.

8.8 UnicodeEngine

class text.UnicodeEngine(fontname='cmr10', size=10)

class text.Text(text, scale=1, shift=0)
Text for the UnicodeEngine with basic typesetting features

Parameters

• text (str) – text to be typeset

• scale (float) – scale

• shift (float) – vertical shift in units of the text size (without the scale)

class text.StackedText(texts, frac=False, align=0)
Stack text above each other for the UnicodeEngine

Parameters

• texts (list) – texts to be typeset above each other

• frac (bool) – add a fractional line (for two texts only)

• align (float) – horizontal alignment of the text where 0 is left, 0.5 is centered, and 1 is
right

4 The text is actually passed as an argument of a TeX command defined by PyX, but this is a minor detail and has no effect regarding possible
attacks.
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CHAPTER

NINE

GRAPHS

9.1 Introduction

PyX can be used for data and function plotting. At present x-y-graphs and x-y-z-graphs are supported only. However,
the component architecture of the graph system described in section Component architecture allows for additional
graph geometries while reusing most of the existing components.

Creating a graph splits into two basic steps. First you have to create a graph instance. The most simple form would
look like:

from pyx import *
g = graph.graphxy(width=8)

The graph instance g created in this example can then be used to actually plot something into the graph. Suppose you
have some data in a file graph.dat you want to plot. The content of the file could look like:

1 2
2 3
3 8
4 13
5 18
6 21

To plot these data into the graph g you must perform:

g.plot(graph.data.file("graph.dat", x=1, y=2))

The method plot() takes the data to be plotted and optionally a list of graph styles to be used to plot the data. When
no styles are provided, a default style defined by the data instance is used. For data read from a file by an instance of
graph.data.file, the default are symbols. When instantiating graph.data.file, you not only specify the
file name, but also a mapping from columns to axis names and other information the styles might make use of (e.g.
data for error bars to be used by the errorbar style).

While the graph is already created by that, we still need to perform a write of the result into a file. Since the graph
instance is a canvas, we can just call its writeEPSfile() method.

g.writeEPSfile("graph")

The result graph.eps is shown in figure A minimalistic plot for the data from file graph.dat..

Instead of plotting data from a file, other data source are available as well. For example function data is created and
placed into plot() by the following line:
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Fig. 1: A minimalistic plot for the data from file graph.dat.

g.plot(graph.data.function("y(x)=x**2"))

You can plot different data in a single graph by calling plot() several times before writing the output to a file. Note
that a calling plot() will fail once a graph was forced to “finish” itself. This happens automatically, when the graph
is written to a file. Thus it is not an option to call plot() after writing the output. The topic of the finalization
of a graph is addressed in more detail in section graph.graph. As you can see in figure Plotting data from a file
together with a function., a function is plotted as a line by default.
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Fig. 2: Plotting data from a file together with a function.

While the axes ranges got adjusted automatically in the previous example, they might be fixed by keyword options in
axes constructors. Plotting only a function will need such a setting at least in the variable coordinate. The following
code also shows how to set a logathmic axis in y-direction:

from pyx import *
g = graph.graphxy(width=8, x=graph.axis.linear(min=-5, max=5),

y=graph.axis.logarithmic())
g.plot(graph.data.function("y(x)=exp(x)"))
g.writePDFfile()

The result is shown in figure Plotting a function for a given axis range and use a logarithmic y-axis..
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Fig. 3: Plotting a function for a given axis range and use a logarithmic y-axis.

9.2 Component architecture

Creating a graph involves a variety of tasks, which thus can be separated into components without significant additional
costs. This structure manifests itself also in the PyX source, where there are different modules for the different tasks.
They interact by some well-defined interfaces. They certainly have to be completed and stabilized in their details, but
the basic structure came up in the continuous development quite clearly. The basic parts of a graph are:

graph Defines the geometry of the graph by means of graph coordinates with range [0:1]. Keeps lists of plotted data,
axes etc.

data Produces or prepares data to be plotted in graphs.

style Performs the plotting of the data into the graph. It gets data, converts them via the axes into graph coordinates
and uses the graph to finally plot the data with respect to the graph geometry methods.

key Responsible for the graph keys.

axis Creates axes for the graph, which take care of the mapping from data values to graph coordinates. Because axes
are also responsible for creating ticks and labels, showing up in the graph themselves and other things, this task
is splitted into several independent subtasks. Axes are discussed separately in chapter axis.

9.3 Module graph.graph: Graph geometry

The classes graphxy and graphxyz are part of the module graph.graph. However, there are shortcuts to access
the classes via graph.graphxy and graph.graphxyz, respectively.

class graph.graph.graphxy(xpos=0, ypos=0, width=None, height=None, ratio=goldenmean,
key=None, backgroundattrs=None, axesdist=0.8 * unit.v_cm, xax-
isat=None, yaxisat=None, **axes)

This class provides an x-y-graph. A graph instance is also a fully functional canvas.

The position of the graph on its own canvas is specified by xpos and ypos. The size of the graph is specified by
width, height, and ratio. These parameters define the size of the graph area not taking into account the additional
space needed for the axes. Note that you have to specify at least width or height. ratio will be used as the ratio
between width and height when only one of these is provided.

key can be set to a graph.key.key instance to create an automatic graph key. None omits the graph key.
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backgroundattrs is a list of attributes for drawing the background of the graph. Allowed are decorators,
strokestyles, and fillstyles. None disables background drawing.

axisdist is the distance between axes drawn at the same side of a graph.

xaxisat and yaxisat specify a value at the y and x axis, where the corresponding axis should be moved to. It’s a
shortcut for corresonding calls of axisatv() described below. Moving an axis by xaxisat or yaxisat disables
the automatic creation of a linked axis at the opposite side of the graph.

**axes receives axes instances. Allowed keywords (axes names) are x, x2, x3, etc. and y, y2, y3, etc. When
not providing an x or y axis, linear axes instances will be used automatically. When not providing a x2 or y2
axis, linked axes to the x and y axes are created automatically and vice versa. As an exception, a linked axis is
not created automatically when the axis is placed at a specific position by xaxisat or yaxisat. You can disable
the automatic creation of axes by setting the linked axes to None. The even numbered axes are plotted at the
top (x axes) and right (y axes) while the others are plotted at the bottom (x axes) and left (y axes) in ascending
order each.

Some instance attributes might be useful for outside read-access. Those are:

graphxy.axes
A dictionary mapping axes names to the anchoredaxis instances.

To actually plot something into the graph, the following instance method plot() is provided:

graphxy.plot(data, styles=None)
Adds data to the list of data to be plotted. Sets styles to be used for plotting the data. When styles is None, the
default styles for the data as provided by data is used.

data should be an instance of any of the data described in section graph.data.

When the same combination of styles (i.e. the same references) are used several times within the same graph
instance, the styles are kindly asked by the graph to iterate their appearance. Its up to the styles how this is
performed.

Instead of calling the plot method several times with different data but the same style, you can use a list (or
something iterateable) for data.

While a graph instance only collects data initially, at a certain point it must create the whole plot. Once this is done,
further calls of plot() will fail. Usually you do not need to take care about the finalization of the graph, because
it happens automatically once you write the plot into a file. However, sometimes position methods (described below)
are nice to be accessible. For that, at least the layout of the graph must have been finished. However, the drawing
order is based on canvas layers and thus the order in which the do()-methods are called will not alter the output.
Multiple calls to any of the do()-methods have no effect (only the first call counts). The orginal order in which the
do()-methods are called is:

graphxy.dolayout()
Fixes the layout of the graph. As part of this work, the ranges of the axes are fitted to the data when the axes
ranges are allowed to adjust themselves to the data ranges. The other do()-methods ensure, that this method is
always called first.

graphxy.dobackground()
Draws the background.

graphxy.doaxes()
Inserts the axes.

graphxy.doplotitem(plotitem)
Plots the plotitem as returned by the graphs plot method.

graphxy.doplot()
Plots all (remaining) plotitems.
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graphxy.dokeyitem()
Inserts a plotitem in the graph key as returned by the graphs plot method.

graphxy.dokey()
Inserts the graph key.

graphxy.finish()
Finishes the graph by calling all pending do()-methods. This is done automatically, when the output is created.

The graph provides some methods to access its geometry:

graphxy.pos(x, y, xaxis=None, yaxis=None)
Returns the given point at x and y as a tuple (xpos, ypos) at the graph canvas. x and y are anchoredaxis
instances for the two axes xaxis and yaxis. When xaxis or yaxis are None, the axes with names x and y are
used. This method fails if called before dolayout().

graphxy.vpos(vx, vy)
Returns the given point at vx and vy as a tuple (xpos, ypos) at the graph canvas. vx and vy are graph
coordinates with range [0:1].

graphxy.vgeodesic(vx1, vy1, vx2, vy2)
Returns the geodesic between points vx1, vy1 and vx2, vy2 as a path. All parameters are in graph coordinates
with range [0:1]. For graphxy this is a straight line.

graphxy.vgeodesic_el(vx1, vy1, vx2, vy2)
Like vgeodesic() but this method returns the path element to connect the two points.

Further geometry information is available by the axes instance variable, with is a dictionary mapping axis names
to anchoredaxis instances. Shortcuts to the anchoredaxis positioner methods for the x- and y-axis become
available after dolayout() as graphxy methods Xbasepath, Xvbasepath, Xgridpath, Xvgridpath,
Xtickpoint, Xvtickpoint, Xtickdirection, and Xvtickdirection where the prefix X stands for x
and y.

graphxy.axistrafo(axis, t)
This method can be used to apply a transformation t to an anchoredaxis instance axis to modify the axis
position and the like. This method fails when called on a not yet finished axis, i.e. it should be used after
dolayout().

graphxy.axisatv(axis, v)
This method calls axistrafo() with a transformation to move the axis axis to a graph position v (in graph
coordinates).

The class graphxyz is very similar to the graphxy class, except for its additional dimension. In the following
documentation only the differences to the graphxy class are described.

class graph.graph.graphxyz(xpos=0, ypos=0, size=None, xscale=1, yscale=1, zscale=1 / golden-
mean, xy12axesat=None, xy12axesatname='z', projector=central(10, -
30, 30), key=None, **axes)

This class provides an x-y-z-graph.

The position of the graph on its own canvas is specified by xpos and ypos. The size of the graph is specified
by size and the length factors xscale, yscale, and zscale. The final size of the graph depends on the projector
projector, which is called with x, y, and z values up to xscale, yscale, and zscale respectively and scaling the
result by size. For a parallel projector changing size is thus identical to changing xscale, yscale, and zscale by
the same factor. For the central projector the projectors internal distance would also need to be changed by this
factor. Thus size changes the size of the whole graph without changing the projection.

xy12axesat moves the xy-plane of the axes x, x2, y, y2 to the given value at the axis xy12axesatname.

projector defines the conversion of 3d coordinates to 2d coordinates. It can be an instance of central or
parallel described below.
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**axes receives axes instances as for graphxy . The graphxyz allows for 4 axes per graph dimension x, x2,
x3, x4, y, y2, y3, y4, z, z2, z3, and z4. The x-y-plane is the horizontal plane at the bottom and the x, x2, y,
and y2 axes are placed at the boundary of this plane with x and y always being in front. x3, x4, y3, and y4 are
handled similar, but for the top plane of the graph. The z axis is placed at the origin of the x and y dimension,
whereas z2 is placed at the final point of the x dimension, z3 at the final point of the y dimension and z4 at
the final point of the x and y dimension together.

graphxyz.central
The central attribute of the graphxyz is the central class. See the class description below.

graphxyz.parallel
The parallel attribute of the graphxyz is the parallel class. See the class description below.

Regarding the 3d to 2d transformation the methods pos(), vpos(), vgeodesic(), and vgeodesic_el()
are available as for class graphxy and just take an additional argument for the dimension. Note that a similar
transformation method (3d to 2d) is available as part of the projector as well already, but only the graph acknowledges
its size, the scaling and the internal tranformation of the graph coordinates to the scaled coordinates. As the projector
also implements a zindex() and a angle() method, those are also available at the graph level in the graph
coordinate variant (i.e. having an additional v in its name and using values from 0 to 1 per dimension).

graphxyz.vzindex(vx, vy, vz)
The depths of the point defined by vx, vy, and vz scaled to a range [-1:1] where 1 is closest to the viewer. All
arguments passed to the method are in graph coordinates with range [0:1].

graphxyz.vangle(vx1, vy1, vz1, vx2, vy2, vz2, vx3, vy3, vz3)
The cosine of the angle of the view ray thru point (vx1, vy1, vz1) and the plane defined by the points
(vx1, vy1, vz1), (vx2, vy2, vz2), and (vx3, vy3, vz3). All arguments passed to the method
are in graph coordinates with range [0:1].

There are two projector classes central and parallel:

class graph.graph.central(distance, phi, theta, anglefactor=math.pi / 180)
Instances of this class implement a central projection for the given parameters.

distance is the distance of the viewer from the origin. Note that the graphxyz class uses the range -xscale to
xscale, -yscale to yscale, and -zscale to zscale for the coordinates x, y, and z. As those scales are
of the order of one (by default), the distance should be of the order of 10 to give nice results. Smaller distances
increase the central projection character while for huge distances the central projection becomes identical to the
parallel projection.

phi is the angle of the viewer in the x-y-plane and theta is the angle of the viewer to the x-y-plane. The
standard notation for spheric coordinates are used. The angles are multiplied by anglefactor which is initialized
to do a degree in radiant transformation such that you can specify phi and theta in degree while the internal
computation is always done in radiants.

class graph.graph.parallel(phi, theta, anglefactor=math.pi / 180)
Instances of this class implement a parallel projection for the given parameters. There is no distance for that
transformation (compared to the central projection). All other parameters are identical to the central class.
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9.4 Module graph.data: Graph data

The following classes provide data for the plot()method of a graph. The classes are implemented in graph.data.

class graph.data.file(filename, commentpattern=defaultcommentpattern, columnpat-
tern=defaultcolumnpattern, stringpattern=defaultstringpattern, skiphead=0,
skiptail=0, every=1, title=notitle, context={}, copy=1, replacedollar=1,
columncallback='__column__', **columns)

This class reads data from a file and makes them available to the graph system. filename is the name of the file
to be read. The data should be organized in columns.

The arguments commentpattern, columnpattern, and stringpattern are responsible for identifying the data in
each line of the file. Lines matching commentpattern are ignored except for the column name search of the last
non- empty comment line before the data. By default a line starting with one of the characters '#', '%', or
'!' as well as an empty line is treated as a comment.

A non-comment line is analysed by repeatedly matching stringpattern and, whenever the stringpattern does not
match, by columnpattern. When the stringpattern matches, the result is taken as the value for the next column
without further transformations. When columnpattern matches, it is tried to convert the result to a float. When
this fails the result is taken as a string as well. By default, you can write strings with spaces surrounded by '"'
immediately surrounded by spaces or begin/end of line in the data file. Otherwise '"' is not taken to be special.

skiphead and skiptail are numbers of data lines to be ignored at the beginning and end of the file while every
selects only every every line from the data.

title is the title of the data to be used in the graph key. A default title is constructed out of filename and
**columns. You may set title to None to disable the title.

Finally, columns define columns out of the existing columns from the file by a column number or a mathematical
expression (see below). When copy is set the names of the columns in the file (file column names) and the freshly
created columns having the names of the dictionary key (data column names) are passed as data to the graph
styles. The data columns may hide file columns when names are equal. For unset copy the file columns are not
available to the graph styles.

File column names occur when the data file contains a comment line immediately in front of the data (except
for empty or empty comment lines). This line will be parsed skipping the matched comment identifier as if the
line would be regular data, but it will not be converted to floats even if it would be possible to convert the items.
The result is taken as file column names, i.e. a string representation for the columns in the file.

The values of **columns can refer to column numbers in the file starting at 1. The column 0 is also available and
contains the line number starting from 1 not counting comment lines, but lines skipped by skiphead, skiptail,
and every. Furthermore values of **columns can be strings: file column names or complex mathematical
expressions. To refer to columns within mathematical expressions you can also use file column names when
they are valid variable identifiers. Equal named items in context will then be hidden. Alternatively columns can
be access by the syntax $<number> when replacedollar is set. They will be translated into function calls to
columncallback, which is a function to access column data by index or name.

context allows for accessing external variables and functions when evaluating mathematical expressions for
columns. Additionally to the identifiers in context, the file column names, the columncallback function and the
functions shown in the table “builtins in math expressions” at the end of the section are available.

Example:

graph.data.file("test.dat", a=1, b="B", c="2*B+$3")

with test.dat looking like:
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# A B C
1.234 1 2
5.678 3 4

The columns with name "a", "b", "c" will become "[1.234, 5.678]", "[1.0, 3.0]", and "[4.0,
10.0]", respectively. The columns "A", "B", "C" will be available as well, since copy is enabled by default.

When creating several data instances accessing the same file, the file is read only once. There is an inherent
caching of the file contents.

For the sake of completeness we list the default patterns:

file.defaultcommentpattern
re.compile(r"(#+|!+|%+)\s*")

file.defaultcolumnpattern
re.compile(r"\"(.*?)\"(\s+|$)")

file.defaultstringpattern
re.compile(r"(.*?)(\s+|$)")

class graph.data.function(expression, title=notitle, min=None, max=None, points=100, con-
text={})

This class creates graph data from a function. expression is the mathematical expression of the function. It must
also contain the result variable name including the variable the function depends on by assignment. A typical
example looks like "y(x)=sin(x)".

title is the title of the data to be used in the graph key. By default expression is used. You may set title to None
to disable the title.

min and max give the range of the variable. If not set, the range spans the whole axis range. The axis range
might be set explicitly or implicitly by ranges of other data. points is the number of points for which the function
is calculated. The points are choosen linearly in terms of graph coordinates.

context allows for accessing external variables and functions. Additionally to the identifiers in context, the
variable name and the functions shown in the table “builtins in math expressions” at the end of the section are
available.

class graph.data.paramfunction(varname, min, max, expression, title=notitle, points=100, con-
text={})

This class creates graph data from a parametric function. varname is the parameter of the function. min and max
give the range for that variable. points is the number of points for which the function is calculated. The points
are choosen lineary in terms of the parameter.

expression is the mathematical expression for the parametric function. It contains an assignment of a tuple of
functions to a tuple of variables. A typical example looks like "x, y = cos(k), sin(k)".

title is the title of the data to be used in the graph key. By default expression is used. You may set title to None
to disable the title.

context allows for accessing external variables and functions. Additionally to the identifiers in context, varname
and the functions shown in the table “builtins in math expressions” at the end of the section are available.

class graph.data.values(title='user provided values', **columns)
This class creates graph data from externally provided data. Each column is a list of values to be used for that
column.

title is the title of the data to be used in the graph key.

class graph.data.points(data, title='user provided points', addlinenumbers=1, **columns)
This class creates graph data from externally provided data. data is a list of lines, where each line is a list of
data values for the columns.
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title is the title of the data to be used in the graph key.

The keywords of **columns become the data column names. The values are the column numbers starting from
one, when addlinenumbers is turned on (the zeroth column is added to contain a line number in that case), while
the column numbers starts from zero, when addlinenumbers is switched off.

class graph.data.data(data, title=notitle, context=, copy=1, replacedollar=1, columncall-
back="__column__", **columns)

This class provides graph data out of other graph data. data is the source of the data. All other parameters work
like the equally called parameters in graph.data.file. Indeed, the latter is built on top of this class by
reading the file and caching its contents in a graph.data.list instance.

class graph.data.conffile(filename, title=notitle, context=, copy=1, replacedollar=1, columncall-
back="__column__", **columns)

This class reads data from a config file with the file name filename. The format of a config file is described
within the documentation of the ConfigParser module of the Python Standard Library.

Each section of the config file becomes a data line. The options in a section are the columns. The name of the
options will be used as file column names. All other parameters work as in graph.data.file and graph.data.data
since they all use the same code.

class graph.data.cbdfile(filename, minrank=None, maxrank=None, title=notitle, context=,
copy=1, replacedollar=1, columncallback="__column__", **columns)

This is an experimental class to read map data from cbd-files. See http://sepwww.stanford.edu/ftp/World_Map/
for some world-map data.

The builtins in math expressions are listed in the following table:

name value
neg lambda x: -x
abs lambda x: x < 0 and -x or x
sgn lambda x: x < 0 and -1 or 1
sqrt math.sqrt
exp math.exp
log math.log
sin math.sin
cos math.cos
tan math.tan
asin math.asin
acos math.acos
atan math.atan
sind lambda x: math.sin(math.pi/180*x)
cosd lambda x: math.cos(math.pi/180*x)
tand lambda x: math.tan(math.pi/180*x)
asind lambda x: 180/math.pi*math.asin(x)
acosd lambda x: 180/math.pi*math.acos(x)
atand lambda x: 180/math.pi*math.atan(x)
norm lambda x, y: math.hypot(x, y)
splitatvalue see the splitatvalue description below
pi math.pi
e math.e

math refers to Pythons math module. The splitatvalue function is defined as:

graph.data.splitatvalue(value, *splitpoints)
This method returns a tuple (section, value). The section is calculated by comparing value with the
values of splitpoints. If splitpoints contains only a single item, section is 0 when value is lower or equal this
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item and 1 else. For multiple splitpoints, section is 0 when its lower or equal the first item, None when its
bigger than the first item but lower or equal the second item, 1 when its even bigger the second item, but lower
or equal the third item. It continues to alter between None and 2, 3, etc.

9.5 Module graph.style: Graph styles

Please note that we are talking about graph styles here. Those are responsible for plotting symbols, lines, bars and
whatever else into a graph. Do not mix it up with path styles like the line width, the line style (solid, dashed, dotted
etc.) and others.

The following classes provide styles to be used at the plot() method of a graph. The plot method accepts a list of
styles. By that you can combine several styles at the very same time.

Some of the styles below are hidden styles. Those do not create any output, but they perform internal data handling
and thus help on modularization of the styles. Usually, a visible style will depend on data provided by one or more
hidden styles but most of the time it is not necessary to specify the hidden styles manually. The hidden styles register
themself to be the default for providing certain internal data.

class graph.style.pos(usenames={}, epsilon=1e-10)
This class is a hidden style providing a position in the graph. It needs a data column for each graph dimension.
For that the column names need to be equal to an axis name, or a name translation from axis names to column
names need to be given by usenames. Data points are considered to be out of graph when their position in graph
coordinates exceeds the range [0:1] by more than epsilon.

class graph.style.range(usenames={}, epsilon=1e-10)
This class is a hidden style providing an errorbar range. It needs data column names constructed out of a axis
name X for each dimension errorbar data should be provided as follows:

data name description
Xmin minimal value
Xmax maximal value
dX minimal and maximal delta
dXmin minimal delta
dXmax maximal delta

When delta data are provided the style will also read column data for the axis name X itself. usenames allows to
insert a translation dictionary from axis names to the identifiers X.

epsilon is a comparison precision when checking for invalid errorbar ranges.

class graph.style.symbol(symbol=changecross, size=0.2 * unit.v_cm, symbolattrs=[])
This class is a style for plotting symbols in a graph. symbol refers to a (changeable) symbol function with the
prototype symbol(c, x_pt, y_pt, size_pt, attrs) and draws the symbol into the canvas c at the
position (x_pt, y_pt)with size size_pt and attributes attrs. Some predefined symbols are available in
member variables listed below. The symbol is drawn at size size using symbolattrs. symbolattrs is merged with
defaultsymbolattrs which is a list containing the decorator deco.stroked. An instance of symbol
is the default style for all graph data classes described in section graph.data except for function and
paramfunction.

The class symbol provides some symbol functions as member variables, namely:

symbol.cross
A cross. Should be used for stroking only.

symbol.plus
A plus. Should be used for stroking only.
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symbol.square
A square. Might be stroked or filled or both.

symbol.triangle
A triangle. Might be stroked or filled or both.

symbol.circle
A circle. Might be stroked or filled or both.

symbol.diamond
A diamond. Might be stroked or filled or both.

symbol provides some changeable symbol functions as member variables, namely:

symbol.changecross
attr.changelist([cross, plus, square, triangle, circle, diamond])

symbol.changeplus
attr.changelist([plus, square, triangle, circle, diamond, cross])

symbol.changesquare
attr.changelist([square, triangle, circle, diamond, cross, plus])

symbol.changetriangle
attr.changelist([triangle, circle, diamond, cross, plus, square])

symbol.changecircle
attr.changelist([circle, diamond, cross, plus, square, triangle])

symbol.changediamond
attr.changelist([diamond, cross, plus, square, triangle, circle])

symbol.changesquaretwice
attr.changelist([square, square, triangle, triangle, circle, circle, diamond, diamond])

symbol.changetriangletwice
attr.changelist([triangle, triangle, circle, circle, diamond, diamond, square, square])

symbol.changecircletwice
attr.changelist([circle, circle, diamond, diamond, square, square, triangle, triangle])

symbol.changediamondtwice
attr.changelist([diamond, diamond, square, square, triangle, triangle, circle, circle])

The class symbol provides two changeable decorators for alternated filling and stroking. Those are especially useful
in combination with the change()-twice()-symbol methods above. They are:

symbol.changestrokedfilled
attr.changelist([deco.stroked, deco.filled])

symbol.changefilledstroked
attr.changelist([deco.filled, deco.stroked])

class graph.style.line(lineattrs=[], epsilon=1e-10)
This class is a style to stroke lines in a graph. lineattrs is merged with defaultlineattrs which is a list
containing the member variable changelinestyle as described below. An instance of line is the default
style of the graph data classes function and paramfunction described in section graph.data. epsilon
is a precision in graph coordinates for line clipping.

The class line provides a changeable line style. Its definition is:

line.changelinestyle
attr.changelist([style.linestyle.solid, style.linestyle.dashed, style.linestyle.dotted, style.linestyle.dashdotted])
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class graph.style.impulses(lineattrs=[], fromvalue=0, frompathattrs=[], valueaxisindex=1)
This class is a style to plot impulses. lineattrs is merged with defaultlineattrs which is a list containing
the member variable changelinestyle of the line class. fromvalue is the baseline value of the impulses.
When set to None, the impulses will start at the baseline. When fromvalue is set, frompathattrs are the stroke
attributes used to show the impulses baseline path.

class graph.style.errorbar(size=0.1 * unit.v_cm, errorbarattrs=[], epsilon=1e-10)
This class is a style to stroke errorbars in a graph. size is the size of the caps of the errorbars and errorbarattrs
are the stroke attributes. Errorbars and error caps are considered to be out of the graph when their position in
graph coordinates exceeds the range [0:1] by more that epsilon. Out of graph caps are omitted and the errorbars
are cut to the valid graph range.

class graph.style.text(textname='text', dxname=None, dyname=None, dxunit=0.3 * unit.v_cm,
dyunit=0.3 * unit.v_cm, textdx=0 * unit.v_cm, textdy=0.3 * unit.v_cm, tex-
tattrs=[])

This class is a style to stroke text in a graph. The text to be written has to be provided in the data column named
textname. textdx and textdy are the position of the text with respect to the position in the graph. Alternatively
you can specify a dxname and a dyname and provide appropriate data in those columns to be taken in units of
dxunit and dyunit to specify the position of the text for each point separately. textattrs are text attributes for the
output of the text. Those attributes are merged with the default attributes textmodule.halign.center
and textmodule.vshift.mathaxis.

class graph.style.arrow(linelength=0.25 * unit.v_cm, arrowsize=0.15 * unit.v_cm, lineattrs=[], ar-
rowattrs=[], arrowpos=0.5, epsilon=1e-10, decorator=deco.earrow)

This class is a style to plot short lines with arrows into a two-dimensional graph to a given graph position. The
arrow parameters are defined by two additional data columns named size and angle define the size and angle
for each arrow. size is taken as a factor to arrowsize and linelength, the size of the arrow and the length of the
line the arrow is plotted at. angle is the angle the arrow points to with respect to a horizontal line. The angle
is taken in degrees and used in mathematically positive sense. lineattrs and arrowattrs are styles for the arrow
line and arrow head, respectively. arrowpos defines the position of the arrow line with respect to the position at
the graph. The default 0.5 means centered at the graph position, whereas 0 and 1 creates the arrows to start or
end at the graph position, respectively. epsilon is used as a cutoff for short arrows in order to prevent numerical
instabilities. decorator defines the decorator to be added to the line.

class graph.style.rect(colorname='color', gradient=color.gradient.Grey, coloraxis=None, key-
graph=_autokeygraph)

This class is a style to plot colored rectangles into a two-dimensional graph. The size of the rectangles is taken
from the data provided by the range style. The additional data column named colorname specifies the color
of the rectangle defined by gradient. The translation of the data values to the gradient is done by the coloraxis,
which is set to be a linear axis if not provided by coloraxis. A key graph, a graphx instance, is generated
automatically to indicate the color scale if not provided by keygraph. If a keygraph is given, its x axis defines
the color conversion and coloraxis is ignored.

class graph.style.histogram(lineattrs=[], steps=0, fromvalue=0, frompathattrs=[], fillable=0,
rectkey=0, autohistogramaxisindex=0, autohistogrampointpos=0.5,
epsilon=1e-10)

This class is a style to plot histograms. lineattrs is merged with defaultlineattrs which is [deco.
stroked]. When steps is set, the histrogram is plotted as steps instead of the default being a boxed histogram.
fromvalue is the baseline value of the histogram. When set to None, the histogram will start at the baseline.
When fromvalue is set, frompathattrs are the stroke attributes used to show the histogram baseline path.

The fillable flag changes the stoke line of the histogram to make it fillable properly. This is important on non-
steped histograms or on histograms, which hit the graph boundary. rectkey can be set to generate a rectanglar
area instead of a line in the graph key.

In the most general case, a histogram is defined by a range specification (like for an errorbar) in one graph
dimension (say, along the x-axis) and a value for the other graph dimension. This allows for the widths of
the histogram boxes being variable. Often, however, all histogram bin ranges are equally sized, and instead of
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passing the range, the position of the bin along the x-axis fully specifies the histogram - assuming that there are
at least two bins. This common case is supported via two parameters: autohistogramaxisindex, which defines
the index of the independent histogram axis (in the case just described this would be 0 designating the x axis).
autohistogrampointpos, defines the relative position of the center of the histogram bin: 0.5 means that the bin
is centered at the values passed to the style, 0 (1) means that the bin is aligned at the right-(left-)hand side.

XXX describe, how to specify general histograms with varying bin widths

Positions of the histograms are considered to be out of graph when they exceed the graph coordinate range [0:1]
by more than epsilon.

class graph.style.barpos(fromvalue=None, frompathattrs=[], epsilon=1e-10)
This class is a hidden style providing position information in a bar graph. Those graphs need to contain a
specialized axis, namely a bar axis. The data column for this bar axis is named Xname where X is an axis name.
In the other graph dimension the data column name must be equal to an axis name. To plot several bars in a
single graph side by side, you need to have a nested bar axis and provide a tuple as data for nested bar axis.

The bars start at fromvalue when provided. The fromvalue is marked by a gridline stroked using frompathattrs.
Thus this hidden style might actually create some output. The value of a bar axis is considered to be out of graph
when its position in graph coordinates exceeds the range [0:1] by more than epsilon.

class graph.style.stackedbarpos(stackname, addontop=0, epsilon=1e-10)
This class is a hidden style providing position information in a bar graph by stacking a new bar on top of another
bar. The value of the new bar is taken from the data column named stackname. When addontop is set, the values
is taken relative to the previous top of the bar.

class graph.style.bar(barattrs=[], epsilon=1e-10, gradient=color.gradient.RedBlack)
This class draws bars in a bar graph. The bars are filled using barattrs. barattrs is
merged with defaultbarattrs which is a list containing [color.gradient.Rainbow, deco.
stroked([color.grey.black])].

The bar style has limited support for 3d graphs: Occlusion does not work properly on stacked bars or multiple
dataset. epsilon is used in 3d to prevent numerical instabilities on bars without hight. When gradient is not
None it is used to calculate a lighting coloring taking into account the angle between the view ray and the bar
and the distance between viewer and bar. The precise conversion is defined in the lighting() method.

class graph.style.changebar(barattrs=[])
This style works like the bar style, but instead of the barattrs to be changed on subsequent data instances the
barattrs are changed for each value within a single data instance. In the result the style can’t be applied to
several data instances and does not support 3d. The style raises an error instead.

class graph.style.gridpos(index1=0, index2=1, gridlines1=1, gridlines2=1, gridattrs=[],
epsilon=1e-10)

This class is a hidden style providing rectangular grid information out of graph positions for graph dimensions
index1 and index2. Data points are considered to be out of graph when their position in graph coordinates
exceeds the range [0:1] by more than epsilon. Data points are merged to a single graph coordinate value when
their difference in graph coordinates is below epsilon.

class graph.style.grid(gridlines1=1, gridlines2=1, gridattrs=[], epsilon=1e-10)
Strokes a rectangular grid in the first grid direction, when gridlines1 is set and in the second grid direction,
when gridlines2 is set. gridattrs is merged with defaultgridattrs which is a list containing the member
variable changelinestyle of the line class. epsilon is a precision in graph coordinates for line clipping.

class graph.style.surface(gridlines1=0.05, gridlines2=0.05, gridcolor=None, back-
color=color.gray.black, **kwargs)

Draws a surface of a rectangular grid. Each rectangle is divided into 4 triangles.

If a gridcolor is set, the rectangular grid is marked by small stripes of the relative (compared to each rectangle)
size of gridlines1 and gridlines2 for the first and second grid direction, respectively.
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backcolor is used to fill triangles shown from the back. If backcolor is set to None, back sides are not drawn
differently from the front sides.

The surface is encoded using a single mesh. While this is quite space efficient, it has the following implications:

• All colors must use the same color space.

• HSB colors are not allowed, whereas Gray, RGB, and CMYK are allowed. You can convert HSB colors
into a different color space by means of rgbgradient and class:cmykgradient before passing it to the
surface style.

• The grid itself is also constructed out of triangles. The grid is transformed along with the triangles thus
looking quite different from a stroked grid (as done by the grid style).

• Occlusion is handled by proper painting order.

• Color changes are continuous (in the selected color space) for each triangle.

Further arguments are identical to the graph.style.rect style. However, if no colorname col-
umn exists, the surface style falls back to a lighting coloring taking into account the angle between
the view ray and the triangle and the distance between viewer and triangle. The precise conversion is
defined in the lighting() method.

density(epsilon=1e-10, **kwargs):
Density plots can be created by the density style. It is similar to a surface plot in 2d, but it does not use a mesh,
but a bitmap representation instead. Due to that difference, the file size is smaller and no color interpolation
takes place. Furthermore the style can be used with equidistantly spaced data only (after conversion by the
axis, so logarithmic raw data and such are possible using proper axes). Further arguments are identical to the
graph.style.rect style.

9.6 Module graph.key: Graph keys

The following class provides a key, whose instances can be passed to the constructor keyword argument key of a
graph. The class is implemented in graph.key .

class graph.key.key(dist=0.2 * unit.v_cm, pos='tr', hpos=None, vpos=None, hinside=1, vinside=1,
hdist=0.6 * unit.v_cm, vdist=0.4 * unit.v_cm, symbolwidth=0.5 * unit.v_cm,
symbolheight=0.25 * unit.v_cm, symbolspace=0.2 * unit.v_cm, textattrs=[],
columns=1, columndist=0.5 * unit.v_cm, border=0.3 * unit.v_cm, keyat-
trs=None)

This class writes the title of the data in a plot together with a small illustration of the style. The style is
responsible for its illustration.

dist is a visual length and a distance between the key entries. pos is the position of the key with respect to the
graph. Allowed values are combinations of "t" (top), "m" (middle) and "b" (bottom) with "l" (left), "c"
(center) and "r" (right). Alternatively, you may use hpos and vpos to specify the relative position using the
range [0:1]. hdist and vdist are the distances from the specified corner of the graph. hinside and vinside are
numbers to be set to 0 or 1 to define whether the key should be placed horizontally and vertically inside of the
graph or not.

symbolwidth and symbolheight are passed to the style to control the size of the style illustration. symbolspace
is the space between the illustration and the text. textattrs are attributes for the text creation. They are merged
with [text.vshift.mathaxis].

columns is a number of columns of the graph key and columndist is the distance between those columns.

When keyattrs is set to contain some draw attributes, the graph key is enlarged by border and the key area is
drawn using keyattrs.
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TEN

AXES

10.1 Component architecture

Axes are a fundamental component of graphs although there might be applications outside of the graph system. Inter-
nally axes are constructed out of components, which handle different tasks axes need to fulfill:

axis Implements the conversion of a data value to a graph coordinate of range [0:1]. It does also handle the proper
usage of the components in complicated tasks (i.e. combine the partitioner, texter, painter and rater to find the
best partitioning).

An anchoredaxis is a container to combine an axis with an positioner and provide a storage area for all kind of
axis data. That way axis instances are reusable (they do not store any data locally). The anchoredaxis and the
positioner are created by a graph corresponding to its geometry.

tick Ticks are plotted along the axis. They might be labeled with text as well.

partitioner, we use “parter” as a short form Creates one or several choices of tick lists suitable to a certain axis
range.

texter Creates labels for ticks when they are not set manually.

painter Responsible for painting the axis.

rater Calculate ratings, which can be used to select the best suitable partitioning.

positioner Defines the position of an axis.

The names above map directly to modules which are provided in the directory graph/axis except for the an-
choredaxis, which is part of the axis module as well. Sometimes it might be convenient to import the axis directory
directly rather than to access iit through the graph. This would look like:

from pyx import *
graph.axis.painter() # and the like

from pyx.graph import axis
axis.painter() # this is shorter ...

In most cases different implementations are available through different classes, which can be combined in various
ways. There are various axis examples distributed with PyX, where you can see some of the features of the axis with
a few lines of code each. Hence we can here directly come to the reference of the available components.
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10.2 Module graph.axis.axis: Axes

The following classes are part of the module graph.axis.axis. However, there is a shortcut to access those
classes via graph.axis directly.

Instances of the following classes can be passed to the **axes keyword arguments of a graph. Those instances should
only be used once.

class graph.axis.axis.linear(min=None, max=None, reverse=0, divisor=None, title=None,
parter=parter.autolinear(), manualticks=[], density=1,
maxworse=2, rater=rater.linear(), texter=texter.mixed(),
painter=painter.regular(), linkpainter=painter.linked(), fall-
backrange=None)

This class provides a linear axis. min and max define the axis range. When not set, they are adjusted automati-
cally by the data to be plotted in the graph. Note, that some data might want to access the range of an axis (e.g.
the function class when no range was provided there) or you need to specify a range when using the axis
without plugging it into a graph (e.g. when drawing an axis along a path). In cases where the data provides a
range of zero (e.g. a when plotting a constant function), then a fallbackrange can be set to guarantee a minimal
range of the axis.

reverse can be set to indicate a reversed axis starting with bigger values first. Alternatively you can fix the
axis range by min and max accordingly. When divisor is set, it is taken to divide all data range and position
informations while creating ticks. You can create ticks not taking into account a factor by that. title is the title
of the axis.

parter is a partitioner instance, which creates suitable ticks for the axis range. Those ticks are merged with ticks
manually given by manualticks before proceeding with rating, painting etc. Manually placed ticks win against
those created by the partitioner. For automatic partitioners, which are able to calculate several possible tick lists
for a given axis range, the density is a (linear) factor to favour more or less ticks. It should not be stressed to
much (its likely, that the result would be unappropriate or not at all valid in terms of rating label distances). But
within a range of say 0.5 to 2 (even bigger for large graphs) it can help to get less or more ticks than the default
would lead to. maxworse is the number of trials with more and less ticks when a better rating was already found.
rater is a rater instance, which rates the ticks and the label distances for being best suitable. It also takes into
account density. The rater is only needed, when the partitioner creates several tick lists.

texter is a texter instance. It creates labels for those ticks, which claim to have a label, but do not have a label
string set already. Ticks created by partitioners typically receive their label strings by texters. The painter is
finally used to construct the output. Note, that usually several output constructions are needed, since the rater is
also used to rate the distances between the labels for an optimum. The linkedpainter is used as the axis painter,
when automatic link axes are created by the createlinked() method.

class graph.axis.axis.lin(...)
This class is an abbreviation of linear described above.

class graph.axis.axis.logarithmic(min=None, max=None, reverse=0, divisor=None,
title=None, parter=parter.autologarithmic(),
manualticks=[], density=1, maxworse=2,
rater=rater.logarithmic(), texter=texter.mixed(),
painter=painter.regular(), linkpainter=painter.linked(),
fallbackrange=None)

This class provides a logarithmic axis. All parameters work like linear. Only two parameters have a different
default: parter and rater. Furthermore and most importantly, the mapping between data and graph coordinates
is logarithmic.

class graph.axis.axis.log(...)
This class is an abbreviation of logarithmic described above.
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class graph.axis.axis.bar(subaxes=None, defaultsubaxis=linear(painter=None,
linkpainter=None, parter=None, texter=None), dist=0.5,
firstdist=None, lastdist=None, title=None, reverse=0,
painter=painter.bar(), linkpainter=painter.linkedbar())

This class provides an axis suitable for a bar style. It handles a discrete set of values and maps them to distinct
ranges in graph coordinates. For that, the axis gets a tuple of two values.

The first item is taken to be one of the discrete values valid on this axis. The discrete values can be any hashable
type and the order of the subaxes is defined by the order the data is received or the inverse of that when reverse
is set.

The second item is passed to the corresponding subaxis. The result of the conversion done by the subaxis is
mapped to the graph coordinate range reserved for this subaxis. This range is defined by a size attribute of the
subaxis, which can be added to any axis. (see the sized linear axes described below for some axes already having
a size argument). When no size information is available for a subaxis, a size value of 1 is used. The baraxis
itself calculates its size by suming up the sizes of its subaxes plus firstdist, lastdist and dist times the number of
subaxes minus 1.

subaxes should be a list or a dictionary mapping a discrete value of the bar axis to the corresponding subaxis.
When no subaxes are set or data is received for an unknown discrete axis value, instances of defaultsubaxis are
used as the subaxis for this discrete value.

dist is used as the spacing between the ranges for each distinct value. It is measured in the same units as the
subaxis results, thus the default value of 0.5 means half the width between the distinct values as the width for
each distinct value. firstdist and lastdist are used before the first and after the last value. When set to None, half
of dist is used.

title is the title of the split axes and painter is a specialized painter for an bar axis and linkpainter is used as the
painter, when automatic link axes are created by the createlinked() method.

class graph.axis.axis.nestedbar(subaxes=None, defaultsubaxis=bar(dist=0, painter=None,
linkpainter=None), dist=0.5, firstdist=None, last-
dist=None, title=None, reverse=0, painter=painter.bar(),
linkpainter=painter.linkedbar())

This class is identical to the bar axis except for the different default value for defaultsubaxis.

class graph.axis.axis.split(subaxes=None, defaultsubaxis=linear(), dist=0.5, firstdist=0,
lastdist=0, title=None, reverse=0, painter=painter.split(),
linkpainter=painter.linkedsplit())

This class is identical to the bar axis except for the different default value for defaultsubaxis, firstdist, lastdist,
painter, and linkedpainter.

Sometimes you want to alter the default size of 1 of the subaxes. For that you have to add a size attribute to the axis data.
The two classes sizedlinear and autosizedlinear do that for linear axes. Their short names are sizedlin
and autosizedlin. sizedlinear extends the usual linear axis by an first argument size. autosizedlinear
creates the size out of its data range automatically but sets an autolinear parter with extendtick being None in
order to disable automatic range modifications while painting the axis.

The axis module also contains classes implementing so called anchored axes, which combine an axis with an posi-
tioner and a storage place for axis related data. Since these features are not interesting for the average PyX user, we’ll
not go into all the details of their parameters and except for some handy axis position methods:

class graph.axis.axis.anchoredaxis

anchoredaxis.basepath(x1=None, x2=None)
Returns a path instance for the base path. x1 and x2 define the axis range, the base path should cover. For None
the beginning and end of the path is taken, which might cover a longer range, when the axis is embedded as a
subaxis. For that case, a None value extends the range to the point of the middle between two subaxes or the
beginning or end of the whole axis, when the subaxis is the first or last of the subaxes.
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anchoredaxis.vbasepath(v1=None, v2=None)
Like basepath() but in graph coordinates.

anchoredaxis.gridpath(x)
Returns a path instance for the grid path at position x. Might return None when no grid path is available.

anchoredaxis.vgridpath(v)
Like gridpath() but in graph coordinates.

anchoredaxis.tickpoint(x)
Returns the position of x as a tuple (x, y).

anchoredaxis.vtickpoint(v)
Like tickpoint() but in graph coordinates.

anchoredaxis.tickdirection(x)
Returns the direction of a tick at x as a tuple (dx, dy). The tick direction points inside of the graph.

anchoredaxis.vtickdirection(v)
Like tickdirection() but in graph coordinates.

anchoredaxis.vtickdirection(v)
Like tickdirection() but in graph coordinates.

However, there are two anchored axes implementations linkedaxis and anchoredpathaxis which are avail-
able to the user to create special forms of anchored axes.

class graph.axis.axis.linkedaxis(linkedaxis=None, errorname='manual-linked',
painter=_marker)

This class implements an anchored axis to be passed to a graph constructor to manually link the axis to another
anchored axis instance linkedaxis. Note that you can skip setting the value of linkedaxis in the constructor,
but set it later on by the setlinkedaxis() method described below. errorname is printed within error
messages when the data is used and some problem occurs. painter is used for painting the linked axis instead of
the linkedpainter provided by the linkedaxis.

linkedaxis.setlinkedaxis(linkedaxis)
This method can be used to set the linkedaxis after constructing the axis. By that you can create several graph
instances with cycled linked axes.

class graph.axis.axis.anchoredpathaxis(path, axis, direction=1)
This class implements an anchored axis the path path. direction defines the direction of the ticks. Allowed
values are 1 (left) and -1 (right).

The anchoredpathaxis contains as any anchored axis after calling its create() method the painted axis in
the canvas member attribute. The function pathaxis() has the same signature like the anchoredpathaxis
class, but immediately creates the axis and returns the painted axis.

10.3 Module graph.axis.tick: Axes ticks

The following classes are part of the module graph.axis.tick.

class graph.axis.tick.rational(x, power=1, floatprecision=10)
This class implements a rational number with infinite precision. For that it stores two integers, the numerator
num and a denominator denom. Note that the implementation of rational number arithmetics is not at all
complete and designed for its special use case of axis partitioning in PyX preventing any roundoff errors.

x is the value of the rational created by a conversion from one of the following input values:

• A float. It is converted to a rational with finite precision determined by floatprecision.
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• A string, which is parsed to a rational number with full precision. It is also allowed to provide a fraction
like "1/3".

• A sequence of two integers. Those integers are taken as numerator and denominator of the rational.

• An instance defining instance variables num and denom like

rational itself.

power is an integer to calculate x**power. This is useful at certain places in partitioners.

class graph.axis.tick.tick(x, ticklevel=0, labellevel=0, label=None, labelattrs=[], power=1,
floatprecision=10)

This class implements ticks based on rational numbers. Instances of this class can be passed to the
manualticks parameter of a regular axis.

The parameters x, power, and floatprecision share its meaning with rational.

A tick has a tick level (i.e. markers at the axis path) and a label lavel (e.i. place text at the axis path), ticklevel
and labellevel. These are non-negative integers or None. A value of 0 means a regular tick or label, 1 stands for
a subtick or sublabel, 2 for subsubtick or subsublabel and so on. None means omitting the tick or label. label
is the text of the label. When not set, it can be created automatically by a texter. labelattrs are the attributes for
the labels.

10.4 Module graph.axis.parter: Axes partitioners

The following classes are part of the module graph.axis.parter. Instances of the classes can be passed to the
parter keyword argument of regular axes.

class graph.axis.parter.linear(tickdists=None, labeldists=None, extendtick=0, extendla-
bel=None, epsilon=1e-10)

Instances of this class creates equally spaced tick lists. The distances between the ticks, subticks, subsubticks
etc. starting from a tick at zero are given as first, second, third etc. item of the list tickdists. For a tick position,
the lowest level wins, i.e. for [2, 1] even numbers will have ticks whereas subticks are placed at odd integer.
The items of tickdists might be strings, floats or tuples as described for the pos parameter of class tick.

labeldists works equally for placing labels. When labeldists is kept None, labels will be placed at each tick
position, but sublabels etc. will not be used. This copy behaviour is also available vice versa and can be
disabled by an empty list.

extendtick can be set to a tick level for including the next tick of that level when the data exceeds the range
covered by the ticks by more than epsilon. epsilon is taken relative to the axis range. extendtick is disabled when
set to None or for fixed range axes. extendlabel works similar to extendtick but for labels.

class graph.axis.parter.lin(...)
This class is an abbreviation of linear described above.

class graph.axis.parter.autolinear(variants=defaultvariants, extendtick=0, epsilon=1e-10)
Instances of this class creates equally spaced tick lists, where the distance between the ticks is adjusted to the
range of the axis automatically. Variants are a list of possible choices for tickdists of linear. Further variants
are build out of these by multiplying or dividing all the values by multiples of 10. variants should be ordered
that way, that the number of ticks for a given range will decrease, hence the distances between the ticks should
increase within the variants list. extendtick and epsilon have the same meaning as in linear.

autolinear.defaultvariants
[[tick.rational((1, 1)), tick.rational((1, 2))], [tick.rational((2, 1)),
tick.rational((1, 1))], [tick.rational((5, 2)), tick.rational((5, 4))],
[tick.rational((5, 1)), tick.rational((5, 2))]]
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class graph.axis.parter.autolin(...)
This class is an abbreviation of autolinear described above.

class graph.axis.parter.preexp(pres, exp)
This is a storage class defining positions of ticks on a logarithmic scale. It contains a list pres of positions 𝑝𝑖
and exp, a multiplicator 𝑚. Valid tick positions are defined by 𝑝𝑖𝑚

𝑛 for any integer 𝑛.

class graph.axis.parter.logarithmic(tickpreexps=None, labelpreexps=None, extendtick=0, ex-
tendlabel=None, epsilon=1e-10)

Instances of this class creates tick lists suitable to logarithmic axes. The positions of the ticks, subticks, sub-
subticks etc. are defined by the first, second, third etc. item of the list tickpreexps, which are all preexp
instances.

labelpreexps works equally for placing labels. When labelpreexps is kept None, labels will be placed at each
tick position, but sublabels etc. will not be used. This copy behaviour is also available vice versa and can be
disabled by an empty list.

extendtick, extendlabel and epsilon have the same meaning as in linear.

Some preexp instances for the use in logarithmic are available as instance variables (should be used read-only):

logarithmic.pre1exp5
preexp([tick.rational((1, 1))], 100000)

logarithmic.pre1exp4
preexp([tick.rational((1, 1))], 10000)

logarithmic.pre1exp3
preexp([tick.rational((1, 1))], 1000)

logarithmic.pre1exp2
preexp([tick.rational((1, 1))], 100)

logarithmic.pre1exp
preexp([tick.rational((1, 1))], 10)

logarithmic.pre125exp
preexp([tick.rational((1, 1)), tick.rational((2, 1)), tick.rational((5,
1))], 10)

logarithmic.pre1to9exp
preexp([tick.rational((1, 1)) for x in range(1, 10)], 10)

class graph.axis.parter.log(...)
This class is an abbreviation of logarithmic described above.

class graph.axis.parter.autologarithmic(variants=defaultvariants, extendtick=0, extendla-
bel=None, epsilon=1e-10)

Instances of this class creates tick lists suitable to logarithmic axes, where the distance between the ticks is
adjusted to the range of the axis automatically. Variants are a list of tuples with possible choices for tickpreexps
and labelpreexps of logarithmic. variants should be ordered that way, that the number of ticks for a given
range will decrease within the variants list.

extendtick, extendlabel and epsilon have the same meaning as in linear.

autologarithmic.defaultvariants
[([log.pre1exp, log.pre1to9exp], [log.pre1exp, log.pre125exp]), ([log.
pre1exp, log.pre1to9exp], None), ([log.pre1exp2, log.pre1exp], None),
([log.pre1exp3, log.pre1exp], None), ([log.pre1exp4, log.pre1exp], None),
([log.pre1exp5, log.pre1exp], None)]
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class graph.axis.parter.autolog(...)
This class is an abbreviation of autologarithmic described above.

10.5 Module graph.axis.texter: Axes texter

The following classes are part of the module graph.axis.texter. Instances of the classes can be passed to the
texter keyword argument of regular axes. Texters are used to define the label text for ticks, which request to have a
label, but for which no label text has been specified so far. A typical case are ticks created by partitioners described
above.

class graph.axis.texter.decimal(prefix='', infix='', suffix='', equalprecision=False, dec-
imalsep='.', thousandsep='', thousandthpartsep='',
plus='', minus='-', period='\\\\overline{%s}', labelat-
trs=[text.mathmode])

Instances of this class create decimal formatted labels.

The strings prefix, infix, and suffix are added to the label at the beginning, immediately after the plus or minus,
and at the end, respectively.

equalprecision forces the same number of digits after decimalsep, even when the tailing digits are zero.

decimalsep, thousandsep, and thousandthpartsep are strings used to separate integer from fractional part and
three-digit groups in the integer and fractional part. The strings plus and minus are inserted in front of the
unsigned value for non-negative and negative numbers, respectively.

The format string period should generate a period. It must contain one string insert operators %s for the period.

labelattrs is a list of attributes to be added to the label attributes given in the painter. It should be used to setup
TeX features like text.mathmode. Text format options like text.size should instead be set at the painter.

class graph.axis.texter.default(multiplication_tex='\\cdot{}', multiplication_unicode='·',
base=Fraction(10), skipmantissaunity=skipmantissaunity.all,
minusunity='-', minexponent=4, minnegexponent=None,
uniformexponent=True, mantissatexter=decimal(), base-
texter=decimal(), exponenttexter=decimal(), labelat-
trs=[text.mathmode])

Instances of this class create decimal formatted labels with an exponential.

multiplication_tex and multiplication_unicode are the strings to indicate the multiplication between the mantissa
and the base number for the TexEngine and the UnicodeEngine, respecitvely

base is the number of the base of the exponent

skipmantissaunity is either skipmantissaunity.never (never skip the unity mantissa), skipmantissaunity.each (skip
the unity mantissa whenever it occurs for each label separately), or skipmantissaunity.all (skip the unity mantissa
whenever if all labels happen to be mantissafixed with unity)

minusunity is used as the output of -unity for the mantissa

minexponent is the minimal positive exponent value to be printed by exponential notation

minnegexponent is the minimal negative exponent value to be printed by exponential notation, for None it is
considered to be equal to minexponent

uniformexponent forces all numbers to be written in exponential notation when at least one label excets the
limits for non-exponential notiation

mantissatexter, basetexter, and exponenttexter generate the texts for the mantissa, basetexter, and exponenttexter

labelattrs is a list of attributes to be added to the label attributes given in the painter”””
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class graph.axis.texter.rational(prefix='', infix='', suffix='', numprefix='', numinfix='', numsuf-
fix='', denomprefix='', denominfix='', denomsuffix='', plus='',
minus='-', minuspos=0, over='%s\\\\over%s', equalde-
nom=False, skip1=True, skipnum0=True, skipnum1=True,
skipdenom1=True, labelattrs=[text.mathmode])

Instances of this class create labels formated as fractions.

The strings prefix, infix, and suffix are added to the label at the beginning, immediately after the plus or minus,
and at the end, respectively. The strings numprefix, numinfix, and numsuffix are added to the labels numerator
accordingly whereas denomprefix, denominfix, and denomsuffix do the same for the denominator.

The strings plus and minus are inserted in front of the unsigned value. The position of the sign is defined by
minuspos with values 1 (at the numerator), 0 (in front of the fraction), and -1 (at the denominator).

The format string over should generate the fraction. It must contain two string insert operators %s, the first for
the numerator and the second for the denominator. An alternative to the default is "{{%s}/{%s}}".

Usually, the numerator and denominator are canceled, while, when equaldenom is set, the least common multiple
of all denominators is used.

The boolean skip1 indicates, that only the prefix, plus or minus, the infix and the suffix should be printed, when
the value is 1 or -1 and at least one of prefix, infix and suffix is present.

The boolean skipnum0 indicates, that only a 0 is printed when the numerator is zero.

skipnum1 is like skip1 but for the numerator.

skipdenom1 skips the denominator, when it is 1 taking into account denomprefix, denominfix, denomsuffix mi-
nuspos and the sign of the number.

labelattrs has the same meaning as for decimal.

10.6 Module graph.axis.painter: Axes painter

The following classes are part of the module graph.axis.painter. Instances of the painter classes can be passed
to the painter keyword argument of regular axes.

class graph.axis.painter.rotatetext(direction, epsilon=1e-10)
This helper class is used in direction arguments of the painters below to prevent axis labels and titles being
written upside down. In those cases the text will be rotated by 180 degrees. direction is an angle to be used
relative to the tick direction. epsilon is the value by which 90 degrees can be exceeded before an 180 degree
rotation is performed.

The following two class variables are initialized for the most common applications:

rotatetext.parallel
rotatetext(90)

rotatetext.orthogonal
rotatetext(180)

class graph.axis.painter.ticklength(initial, factor)
This helper class provides changeable PyX lengths starting from an initial value initial multiplied by factor
again and again. The resulting lengths are thus a geometric series.

There are some class variables initialized with suitable values for tick stroking. They are named ticklength.
SHORT, ticklength.SHORt, . . . , ticklength.short, ticklength.normal, ticklength.long, . . . ,
ticklength.LONG. ticklength.normal is initialized with a length of 0.12 and the reciprocal of the golden
mean as factor whereas the others have a modified initial value obtained by multiplication with or division by
appropriate multiples of

√
2.
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class graph.axis.painter.regular(innerticklength=ticklength.normal, outerticklength=None,
tickattrs=[], gridattrs=None, basepathattrs=[], labeld-
ist='0.3 cm', labelattrs=[], labeldirection=None, labelhe-
qualize=0, labelvequalize=1, titledist='0.3 cm', titleattrs=[],
titledirection=rotatetext.parallel, titlepos=0.5, texrun-
ner=None)

Instances of this class are painters for regular axes like linear and logarithmic axes.

innerticklength and outerticklength are visual PyX lengths of the ticks, subticks, subsubticks etc. plotted along
the axis inside and outside of the graph. Provide changeable attributes to modify the lengths of ticks compared
to subticks etc. None turns off the ticks inside and outside the graph, respectively.

tickattrs and gridattrs are changeable stroke attributes for the ticks and the grid, where None turns off the
feature. basepathattrs are stroke attributes for the axis or None to turn it off. basepathattrs is merged with
[style.linecap.square].

labeldist is the distance of the labels from the axis base path as a visual PyX length. labelattrs is a list of
text attributes for the labels. It is merged with [text.halign.center, text.vshift.mathaxis].
labeldirection is an instance of rotatetext to rotate the labels relative to the axis tick direction or None.

The boolean values labelhequalize and labelvequalize force an equal alignment of all labels for straight vertical
and horizontal axes, respectively.

titledist is the distance of the title from the rest of the axis as a visual PyX length. titleattrs is a list of text
attributes for the title. It is merged with [text.halign.center, text.vshift.mathaxis]. titledi-
rection is an instance of rotatetext to rotate the title relative to the axis tick direction or None. titlepos is the
position of the title in graph coordinates.

texrunner is the texrunner instance to create axis text like the axis title or labels. When not set the texrunner of
the graph instance is taken to create the text.

class graph.axis.painter.linked(innerticklength=ticklength.short, outerticklength=None, tickat-
trs=[], gridattrs=None, basepathattrs=[], labeldist='0.3 cm',
labelattrs=None, labeldirection=None, labelhequalize=0, la-
belvequalize=1, titledist='0.3 cm', titleattrs=None, titledirec-
tion=rotatetext.parallel, titlepos=0.5, texrunner=None)

This class is identical to regular up to the default values of labelattrs and titleattrs. By turning off those
features, this painter is suitable for linked axes.

class graph.axis.painter.bar(innerticklength=None, outerticklength=None, tickattrs=[], basepa-
thattrs=[], namedist='0.3 cm', nameattrs=[], namedirection=None,
namepos=0.5, namehequalize=0, namevequalize=1, titledist='0.3
cm', titleattrs=[], titledirection=rotatetext.parallel, titlepos=0.5,
texrunner=None)

Instances of this class are suitable painters for bar axes.

innerticklength and outerticklength are visual PyX lengths to mark the different bar regions along the axis inside
and outside of the graph. None turns off the ticks inside and outside the graph, respectively. tickattrs are stroke
attributes for the ticks or None to turn all ticks off.

The parameters with prefix name are identical to their label counterparts in regular. All other parameters
have the same meaning as in regular.

class graph.axis.painter.linkedbar(innerticklength=None, outerticklength=None, tickat-
trs=[], basepathattrs=[], namedist='0.3 cm', nameat-
trs=None, namedirection=None, namepos=0.5, namehe-
qualize=0, namevequalize=1, titledist='0.3 cm', titleat-
trs=None, titledirection=rotatetext.parallel, titlepos=0.5,
texrunner=None)

This class is identical to bar up to the default values of nameattrs and titleattrs. By turning off those features,
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this painter is suitable for linked bar axes.

class graph.axis.painter.split(breaklinesdist='0.05 cm', breaklineslength='0.5 cm',
breaklinesangle=- 60, titledist='0.3 cm', titleattrs=[], ti-
tledirection=rotatetext.parallel, titlepos=0.5, texrunner=None)

Instances of this class are suitable painters for split axes.

breaklinesdist and breaklineslength are the distance between axes break markers in visual PyX lengths. break-
linesangle is the angle of the axis break marker with respect to the base path of the axis. All other parameters
have the same meaning as in regular.

class graph.axis.painter.linkedsplit(breaklinesdist='0.05 cm', breaklineslength='0.5
cm', breaklinesangle=- 60, titledist='0.3 cm', ti-
tleattrs=None, titledirection=rotatetext.parallel,
titlepos=0.5, texrunner=None)

This class is identical to split up to the default value of titleattrs. By turning off this feature, this painter is
suitable for linked split axes.

10.7 Module graph.axis.rater: Axes rater

The rating of axes is implemented in graph.axis.rater. When an axis partitioning scheme returns several
partitioning possibilities, the partitions need to be rated by a positive number. The axis partitioning rated lowest is
considered best.

The rating consists of two steps. The first takes into account only the number of ticks, subticks, labels and so on in
comparison to optimal numbers. Additionally, the extension of the axis range by ticks and labels is taken into account.
This rating leads to a preselection of possible partitions. In the second step, after the layout of preferred partitionings
has been calculated, the distance of the labels in a partition is taken into account as well at a smaller weight factor by
default. Thereby partitions with overlapping labels will be rejected completely. Exceptionally sparse or dense labels
will receive a bad rating as well.

class graph.axis.rater.cube(opt, left=None, right=None, weight=1)
Instances of this class provide a number rater. opt is the optimal value. When not provided, left is set to 0 and
right is set to 3*opt. Weight is a multiplicator to the result.

The rater calculates width*((x-opt)/(other-opt))**3 to rate the value x, where other is left
(x``<*opt*) or *right* (``x>*opt*).

class graph.axis.rater.distance(opt, weight=0.1)
Instances of this class provide a rater for a list of numbers. The purpose is to rate the distance between label
boxes. opt is the optimal value.

The rater calculates the sum of weight*(opt/x-1) (x``<*opt*) or ``weight*(x/opt-1)
(x>*opt*) for all elements x of the list. It returns this value divided by the number of elements in the list.

class graph.axis.rater.rater(ticks, labels, range, distance)
Instances of this class are raters for axes partitionings.

ticks and labels are both lists of number rater instances, where the first items are used for the number of ticks
and labels, the second items are used for the number of subticks (including the ticks) and sublabels (including
the labels) and so on until the end of the list is reached or no corresponding ticks are available.

range is a number rater instance which rates the range of the ticks relative to the range of the data.

distance is an distance rater instance.

class graph.axis.rater.linear(ticks=[cube(4), cube(10, weight=0.5)], labels=[cube(4)],
range=cube(1, weight=2), distance=distance('1 cm'))

This class is suitable to rate partitionings of linear axes. It is equal to rater but defines predefined values for
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the arguments.

class graph.axis.rater.lin(...)
This class is an abbreviation of linear described above.

class graph.axis.rater.logarithmic(ticks=[cube(5, right=20), cube(20, right=100,
weight=0.5)], labels=[cube(5, right=20), cube(5,
right=20, weight=0.5)], range=cube(1, weight=2),
distance=distance('1 cm'))

This class is suitable to rate partitionings of logarithmic axes. It is equal to rater but defines predefined values
for the arguments.

class graph.axis.rater.log(...)
This class is an abbreviation of logarithmic described above.

10.8 Module graph.axis.positioner: Axes positioners

The position of an axis is defined by an instance of a class providing the following methods:

class graph.axis.positioners.positioner

positioner.vbasepath(v1=None, v2=None)
Returns a path instance for the base path. v1 and v2 define the axis range in graph coordinates the base path
should cover.

positioner.vgridpath(v)
Returns a path instance for the grid path at position v in graph coordinates. The method might return None
when no grid path is available (for an axis along a path for example).

positioner.vtickpoint_pt(v)
Returns the position of v in graph coordinates as a tuple (x, y) in points.

positioner.vtickdirection(v)
Returns the direction of a tick at v in graph coordinates as a tuple (dx, dy). The tick direction points inside
of the graph.

The module contains several implementations of those positioners, but since the positioner instances are created by
graphs etc. as needed, the details are not interesting for the average PyX user.
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ELEVEN

MODULE BOX: CONVEX BOX HANDLING

This module has a quite internal character, but might still be useful from the users point of view. It might also get
further enhanced to cover a broader range of standard arranging problems.

In the context of this module a box is a convex polygon having optionally a center coordinate, which plays an important
role for the box alignment. The center might not at all be central, but it should be within the box. The convexity is
necessary in order to keep the problems to be solved by this module quite a bit easier and unambiguous.

Directions (for the alignment etc.) are usually provided as pairs (dx, dy) within this module. It is required, that at least
one of these two numbers is unequal to zero. No further assumptions are taken.

11.1 Polygon

A polygon is the most general case of a box. It is an instance of the class polygon. The constructor takes a list of
points (which are (x, y) tuples) in the keyword argument corners and optionally another (x, y) tuple as the keyword
argument center. The corners have to be ordered counterclockwise. In the following list some methods of this
polygon class are explained:

path(centerradius=None, bezierradius=None, beziersoftness=1): returns a path of the box;
the center might be marked by a small circle of radius centerradius; the corners might be rounded us-
ing the parameters bezierradius and beziersoftness. For each corner of the box there may be one
value for beziersoftness and two bezierradii. For convenience, it is not necessary to specify the whole list (for
beziersoftness) and the whole list of lists (bezierradius) here. You may give a single value and/or a 2-tuple
instead.

transform(*trafos): performs a list of transformations to the box

reltransform(*trafos): performs a list of transformations to the box relative to the box center

circle align line align

Fig. 1: circle and line alignment examples (equal direction and distance)

circlealignvector(a, dx, dy): returns a vector (a tuple (x, y)) to align the box at a circle with radius a in
the direction (dx, dy); see figure circle and line alignment examples (equal direction and distance)

linealignvector(a, dx, dy): as above, but align at a line with distance a
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circlealign(a, dx, dy): as circlealignvector, but perform the alignment instead of returning the vector

linealign(a, dx, dy): as linealignvector, but perform the alignment instead of returning the vector

extent(dx, dy): extent of the box in the direction (dx, dy)

pointdistance(x, y): distance of the point (x, y) to the box; the point must be outside of the box

boxdistance(other): distance of the box to the box other; when the boxes are overlapping,
BoxCrossError is raised

bbox(): returns a bounding box instance appropriate to the box

11.2 Functions working on a box list

circlealignequal(boxes, a, dx, dy): Performs a circle alignment of the boxes boxes using the pa-
rameters a, dx, and dy as in the circlealign method. For the length of the alignment vector its largest
value is taken for all cases.

linealignequal(boxes, a, dx, dy): as above, but performing a line alignment

tile(boxes, a, dx, dy): tiles the boxes boxes with a distance a between the boxes (in addition the maxi-
mal box extent in the given direction (dx, dy) is taken into account)

11.3 Rectangular boxes

For easier creation of rectangular boxes, the module provides the specialized class rect. Its constructor first takes
four parameters, namely the x, y position and the box width and height. Additionally, for the definition of the position
of the center, two keyword arguments are available. The parameter relcenter takes a tuple containing a relative
x, y position of the center (they are relative to the box extent, thus values between 0 and 1 should be used). The
parameter abscenter takes a tuple containing the x and y position of the center. This values are measured with
respect to the lower left corner of the box. By default, the center of the rectangular box is set to this lower left corner.

68 Chapter 11. Module box: Convex box handling



CHAPTER

TWELVE

MODULE CONNECTOR

This module provides classes for connecting two box-instances with lines, arcs or curves. All constructors of the
following connector-classes take two box-instances as the two first arguments. They return a connecting path from
the first to the second box. The overall geometry of the path is such that is starts/ends at the boxes’ centers. It is then
cut by the boxes’ outlines. The resulting connector will additionally be shortened by lengths given in the boxdists
(a list of two lengths, default [0,0]).

Angle keywords can be either absolute or relative. The absolute angles refer to the angle between x-axis and the
running tangent of the connector, while the relative angles are between the direct connecting line of the box-centers
and the running tangent (see figure. The angle-parameters of the connector.arc (left panel) and the connector.curve
(right panel) classes.).

The bulge-keywords parameterize the deviation of the connector from the connecting line. It has different meanings
for different connectors (see figure. The angle-parameters of the connector.arc (left panel) and the connector.curve
(right panel) classes.).

12.1 Class line

The constructor of the line class accepts only boxes and the boxdists.

12.2 Class arc

The constructor takes either the relangle or a combination of relbulge and absbulge. The “bulge” is meant to be a hint
for the greatest distance between the connecting arc and the straight connection between the box-centers. (Default:
relangle=45, relbulge=None, absbulge=None)

Note that the bulge-keywords override the angle-keyword.

If both relbulge and absbulge are given, they will be added.

12.3 Class curve

The constructor takes both angle- and bulge-keywords. Here, the bulges are used as distances between the control
points of the cubic Beziér-curve. For the signs of the angle- and bulge-keywords refer to figure The angle-parameters
of the connector.arc (left panel) and the connector.curve (right panel) classes..

absangle1 or relangle1 — absangle2 or relangle2, where the absolute angle overrides the relative if both are given.
(Default: relangle1=45, relangle2=45, absangle1=None, absangle2=None)
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absbulge and relbulge, where they will be added if both are given. — (Default: absbulge=None, relbulge=0.
39; these default values produce output similar to the defaults of arc.)

relangle

(rel)bulge

relangle1

absangle1

relangle2

(rel)bulge

(rel)bulge

Fig. 1: The angle-parameters of the connector.arc (left panel) and the connector.curve (right panel) classes.

12.4 Class twolines

This class returns two connected straight lines. There is a vast variety of combinations for angle- and length-keywords.
The user has to make sure to provide a non-ambiguous set of keywords:

absangle1 or relangle1 for the first angle, — relangleM for the middle angle and — absangle2 or relangle2 for the
ending angle. Again, the absolute angle overrides the relative if both are given. (Default: all five angles are None)

length1 and length2 for the lengths of the connecting lines. (Default: None)
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MODULE EPSFILE: EPS FILE INCLUSION

With the help of the epsfile.epsfile class, you can easily embed another EPS file in your canvas, thereby
scaling, aligning the content at discretion. The most simple example looks like

from pyx import *
c = canvas.canvas()
c.insert(epsfile.epsfile(0, 0, "file.eps"))
c.writeEPSfile("output")

All relevant parameters are passed to the epsfile.epsfile constructor. They are summarized in the following
table:

argument
name

description

x 𝑥-coordinate of position.
y 𝑦-coordinate of position.
filename Name of the EPS file (including a possible extension).
width=NoneDesired width of EPS graphics or None for original width. Cannot be combined with scale specifi-

cation.
height=NoneDesired height of EPS graphics or None for original height. Cannot be combined with scale specifi-

cation.
scale=NoneScaling factor for EPS graphics or None for no scaling. Cannot be combined with width or height

specification.
align="bl"Alignment of EPS graphics. The first character specifies the vertical alignment: b for bottom, c for

center, and t for top. The second character fixes the horizontal alignment: l for left, c for center r
for right.

clip=1 Clip to bounding box of EPS file?
translatebbox=1Use lower left corner of bounding box of EPS file? Set to 0 with care.
bbox=None If given, use bbox instance instead of bounding box of EPS file.
kpsearch=0Search for file using the kpathsea library.
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CHAPTER

FOURTEEN

MODULE SVGFILE: SVG FILE INCLUSION

With the help of the svgfile.svgfile class, you can easily embed another SVG file in your canvas, thereby
scaling, aligning the content at discretion. The most simple example looks like

from pyx import *
c = canvas.canvas()
c.insert(svgfile.svgfile(0, 0, "file.svg"))
c.writeSVGfile("output")

All relevant parameters are passed to the svgfile.svgfile constructor. They are summarized in the following
table:

argu-
ment
name

description

x 𝑥-coordinate of position.
y 𝑦-coordinate of position.
filename Name of the SVG file.
width=NoneDesired width of SVG graphics or None for original width.
height=NoneDesired height of SVG graphics or None for original height.
ratio=NoneFor a given width or height set the other dimension with the given ratio. If None and either width or

height is set, the other dimension is scaled proportionally, which is different from a ratio 1.
parsed=FalseParsed mode flag, see below.
resolution=96SVG resolution in “dpi”, see below.

In parsed mode a filled PyX canvas containing the SVG data is created. At the moment the parser handles paths with
styles, transformations, canvas nesting etc. but no other SVG constructs. While some features might be added in the
future, the parsed mode will probably always have limitations, like not being able to take into account CSS styling and
other things. On the other hand the parsed mode has some major advantages. You can access the paths as PyX paths
within the canvas and you can output the parsed SVG data to PostScript and PDF.

Even though SVG is a vector format, inserting an SVG file depends on a resolution most of the time. This resolution
defines the unit scale, when no unit like pt, in, mm, or cm is used. This user unit is meant to be pixels, thus
viewer programs are adviced to use the screen resolution. Tools to SVG files often use 90 dpi as in the w3.org SVG
Recommendation. However, note that Adobe (R) Illustrator (R) uses 72 dpi. In browsers 96 dpi is commonly used,
which is thus set as the default. However, all this might vary between plattforms and configurations.

Note that the SVG output of PyX defines the its size using units. Still, when reading such a file in un-parsed mode
PyX need to make assumtions on how the final viewer will insert (i.e. scale and position) the SVG file, thus needing a
resolution. Only in parsed mode it becomes resolution independent.

Unfortunately it is rather uncommon to store the size of the SVG in coordinates with units. You then need to provide
the correct resolution in both modes, parsed and unparsed, to get proper alignment.
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FIFTEEN

BITMAPS

15.1 Introduction

PyX focuses on the creation of scaleable vector graphics. However, PyX also allows for the output of bitmap images.
Still, the support for creation and handling of bitmap images is quite limited. On the other hand the interfaces are built
that way, that its trivial to combine PyX with the “Python Image Library”, also known as “PIL”.

The creation of a bitmap can be performed out of some unpacked binary data by first creating image instances:

from pyx import *
image_bw = bitmap.image(2, 2, "L", "\0\377\377\0")
image_rgb = bitmap.image(3, 2, "RGB", "\77\77\77\177\177\177\277\277\277"

"\377\0\0\0\377\0\0\0\377")

Now image_bw is a 2×2 grayscale image. The bitmap data is provided by a string, which contains two black ("\0"
== chr(0)) and two white ("\377" == chr(255)) pixels. Currently the values per (colour) channel is fixed to
8 bits. The coloured image image_rgb has 3× 2 pixels containing a row of 3 different gray values and a row of the
three colours red, green, and blue.

The images can then be wrapped into bitmap instances by:

bitmap_bw = bitmap.bitmap(0, 1, image_bw, height=0.8)
bitmap_rgb = bitmap.bitmap(0, 0, image_rgb, height=0.8)

When constructing a bitmap instance you have to specify a certain position by the first two arguments fixing the
bitmaps lower left corner. Some optional arguments control further properties. Since in this example there is no
information about the dpi-value of the images, we have to specify at least a width or a height of the bitmap.

The bitmaps are now to be inserted into a canvas:

c = canvas.canvas()
c.insert(bitmap_bw)
c.insert(bitmap_rgb)
c.writeEPSfile("bitmap")

Figure An introductory bitmap example. shows the resulting output.

Fig. 1: An introductory bitmap example.
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15.2 Bitmap module: Bitmap support

class bitmap.image(width, height, mode, data, compressed=None)
This class is a container for image data. width and height are the size of the image in pixel. mode is one of
"L", " RGB" or "CMYK" for grayscale, rgb, or cmyk colours, respectively. data is the bitmap data as a string,
where each single character represents a colour value with ordinal range 0 to 255. Each pixel is described by
the appropriate number of colour components according to mode. The pixels are listed row by row one after the
other starting at the upper left corner of the image.

compressed might be set to " Flate" or "DCT" to provide already compressed data. Note that those data
will be passed to PostScript without further checks, i.e. this option is for experts only.

class bitmap.jpegimage(file)
This class is specialized to read data from a JPEG/JFIF-file. file is either an open file handle (it only has to
provide a read() method; the file should be opened in binary mode) or a string. In the latter case jpegimage
will try to open a file named like file for reading.

The contents of the file is checked for some JPEG/JFIF format markers in order to identify the size and dpi
resolution of the image for further usage. These checks will typically fail for invalid data. The data are not
uncompressed, but directly inserted into the output stream (for invalid data the result will be invalid PostScript).
Thus there is no quality loss by recompressing the data as it would occur when recompressing the uncompressed
stream with the lossy jpeg compression method.

class bitmap.bitmap(xpos, ypos, image, width=None, height=None, ratio=None, storedata=0,
maxstrlen=4093, compressmode='Flate', flatecompresslevel=6, dctquality=75,
dctoptimize=1, dctprogression=0)

xpos and ypos are the position of the lower left corner of the image. This position might be modified by
some additional transformations when inserting the bitmap into a canvas. image is an instance of image or
jpegimage but it can also be an image instance from the “Python Image Library”.

width, height, and ratio adjust the size of the image. At least width or height needs to be given, when no dpi
information is available from image.

storedata is a flag indicating, that the (still compressed) image data should be put into the printers memory
instead of writing it as a stream into the PostScript file. While this feature consumes memory of the PostScript
interpreter, it allows for multiple usage of the image without including the image data several times in the
PostScript file.

maxstrlen defines a maximal string length when storedata is enabled. Since the data must be kept in the
PostScript interpreters memory, it is stored in strings. While most interpreters do not allow for an arbitrary
string length (a common limit is 65535 characters), a limit for the string length is set. When more data need to
be stored, a list of strings will be used. Note that lists are also subject to some implementation limits. Since a
typical value is 65535 entries, in combination a huge amount of memory can be used.

Valid values for compressmode currently are "Flate" (zlib compression), "DCT" (jpeg compression), or
None (disabling the compression). The zlib compression makes use of the zlib module as it is part of the
standard Python distribution. The jpeg compression is available for those image instances only, which support
the creation of a jpeg-compressed stream, e.g. images from the “Python Image Library” with jpeg support
installed. The compression must be disabled when the image data is already compressed.

flatecompresslevel is a parameter of the zlib compression. dctquality, dctoptimize, and dctprogression are pa-
rameters of the jpeg compression. Note, that the progression feature of the jpeg compression should be turned
off in order to produce valid PostScript. Also the optimization feature is known to produce errors on certain
printers.
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MODULE BBOX

The bbox` module contains the definition of the bbox class representing bounding boxes of graphical elements like
paths, canvases, etc. used in PyX. Usually, you obtain bbox instances as return values of the corresponding bbox())
method, but you may also construct a bounding box by yourself.

16.1 bbox constructor

The bbox constructor accepts the following keyword arguments

keyword description
llx None (default) for −∞ or 𝑥-position of the lower left corner of the bbox (in user units)
lly None (default) for −∞ or 𝑦-position of the lower left corner of the bbox (in user units)
urx None (default) for ∞ or 𝑥-position of the upper right corner of the bbox (in user units)
ury None (default) for ∞ or 𝑦-position of the upper right corner of the bbox (in user units)

16.2 bbox methods

bbox method function
intersects(other) returns 1 if the bbox instance and other intersect with each other.
transformed(self, trafo) returns self transformed by transformation trafo.
enlarged(all=0,
bottom=None, left=None,
top=None, right=None)

return the bounding box enlarged by the given amount (in visual units).
all is the default for all other directions, which is used whenever None is
given for the corresponding direction.

path() or rect() return the path corresponding to the bounding box rectangle.
height() returns the height of the bounding box (in PyX lengths).
width() returns the width of the bounding box (in PyX lengths).
top() returns the 𝑦-position of the top of the bounding box (in PyX lengths).
bottom() returns the 𝑦-position of the bottom of the bounding box (in PyX lengths).
left() returns the 𝑥-position of the left side of the bounding box (in PyX lengths).
right() returns the 𝑥-position of the right side of the bounding box (in PyX

lengths).

Furthermore, two bounding boxes can be added (giving the bounding box enclosing both) and multiplied (giving the
intersection of both bounding boxes).
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SEVENTEEN

MODULE COLOR

17.1 Color models

PostScript provides different color models. They are available to PyX by different color classes, which just pass the
colors down to the PostScript level. This implies, that there are no conversion routines between different color models
available. However, some color model conversion routines are included in Python’s standard library in the module
colorsym. Furthermore also the comparison of colors within a color model is not supported, but might be added in
future versions at least for checking color identity and for ordering gray colors.

There is a class for each of the supported color models, namely gray, rgb, cmyk, and hsb. The constructors take
variables appropriate for the color model. Additionally, a list of named colors is given in appendix Appendix: Named
colors.

17.2 Example

from pyx import *

c = canvas.canvas()

c.fill(path.rect(0, 0, 7, 3), [color.gray(0.8)])
c.fill(path.rect(1, 1, 1, 1), [color.rgb.red])
c.fill(path.rect(3, 1, 1, 1), [color.rgb.green])
c.fill(path.rect(5, 1, 1, 1), [color.rgb.blue])

c.writeEPSfile("color")

The file color.eps is created and looks like:

Fig. 1: Color example
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17.3 Color gradients

The color module provides a class gradient for continous transitions between colors. A list of named gradients is
available in appendix Appendix: Named gradients.

Note that all predefined non-gray gradients are defined in the RGB color space, except for gradient.Rainbow, gra-
dient.ReverseRainbow, gradient.Hue, and gradient.ReverseHue, which are naturally defined in the HSB color space.
Converted RGB and CMYK versions of these latter gradients are also defined under the names rgbgradient.Rainbow
and cmykgradient.Rainbow, etc.

class color.gradient
This class defines the methods for the gradient.

getcolor(parameter)
Returns the color that corresponds to parameter (must be between min and max).

select(index, n_indices)
When a total number of n_indices different colors is needed from the gradient, this method returns the
index-th color.

class color.functiongradient_cmyk(f_c, f_m, f_y, f_k)

class color.functiongradient_gray(f_gray)

class color.functiongradient_hsb(f_g, f_s, f_b)

class color.functiongradient_rgb(f_r, f_g, f_b)
This class provides an arbitray transition between colors of the same color model.

The functions f_c, etc. map the values [0, 1] to the respective components of the color model.

color.lineargradient_cmyk(mincolor, maxcolor)

color.lineargradient_gray(mincolor, maxcolor)

color.lineargradient_hsb(mincolor, maxcolor)

color.lineargradient_rgb(mincolor, maxcolor)
These factory functors for the corresponding functiongradient_ classes provide a linear transition between two
given instances of the same color class. The linear interpolation is performed on the color components of the
specific color model.

mincolor and maxcolor must be colors of the corresponding color class.

class rgbgradient(gradient)
This class takes an arbitrary gradient and converts it into one in the RGB color model. This is useful for instance
in bitmap output, where only certain color models are supported in Postscript/PDF.

class cmykgradient(gradient)
This class takes an arbitrary gradient and converts it into one in the CMYK color mode. This is useful for
instance in bitmap output, where only certain color models are supported in Postscript/PDF.
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17.4 Transparency

class color.transparency(value)
Instances of this class will make drawing operations (stroking, filling) to become partially transparent. value
defines the transparency factor in the range 0 (opaque) to 1 (transparent).

Transparency is available in PDF output only since it is not supported by PostScript. However, for certain
ghostscript devices (for example the pdf backend as used by ps2pdf) proprietary PostScript extension allows for
transparency in PostScript code too. PyX creates such PostScript proprietary code, but issues a warning when
doing so.
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EIGHTEEN

MODULE PATTERN

This module contains the pattern.pattern class, whichs allows the definition of PostScript Tiling patterns (cf.
Sect. 4.9 of the PostScript Language Reference Manual) which may then be used to fill paths. In addition, a number
of predefined hatch patterns are included.

18.1 Class pattern

The classes pattern.pattern and canvas.canvas differ only in their constructor and in the absence of a
writeEPSfile() method in the former. The pattern constructor accepts the following keyword arguments:

key-
word

description

painttype1 (default) for coloured patterns or 2 for uncoloured patterns
tilingtype1 (default) for constant spacing tilings (patterns are spaced constantly by a multiple of a device pixel), 2 for

undistorted pattern cell, whereby the spacing may vary by as much as one device pixel, or 3 for constant
spacing and faster tiling which behaves as tiling type 1 but with additional distortion allowed to permit a
more efficient implementation.

xstep desired horizontal spacing between pattern cells, use None (default) for automatic calculation from pattern
bounding box.

ystep desired vertical spacing between pattern cells, use None (default) for automatic calculation from pattern
bounding box.

bbox bounding box of pattern. Use None for an automatic determination of the bounding box (including an
enlargement by bboxenlarge pts on each side.)

trafo additional transformation applied to pattern or None (default). This may be used to rotate the pattern or to
shift its phase (by a translation).

bboxenlargeenlargement when using the automatic bounding box determination; default is 5 pts.

After you have created a pattern instance, you define the pattern shape by drawing in it like in an ordinary canvas. To
use the pattern, you simply pass the pattern instance to a stroke(), fill(), draw() or set() method of the
canvas, just like you would do with a colour, etc.
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CHAPTER

NINETEEN

MODULE UNIT

With the unit module PyX makes available classes and functions for the specification and manipulation of lengths.
As usual, lengths consist of a number together with a measurement unit, e.g., 1 cm, 50 points, 0.42 inch. In addition,
lengths in PyX are composed of the five types “true”, “user”, “visual”, “width”, and “TeX”, e.g., 1 user cm, 50 true
points, 0.42 visual + 0.2 width inch. As their names indicate, they serve different purposes. True lengths are not
scalable and are mainly used for return values of PyX functions. The other length types can be rescaled by the user
and differ with respect to the type of object they are applied to:

user length: used for lengths of graphical objects like positions etc.

visual length: used for sizes of visual elements, like arrows, graph symbols, axis ticks, etc.

width length: used for line widths

TeX length: used for all TeX and LaTeX output

When not specified otherwise, all types of lengths are interpreted in terms of a default unit, which, by default, is 1 cm.
You may change this default unit by using the module level function

unit.set(uscale=None, vscale=None, wscale=None, xscale=None, defaultunit=None)
When uscale, vscale, wscale, or xscale is not None, the corresponding scaling factor(s) is redefined to the given
number. When defaultunit is not None, the default unit is set to the given value, which has to be one of "cm",
"mm", "inch", or "pt".

For instance, if you only want thicker lines for a publication version of your figure, you can just rescale all width
lengths using

unit.set(wscale=2)

Or suppose, you are used to specify length in imperial units. In this, admittedly rather unfortunate case, just use

unit.set(defaultunit="inch")

at the beginning of your program.

19.1 Class length

class unit.length(f, type='u', unit=None)
The constructor of the length class expects as its first argument a number f, which represents the prefactor
of the given length. By default this length is interpreted as a user length (type="u") in units of the current
default unit (see set() function of the unit module). Optionally, a different type may be specified, namely
"u" for user lengths, "v" for visual lengths, "w" for width lengths, "x" for TeX length, and "t" for true
lengths. Furthermore, a different unit may be specified using the unit argument. Allowed values are "cm",
"mm", "inch", and "pt".
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Instances of the length class support addition and substraction either by another length or by a number which
is then interpeted as being a user length in default units, multiplication by a number and division either by another
length in which case a float is returned or by a number in which case a length instance is returned. When two
lengths are compared, they are first converted to meters (using the currently set scaling), and then the resulting values
are compared.

19.2 Predefined length instances

A number of length instances are already predefined, which only differ in there values for type and unit. They
are summarized in the following table

name type unit
m user m
cm user cm
mm user mm
inch user inch
pt user points
t_m true m
t_cm true cm
t_mm true mm
t_inch true inch
t_pt true points
u_m user m
u_cm user cm
u_mm user mm
u_inch user inch
u_pt user points
v_m visual m
v_cm visual cm
v_mm visual mm
v_inch visual inch
v_pt visual points
w_m width m
w_cm width cm
w_mm width mm
w_inch width inch
w_pt width points
x_m TeX m
x_cm TeX cm
x_mm TeX mm
x_inch TeX inch
x_pt TeX points

Thus, in order to specify, e.g., a length of 5 width points, just use 5*unit.w_pt.
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19.3 Conversion functions

If you want to know the value of a PyX length in certain units, you may use the predefined conversion functions which
are given in the following table

function result
tom(l) l in units of m
tocm(l) l in units of cm
tomm(l) l in units of mm
toinch(l) l in units of inch
topt(l) l in units of points

If l is not yet a length instance but a number, it first is interpreted as a user length in the default units.
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CHAPTER

TWENTY

MODULE TRAFO: LINEAR TRANSFORMATIONS

With the trafo module PyX supports linear transformations, which can then be applied to canvases, Bézier paths and
other objects. It consists of the main class trafo representing a general linear transformation and subclasses thereof,
which provide special operations like translation, rotation, scaling, and mirroring.

20.1 Class trafo

The trafo class represents a general linear transformation, which is defined for a vector 𝑥⃗ as

𝑥⃗′ = A 𝑥⃗+ 𝑏⃗ ,

where A is the transformation matrix and 𝑏⃗ the translation vector. The transformation matrix must not be singular, i.e.
we require detA ̸= 0.

Multiple trafo instances can be multiplied, corresponding to a consecutive application of the respective transforma-
tion. Note that trafo1*trafo2 means that trafo1 is applied after trafo2, i.e. the new transformation is given
by A = A1A2 and 𝑏⃗ = A1⃗𝑏2 + 𝑏⃗1. Use the trafo methods described below, if you prefer thinking the other way
round. The inverse of a transformation can be obtained via the trafo method inverse(), defined by the inverse
A−1 of the transformation matrix and the translation vector −A−1⃗𝑏.

class trafo.trafo(matrix=((1, 0), (0, 1)), vector=(0, 0))
create new trafo instance with transformation matrix and vector

trafo.apply(x, y)
apply trafo to point vector (x, y).

trafo.inverse()
returns inverse transformation of trafo.

trafo.mirrored(angle)
returns trafo followed by mirroring at line through (0, 0) with direction angle in degrees.

trafo.rotated(angle, x=None, y=None)
returns trafo followed by rotation by angle degrees around point (x, y), or (0, 0), if not given.

trafo.scaled(sx, sy=None, x=None, y=None)
returns trafo followed by scaling with scaling factor sx in 𝑥-direction, sy in 𝑦-direction (sy = sx, if not
given) with scaling center (x, y), or (0, 0), if not given.

trafo.slanted(a, angle=0, x=None, y=None)
returns trafo followed by slant by angle around point (x, y), or (0, 0), if not given.

trafo.translated(x, y)
returns trafo followed by translation by vector (x, y).
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20.2 Subclasses of trafo

The trafo module provides a number of subclasses of the trafo class, each of which corresponds to one trafo
method.

class trafo.mirror(angle)
mirroring at line through (0, 0) with direction angle in degrees.

class trafo.rotate(angle, x=None, y=None)
rotation by angle degrees around point (x, y), or (0, 0), if not given.

class trafo.scale(sx, sy=None, x=None, y=None)
scaling with scaling factor sx in 𝑥-direction, sy in 𝑦-direction (sy = sx, if not given) with scaling center (x, y),
or (0, 0), if not given.

class trafo.slant(a, angle=0, x=None, y=None)
slant by angle around point (x, y), or (0, 0), if not given.

class trafo.translate(x, y)
translation by vector (x, y).
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APPENDIX: NAMED COLORS
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gray.black

gray.white

rgb.red

rgb.green

rgb.blue

rgb.white

rgb.black

cmyk.GreenYellow

cmyk.Yellow

cmyk.Goldenrod

cmyk.Dandelion

cmyk.Apricot

cmyk.Peach

cmyk.Melon

cmyk.YellowOrange

cmyk.Orange

cmyk.BurntOrange

cmyk.Bittersweet

cmyk.RedOrange

cmyk.Mahogany

cmyk.Maroon

cmyk.BrickRed

cmyk.Red

cmyk.OrangeRed

cmyk.RubineRed

cmyk.WildStrawberry

cmyk.Salmon

cmyk.CarnationPink

cmyk.Magenta

cmyk.VioletRed

cmyk.Rhodamine

cmyk.Mulberry

cmyk.RedViolet

cmyk.Fuchsia

cmyk.Lavender

cmyk.Thistle

cmyk.Orchid

cmyk.DarkOrchid

cmyk.Purple

cmyk.Plum

cmyk.Violet

cmyk.RoyalPurple

cmyk.BlueViolet

cmyk.Periwinkle

cmyk.CadetBlue

cmyk.CornflowerBlue

cmyk.MidnightBlue

cmyk.NavyBlue

cmyk.RoyalBlue

cmyk.Blue

cmyk.Cerulean

cmyk.Cyan

cmyk.ProcessBlue

cmyk.SkyBlue

cmyk.Turquoise

cmyk.TealBlue

cmyk.Aquamarine

cmyk.BlueGreen

cmyk.Emerald

cmyk.JungleGreen

cmyk.SeaGreen

cmyk.Green

cmyk.ForestGreen

cmyk.PineGreen

cmyk.LimeGreen

cmyk.YellowGreen

cmyk.SpringGreen

cmyk.OliveGreen

cmyk.RawSienna

cmyk.Sepia

cmyk.Brown

cmyk.Tan

cmyk.Gray

cmyk.Black

cmyk.White

Fig. 1: Names colors

92 Chapter 21. Appendix: Named colors



CHAPTER

TWENTYTWO

APPENDIX: NAMED GRADIENTS

93



PyX Manual, Release 0.15

0 1

gradient.Gray

gradient.ReverseGray

gradient.BlackYellow

gradient.YellowBlack

gradient.RedGreen

gradient.RedBlue

gradient.GreenRed

gradient.GreenBlue

gradient.BlueRed

gradient.BlueGreen

gradient.RedBlack

gradient.BlackRed

gradient.RedWhite

gradient.WhiteRed

gradient.GreenBlack

gradient.BlackGreen

gradient.GreenWhite

gradient.WhiteGreen

gradient.BlueBlack

gradient.BlackBlue

gradient.BlueWhite

gradient.WhiteBlue

gradient.Rainbow

gradient.ReverseRainbow

gradient.Hue

gradient.ReverseHue

gradient.Jet

gradient.ReverseJet

Fig. 1: Named gradients

94 Chapter 22. Appendix: Named gradients



CHAPTER

TWENTYTHREE

APPENDIX: PATH STYLES

linecap.butt (default)

linecap.round

linecap.square

linejoin.miter (default)

linejoin.round

linejoin.bevel

linestyle.solid (default)

linestyle.dashed

linestyle.dotted

linestyle.dashdotted

linewidth.THIN

linewidth.THIn

linewidth.THin

linewidth.Thin

linewidth.thin

linewidth.normal (default)

linewidth.thick

linewidth.Thick

linewidth.THick

linewidth.THIck

linewidth.THICk

linewidth.THICK

miterlimit.lessthan180deg

miterlimit.lessthan90deg

miterlimit.lessthan60deg

miterlimit.lessthan45deg

miterlimit.lessthan11deg (default)

dash((1, 1, 2, 2, 3, 3), 0)

dash((1, 1, 2, 2, 3, 3), 1)

dash((1, 2, 3), 2)

dash((1, 2, 3), 3)

dash((1, 2, 3), 4)

dash((1, 2, 3), rellengths=1)

Fig. 1: path styles
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CHAPTER

TWENTYFOUR

APPENDIX: ARROWS IN DECO MODULE

earrow.Small

earrow.small

earrow.normal

earrow.large

earrow.Large

barrow.normal

earrow.Large([deco.filled([color.rgb.red]), style.linewidth.normal])

earrow.normal(constriction=None)

earrow.Large([style.linejoin.round])

earrow.Large([deco.stroked.clear])

Fig. 1: Arrows in deco module
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b
bbox, 76
bitmap, 75
box, 65

c
canvas, 20
color, 77
connector, 68

d
deformer, 18
document, 23

e
epsfile, 70

g
graph, 40
graph.axis, 54
graph.axis.axis, 55
graph.axis.painter, 62
graph.axis.parter, 59
graph.axis.positioners, 65
graph.axis.rater, 64
graph.axis.texter, 61
graph.axis.tick, 58
graph.data, 46
graph.graph, 43
graph.key, 54
graph.style, 50

m
metapost.path, 15

p
path, 10
pattern, 81
pyx, 39

s
style, 93

svgfile, 71

t
text, 26
trafo, 87

u
unit, 83
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Symbols
__call__() (deformer.deformer method), 19

A
anchoredaxis (class in graph.axis.axis), 57
anchoredpathaxis (class in graph.axis.axis), 58
append() (path.normsubpath method), 15
append() (path.path method), 11
apply() (in module trafo), 89
arc (class in path), 13
arclen() (path.path method), 11
arclentoparam() (path.path method), 11
arcn (class in path), 13
arct (class in path), 13
arrow (class in graph.style), 52
at() (path.path method), 11
atbegin() (path.path method), 11
atend() (path.path method), 11
autolin (class in graph.axis.parter), 59
autolinear (class in graph.axis.parter), 59
autolog (class in graph.axis.parter), 60
autologarithmic (class in graph.axis.parter), 60
axes (graph.graph.graphxy attribute), 44
axisatv() (graph.graph.graphxy method), 45
axistrafo() (graph.graph.graphxy method), 45

B
bar (class in graph.axis.axis), 56
bar (class in graph.axis.painter), 63
bar (class in graph.style), 53
barpos (class in graph.style), 53
baseline (text.valign attribute), 36
basepath() (graph.axis.axis.anchoredaxis method),

57
bbox

module, 76
bbox() (canvas.canvas method), 22
bbox() (path.path method), 11
begin() (path.path method), 11
beginknot (class in metapost.path), 17
bitmap

module, 75

bitmap (class in bitmap), 76
bottom (text.valign attribute), 36
bottomzero (text.vshift attribute), 36
box

module, 65
box_warning() (text.texmessage static method), 34
boxcenter (text.halign attribute), 35
boxleft (text.halign attribute), 35
boxright (text.halign attribute), 35

C
canvas

module, 20
canvas (class in canvas), 21
cbdfile (class in graph.data), 49
center (text.halign attribute), 35
central (class in graph.graph), 46
central (graph.graph.graphxyz attribute), 46
changebar (class in graph.style), 53
changecircle (graph.style.symbol attribute), 51
changecircletwice (graph.style.symbol attribute),

51
changecross (graph.style.symbol attribute), 51
changediamond (graph.style.symbol attribute), 51
changediamondtwice (graph.style.symbol at-

tribute), 51
changefilledstroked (graph.style.symbol at-

tribute), 51
changelinestyle (graph.style.line attribute), 51
changeplus (graph.style.symbol attribute), 51
changesquare (graph.style.symbol attribute), 51
changesquaretwice (graph.style.symbol attribute),

51
changestrokedfilled (graph.style.symbol at-

tribute), 51
changetriangle (graph.style.symbol attribute), 51
changetriangletwice (graph.style.symbol at-

tribute), 51
circle (class in path), 15
circle (graph.style.symbol attribute), 51
close() (path.normsubpath method), 15
closepath (class in path), 13
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color
module, 77

conffile (class in graph.data), 49
connector

module, 68
controlcurve (class in metapost.path), 18
cross (graph.style.symbol attribute), 50
cube (class in graph.axis.rater), 64
curve (class in metapost.path), 18
curve (class in path), 15
curveradius() (path.path method), 11
curveto (class in path), 13
cycloid (class in deformer), 19

D
data (class in graph.data), 49
decimal (class in graph.axis.texter), 61
default (class in graph.axis.texter), 61
default (text.errordetail attribute), 33
defaultcolumnpattern (graph.data.file attribute),

48
defaultcommentpattern (graph.data.file at-

tribute), 48
defaultstringpattern (graph.data.file attribute),

48
defaulttextengine (in module text), 31
defaultvariants (graph.axis.parter.autolinear at-

tribute), 59
defaultvariants (graph.axis.parter.autologarithmic

attribute), 60
deform() (deformer.deformer method), 19
deformer

module, 18
deformer (class in deformer), 19
diamond (graph.style.symbol attribute), 51
distance (class in graph.axis.rater), 64
doaxes() (graph.graph.graphxy method), 44
dobackground() (graph.graph.graphxy method), 44
document

module, 23
document (class in document), 25
dokey() (graph.graph.graphxy method), 45
dokeyitem() (graph.graph.graphxy method), 44
dolayout() (graph.graph.graphxy method), 44
doplot() (graph.graph.graphxy method), 44
doplotitem() (graph.graph.graphxy method), 44
draw() (canvas.canvas method), 21

E
end() (path.path method), 12
end() (text.texmessage static method), 33
endknot (class in metapost.path), 17
epsfile

module, 70

errorbar (class in graph.style), 52
errordetail (class in text), 32
escapestring() (in module text), 32
extend() (path.normsubpath method), 15
extend() (path.path method), 12

F
file (class in graph.data), 47
fill() (canvas.canvas method), 21
finish() (graph.graph.graphxy method), 45
flushcenter (text.halign attribute), 35
flushleft (text.halign attribute), 35
flushright (text.halign attribute), 35
font_warning() (text.texmessage static method), 34
footnotesize (text.size attribute), 37
full (text.errordetail attribute), 33
function (class in graph.data), 48
functiongradient_cmyk (class in color), 80
functiongradient_gray (class in color), 80
functiongradient_hsb (class in color), 80
functiongradient_rgb (class in color), 80

G
gradient (class in color), 80
gradient.getcolor() (in module color), 80
gradient.select() (in module color), 80
graph

module, 40
graph.axis

module, 54
graph.axis.axis

module, 55
graph.axis.painter

module, 62
graph.axis.parter

module, 59
graph.axis.positioners

module, 65
graph.axis.rater

module, 64
graph.axis.texter

module, 61
graph.axis.tick

module, 58
graph.data

module, 46
graph.graph

module, 43
graph.key

module, 54
graph.style

module, 50
graphxy (class in graph.graph), 43
graphxyz (class in graph.graph), 45
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grid (class in graph.style), 53
gridpath() (graph.axis.axis.anchoredaxis method),

58
gridpos (class in graph.style), 53

H
halign (class in text), 35
histogram (class in graph.style), 52
Huge (text.size attribute), 37
huge (text.size attribute), 37

I
ignore() (text.texmessage static method), 34
image (class in bitmap), 76
impulses (class in graph.style), 51
insert() (canvas.canvas method), 21
intersect() (path.path method), 12
inverse() (in module trafo), 89

J
join() (path.normpath method), 14
joined() (path.path method), 12
jpegimage (class in bitmap), 76

K
key (class in graph.key), 54
knot (class in metapost.path), 18

L
LARGE (text.size attribute), 37
Large (text.size attribute), 37
large (text.size attribute), 37
LatexEngine (class in text), 31
layer() (canvas.canvas method), 21
left (text.halign attribute), 35
length (class in unit), 85
lin (class in graph.axis.axis), 56
lin (class in graph.axis.parter), 59
lin (class in graph.axis.rater), 65
line (class in graph.style), 51
line (class in metapost.path), 18
line (class in path), 15
linear (class in graph.axis.axis), 56
linear (class in graph.axis.parter), 59
linear (class in graph.axis.rater), 64
lineargradient_cmyk() (in module color), 80
lineargradient_gray() (in module color), 80
lineargradient_hsb() (in module color), 80
lineargradient_rgb() (in module color), 80
lineto (class in path), 13
linked (class in graph.axis.painter), 63
linkedaxis (class in graph.axis.axis), 58
linkedbar (class in graph.axis.painter), 63

linkedsplit (class in graph.axis.painter), 64
load() (text.texmessage static method), 33
load_def() (text.texmessage static method), 34
load_graphics() (text.texmessage static method),

34
log (class in graph.axis.axis), 56
log (class in graph.axis.parter), 60
log (class in graph.axis.rater), 65
logarithmic (class in graph.axis.axis), 56
logarithmic (class in graph.axis.parter), 60
logarithmic (class in graph.axis.rater), 65

M
marker() (text.textextbox_pt method), 31
mathaxis (text.vshift attribute), 36
mathmode (in module text), 36
metapost.path

module, 15
middle (text.valign attribute), 35
middlezero (text.vshift attribute), 36
mirror (class in trafo), 90
mirrored() (in module trafo), 89
module

bbox, 76
bitmap, 75
box, 65
canvas, 20
color, 77
connector, 68
deformer, 18
document, 23
epsfile, 70
graph, 40
graph.axis, 54
graph.axis.axis, 55
graph.axis.painter, 62
graph.axis.parter, 59
graph.axis.positioners, 65
graph.axis.rater, 64
graph.axis.texter, 61
graph.axis.tick, 58
graph.data, 46
graph.graph, 43
graph.key, 54
graph.style, 50
metapost.path, 15
path, 10
pattern, 81
pyx, 39
style, 93
svgfile, 71
text, 26
trafo, 87
unit, 83
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moveto (class in path), 13
multicurveto_pt (class in path), 14
MultiEngine (class in text), 30
multilineto_pt (class in path), 14

N
nestedbar (class in graph.axis.axis), 57
no_aux() (text.texmessage static method), 33
no_file() (text.texmessage static method), 33
no_nav() (text.texmessage static method), 33
nobbl_warning() (text.texmessage static method),

34
none (text.errordetail attribute), 32
normalsize (text.size attribute), 37
normpath (class in path), 14
normpath() (path.path method), 12
normsubpath (class in path), 15

O
orthogonal (graph.axis.painter.rotatetext attribute),

62

P
package_warning() (text.texmessage static

method), 34
page (class in document), 25
paperformat (class in document), 26
parallel (class in deformer), 20
parallel (class in graph.graph), 46
parallel (graph.axis.painter.rotatetext attribute), 62
parallel (graph.graph.graphxyz attribute), 46
paramfunction (class in graph.data), 48
paramtoarclen() (path.path method), 12
parbox (class in text), 36
path

module, 10
path (class in metapost.path), 17
path (class in path), 11
pattern

module, 81
pattern() (text.texmessage static method), 34
phantom (in module text), 37
pipeGS() (canvas.canvas method), 22
plot() (graph.graph.graphxy method), 44
plus (graph.style.symbol attribute), 50
points (class in graph.data), 48
pos (class in graph.style), 50
pos() (graph.graph.graphxy method), 45
positioner (class in graph.axis.positioners), 65
pre125exp (graph.axis.parter.logarithmic attribute),

60
pre1exp (graph.axis.parter.logarithmic attribute), 60
pre1exp2 (graph.axis.parter.logarithmic attribute), 60
pre1exp3 (graph.axis.parter.logarithmic attribute), 60

pre1exp4 (graph.axis.parter.logarithmic attribute), 60
pre1exp5 (graph.axis.parter.logarithmic attribute), 60
pre1to9exp (graph.axis.parter.logarithmic attribute),

60
preamble (in module text), 31
preamble() (text.MultiEngine method), 30
preamble() (text.SingleEngine method), 28
preexp (class in graph.axis.parter), 60
pyx

module, 39
pyxinfo() (in module pyx), 39

R
raggedcenter (text.halign attribute), 35
raggedleft (text.halign attribute), 35
raggedright (text.halign attribute), 35
range (class in graph.style), 50
range() (path.path method), 12
rater (class in graph.axis.rater), 64
rational (class in graph.axis.texter), 61
rational (class in graph.axis.tick), 58
rcurveto (class in path), 13
rect (class in graph.style), 52
rect (class in path), 15
regular (class in graph.axis.painter), 62
rerun_warning() (text.texmessage static method),

34
reset (in module text), 32
reset() (text.MultiEngine method), 30
reverse() (path.normpath method), 14
reversed() (path.path method), 12
right (text.halign attribute), 35
rlineto (class in path), 13
rmoveto (class in path), 13
rotate (class in trafo), 90
rotated() (in module trafo), 89
rotatetext (class in graph.axis.painter), 62
rotation() (path.path method), 12
roughknot (class in metapost.path), 18

S
scale (class in trafo), 90
scaled() (in module trafo), 89
scriptsize (text.size attribute), 37
set() (in module text), 32
set() (in module unit), 85
setlinkedaxis() (graph.axis.axis.linkedaxis

method), 58
settexrunner() (canvas.canvas method), 22
SingleEngine (class in text), 28
SingleLatexEngine (class in text), 30
SingleTexEngine (class in text), 29
size (class in text), 37
slant (class in trafo), 90
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slanted() (in module trafo), 89
small (text.size attribute), 37
smoothed (class in deformer), 19
smoothknot (class in metapost.path), 18
split (class in graph.axis.axis), 57
split (class in graph.axis.painter), 64
split() (path.path method), 12
splitatvalue() (in module graph.data), 49
square (graph.style.symbol attribute), 50
stackedbarpos (class in graph.style), 53
StackedText (class in text), 40
start() (text.texmessage static method), 33
startknot (class in metapost.path), 17
stroke() (canvas.canvas method), 21
style

module, 93
surface (class in graph.style), 53
svgfile

module, 71
symbol (class in graph.style), 50

T
tangent() (path.path method), 12
tensioncurve (class in metapost.path), 18
TexEngine (class in text), 31
texmessage (class in text), 33
texmessages_begindoc_default

(text.SingleLatexEngine attribute), 30
texmessages_docclass_default

(text.SingleLatexEngine attribute), 30
texmessages_end_default (text.SingleEngine at-

tribute), 28
texmessages_preamble_default

(text.SingleEngine attribute), 28
texmessages_run_default (text.SingleEngine at-

tribute), 28
texmessages_start_default (text.SingleEngine

attribute), 28
TexResultError, 33
text

module, 26
text (class in graph.style), 52
Text (class in text), 40
text (in module text), 31
text() (canvas.canvas method), 21
text() (text.MultiEngine method), 30
text() (text.SingleEngine method), 29
text_pt (in module text), 31
text_pt() (text.MultiEngine method), 30
text_pt() (text.SingleEngine method), 29
textextbox_pt (class in text), 31
tick (class in graph.axis.tick), 59
tickdirection() (graph.axis.axis.anchoredaxis

method), 58

ticklength (class in graph.axis.painter), 62
tickpoint() (graph.axis.axis.anchoredaxis method),

58
tiny (text.size attribute), 37
top (text.valign attribute), 35
topzero (text.vshift attribute), 36
trafo

module, 87
trafo (class in trafo), 89
trafo() (path.path method), 12
transform() (path.normpath method), 14
transformed() (path.path method), 12
translate (class in trafo), 90
translated() (in module trafo), 89
transparency (class in color), 81
triangle (graph.style.symbol attribute), 51

U
UnicodeEngine (class in text), 40
unit

module, 83

V
valign (class in text), 35
values (class in graph.data), 48
vangle() (graph.graph.graphxyz method), 46
vbasepath() (graph.axis.axis.anchoredaxis method),

57
vbasepath() (graph.axis.positioners.positioner

method), 65
vgeodesic() (graph.graph.graphxy method), 45
vgeodesic_el() (graph.graph.graphxy method), 45
vgridpath() (graph.axis.axis.anchoredaxis method),

58
vgridpath() (graph.axis.positioners.positioner

method), 65
vpos() (graph.graph.graphxy method), 45
vshift (class in text), 36
vtickdirection() (graph.axis.axis.anchoredaxis

method), 58
vtickdirection() (graph.axis.positioners.positioner

method), 65
vtickpoint() (graph.axis.axis.anchoredaxis

method), 58
vtickpoint_pt() (graph.axis.positioners.positioner

method), 65
vzindex() (graph.graph.graphxyz method), 46

W
warn() (text.texmessage static method), 34
writeEPSfile() (canvas.canvas method), 22
writeEPSfile() (document.document method), 25
writeGSfile() (canvas.canvas method), 22
writePDFfile() (canvas.canvas method), 22
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writePDFfile() (document.document method), 25
writePSfile() (canvas.canvas method), 22
writePSfile() (document.document method), 25
writeSVGfile() (canvas.canvas method), 22
writeSVGfile() (document.document method), 26
writetofile() (canvas.canvas method), 22
writetofile() (document.document method), 26

X
xbasepath()@xbasepath() (graphxy method), 45
xgridpath()@xgridpath() (graphxy method), 45
xtickdirection()@xtickdirection()

(graphxy method), 45
xtickpoint()@xtickpoint() (graphxy method),

45
xvbasepath()@xvbasepath() (graphxy method),

45
xvgridpath()@xvgridpath() (graphxy method),

45
xvtickdirection()@xvtickdirection()

(graphxy method), 45
xvtickpoint()@xvtickpoint() (graphxy

method), 45

Y
ybasepath()@ybasepath() (graphxy method), 45
ygridpath()@ygridpath() (graphxy method), 45
ytickdirection()@ytickdirection()

(graphxy method), 45
ytickpoint()@ytickpoint() (graphxy method),

45
yvbasepath()@yvbasepath() (graphxy method),

45
yvgridpath()@yvgridpath() (graphxy method),

45
yvtickdirection()@yvtickdirection()

(graphxy method), 45
yvtickpoint()@yvtickpoint() (graphxy

method), 45
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