singletons-2.6: A framework for generating singleton types
Copyright(C) 2016 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Function

Description

Defines singleton versions of the definitions in Data.Function.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Function. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis
  • type family Id (a :: a) :: a where ...
  • sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a)
  • type family Const (a :: a) (a :: b) :: a where ...
  • sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a)
  • type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
  • (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
  • type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ...
  • sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c)
  • type family (a :: (~>) a b) $ (a :: a) :: b where ...
  • (%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b)
  • type family (a :: a) & (a :: (~>) a b) :: b where ...
  • (%&) :: forall a b (t :: a) (t :: (~>) a b). Sing t -> Sing t -> Sing (Apply (Apply (&@#@$) t) t :: b)
  • type family On (a :: (~>) b ((~>) b c)) (a :: (~>) a b) (a :: a) (a :: a) :: c where ...
  • sOn :: forall b c a (t :: (~>) b ((~>) b c)) (t :: (~>) a b) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply OnSym0 t) t) t) t :: c)
  • data IdSym0 :: forall a6989586621679541509. (~>) a6989586621679541509 a6989586621679541509
  • type IdSym1 (a6989586621679541704 :: a6989586621679541509) = Id a6989586621679541704
  • data ConstSym0 :: forall a6989586621679541507 b6989586621679541508. (~>) a6989586621679541507 ((~>) b6989586621679541508 a6989586621679541507)
  • data ConstSym1 (a6989586621679541699 :: a6989586621679541507) :: forall b6989586621679541508. (~>) b6989586621679541508 a6989586621679541507
  • type ConstSym2 (a6989586621679541699 :: a6989586621679541507) (a6989586621679541700 :: b6989586621679541508) = Const a6989586621679541699 a6989586621679541700
  • data (.@#@$) :: forall b6989586621679541504 c6989586621679541505 a6989586621679541506. (~>) ((~>) b6989586621679541504 c6989586621679541505) ((~>) ((~>) a6989586621679541506 b6989586621679541504) ((~>) a6989586621679541506 c6989586621679541505))
  • data (.@#@$$) (a6989586621679541680 :: (~>) b6989586621679541504 c6989586621679541505) :: forall a6989586621679541506. (~>) ((~>) a6989586621679541506 b6989586621679541504) ((~>) a6989586621679541506 c6989586621679541505)
  • data (a6989586621679541680 :: (~>) b6989586621679541504 c6989586621679541505) .@#@$$$ (a6989586621679541681 :: (~>) a6989586621679541506 b6989586621679541504) :: (~>) a6989586621679541506 c6989586621679541505
  • type (.@#@$$$$) (a6989586621679541680 :: (~>) b6989586621679541504 c6989586621679541505) (a6989586621679541681 :: (~>) a6989586621679541506 b6989586621679541504) (a6989586621679541682 :: a6989586621679541506) = (.) a6989586621679541680 a6989586621679541681 a6989586621679541682
  • data FlipSym0 :: forall a6989586621679541501 b6989586621679541502 c6989586621679541503. (~>) ((~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) ((~>) b6989586621679541502 ((~>) a6989586621679541501 c6989586621679541503))
  • data FlipSym1 (a6989586621679541671 :: (~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) :: (~>) b6989586621679541502 ((~>) a6989586621679541501 c6989586621679541503)
  • data FlipSym2 (a6989586621679541671 :: (~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) (a6989586621679541672 :: b6989586621679541502) :: (~>) a6989586621679541501 c6989586621679541503
  • type FlipSym3 (a6989586621679541671 :: (~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) (a6989586621679541672 :: b6989586621679541502) (a6989586621679541673 :: a6989586621679541501) = Flip a6989586621679541671 a6989586621679541672 a6989586621679541673
  • data ($@#@$) :: forall a6989586621679541498 b6989586621679541499. (~>) ((~>) a6989586621679541498 b6989586621679541499) ((~>) a6989586621679541498 b6989586621679541499)
  • data ($@#@$$) (a6989586621679541655 :: (~>) a6989586621679541498 b6989586621679541499) :: (~>) a6989586621679541498 b6989586621679541499
  • type ($@#@$$$) (a6989586621679541655 :: (~>) a6989586621679541498 b6989586621679541499) (a6989586621679541656 :: a6989586621679541498) = ($) a6989586621679541655 a6989586621679541656
  • data (&@#@$) :: forall a6989586621679752632 b6989586621679752633. (~>) a6989586621679752632 ((~>) ((~>) a6989586621679752632 b6989586621679752633) b6989586621679752633)
  • data (&@#@$$) (a6989586621679752645 :: a6989586621679752632) :: forall b6989586621679752633. (~>) ((~>) a6989586621679752632 b6989586621679752633) b6989586621679752633
  • type (&@#@$$$) (a6989586621679752645 :: a6989586621679752632) (a6989586621679752646 :: (~>) a6989586621679752632 b6989586621679752633) = (&) a6989586621679752645 a6989586621679752646
  • data OnSym0 :: forall b6989586621679752634 c6989586621679752635 a6989586621679752636. (~>) ((~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) ((~>) ((~>) a6989586621679752636 b6989586621679752634) ((~>) a6989586621679752636 ((~>) a6989586621679752636 c6989586621679752635)))
  • data OnSym1 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) :: forall a6989586621679752636. (~>) ((~>) a6989586621679752636 b6989586621679752634) ((~>) a6989586621679752636 ((~>) a6989586621679752636 c6989586621679752635))
  • data OnSym2 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) (a6989586621679752652 :: (~>) a6989586621679752636 b6989586621679752634) :: (~>) a6989586621679752636 ((~>) a6989586621679752636 c6989586621679752635)
  • data OnSym3 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) (a6989586621679752652 :: (~>) a6989586621679752636 b6989586621679752634) (a6989586621679752653 :: a6989586621679752636) :: (~>) a6989586621679752636 c6989586621679752635
  • type OnSym4 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) (a6989586621679752652 :: (~>) a6989586621679752636 b6989586621679752634) (a6989586621679752653 :: a6989586621679752636) (a6989586621679752654 :: a6989586621679752636) = On a6989586621679752651 a6989586621679752652 a6989586621679752653 a6989586621679752654

Prelude re-exports

type family Id (a :: a) :: a where ... Source #

Equations

Id x = x 

sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a) Source #

type family Const (a :: a) (a :: b) :: a where ... Source #

Equations

Const x _ = x 

sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a) Source #

type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #

Equations

(f . g) a_6989586621679541686 = Apply (Apply (Apply (Apply Lambda_6989586621679541691Sym0 f) g) a_6989586621679541686) a_6989586621679541686 

(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #

type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ... Source #

Equations

Flip f x y = Apply (Apply f y) x 

sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c) Source #

type family (a :: (~>) a b) $ (a :: a) :: b where ... infixr 0 Source #

Equations

f $ x = Apply f x 

(%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b) infixr 0 Source #

Other combinators

type family (a :: a) & (a :: (~>) a b) :: b where ... infixl 1 Source #

Equations

x & f = Apply f x 

(%&) :: forall a b (t :: a) (t :: (~>) a b). Sing t -> Sing t -> Sing (Apply (Apply (&@#@$) t) t :: b) infixl 1 Source #

type family On (a :: (~>) b ((~>) b c)) (a :: (~>) a b) (a :: a) (a :: a) :: c where ... infixl 0 Source #

Equations

On ty f a_6989586621679752659 a_6989586621679752661 = Apply (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679752667Sym0 ty) f) a_6989586621679752659) a_6989586621679752661) a_6989586621679752659) a_6989586621679752661 

sOn :: forall b c a (t :: (~>) b ((~>) b c)) (t :: (~>) a b) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply OnSym0 t) t) t) t :: c) infixl 0 Source #

Defunctionalization symbols

data IdSym0 :: forall a6989586621679541509. (~>) a6989586621679541509 a6989586621679541509 Source #

Instances

Instances details
SingI (IdSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing IdSym0 Source #

SuppressUnusedWarnings (IdSym0 :: TyFun a6989586621679541509 a6989586621679541509 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679541704 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679541704 :: a) = Id a6989586621679541704

type IdSym1 (a6989586621679541704 :: a6989586621679541509) = Id a6989586621679541704 Source #

data ConstSym0 :: forall a6989586621679541507 b6989586621679541508. (~>) a6989586621679541507 ((~>) b6989586621679541508 a6989586621679541507) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679541507 (b6989586621679541508 ~> a6989586621679541507) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym0 :: TyFun a6989586621679541507 (b6989586621679541508 ~> a6989586621679541507) -> Type) (a6989586621679541699 :: a6989586621679541507) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym0 :: TyFun a6989586621679541507 (b6989586621679541508 ~> a6989586621679541507) -> Type) (a6989586621679541699 :: a6989586621679541507) = ConstSym1 a6989586621679541699 b6989586621679541508 :: TyFun b6989586621679541508 a6989586621679541507 -> Type

data ConstSym1 (a6989586621679541699 :: a6989586621679541507) :: forall b6989586621679541508. (~>) b6989586621679541508 a6989586621679541507 Source #

Instances

Instances details
SingI d => SingI (ConstSym1 d b :: TyFun b a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (ConstSym1 d b) Source #

SuppressUnusedWarnings (ConstSym1 a6989586621679541699 b6989586621679541508 :: TyFun b6989586621679541508 a6989586621679541507 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym1 a6989586621679541699 b :: TyFun b a -> Type) (a6989586621679541700 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym1 a6989586621679541699 b :: TyFun b a -> Type) (a6989586621679541700 :: b) = Const a6989586621679541699 a6989586621679541700

type ConstSym2 (a6989586621679541699 :: a6989586621679541507) (a6989586621679541700 :: b6989586621679541508) = Const a6989586621679541699 a6989586621679541700 Source #

data (.@#@$) :: forall b6989586621679541504 c6989586621679541505 a6989586621679541506. (~>) ((~>) b6989586621679541504 c6989586621679541505) ((~>) ((~>) a6989586621679541506 b6989586621679541504) ((~>) a6989586621679541506 c6989586621679541505)) infixr 9 Source #

Instances

Instances details
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings ((.@#@$) :: TyFun (b6989586621679541504 ~> c6989586621679541505) ((a6989586621679541506 ~> b6989586621679541504) ~> (a6989586621679541506 ~> c6989586621679541505)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply ((.@#@$) :: TyFun (b6989586621679541504 ~> c6989586621679541505) ((a6989586621679541506 ~> b6989586621679541504) ~> (a6989586621679541506 ~> c6989586621679541505)) -> Type) (a6989586621679541680 :: b6989586621679541504 ~> c6989586621679541505) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply ((.@#@$) :: TyFun (b6989586621679541504 ~> c6989586621679541505) ((a6989586621679541506 ~> b6989586621679541504) ~> (a6989586621679541506 ~> c6989586621679541505)) -> Type) (a6989586621679541680 :: b6989586621679541504 ~> c6989586621679541505) = a6989586621679541680 .@#@$$ a6989586621679541506 :: TyFun (a6989586621679541506 ~> b6989586621679541504) (a6989586621679541506 ~> c6989586621679541505) -> Type

data (.@#@$$) (a6989586621679541680 :: (~>) b6989586621679541504 c6989586621679541505) :: forall a6989586621679541506. (~>) ((~>) a6989586621679541506 b6989586621679541504) ((~>) a6989586621679541506 c6989586621679541505) infixr 9 Source #

Instances

Instances details
SingI d => SingI (d .@#@$$ a :: TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (d .@#@$$ a) Source #

SuppressUnusedWarnings (a6989586621679541680 .@#@$$ a6989586621679541506 :: TyFun (a6989586621679541506 ~> b6989586621679541504) (a6989586621679541506 ~> c6989586621679541505) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541680 .@#@$$ a6989586621679541506 :: TyFun (a6989586621679541506 ~> b6989586621679541504) (a6989586621679541506 ~> c6989586621679541505) -> Type) (a6989586621679541681 :: a6989586621679541506 ~> b6989586621679541504) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541680 .@#@$$ a6989586621679541506 :: TyFun (a6989586621679541506 ~> b6989586621679541504) (a6989586621679541506 ~> c6989586621679541505) -> Type) (a6989586621679541681 :: a6989586621679541506 ~> b6989586621679541504) = a6989586621679541680 .@#@$$$ a6989586621679541681

data (a6989586621679541680 :: (~>) b6989586621679541504 c6989586621679541505) .@#@$$$ (a6989586621679541681 :: (~>) a6989586621679541506 b6989586621679541504) :: (~>) a6989586621679541506 c6989586621679541505 infixr 9 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (d1 .@#@$$$ d2) Source #

SuppressUnusedWarnings (a6989586621679541681 .@#@$$$ a6989586621679541680 :: TyFun a6989586621679541506 c6989586621679541505 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541681 .@#@$$$ a6989586621679541680 :: TyFun a c -> Type) (a6989586621679541682 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541681 .@#@$$$ a6989586621679541680 :: TyFun a c -> Type) (a6989586621679541682 :: a) = (a6989586621679541681 . a6989586621679541680) a6989586621679541682

type (.@#@$$$$) (a6989586621679541680 :: (~>) b6989586621679541504 c6989586621679541505) (a6989586621679541681 :: (~>) a6989586621679541506 b6989586621679541504) (a6989586621679541682 :: a6989586621679541506) = (.) a6989586621679541680 a6989586621679541681 a6989586621679541682 Source #

data FlipSym0 :: forall a6989586621679541501 b6989586621679541502 c6989586621679541503. (~>) ((~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) ((~>) b6989586621679541502 ((~>) a6989586621679541501 c6989586621679541503)) Source #

Instances

Instances details
SingI (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings (FlipSym0 :: TyFun (a6989586621679541501 ~> (b6989586621679541502 ~> c6989586621679541503)) (b6989586621679541502 ~> (a6989586621679541501 ~> c6989586621679541503)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym0 :: TyFun (a6989586621679541501 ~> (b6989586621679541502 ~> c6989586621679541503)) (b6989586621679541502 ~> (a6989586621679541501 ~> c6989586621679541503)) -> Type) (a6989586621679541671 :: a6989586621679541501 ~> (b6989586621679541502 ~> c6989586621679541503)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym0 :: TyFun (a6989586621679541501 ~> (b6989586621679541502 ~> c6989586621679541503)) (b6989586621679541502 ~> (a6989586621679541501 ~> c6989586621679541503)) -> Type) (a6989586621679541671 :: a6989586621679541501 ~> (b6989586621679541502 ~> c6989586621679541503)) = FlipSym1 a6989586621679541671

data FlipSym1 (a6989586621679541671 :: (~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) :: (~>) b6989586621679541502 ((~>) a6989586621679541501 c6989586621679541503) Source #

Instances

Instances details
SingI d => SingI (FlipSym1 d :: TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (FlipSym1 d) Source #

SuppressUnusedWarnings (FlipSym1 a6989586621679541671 :: TyFun b6989586621679541502 (a6989586621679541501 ~> c6989586621679541503) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym1 a6989586621679541671 :: TyFun b6989586621679541502 (a6989586621679541501 ~> c6989586621679541503) -> Type) (a6989586621679541672 :: b6989586621679541502) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym1 a6989586621679541671 :: TyFun b6989586621679541502 (a6989586621679541501 ~> c6989586621679541503) -> Type) (a6989586621679541672 :: b6989586621679541502) = FlipSym2 a6989586621679541671 a6989586621679541672

data FlipSym2 (a6989586621679541671 :: (~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) (a6989586621679541672 :: b6989586621679541502) :: (~>) a6989586621679541501 c6989586621679541503 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI (FlipSym2 d1 d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (FlipSym2 d1 d2) Source #

SuppressUnusedWarnings (FlipSym2 a6989586621679541672 a6989586621679541671 :: TyFun a6989586621679541501 c6989586621679541503 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym2 a6989586621679541672 a6989586621679541671 :: TyFun a c -> Type) (a6989586621679541673 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym2 a6989586621679541672 a6989586621679541671 :: TyFun a c -> Type) (a6989586621679541673 :: a) = Flip a6989586621679541672 a6989586621679541671 a6989586621679541673

type FlipSym3 (a6989586621679541671 :: (~>) a6989586621679541501 ((~>) b6989586621679541502 c6989586621679541503)) (a6989586621679541672 :: b6989586621679541502) (a6989586621679541673 :: a6989586621679541501) = Flip a6989586621679541671 a6989586621679541672 a6989586621679541673 Source #

data ($@#@$) :: forall a6989586621679541498 b6989586621679541499. (~>) ((~>) a6989586621679541498 b6989586621679541499) ((~>) a6989586621679541498 b6989586621679541499) infixr 0 Source #

Instances

Instances details
SingI (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings (($@#@$) :: TyFun (a6989586621679541498 ~> b6989586621679541499) (a6989586621679541498 ~> b6989586621679541499) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$) :: TyFun (a6989586621679541498 ~> b6989586621679541499) (a6989586621679541498 ~> b6989586621679541499) -> Type) (a6989586621679541655 :: a6989586621679541498 ~> b6989586621679541499) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$) :: TyFun (a6989586621679541498 ~> b6989586621679541499) (a6989586621679541498 ~> b6989586621679541499) -> Type) (a6989586621679541655 :: a6989586621679541498 ~> b6989586621679541499) = ($@#@$$) a6989586621679541655

data ($@#@$$) (a6989586621679541655 :: (~>) a6989586621679541498 b6989586621679541499) :: (~>) a6989586621679541498 b6989586621679541499 infixr 0 Source #

Instances

Instances details
SingI d => SingI (($@#@$$) d :: TyFun a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (($@#@$$) d) Source #

SuppressUnusedWarnings (($@#@$$) a6989586621679541655 :: TyFun a6989586621679541498 b6989586621679541499 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$$) a6989586621679541655 :: TyFun a b -> Type) (a6989586621679541656 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$$) a6989586621679541655 :: TyFun a b -> Type) (a6989586621679541656 :: a) = a6989586621679541655 $ a6989586621679541656

type ($@#@$$$) (a6989586621679541655 :: (~>) a6989586621679541498 b6989586621679541499) (a6989586621679541656 :: a6989586621679541498) = ($) a6989586621679541655 a6989586621679541656 Source #

data (&@#@$) :: forall a6989586621679752632 b6989586621679752633. (~>) a6989586621679752632 ((~>) ((~>) a6989586621679752632 b6989586621679752633) b6989586621679752633) infixl 1 Source #

Instances

Instances details
SingI ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

SuppressUnusedWarnings ((&@#@$) :: TyFun a6989586621679752632 ((a6989586621679752632 ~> b6989586621679752633) ~> b6989586621679752633) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply ((&@#@$) :: TyFun a6989586621679752632 ((a6989586621679752632 ~> b6989586621679752633) ~> b6989586621679752633) -> Type) (a6989586621679752645 :: a6989586621679752632) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply ((&@#@$) :: TyFun a6989586621679752632 ((a6989586621679752632 ~> b6989586621679752633) ~> b6989586621679752633) -> Type) (a6989586621679752645 :: a6989586621679752632) = a6989586621679752645 &@#@$$ b6989586621679752633 :: TyFun (a6989586621679752632 ~> b6989586621679752633) b6989586621679752633 -> Type

data (&@#@$$) (a6989586621679752645 :: a6989586621679752632) :: forall b6989586621679752633. (~>) ((~>) a6989586621679752632 b6989586621679752633) b6989586621679752633 infixl 1 Source #

Instances

Instances details
SingI d => SingI (d &@#@$$ b :: TyFun (a ~> b) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (d &@#@$$ b) Source #

SuppressUnusedWarnings (a6989586621679752645 &@#@$$ b6989586621679752633 :: TyFun (a6989586621679752632 ~> b6989586621679752633) b6989586621679752633 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (a6989586621679752645 &@#@$$ b :: TyFun (a ~> b) b -> Type) (a6989586621679752646 :: a ~> b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (a6989586621679752645 &@#@$$ b :: TyFun (a ~> b) b -> Type) (a6989586621679752646 :: a ~> b) = a6989586621679752645 & a6989586621679752646

type (&@#@$$$) (a6989586621679752645 :: a6989586621679752632) (a6989586621679752646 :: (~>) a6989586621679752632 b6989586621679752633) = (&) a6989586621679752645 a6989586621679752646 Source #

data OnSym0 :: forall b6989586621679752634 c6989586621679752635 a6989586621679752636. (~>) ((~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) ((~>) ((~>) a6989586621679752636 b6989586621679752634) ((~>) a6989586621679752636 ((~>) a6989586621679752636 c6989586621679752635))) infixl 0 Source #

Instances

Instances details
SingI (OnSym0 :: TyFun (b ~> (b ~> c)) ((a ~> b) ~> (a ~> (a ~> c))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing OnSym0 Source #

SuppressUnusedWarnings (OnSym0 :: TyFun (b6989586621679752634 ~> (b6989586621679752634 ~> c6989586621679752635)) ((a6989586621679752636 ~> b6989586621679752634) ~> (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym0 :: TyFun (b6989586621679752634 ~> (b6989586621679752634 ~> c6989586621679752635)) ((a6989586621679752636 ~> b6989586621679752634) ~> (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635))) -> Type) (a6989586621679752651 :: b6989586621679752634 ~> (b6989586621679752634 ~> c6989586621679752635)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym0 :: TyFun (b6989586621679752634 ~> (b6989586621679752634 ~> c6989586621679752635)) ((a6989586621679752636 ~> b6989586621679752634) ~> (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635))) -> Type) (a6989586621679752651 :: b6989586621679752634 ~> (b6989586621679752634 ~> c6989586621679752635)) = OnSym1 a6989586621679752651 a6989586621679752636 :: TyFun (a6989586621679752636 ~> b6989586621679752634) (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635)) -> Type

data OnSym1 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) :: forall a6989586621679752636. (~>) ((~>) a6989586621679752636 b6989586621679752634) ((~>) a6989586621679752636 ((~>) a6989586621679752636 c6989586621679752635)) infixl 0 Source #

Instances

Instances details
SingI d => SingI (OnSym1 d a :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (OnSym1 d a) Source #

SuppressUnusedWarnings (OnSym1 a6989586621679752651 a6989586621679752636 :: TyFun (a6989586621679752636 ~> b6989586621679752634) (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym1 a6989586621679752651 a6989586621679752636 :: TyFun (a6989586621679752636 ~> b6989586621679752634) (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635)) -> Type) (a6989586621679752652 :: a6989586621679752636 ~> b6989586621679752634) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym1 a6989586621679752651 a6989586621679752636 :: TyFun (a6989586621679752636 ~> b6989586621679752634) (a6989586621679752636 ~> (a6989586621679752636 ~> c6989586621679752635)) -> Type) (a6989586621679752652 :: a6989586621679752636 ~> b6989586621679752634) = OnSym2 a6989586621679752651 a6989586621679752652

data OnSym2 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) (a6989586621679752652 :: (~>) a6989586621679752636 b6989586621679752634) :: (~>) a6989586621679752636 ((~>) a6989586621679752636 c6989586621679752635) infixl 0 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI (OnSym2 d1 d2 :: TyFun a (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (OnSym2 d1 d2) Source #

SuppressUnusedWarnings (OnSym2 a6989586621679752652 a6989586621679752651 :: TyFun a6989586621679752636 (a6989586621679752636 ~> c6989586621679752635) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym2 a6989586621679752652 a6989586621679752651 :: TyFun a6989586621679752636 (a6989586621679752636 ~> c6989586621679752635) -> Type) (a6989586621679752653 :: a6989586621679752636) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym2 a6989586621679752652 a6989586621679752651 :: TyFun a6989586621679752636 (a6989586621679752636 ~> c6989586621679752635) -> Type) (a6989586621679752653 :: a6989586621679752636) = OnSym3 a6989586621679752652 a6989586621679752651 a6989586621679752653

data OnSym3 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) (a6989586621679752652 :: (~>) a6989586621679752636 b6989586621679752634) (a6989586621679752653 :: a6989586621679752636) :: (~>) a6989586621679752636 c6989586621679752635 infixl 0 Source #

Instances

Instances details
(SingI d1, SingI d2, SingI d3) => SingI (OnSym3 d1 d2 d3 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (OnSym3 d1 d2 d3) Source #

SuppressUnusedWarnings (OnSym3 a6989586621679752653 a6989586621679752652 a6989586621679752651 :: TyFun a6989586621679752636 c6989586621679752635 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym3 a6989586621679752653 a6989586621679752652 a6989586621679752651 :: TyFun a c -> Type) (a6989586621679752654 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym3 a6989586621679752653 a6989586621679752652 a6989586621679752651 :: TyFun a c -> Type) (a6989586621679752654 :: a) = On a6989586621679752653 a6989586621679752652 a6989586621679752651 a6989586621679752654

type OnSym4 (a6989586621679752651 :: (~>) b6989586621679752634 ((~>) b6989586621679752634 c6989586621679752635)) (a6989586621679752652 :: (~>) a6989586621679752636 b6989586621679752634) (a6989586621679752653 :: a6989586621679752636) (a6989586621679752654 :: a6989586621679752636) = On a6989586621679752651 a6989586621679752652 a6989586621679752653 a6989586621679752654 Source #