singletons-2.6: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Foldable

Description

Defines the promoted and singled versions of the Foldable type class.

Synopsis
  • class PFoldable (t :: Type -> Type) where
  • class SFoldable (t :: Type -> Type) where
  • type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b)
  • type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b)
  • type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ...
  • sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ())
  • type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ...
  • sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ())
  • type family SequenceA_ (a :: t (f a)) :: f () where ...
  • sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ())
  • type family Asum (a :: t (f a)) :: f a where ...
  • sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a)
  • type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
  • sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
  • type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ...
  • sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ())
  • type family Sequence_ (a :: t (m a)) :: m () where ...
  • sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
  • type family Msum (a :: t (m a)) :: m a where ...
  • sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a)
  • type family Concat (a :: t [a]) :: [a] where ...
  • sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
  • type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
  • sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
  • type family And (a :: t Bool) :: Bool where ...
  • sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
  • type family Or (a :: t Bool) :: Bool where ...
  • sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
  • type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
  • type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
  • type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a)
  • type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a)
  • type family NotElem (a :: a) (a :: t a) :: Bool where ...
  • sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
  • type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ...
  • sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a)
  • data FoldSym0 :: forall t6989586621680486579 m6989586621680486580. (~>) (t6989586621680486579 m6989586621680486580) m6989586621680486580
  • type FoldSym1 (arg6989586621680487198 :: t6989586621680486579 m6989586621680486580) = Fold arg6989586621680487198
  • data FoldMapSym0 :: forall a6989586621680486582 m6989586621680486581 t6989586621680486579. (~>) ((~>) a6989586621680486582 m6989586621680486581) ((~>) (t6989586621680486579 a6989586621680486582) m6989586621680486581)
  • data FoldMapSym1 (arg6989586621680487200 :: (~>) a6989586621680486582 m6989586621680486581) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486582) m6989586621680486581
  • type FoldMapSym2 (arg6989586621680487200 :: (~>) a6989586621680486582 m6989586621680486581) (arg6989586621680487201 :: t6989586621680486579 a6989586621680486582) = FoldMap arg6989586621680487200 arg6989586621680487201
  • data FoldrSym0 :: forall a6989586621680486583 b6989586621680486584 t6989586621680486579. (~>) ((~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) ((~>) b6989586621680486584 ((~>) (t6989586621680486579 a6989586621680486583) b6989586621680486584))
  • data FoldrSym1 (arg6989586621680487204 :: (~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) :: forall t6989586621680486579. (~>) b6989586621680486584 ((~>) (t6989586621680486579 a6989586621680486583) b6989586621680486584)
  • data FoldrSym2 (arg6989586621680487204 :: (~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) (arg6989586621680487205 :: b6989586621680486584) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486583) b6989586621680486584
  • type FoldrSym3 (arg6989586621680487204 :: (~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) (arg6989586621680487205 :: b6989586621680486584) (arg6989586621680487206 :: t6989586621680486579 a6989586621680486583) = Foldr arg6989586621680487204 arg6989586621680487205 arg6989586621680487206
  • data Foldr'Sym0 :: forall a6989586621680486585 b6989586621680486586 t6989586621680486579. (~>) ((~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) ((~>) b6989586621680486586 ((~>) (t6989586621680486579 a6989586621680486585) b6989586621680486586))
  • data Foldr'Sym1 (arg6989586621680487210 :: (~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) :: forall t6989586621680486579. (~>) b6989586621680486586 ((~>) (t6989586621680486579 a6989586621680486585) b6989586621680486586)
  • data Foldr'Sym2 (arg6989586621680487210 :: (~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) (arg6989586621680487211 :: b6989586621680486586) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486585) b6989586621680486586
  • type Foldr'Sym3 (arg6989586621680487210 :: (~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) (arg6989586621680487211 :: b6989586621680486586) (arg6989586621680487212 :: t6989586621680486579 a6989586621680486585) = Foldr' arg6989586621680487210 arg6989586621680487211 arg6989586621680487212
  • data FoldlSym0 :: forall b6989586621680486587 a6989586621680486588 t6989586621680486579. (~>) ((~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) ((~>) b6989586621680486587 ((~>) (t6989586621680486579 a6989586621680486588) b6989586621680486587))
  • data FoldlSym1 (arg6989586621680487216 :: (~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) :: forall t6989586621680486579. (~>) b6989586621680486587 ((~>) (t6989586621680486579 a6989586621680486588) b6989586621680486587)
  • data FoldlSym2 (arg6989586621680487216 :: (~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) (arg6989586621680487217 :: b6989586621680486587) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486588) b6989586621680486587
  • type FoldlSym3 (arg6989586621680487216 :: (~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) (arg6989586621680487217 :: b6989586621680486587) (arg6989586621680487218 :: t6989586621680486579 a6989586621680486588) = Foldl arg6989586621680487216 arg6989586621680487217 arg6989586621680487218
  • data Foldl'Sym0 :: forall b6989586621680486589 a6989586621680486590 t6989586621680486579. (~>) ((~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) ((~>) b6989586621680486589 ((~>) (t6989586621680486579 a6989586621680486590) b6989586621680486589))
  • data Foldl'Sym1 (arg6989586621680487222 :: (~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) :: forall t6989586621680486579. (~>) b6989586621680486589 ((~>) (t6989586621680486579 a6989586621680486590) b6989586621680486589)
  • data Foldl'Sym2 (arg6989586621680487222 :: (~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) (arg6989586621680487223 :: b6989586621680486589) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486590) b6989586621680486589
  • type Foldl'Sym3 (arg6989586621680487222 :: (~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) (arg6989586621680487223 :: b6989586621680486589) (arg6989586621680487224 :: t6989586621680486579 a6989586621680486590) = Foldl' arg6989586621680487222 arg6989586621680487223 arg6989586621680487224
  • data Foldr1Sym0 :: forall a6989586621680486591 t6989586621680486579. (~>) ((~>) a6989586621680486591 ((~>) a6989586621680486591 a6989586621680486591)) ((~>) (t6989586621680486579 a6989586621680486591) a6989586621680486591)
  • data Foldr1Sym1 (arg6989586621680487228 :: (~>) a6989586621680486591 ((~>) a6989586621680486591 a6989586621680486591)) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486591) a6989586621680486591
  • type Foldr1Sym2 (arg6989586621680487228 :: (~>) a6989586621680486591 ((~>) a6989586621680486591 a6989586621680486591)) (arg6989586621680487229 :: t6989586621680486579 a6989586621680486591) = Foldr1 arg6989586621680487228 arg6989586621680487229
  • data Foldl1Sym0 :: forall a6989586621680486592 t6989586621680486579. (~>) ((~>) a6989586621680486592 ((~>) a6989586621680486592 a6989586621680486592)) ((~>) (t6989586621680486579 a6989586621680486592) a6989586621680486592)
  • data Foldl1Sym1 (arg6989586621680487232 :: (~>) a6989586621680486592 ((~>) a6989586621680486592 a6989586621680486592)) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486592) a6989586621680486592
  • type Foldl1Sym2 (arg6989586621680487232 :: (~>) a6989586621680486592 ((~>) a6989586621680486592 a6989586621680486592)) (arg6989586621680487233 :: t6989586621680486579 a6989586621680486592) = Foldl1 arg6989586621680487232 arg6989586621680487233
  • data ToListSym0 :: forall t6989586621680486579 a6989586621680486593. (~>) (t6989586621680486579 a6989586621680486593) [a6989586621680486593]
  • type ToListSym1 (arg6989586621680487236 :: t6989586621680486579 a6989586621680486593) = ToList arg6989586621680487236
  • data NullSym0 :: forall t6989586621680486579 a6989586621680486594. (~>) (t6989586621680486579 a6989586621680486594) Bool
  • type NullSym1 (arg6989586621680487238 :: t6989586621680486579 a6989586621680486594) = Null arg6989586621680487238
  • data LengthSym0 :: forall t6989586621680486579 a6989586621680486595. (~>) (t6989586621680486579 a6989586621680486595) Nat
  • type LengthSym1 (arg6989586621680487240 :: t6989586621680486579 a6989586621680486595) = Length arg6989586621680487240
  • data ElemSym0 :: forall a6989586621680486596 t6989586621680486579. (~>) a6989586621680486596 ((~>) (t6989586621680486579 a6989586621680486596) Bool)
  • data ElemSym1 (arg6989586621680487242 :: a6989586621680486596) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486596) Bool
  • type ElemSym2 (arg6989586621680487242 :: a6989586621680486596) (arg6989586621680487243 :: t6989586621680486579 a6989586621680486596) = Elem arg6989586621680487242 arg6989586621680487243
  • data MaximumSym0 :: forall t6989586621680486579 a6989586621680486597. (~>) (t6989586621680486579 a6989586621680486597) a6989586621680486597
  • type MaximumSym1 (arg6989586621680487246 :: t6989586621680486579 a6989586621680486597) = Maximum arg6989586621680487246
  • data MinimumSym0 :: forall t6989586621680486579 a6989586621680486598. (~>) (t6989586621680486579 a6989586621680486598) a6989586621680486598
  • type MinimumSym1 (arg6989586621680487248 :: t6989586621680486579 a6989586621680486598) = Minimum arg6989586621680487248
  • data SumSym0 :: forall t6989586621680486579 a6989586621680486599. (~>) (t6989586621680486579 a6989586621680486599) a6989586621680486599
  • type SumSym1 (arg6989586621680487250 :: t6989586621680486579 a6989586621680486599) = Sum arg6989586621680487250
  • data ProductSym0 :: forall t6989586621680486579 a6989586621680486600. (~>) (t6989586621680486579 a6989586621680486600) a6989586621680486600
  • type ProductSym1 (arg6989586621680487252 :: t6989586621680486579 a6989586621680486600) = Product arg6989586621680487252
  • data FoldrMSym0 :: forall a6989586621680486540 b6989586621680486541 m6989586621680486539 t6989586621680486538. (~>) ((~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) ((~>) b6989586621680486541 ((~>) (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541)))
  • data FoldrMSym1 (a6989586621680487176 :: (~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) :: forall t6989586621680486538. (~>) b6989586621680486541 ((~>) (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541))
  • data FoldrMSym2 (a6989586621680487176 :: (~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) (a6989586621680487177 :: b6989586621680486541) :: forall t6989586621680486538. (~>) (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541)
  • type FoldrMSym3 (a6989586621680487176 :: (~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) (a6989586621680487177 :: b6989586621680486541) (a6989586621680487178 :: t6989586621680486538 a6989586621680486540) = FoldrM a6989586621680487176 a6989586621680487177 a6989586621680487178
  • data FoldlMSym0 :: forall b6989586621680486536 a6989586621680486537 m6989586621680486535 t6989586621680486534. (~>) ((~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) ((~>) b6989586621680486536 ((~>) (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536)))
  • data FoldlMSym1 (a6989586621680487154 :: (~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) :: forall t6989586621680486534. (~>) b6989586621680486536 ((~>) (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536))
  • data FoldlMSym2 (a6989586621680487154 :: (~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) (a6989586621680487155 :: b6989586621680486536) :: forall t6989586621680486534. (~>) (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536)
  • type FoldlMSym3 (a6989586621680487154 :: (~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) (a6989586621680487155 :: b6989586621680486536) (a6989586621680487156 :: t6989586621680486534 a6989586621680486537) = FoldlM a6989586621680487154 a6989586621680487155 a6989586621680487156
  • data Traverse_Sym0 :: forall a6989586621680486532 f6989586621680486531 b6989586621680486533 t6989586621680486530. (~>) ((~>) a6989586621680486532 (f6989586621680486531 b6989586621680486533)) ((~>) (t6989586621680486530 a6989586621680486532) (f6989586621680486531 ()))
  • data Traverse_Sym1 (a6989586621680487146 :: (~>) a6989586621680486532 (f6989586621680486531 b6989586621680486533)) :: forall t6989586621680486530. (~>) (t6989586621680486530 a6989586621680486532) (f6989586621680486531 ())
  • type Traverse_Sym2 (a6989586621680487146 :: (~>) a6989586621680486532 (f6989586621680486531 b6989586621680486533)) (a6989586621680487147 :: t6989586621680486530 a6989586621680486532) = Traverse_ a6989586621680487146 a6989586621680487147
  • data For_Sym0 :: forall t6989586621680486526 a6989586621680486528 f6989586621680486527 b6989586621680486529. (~>) (t6989586621680486526 a6989586621680486528) ((~>) ((~>) a6989586621680486528 (f6989586621680486527 b6989586621680486529)) (f6989586621680486527 ()))
  • data For_Sym1 (a6989586621680487140 :: t6989586621680486526 a6989586621680486528) :: forall f6989586621680486527 b6989586621680486529. (~>) ((~>) a6989586621680486528 (f6989586621680486527 b6989586621680486529)) (f6989586621680486527 ())
  • type For_Sym2 (a6989586621680487140 :: t6989586621680486526 a6989586621680486528) (a6989586621680487141 :: (~>) a6989586621680486528 (f6989586621680486527 b6989586621680486529)) = For_ a6989586621680487140 a6989586621680487141
  • data SequenceA_Sym0 :: forall t6989586621680486515 f6989586621680486516 a6989586621680486517. (~>) (t6989586621680486515 (f6989586621680486516 a6989586621680486517)) (f6989586621680486516 ())
  • type SequenceA_Sym1 (a6989586621680487115 :: t6989586621680486515 (f6989586621680486516 a6989586621680486517)) = SequenceA_ a6989586621680487115
  • data AsumSym0 :: forall t6989586621680486509 f6989586621680486510 a6989586621680486511. (~>) (t6989586621680486509 (f6989586621680486510 a6989586621680486511)) (f6989586621680486510 a6989586621680486511)
  • type AsumSym1 (a6989586621680487105 :: t6989586621680486509 (f6989586621680486510 a6989586621680486511)) = Asum a6989586621680487105
  • data MapM_Sym0 :: forall a6989586621680486524 m6989586621680486523 b6989586621680486525 t6989586621680486522. (~>) ((~>) a6989586621680486524 (m6989586621680486523 b6989586621680486525)) ((~>) (t6989586621680486522 a6989586621680486524) (m6989586621680486523 ()))
  • data MapM_Sym1 (a6989586621680487128 :: (~>) a6989586621680486524 (m6989586621680486523 b6989586621680486525)) :: forall t6989586621680486522. (~>) (t6989586621680486522 a6989586621680486524) (m6989586621680486523 ())
  • type MapM_Sym2 (a6989586621680487128 :: (~>) a6989586621680486524 (m6989586621680486523 b6989586621680486525)) (a6989586621680487129 :: t6989586621680486522 a6989586621680486524) = MapM_ a6989586621680487128 a6989586621680487129
  • data ForM_Sym0 :: forall t6989586621680486518 a6989586621680486520 m6989586621680486519 b6989586621680486521. (~>) (t6989586621680486518 a6989586621680486520) ((~>) ((~>) a6989586621680486520 (m6989586621680486519 b6989586621680486521)) (m6989586621680486519 ()))
  • data ForM_Sym1 (a6989586621680487122 :: t6989586621680486518 a6989586621680486520) :: forall m6989586621680486519 b6989586621680486521. (~>) ((~>) a6989586621680486520 (m6989586621680486519 b6989586621680486521)) (m6989586621680486519 ())
  • type ForM_Sym2 (a6989586621680487122 :: t6989586621680486518 a6989586621680486520) (a6989586621680487123 :: (~>) a6989586621680486520 (m6989586621680486519 b6989586621680486521)) = ForM_ a6989586621680487122 a6989586621680487123
  • data Sequence_Sym0 :: forall t6989586621680486512 m6989586621680486513 a6989586621680486514. (~>) (t6989586621680486512 (m6989586621680486513 a6989586621680486514)) (m6989586621680486513 ())
  • type Sequence_Sym1 (a6989586621680487110 :: t6989586621680486512 (m6989586621680486513 a6989586621680486514)) = Sequence_ a6989586621680487110
  • data MsumSym0 :: forall t6989586621680486506 m6989586621680486507 a6989586621680486508. (~>) (t6989586621680486506 (m6989586621680486507 a6989586621680486508)) (m6989586621680486507 a6989586621680486508)
  • type MsumSym1 (a6989586621680487100 :: t6989586621680486506 (m6989586621680486507 a6989586621680486508)) = Msum a6989586621680487100
  • data ConcatSym0 :: forall t6989586621680486504 a6989586621680486505. (~>) (t6989586621680486504 [a6989586621680486505]) [a6989586621680486505]
  • type ConcatSym1 (a6989586621680487086 :: t6989586621680486504 [a6989586621680486505]) = Concat a6989586621680487086
  • data ConcatMapSym0 :: forall a6989586621680486502 b6989586621680486503 t6989586621680486501. (~>) ((~>) a6989586621680486502 [b6989586621680486503]) ((~>) (t6989586621680486501 a6989586621680486502) [b6989586621680486503])
  • data ConcatMapSym1 (a6989586621680487070 :: (~>) a6989586621680486502 [b6989586621680486503]) :: forall t6989586621680486501. (~>) (t6989586621680486501 a6989586621680486502) [b6989586621680486503]
  • type ConcatMapSym2 (a6989586621680487070 :: (~>) a6989586621680486502 [b6989586621680486503]) (a6989586621680487071 :: t6989586621680486501 a6989586621680486502) = ConcatMap a6989586621680487070 a6989586621680487071
  • data AndSym0 :: forall t6989586621680486500. (~>) (t6989586621680486500 Bool) Bool
  • type AndSym1 (a6989586621680487061 :: t6989586621680486500 Bool) = And a6989586621680487061
  • data OrSym0 :: forall t6989586621680486499. (~>) (t6989586621680486499 Bool) Bool
  • type OrSym1 (a6989586621680487052 :: t6989586621680486499 Bool) = Or a6989586621680487052
  • data AnySym0 :: forall a6989586621680486498 t6989586621680486497. (~>) ((~>) a6989586621680486498 Bool) ((~>) (t6989586621680486497 a6989586621680486498) Bool)
  • data AnySym1 (a6989586621680487039 :: (~>) a6989586621680486498 Bool) :: forall t6989586621680486497. (~>) (t6989586621680486497 a6989586621680486498) Bool
  • type AnySym2 (a6989586621680487039 :: (~>) a6989586621680486498 Bool) (a6989586621680487040 :: t6989586621680486497 a6989586621680486498) = Any a6989586621680487039 a6989586621680487040
  • data AllSym0 :: forall a6989586621680486496 t6989586621680486495. (~>) ((~>) a6989586621680486496 Bool) ((~>) (t6989586621680486495 a6989586621680486496) Bool)
  • data AllSym1 (a6989586621680487026 :: (~>) a6989586621680486496 Bool) :: forall t6989586621680486495. (~>) (t6989586621680486495 a6989586621680486496) Bool
  • type AllSym2 (a6989586621680487026 :: (~>) a6989586621680486496 Bool) (a6989586621680487027 :: t6989586621680486495 a6989586621680486496) = All a6989586621680487026 a6989586621680487027
  • data MaximumBySym0 :: forall a6989586621680486494 t6989586621680486493. (~>) ((~>) a6989586621680486494 ((~>) a6989586621680486494 Ordering)) ((~>) (t6989586621680486493 a6989586621680486494) a6989586621680486494)
  • data MaximumBySym1 (a6989586621680487001 :: (~>) a6989586621680486494 ((~>) a6989586621680486494 Ordering)) :: forall t6989586621680486493. (~>) (t6989586621680486493 a6989586621680486494) a6989586621680486494
  • type MaximumBySym2 (a6989586621680487001 :: (~>) a6989586621680486494 ((~>) a6989586621680486494 Ordering)) (a6989586621680487002 :: t6989586621680486493 a6989586621680486494) = MaximumBy a6989586621680487001 a6989586621680487002
  • data MinimumBySym0 :: forall a6989586621680486492 t6989586621680486491. (~>) ((~>) a6989586621680486492 ((~>) a6989586621680486492 Ordering)) ((~>) (t6989586621680486491 a6989586621680486492) a6989586621680486492)
  • data MinimumBySym1 (a6989586621680486976 :: (~>) a6989586621680486492 ((~>) a6989586621680486492 Ordering)) :: forall t6989586621680486491. (~>) (t6989586621680486491 a6989586621680486492) a6989586621680486492
  • type MinimumBySym2 (a6989586621680486976 :: (~>) a6989586621680486492 ((~>) a6989586621680486492 Ordering)) (a6989586621680486977 :: t6989586621680486491 a6989586621680486492) = MinimumBy a6989586621680486976 a6989586621680486977
  • data NotElemSym0 :: forall a6989586621680486490 t6989586621680486489. (~>) a6989586621680486490 ((~>) (t6989586621680486489 a6989586621680486490) Bool)
  • data NotElemSym1 (a6989586621680486968 :: a6989586621680486490) :: forall t6989586621680486489. (~>) (t6989586621680486489 a6989586621680486490) Bool
  • type NotElemSym2 (a6989586621680486968 :: a6989586621680486490) (a6989586621680486969 :: t6989586621680486489 a6989586621680486490) = NotElem a6989586621680486968 a6989586621680486969
  • data FindSym0 :: forall a6989586621680486488 t6989586621680486487. (~>) ((~>) a6989586621680486488 Bool) ((~>) (t6989586621680486487 a6989586621680486488) (Maybe a6989586621680486488))
  • data FindSym1 (a6989586621680486941 :: (~>) a6989586621680486488 Bool) :: forall t6989586621680486487. (~>) (t6989586621680486487 a6989586621680486488) (Maybe a6989586621680486488)
  • type FindSym2 (a6989586621680486941 :: (~>) a6989586621680486488 Bool) (a6989586621680486942 :: t6989586621680486487 a6989586621680486488) = Find a6989586621680486941 a6989586621680486942

Documentation

class PFoldable (t :: Type -> Type) Source #

Associated Types

type Fold (arg :: t m) :: m Source #

type Fold a = Apply Fold_6989586621680487255Sym0 a Source #

type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #

type FoldMap a a = Apply (Apply FoldMap_6989586621680487265Sym0 a) a Source #

type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680487280Sym0 a) a) a Source #

type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr' a a a = Apply (Apply (Apply Foldr'_6989586621680487305Sym0 a) a) a Source #

type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680487335Sym0 a) a) a Source #

type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl' a a a = Apply (Apply (Apply Foldl'_6989586621680487360Sym0 a) a) a Source #

type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldr1 a a = Apply (Apply Foldr1_6989586621680487389Sym0 a) a Source #

type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldl1 a a = Apply (Apply Foldl1_6989586621680487414Sym0 a) a Source #

type ToList (arg :: t a) :: [a] Source #

type ToList a = Apply ToList_6989586621680487438Sym0 a Source #

type Null (arg :: t a) :: Bool Source #

type Null a = Apply Null_6989586621680487447Sym0 a Source #

type Length (arg :: t a) :: Nat Source #

type Length a = Apply Length_6989586621680487468Sym0 a Source #

type Elem (arg :: a) (arg :: t a) :: Bool Source #

type Elem a a = Apply (Apply Elem_6989586621680487491Sym0 a) a Source #

type Maximum (arg :: t a) :: a Source #

type Maximum a = Apply Maximum_6989586621680487506Sym0 a Source #

type Minimum (arg :: t a) :: a Source #

type Minimum a = Apply Minimum_6989586621680487519Sym0 a Source #

type Sum (arg :: t a) :: a Source #

type Sum a = Apply Sum_6989586621680487532Sym0 a Source #

type Product (arg :: t a) :: a Source #

type Product a = Apply Product_6989586621680487545Sym0 a Source #

Instances

Instances details
PFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

class SFoldable (t :: Type -> Type) where Source #

Minimal complete definition

Nothing

Methods

sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680487255Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680487265Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680487280Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680487305Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680487335Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680487360Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680487389Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680487414Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680487438Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680487447Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Nat) ~ Apply Length_6989586621680487468Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680487491Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680487506Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680487519Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #

default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680487532Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680487545Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

Instances

Instances details
SFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: [m]). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: [a]). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: [a]). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: [a]). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: [a]). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Maybe m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Maybe a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Maybe a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Maybe a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Maybe a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Maybe a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: NonEmpty m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: NonEmpty a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: NonEmpty a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Option m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Option a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Option a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Option a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Option a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Option a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Dual m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Dual a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Dual a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Dual a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Dual a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Dual a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Product m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Product a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Product a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Product a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Product a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Product a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Sum m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Sum a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Sum a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Sum a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Sum a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Sum a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Either a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Either a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Either a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: (a, m)). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: (a, a0)). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: (a, a0)). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldrM f z0 xs = Apply (Apply (Apply (Apply FoldlSym0 (Let6989586621680487185F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b) Source #

type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldlM f z0 xs = Apply (Apply (Apply (Apply FoldrSym0 (Let6989586621680487163F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #

type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ... Source #

Equations

Traverse_ f a_6989586621680487150 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (*>@#@$)) f)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680487150 

sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ()) Source #

type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ... Source #

Equations

For_ a_6989586621680487136 a_6989586621680487138 = Apply (Apply (Apply FlipSym0 Traverse_Sym0) a_6989586621680487136) a_6989586621680487138 

sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ()) Source #

type family SequenceA_ (a :: t (f a)) :: f () where ... Source #

Equations

SequenceA_ a_6989586621680487113 = Apply (Apply (Apply FoldrSym0 (*>@#@$)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680487113 

sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ()) Source #

type family Asum (a :: t (f a)) :: f a where ... Source #

Equations

Asum a_6989586621680487103 = Apply (Apply (Apply FoldrSym0 (<|>@#@$)) EmptySym0) a_6989586621680487103 

sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a) Source #

type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #

Equations

MapM_ f a_6989586621680487132 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680487132 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ... Source #

Equations

ForM_ a_6989586621680487118 a_6989586621680487120 = Apply (Apply (Apply FlipSym0 MapM_Sym0) a_6989586621680487118) a_6989586621680487120 

sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ()) Source #

type family Sequence_ (a :: t (m a)) :: m () where ... Source #

Equations

Sequence_ a_6989586621680487108 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680487108 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family Msum (a :: t (m a)) :: m a where ... Source #

Equations

Msum a_6989586621680487098 = Apply AsumSym0 a_6989586621680487098 

sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #

type family Concat (a :: t [a]) :: [a] where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680487089Sym0 xs)) '[]) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680487076Sym0 f) xs)) '[]) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And x = Case_6989586621680487066 x (Let6989586621680487064Scrutinee_6989586621680486826Sym1 x) 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or x = Case_6989586621680487057 x (Let6989586621680487055Scrutinee_6989586621680486828Sym1 x) 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

Any p x = Case_6989586621680487048 p x (Let6989586621680487045Scrutinee_6989586621680486830Sym2 p x) 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

All p x = Case_6989586621680487035 p x (Let6989586621680487032Scrutinee_6989586621680486832Sym2 p x) 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MaximumBy cmp a_6989586621680487005 = Apply (Apply Foldl1Sym0 (Let6989586621680487009Max'Sym2 cmp a_6989586621680487005)) a_6989586621680487005 

sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #

type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MinimumBy cmp a_6989586621680486980 = Apply (Apply Foldl1Sym0 (Let6989586621680486984Min'Sym2 cmp a_6989586621680486980)) a_6989586621680486980 

sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #

type family NotElem (a :: a) (a :: t a) :: Bool where ... Source #

Equations

NotElem x a_6989586621680486972 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680486972 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ... Source #

Equations

Find p y = Case_6989586621680486964 p y (Let6989586621680486947Scrutinee_6989586621680486838Sym2 p y) 

sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #

Defunctionalization symbols

data FoldSym0 :: forall t6989586621680486579 m6989586621680486580. (~>) (t6989586621680486579 m6989586621680486580) m6989586621680486580 Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldSym0 :: TyFun (t m) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldSym0 :: TyFun (t6989586621680486579 m6989586621680486580) m6989586621680486580 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (arg6989586621680487198 :: t m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (arg6989586621680487198 :: t m) = Fold arg6989586621680487198

type FoldSym1 (arg6989586621680487198 :: t6989586621680486579 m6989586621680486580) = Fold arg6989586621680487198 Source #

data FoldMapSym0 :: forall a6989586621680486582 m6989586621680486581 t6989586621680486579. (~>) ((~>) a6989586621680486582 m6989586621680486581) ((~>) (t6989586621680486579 a6989586621680486582) m6989586621680486581) Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a6989586621680486582 ~> m6989586621680486581) (t6989586621680486579 a6989586621680486582 ~> m6989586621680486581) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a6989586621680486582 ~> m6989586621680486581) (t6989586621680486579 a6989586621680486582 ~> m6989586621680486581) -> Type) (arg6989586621680487200 :: a6989586621680486582 ~> m6989586621680486581) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a6989586621680486582 ~> m6989586621680486581) (t6989586621680486579 a6989586621680486582 ~> m6989586621680486581) -> Type) (arg6989586621680487200 :: a6989586621680486582 ~> m6989586621680486581) = FoldMapSym1 arg6989586621680487200 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486582) m6989586621680486581 -> Type

data FoldMapSym1 (arg6989586621680487200 :: (~>) a6989586621680486582 m6989586621680486581) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486582) m6989586621680486581 Source #

Instances

Instances details
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d t :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldMapSym1 d t) Source #

SuppressUnusedWarnings (FoldMapSym1 arg6989586621680487200 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486582) m6989586621680486581 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 arg6989586621680487200 t :: TyFun (t a) m -> Type) (arg6989586621680487201 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 arg6989586621680487200 t :: TyFun (t a) m -> Type) (arg6989586621680487201 :: t a) = FoldMap arg6989586621680487200 arg6989586621680487201

type FoldMapSym2 (arg6989586621680487200 :: (~>) a6989586621680486582 m6989586621680486581) (arg6989586621680487201 :: t6989586621680486579 a6989586621680486582) = FoldMap arg6989586621680487200 arg6989586621680487201 Source #

data FoldrSym0 :: forall a6989586621680486583 b6989586621680486584 t6989586621680486579. (~>) ((~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) ((~>) b6989586621680486584 ((~>) (t6989586621680486579 a6989586621680486583) b6989586621680486584)) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a6989586621680486583 ~> (b6989586621680486584 ~> b6989586621680486584)) (b6989586621680486584 ~> (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a6989586621680486583 ~> (b6989586621680486584 ~> b6989586621680486584)) (b6989586621680486584 ~> (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584)) -> Type) (arg6989586621680487204 :: a6989586621680486583 ~> (b6989586621680486584 ~> b6989586621680486584)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a6989586621680486583 ~> (b6989586621680486584 ~> b6989586621680486584)) (b6989586621680486584 ~> (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584)) -> Type) (arg6989586621680487204 :: a6989586621680486583 ~> (b6989586621680486584 ~> b6989586621680486584)) = FoldrSym1 arg6989586621680487204 t6989586621680486579 :: TyFun b6989586621680486584 (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584) -> Type

data FoldrSym1 (arg6989586621680487204 :: (~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) :: forall t6989586621680486579. (~>) b6989586621680486584 ((~>) (t6989586621680486579 a6989586621680486583) b6989586621680486584) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldrSym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym1 d t) Source #

SuppressUnusedWarnings (FoldrSym1 arg6989586621680487204 t6989586621680486579 :: TyFun b6989586621680486584 (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 arg6989586621680487204 t6989586621680486579 :: TyFun b6989586621680486584 (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584) -> Type) (arg6989586621680487205 :: b6989586621680486584) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 arg6989586621680487204 t6989586621680486579 :: TyFun b6989586621680486584 (t6989586621680486579 a6989586621680486583 ~> b6989586621680486584) -> Type) (arg6989586621680487205 :: b6989586621680486584) = FoldrSym2 arg6989586621680487204 arg6989586621680487205 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486583) b6989586621680486584 -> Type

data FoldrSym2 (arg6989586621680487204 :: (~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) (arg6989586621680487205 :: b6989586621680486584) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486583) b6989586621680486584 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldrSym2 arg6989586621680487205 arg6989586621680487204 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486583) b6989586621680486584 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 arg6989586621680487205 arg6989586621680487204 t :: TyFun (t a) b -> Type) (arg6989586621680487206 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 arg6989586621680487205 arg6989586621680487204 t :: TyFun (t a) b -> Type) (arg6989586621680487206 :: t a) = Foldr arg6989586621680487205 arg6989586621680487204 arg6989586621680487206

type FoldrSym3 (arg6989586621680487204 :: (~>) a6989586621680486583 ((~>) b6989586621680486584 b6989586621680486584)) (arg6989586621680487205 :: b6989586621680486584) (arg6989586621680487206 :: t6989586621680486579 a6989586621680486583) = Foldr arg6989586621680487204 arg6989586621680487205 arg6989586621680487206 Source #

data Foldr'Sym0 :: forall a6989586621680486585 b6989586621680486586 t6989586621680486579. (~>) ((~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) ((~>) b6989586621680486586 ((~>) (t6989586621680486579 a6989586621680486585) b6989586621680486586)) Source #

Instances

Instances details
SFoldable t => SingI (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr'Sym0 :: TyFun (a6989586621680486585 ~> (b6989586621680486586 ~> b6989586621680486586)) (b6989586621680486586 ~> (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a6989586621680486585 ~> (b6989586621680486586 ~> b6989586621680486586)) (b6989586621680486586 ~> (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586)) -> Type) (arg6989586621680487210 :: a6989586621680486585 ~> (b6989586621680486586 ~> b6989586621680486586)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a6989586621680486585 ~> (b6989586621680486586 ~> b6989586621680486586)) (b6989586621680486586 ~> (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586)) -> Type) (arg6989586621680487210 :: a6989586621680486585 ~> (b6989586621680486586 ~> b6989586621680486586)) = Foldr'Sym1 arg6989586621680487210 t6989586621680486579 :: TyFun b6989586621680486586 (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586) -> Type

data Foldr'Sym1 (arg6989586621680487210 :: (~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) :: forall t6989586621680486579. (~>) b6989586621680486586 ((~>) (t6989586621680486579 a6989586621680486585) b6989586621680486586) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr'Sym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym1 d t) Source #

SuppressUnusedWarnings (Foldr'Sym1 arg6989586621680487210 t6989586621680486579 :: TyFun b6989586621680486586 (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 arg6989586621680487210 t6989586621680486579 :: TyFun b6989586621680486586 (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586) -> Type) (arg6989586621680487211 :: b6989586621680486586) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 arg6989586621680487210 t6989586621680486579 :: TyFun b6989586621680486586 (t6989586621680486579 a6989586621680486585 ~> b6989586621680486586) -> Type) (arg6989586621680487211 :: b6989586621680486586) = Foldr'Sym2 arg6989586621680487210 arg6989586621680487211 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486585) b6989586621680486586 -> Type

data Foldr'Sym2 (arg6989586621680487210 :: (~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) (arg6989586621680487211 :: b6989586621680486586) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486585) b6989586621680486586 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldr'Sym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym2 d1 d2 t) Source #

SuppressUnusedWarnings (Foldr'Sym2 arg6989586621680487211 arg6989586621680487210 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486585) b6989586621680486586 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 arg6989586621680487211 arg6989586621680487210 t :: TyFun (t a) b -> Type) (arg6989586621680487212 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 arg6989586621680487211 arg6989586621680487210 t :: TyFun (t a) b -> Type) (arg6989586621680487212 :: t a) = Foldr' arg6989586621680487211 arg6989586621680487210 arg6989586621680487212

type Foldr'Sym3 (arg6989586621680487210 :: (~>) a6989586621680486585 ((~>) b6989586621680486586 b6989586621680486586)) (arg6989586621680487211 :: b6989586621680486586) (arg6989586621680487212 :: t6989586621680486579 a6989586621680486585) = Foldr' arg6989586621680487210 arg6989586621680487211 arg6989586621680487212 Source #

data FoldlSym0 :: forall b6989586621680486587 a6989586621680486588 t6989586621680486579. (~>) ((~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) ((~>) b6989586621680486587 ((~>) (t6989586621680486579 a6989586621680486588) b6989586621680486587)) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b6989586621680486587 ~> (a6989586621680486588 ~> b6989586621680486587)) (b6989586621680486587 ~> (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b6989586621680486587 ~> (a6989586621680486588 ~> b6989586621680486587)) (b6989586621680486587 ~> (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587)) -> Type) (arg6989586621680487216 :: b6989586621680486587 ~> (a6989586621680486588 ~> b6989586621680486587)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b6989586621680486587 ~> (a6989586621680486588 ~> b6989586621680486587)) (b6989586621680486587 ~> (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587)) -> Type) (arg6989586621680487216 :: b6989586621680486587 ~> (a6989586621680486588 ~> b6989586621680486587)) = FoldlSym1 arg6989586621680487216 t6989586621680486579 :: TyFun b6989586621680486587 (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587) -> Type

data FoldlSym1 (arg6989586621680487216 :: (~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) :: forall t6989586621680486579. (~>) b6989586621680486587 ((~>) (t6989586621680486579 a6989586621680486588) b6989586621680486587) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldlSym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym1 d t) Source #

SuppressUnusedWarnings (FoldlSym1 arg6989586621680487216 t6989586621680486579 :: TyFun b6989586621680486587 (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 arg6989586621680487216 t6989586621680486579 :: TyFun b6989586621680486587 (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587) -> Type) (arg6989586621680487217 :: b6989586621680486587) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 arg6989586621680487216 t6989586621680486579 :: TyFun b6989586621680486587 (t6989586621680486579 a6989586621680486588 ~> b6989586621680486587) -> Type) (arg6989586621680487217 :: b6989586621680486587) = FoldlSym2 arg6989586621680487216 arg6989586621680487217 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486588) b6989586621680486587 -> Type

data FoldlSym2 (arg6989586621680487216 :: (~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) (arg6989586621680487217 :: b6989586621680486587) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486588) b6989586621680486587 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlSym2 arg6989586621680487217 arg6989586621680487216 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486588) b6989586621680486587 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 arg6989586621680487217 arg6989586621680487216 t :: TyFun (t a) b -> Type) (arg6989586621680487218 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 arg6989586621680487217 arg6989586621680487216 t :: TyFun (t a) b -> Type) (arg6989586621680487218 :: t a) = Foldl arg6989586621680487217 arg6989586621680487216 arg6989586621680487218

type FoldlSym3 (arg6989586621680487216 :: (~>) b6989586621680486587 ((~>) a6989586621680486588 b6989586621680486587)) (arg6989586621680487217 :: b6989586621680486587) (arg6989586621680487218 :: t6989586621680486579 a6989586621680486588) = Foldl arg6989586621680487216 arg6989586621680487217 arg6989586621680487218 Source #

data Foldl'Sym0 :: forall b6989586621680486589 a6989586621680486590 t6989586621680486579. (~>) ((~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) ((~>) b6989586621680486589 ((~>) (t6989586621680486579 a6989586621680486590) b6989586621680486589)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b6989586621680486589 ~> (a6989586621680486590 ~> b6989586621680486589)) (b6989586621680486589 ~> (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b6989586621680486589 ~> (a6989586621680486590 ~> b6989586621680486589)) (b6989586621680486589 ~> (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589)) -> Type) (arg6989586621680487222 :: b6989586621680486589 ~> (a6989586621680486590 ~> b6989586621680486589)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b6989586621680486589 ~> (a6989586621680486590 ~> b6989586621680486589)) (b6989586621680486589 ~> (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589)) -> Type) (arg6989586621680487222 :: b6989586621680486589 ~> (a6989586621680486590 ~> b6989586621680486589)) = Foldl'Sym1 arg6989586621680487222 t6989586621680486579 :: TyFun b6989586621680486589 (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589) -> Type

data Foldl'Sym1 (arg6989586621680487222 :: (~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) :: forall t6989586621680486579. (~>) b6989586621680486589 ((~>) (t6989586621680486579 a6989586621680486590) b6989586621680486589) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl'Sym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym1 d t) Source #

SuppressUnusedWarnings (Foldl'Sym1 arg6989586621680487222 t6989586621680486579 :: TyFun b6989586621680486589 (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 arg6989586621680487222 t6989586621680486579 :: TyFun b6989586621680486589 (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589) -> Type) (arg6989586621680487223 :: b6989586621680486589) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 arg6989586621680487222 t6989586621680486579 :: TyFun b6989586621680486589 (t6989586621680486579 a6989586621680486590 ~> b6989586621680486589) -> Type) (arg6989586621680487223 :: b6989586621680486589) = Foldl'Sym2 arg6989586621680487222 arg6989586621680487223 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486590) b6989586621680486589 -> Type

data Foldl'Sym2 (arg6989586621680487222 :: (~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) (arg6989586621680487223 :: b6989586621680486589) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486590) b6989586621680486589 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym2 d1 d2 t) Source #

SuppressUnusedWarnings (Foldl'Sym2 arg6989586621680487223 arg6989586621680487222 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486590) b6989586621680486589 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 arg6989586621680487223 arg6989586621680487222 t :: TyFun (t a) b -> Type) (arg6989586621680487224 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 arg6989586621680487223 arg6989586621680487222 t :: TyFun (t a) b -> Type) (arg6989586621680487224 :: t a) = Foldl' arg6989586621680487223 arg6989586621680487222 arg6989586621680487224

type Foldl'Sym3 (arg6989586621680487222 :: (~>) b6989586621680486589 ((~>) a6989586621680486590 b6989586621680486589)) (arg6989586621680487223 :: b6989586621680486589) (arg6989586621680487224 :: t6989586621680486579 a6989586621680486590) = Foldl' arg6989586621680487222 arg6989586621680487223 arg6989586621680487224 Source #

data Foldr1Sym0 :: forall a6989586621680486591 t6989586621680486579. (~>) ((~>) a6989586621680486591 ((~>) a6989586621680486591 a6989586621680486591)) ((~>) (t6989586621680486579 a6989586621680486591) a6989586621680486591) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a6989586621680486591 ~> (a6989586621680486591 ~> a6989586621680486591)) (t6989586621680486579 a6989586621680486591 ~> a6989586621680486591) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a6989586621680486591 ~> (a6989586621680486591 ~> a6989586621680486591)) (t6989586621680486579 a6989586621680486591 ~> a6989586621680486591) -> Type) (arg6989586621680487228 :: a6989586621680486591 ~> (a6989586621680486591 ~> a6989586621680486591)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a6989586621680486591 ~> (a6989586621680486591 ~> a6989586621680486591)) (t6989586621680486579 a6989586621680486591 ~> a6989586621680486591) -> Type) (arg6989586621680487228 :: a6989586621680486591 ~> (a6989586621680486591 ~> a6989586621680486591)) = Foldr1Sym1 arg6989586621680487228 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486591) a6989586621680486591 -> Type

data Foldr1Sym1 (arg6989586621680487228 :: (~>) a6989586621680486591 ((~>) a6989586621680486591 a6989586621680486591)) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486591) a6989586621680486591 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr1Sym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr1Sym1 d t) Source #

SuppressUnusedWarnings (Foldr1Sym1 arg6989586621680487228 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486591) a6989586621680486591 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 arg6989586621680487228 t :: TyFun (t a) a -> Type) (arg6989586621680487229 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 arg6989586621680487228 t :: TyFun (t a) a -> Type) (arg6989586621680487229 :: t a) = Foldr1 arg6989586621680487228 arg6989586621680487229

type Foldr1Sym2 (arg6989586621680487228 :: (~>) a6989586621680486591 ((~>) a6989586621680486591 a6989586621680486591)) (arg6989586621680487229 :: t6989586621680486579 a6989586621680486591) = Foldr1 arg6989586621680487228 arg6989586621680487229 Source #

data Foldl1Sym0 :: forall a6989586621680486592 t6989586621680486579. (~>) ((~>) a6989586621680486592 ((~>) a6989586621680486592 a6989586621680486592)) ((~>) (t6989586621680486579 a6989586621680486592) a6989586621680486592) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a6989586621680486592 ~> (a6989586621680486592 ~> a6989586621680486592)) (t6989586621680486579 a6989586621680486592 ~> a6989586621680486592) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a6989586621680486592 ~> (a6989586621680486592 ~> a6989586621680486592)) (t6989586621680486579 a6989586621680486592 ~> a6989586621680486592) -> Type) (arg6989586621680487232 :: a6989586621680486592 ~> (a6989586621680486592 ~> a6989586621680486592)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a6989586621680486592 ~> (a6989586621680486592 ~> a6989586621680486592)) (t6989586621680486579 a6989586621680486592 ~> a6989586621680486592) -> Type) (arg6989586621680487232 :: a6989586621680486592 ~> (a6989586621680486592 ~> a6989586621680486592)) = Foldl1Sym1 arg6989586621680487232 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486592) a6989586621680486592 -> Type

data Foldl1Sym1 (arg6989586621680487232 :: (~>) a6989586621680486592 ((~>) a6989586621680486592 a6989586621680486592)) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486592) a6989586621680486592 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl1Sym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl1Sym1 d t) Source #

SuppressUnusedWarnings (Foldl1Sym1 arg6989586621680487232 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486592) a6989586621680486592 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 arg6989586621680487232 t :: TyFun (t a) a -> Type) (arg6989586621680487233 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 arg6989586621680487232 t :: TyFun (t a) a -> Type) (arg6989586621680487233 :: t a) = Foldl1 arg6989586621680487232 arg6989586621680487233

type Foldl1Sym2 (arg6989586621680487232 :: (~>) a6989586621680486592 ((~>) a6989586621680486592 a6989586621680486592)) (arg6989586621680487233 :: t6989586621680486579 a6989586621680486592) = Foldl1 arg6989586621680487232 arg6989586621680487233 Source #

data ToListSym0 :: forall t6989586621680486579 a6989586621680486593. (~>) (t6989586621680486579 a6989586621680486593) [a6989586621680486593] Source #

Instances

Instances details
SFoldable t => SingI (ToListSym0 :: TyFun (t a) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ToListSym0 :: TyFun (t6989586621680486579 a6989586621680486593) [a6989586621680486593] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (arg6989586621680487236 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (arg6989586621680487236 :: t a) = ToList arg6989586621680487236

type ToListSym1 (arg6989586621680487236 :: t6989586621680486579 a6989586621680486593) = ToList arg6989586621680487236 Source #

data NullSym0 :: forall t6989586621680486579 a6989586621680486594. (~>) (t6989586621680486579 a6989586621680486594) Bool Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NullSym0 :: TyFun (t6989586621680486579 a6989586621680486594) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (arg6989586621680487238 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (arg6989586621680487238 :: t a) = Null arg6989586621680487238

type NullSym1 (arg6989586621680487238 :: t6989586621680486579 a6989586621680486594) = Null arg6989586621680487238 Source #

data LengthSym0 :: forall t6989586621680486579 a6989586621680486595. (~>) (t6989586621680486579 a6989586621680486595) Nat Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (LengthSym0 :: TyFun (t6989586621680486579 a6989586621680486595) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (arg6989586621680487240 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (arg6989586621680487240 :: t a) = Length arg6989586621680487240

type LengthSym1 (arg6989586621680487240 :: t6989586621680486579 a6989586621680486595) = Length arg6989586621680487240 Source #

data ElemSym0 :: forall a6989586621680486596 t6989586621680486579. (~>) a6989586621680486596 ((~>) (t6989586621680486579 a6989586621680486596) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ElemSym0 :: TyFun a6989586621680486596 (t6989586621680486579 a6989586621680486596 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a6989586621680486596 (t6989586621680486579 a6989586621680486596 ~> Bool) -> Type) (arg6989586621680487242 :: a6989586621680486596) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a6989586621680486596 (t6989586621680486579 a6989586621680486596 ~> Bool) -> Type) (arg6989586621680487242 :: a6989586621680486596) = ElemSym1 arg6989586621680487242 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486596) Bool -> Type

data ElemSym1 (arg6989586621680487242 :: a6989586621680486596) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486596) Bool Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ElemSym1 d t) Source #

SuppressUnusedWarnings (ElemSym1 arg6989586621680487242 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486596) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 arg6989586621680487242 t :: TyFun (t a) Bool -> Type) (arg6989586621680487243 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 arg6989586621680487242 t :: TyFun (t a) Bool -> Type) (arg6989586621680487243 :: t a) = Elem arg6989586621680487242 arg6989586621680487243

type ElemSym2 (arg6989586621680487242 :: a6989586621680486596) (arg6989586621680487243 :: t6989586621680486579 a6989586621680486596) = Elem arg6989586621680487242 arg6989586621680487243 Source #

data MaximumSym0 :: forall t6989586621680486579 a6989586621680486597. (~>) (t6989586621680486579 a6989586621680486597) a6989586621680486597 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t6989586621680486579 a6989586621680486597) a6989586621680486597 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487246 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487246 :: t a) = Maximum arg6989586621680487246

type MaximumSym1 (arg6989586621680487246 :: t6989586621680486579 a6989586621680486597) = Maximum arg6989586621680487246 Source #

data MinimumSym0 :: forall t6989586621680486579 a6989586621680486598. (~>) (t6989586621680486579 a6989586621680486598) a6989586621680486598 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t6989586621680486579 a6989586621680486598) a6989586621680486598 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487248 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487248 :: t a) = Minimum arg6989586621680487248

type MinimumSym1 (arg6989586621680487248 :: t6989586621680486579 a6989586621680486598) = Minimum arg6989586621680487248 Source #

data SumSym0 :: forall t6989586621680486579 a6989586621680486599. (~>) (t6989586621680486579 a6989586621680486599) a6989586621680486599 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SumSym0 :: TyFun (t6989586621680486579 a6989586621680486599) a6989586621680486599 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487250 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487250 :: t a) = Sum arg6989586621680487250

type SumSym1 (arg6989586621680487250 :: t6989586621680486579 a6989586621680486599) = Sum arg6989586621680487250 Source #

data ProductSym0 :: forall t6989586621680486579 a6989586621680486600. (~>) (t6989586621680486579 a6989586621680486600) a6989586621680486600 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ProductSym0 :: TyFun (t6989586621680486579 a6989586621680486600) a6989586621680486600 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (arg6989586621680487252 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (arg6989586621680487252 :: t a) = Product arg6989586621680487252

type ProductSym1 (arg6989586621680487252 :: t6989586621680486579 a6989586621680486600) = Product arg6989586621680487252 Source #

data FoldrMSym0 :: forall a6989586621680486540 b6989586621680486541 m6989586621680486539 t6989586621680486538. (~>) ((~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) ((~>) b6989586621680486541 ((~>) (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrMSym0 :: TyFun (a6989586621680486540 ~> (b6989586621680486541 ~> m6989586621680486539 b6989586621680486541)) (b6989586621680486541 ~> (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a6989586621680486540 ~> (b6989586621680486541 ~> m6989586621680486539 b6989586621680486541)) (b6989586621680486541 ~> (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541)) -> Type) (a6989586621680487176 :: a6989586621680486540 ~> (b6989586621680486541 ~> m6989586621680486539 b6989586621680486541)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a6989586621680486540 ~> (b6989586621680486541 ~> m6989586621680486539 b6989586621680486541)) (b6989586621680486541 ~> (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541)) -> Type) (a6989586621680487176 :: a6989586621680486540 ~> (b6989586621680486541 ~> m6989586621680486539 b6989586621680486541)) = FoldrMSym1 a6989586621680487176 t6989586621680486538 :: TyFun b6989586621680486541 (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541) -> Type

data FoldrMSym1 (a6989586621680487176 :: (~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) :: forall t6989586621680486538. (~>) b6989586621680486541 ((~>) (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldrMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym1 d t) Source #

SuppressUnusedWarnings (FoldrMSym1 a6989586621680487176 t6989586621680486538 :: TyFun b6989586621680486541 (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680487176 t6989586621680486538 :: TyFun b6989586621680486541 (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541) -> Type) (a6989586621680487177 :: b6989586621680486541) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680487176 t6989586621680486538 :: TyFun b6989586621680486541 (t6989586621680486538 a6989586621680486540 ~> m6989586621680486539 b6989586621680486541) -> Type) (a6989586621680487177 :: b6989586621680486541) = FoldrMSym2 a6989586621680487176 a6989586621680487177 t6989586621680486538 :: TyFun (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541) -> Type

data FoldrMSym2 (a6989586621680487176 :: (~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) (a6989586621680487177 :: b6989586621680486541) :: forall t6989586621680486538. (~>) (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldrMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldrMSym2 a6989586621680487177 a6989586621680487176 t6989586621680486538 :: TyFun (t6989586621680486538 a6989586621680486540) (m6989586621680486539 b6989586621680486541) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680487177 a6989586621680487176 t :: TyFun (t a) (m b) -> Type) (a6989586621680487178 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680487177 a6989586621680487176 t :: TyFun (t a) (m b) -> Type) (a6989586621680487178 :: t a) = FoldrM a6989586621680487177 a6989586621680487176 a6989586621680487178

type FoldrMSym3 (a6989586621680487176 :: (~>) a6989586621680486540 ((~>) b6989586621680486541 (m6989586621680486539 b6989586621680486541))) (a6989586621680487177 :: b6989586621680486541) (a6989586621680487178 :: t6989586621680486538 a6989586621680486540) = FoldrM a6989586621680487176 a6989586621680487177 a6989586621680487178 Source #

data FoldlMSym0 :: forall b6989586621680486536 a6989586621680486537 m6989586621680486535 t6989586621680486534. (~>) ((~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) ((~>) b6989586621680486536 ((~>) (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b6989586621680486536 ~> (a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) (b6989586621680486536 ~> (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680486536 ~> (a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) (b6989586621680486536 ~> (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) -> Type) (a6989586621680487154 :: b6989586621680486536 ~> (a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680486536 ~> (a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) (b6989586621680486536 ~> (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) -> Type) (a6989586621680487154 :: b6989586621680486536 ~> (a6989586621680486537 ~> m6989586621680486535 b6989586621680486536)) = FoldlMSym1 a6989586621680487154 t6989586621680486534 :: TyFun b6989586621680486536 (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536) -> Type

data FoldlMSym1 (a6989586621680487154 :: (~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) :: forall t6989586621680486534. (~>) b6989586621680486536 ((~>) (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym1 d t) Source #

SuppressUnusedWarnings (FoldlMSym1 a6989586621680487154 t6989586621680486534 :: TyFun b6989586621680486536 (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680487154 t6989586621680486534 :: TyFun b6989586621680486536 (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536) -> Type) (a6989586621680487155 :: b6989586621680486536) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680487154 t6989586621680486534 :: TyFun b6989586621680486536 (t6989586621680486534 a6989586621680486537 ~> m6989586621680486535 b6989586621680486536) -> Type) (a6989586621680487155 :: b6989586621680486536) = FoldlMSym2 a6989586621680487154 a6989586621680487155 t6989586621680486534 :: TyFun (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536) -> Type

data FoldlMSym2 (a6989586621680487154 :: (~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) (a6989586621680487155 :: b6989586621680486536) :: forall t6989586621680486534. (~>) (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlMSym2 a6989586621680487155 a6989586621680487154 t6989586621680486534 :: TyFun (t6989586621680486534 a6989586621680486537) (m6989586621680486535 b6989586621680486536) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680487155 a6989586621680487154 t :: TyFun (t a) (m b) -> Type) (a6989586621680487156 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680487155 a6989586621680487154 t :: TyFun (t a) (m b) -> Type) (a6989586621680487156 :: t a) = FoldlM a6989586621680487155 a6989586621680487154 a6989586621680487156

type FoldlMSym3 (a6989586621680487154 :: (~>) b6989586621680486536 ((~>) a6989586621680486537 (m6989586621680486535 b6989586621680486536))) (a6989586621680487155 :: b6989586621680486536) (a6989586621680487156 :: t6989586621680486534 a6989586621680486537) = FoldlM a6989586621680487154 a6989586621680487155 a6989586621680487156 Source #

data Traverse_Sym0 :: forall a6989586621680486532 f6989586621680486531 b6989586621680486533 t6989586621680486530. (~>) ((~>) a6989586621680486532 (f6989586621680486531 b6989586621680486533)) ((~>) (t6989586621680486530 a6989586621680486532) (f6989586621680486531 ())) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Traverse_Sym0 :: TyFun (a6989586621680486532 ~> f6989586621680486531 b6989586621680486533) (t6989586621680486530 a6989586621680486532 ~> f6989586621680486531 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a6989586621680486532 ~> f6989586621680486531 b6989586621680486533) (t6989586621680486530 a6989586621680486532 ~> f6989586621680486531 ()) -> Type) (a6989586621680487146 :: a6989586621680486532 ~> f6989586621680486531 b6989586621680486533) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a6989586621680486532 ~> f6989586621680486531 b6989586621680486533) (t6989586621680486530 a6989586621680486532 ~> f6989586621680486531 ()) -> Type) (a6989586621680487146 :: a6989586621680486532 ~> f6989586621680486531 b6989586621680486533) = Traverse_Sym1 a6989586621680487146 t6989586621680486530 :: TyFun (t6989586621680486530 a6989586621680486532) (f6989586621680486531 ()) -> Type

data Traverse_Sym1 (a6989586621680487146 :: (~>) a6989586621680486532 (f6989586621680486531 b6989586621680486533)) :: forall t6989586621680486530. (~>) (t6989586621680486530 a6989586621680486532) (f6989586621680486531 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (Traverse_Sym1 d t :: TyFun (t a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Traverse_Sym1 d t) Source #

SuppressUnusedWarnings (Traverse_Sym1 a6989586621680487146 t6989586621680486530 :: TyFun (t6989586621680486530 a6989586621680486532) (f6989586621680486531 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680487146 t :: TyFun (t a) (f ()) -> Type) (a6989586621680487147 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680487146 t :: TyFun (t a) (f ()) -> Type) (a6989586621680487147 :: t a) = Traverse_ a6989586621680487146 a6989586621680487147

type Traverse_Sym2 (a6989586621680487146 :: (~>) a6989586621680486532 (f6989586621680486531 b6989586621680486533)) (a6989586621680487147 :: t6989586621680486530 a6989586621680486532) = Traverse_ a6989586621680487146 a6989586621680487147 Source #

data For_Sym0 :: forall t6989586621680486526 a6989586621680486528 f6989586621680486527 b6989586621680486529. (~>) (t6989586621680486526 a6989586621680486528) ((~>) ((~>) a6989586621680486528 (f6989586621680486527 b6989586621680486529)) (f6989586621680486527 ())) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (For_Sym0 :: TyFun (t6989586621680486526 a6989586621680486528) ((a6989586621680486528 ~> f6989586621680486527 b6989586621680486529) ~> f6989586621680486527 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t6989586621680486526 a6989586621680486528) ((a6989586621680486528 ~> f6989586621680486527 b6989586621680486529) ~> f6989586621680486527 ()) -> Type) (a6989586621680487140 :: t6989586621680486526 a6989586621680486528) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t6989586621680486526 a6989586621680486528) ((a6989586621680486528 ~> f6989586621680486527 b6989586621680486529) ~> f6989586621680486527 ()) -> Type) (a6989586621680487140 :: t6989586621680486526 a6989586621680486528) = For_Sym1 a6989586621680487140 f6989586621680486527 b6989586621680486529 :: TyFun (a6989586621680486528 ~> f6989586621680486527 b6989586621680486529) (f6989586621680486527 ()) -> Type

data For_Sym1 (a6989586621680487140 :: t6989586621680486526 a6989586621680486528) :: forall f6989586621680486527 b6989586621680486529. (~>) ((~>) a6989586621680486528 (f6989586621680486527 b6989586621680486529)) (f6989586621680486527 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (For_Sym1 d f b :: TyFun (a ~> f b) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (For_Sym1 d f b) Source #

SuppressUnusedWarnings (For_Sym1 a6989586621680487140 f6989586621680486527 b6989586621680486529 :: TyFun (a6989586621680486528 ~> f6989586621680486527 b6989586621680486529) (f6989586621680486527 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680487140 f b :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680487141 :: a ~> f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680487140 f b :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680487141 :: a ~> f b) = For_ a6989586621680487140 a6989586621680487141

type For_Sym2 (a6989586621680487140 :: t6989586621680486526 a6989586621680486528) (a6989586621680487141 :: (~>) a6989586621680486528 (f6989586621680486527 b6989586621680486529)) = For_ a6989586621680487140 a6989586621680487141 Source #

data SequenceA_Sym0 :: forall t6989586621680486515 f6989586621680486516 a6989586621680486517. (~>) (t6989586621680486515 (f6989586621680486516 a6989586621680486517)) (f6989586621680486516 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SequenceA_Sym0 :: TyFun (t6989586621680486515 (f6989586621680486516 a6989586621680486517)) (f6989586621680486516 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680487115 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680487115 :: t (f a)) = SequenceA_ a6989586621680487115

type SequenceA_Sym1 (a6989586621680487115 :: t6989586621680486515 (f6989586621680486516 a6989586621680486517)) = SequenceA_ a6989586621680487115 Source #

data AsumSym0 :: forall t6989586621680486509 f6989586621680486510 a6989586621680486511. (~>) (t6989586621680486509 (f6989586621680486510 a6989586621680486511)) (f6989586621680486510 a6989586621680486511) Source #

Instances

Instances details
(SFoldable t, SAlternative f) => SingI (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AsumSym0 :: TyFun (t6989586621680486509 (f6989586621680486510 a6989586621680486511)) (f6989586621680486510 a6989586621680486511) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680487105 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680487105 :: t (f a)) = Asum a6989586621680487105

type AsumSym1 (a6989586621680487105 :: t6989586621680486509 (f6989586621680486510 a6989586621680486511)) = Asum a6989586621680487105 Source #

data MapM_Sym0 :: forall a6989586621680486524 m6989586621680486523 b6989586621680486525 t6989586621680486522. (~>) ((~>) a6989586621680486524 (m6989586621680486523 b6989586621680486525)) ((~>) (t6989586621680486522 a6989586621680486524) (m6989586621680486523 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a6989586621680486524 ~> m6989586621680486523 b6989586621680486525) (t6989586621680486522 a6989586621680486524 ~> m6989586621680486523 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680486524 ~> m6989586621680486523 b6989586621680486525) (t6989586621680486522 a6989586621680486524 ~> m6989586621680486523 ()) -> Type) (a6989586621680487128 :: a6989586621680486524 ~> m6989586621680486523 b6989586621680486525) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680486524 ~> m6989586621680486523 b6989586621680486525) (t6989586621680486522 a6989586621680486524 ~> m6989586621680486523 ()) -> Type) (a6989586621680487128 :: a6989586621680486524 ~> m6989586621680486523 b6989586621680486525) = MapM_Sym1 a6989586621680487128 t6989586621680486522 :: TyFun (t6989586621680486522 a6989586621680486524) (m6989586621680486523 ()) -> Type

data MapM_Sym1 (a6989586621680487128 :: (~>) a6989586621680486524 (m6989586621680486523 b6989586621680486525)) :: forall t6989586621680486522. (~>) (t6989586621680486522 a6989586621680486524) (m6989586621680486523 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d t :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MapM_Sym1 d t) Source #

SuppressUnusedWarnings (MapM_Sym1 a6989586621680487128 t6989586621680486522 :: TyFun (t6989586621680486522 a6989586621680486524) (m6989586621680486523 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680487128 t :: TyFun (t a) (m ()) -> Type) (a6989586621680487129 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680487128 t :: TyFun (t a) (m ()) -> Type) (a6989586621680487129 :: t a) = MapM_ a6989586621680487128 a6989586621680487129

type MapM_Sym2 (a6989586621680487128 :: (~>) a6989586621680486524 (m6989586621680486523 b6989586621680486525)) (a6989586621680487129 :: t6989586621680486522 a6989586621680486524) = MapM_ a6989586621680487128 a6989586621680487129 Source #

data ForM_Sym0 :: forall t6989586621680486518 a6989586621680486520 m6989586621680486519 b6989586621680486521. (~>) (t6989586621680486518 a6989586621680486520) ((~>) ((~>) a6989586621680486520 (m6989586621680486519 b6989586621680486521)) (m6989586621680486519 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ForM_Sym0 :: TyFun (t6989586621680486518 a6989586621680486520) ((a6989586621680486520 ~> m6989586621680486519 b6989586621680486521) ~> m6989586621680486519 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t6989586621680486518 a6989586621680486520) ((a6989586621680486520 ~> m6989586621680486519 b6989586621680486521) ~> m6989586621680486519 ()) -> Type) (a6989586621680487122 :: t6989586621680486518 a6989586621680486520) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t6989586621680486518 a6989586621680486520) ((a6989586621680486520 ~> m6989586621680486519 b6989586621680486521) ~> m6989586621680486519 ()) -> Type) (a6989586621680487122 :: t6989586621680486518 a6989586621680486520) = ForM_Sym1 a6989586621680487122 m6989586621680486519 b6989586621680486521 :: TyFun (a6989586621680486520 ~> m6989586621680486519 b6989586621680486521) (m6989586621680486519 ()) -> Type

data ForM_Sym1 (a6989586621680487122 :: t6989586621680486518 a6989586621680486520) :: forall m6989586621680486519 b6989586621680486521. (~>) ((~>) a6989586621680486520 (m6989586621680486519 b6989586621680486521)) (m6989586621680486519 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (ForM_Sym1 d m b :: TyFun (a ~> m b) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ForM_Sym1 d m b) Source #

SuppressUnusedWarnings (ForM_Sym1 a6989586621680487122 m6989586621680486519 b6989586621680486521 :: TyFun (a6989586621680486520 ~> m6989586621680486519 b6989586621680486521) (m6989586621680486519 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680487122 m b :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680487123 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680487122 m b :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680487123 :: a ~> m b) = ForM_ a6989586621680487122 a6989586621680487123

type ForM_Sym2 (a6989586621680487122 :: t6989586621680486518 a6989586621680486520) (a6989586621680487123 :: (~>) a6989586621680486520 (m6989586621680486519 b6989586621680486521)) = ForM_ a6989586621680487122 a6989586621680487123 Source #

data Sequence_Sym0 :: forall t6989586621680486512 m6989586621680486513 a6989586621680486514. (~>) (t6989586621680486512 (m6989586621680486513 a6989586621680486514)) (m6989586621680486513 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t6989586621680486512 (m6989586621680486513 a6989586621680486514)) (m6989586621680486513 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680487110 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680487110 :: t (m a)) = Sequence_ a6989586621680487110

type Sequence_Sym1 (a6989586621680487110 :: t6989586621680486512 (m6989586621680486513 a6989586621680486514)) = Sequence_ a6989586621680487110 Source #

data MsumSym0 :: forall t6989586621680486506 m6989586621680486507 a6989586621680486508. (~>) (t6989586621680486506 (m6989586621680486507 a6989586621680486508)) (m6989586621680486507 a6989586621680486508) Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MsumSym0 :: TyFun (t6989586621680486506 (m6989586621680486507 a6989586621680486508)) (m6989586621680486507 a6989586621680486508) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680487100 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680487100 :: t (m a)) = Msum a6989586621680487100

type MsumSym1 (a6989586621680487100 :: t6989586621680486506 (m6989586621680486507 a6989586621680486508)) = Msum a6989586621680487100 Source #

data ConcatSym0 :: forall t6989586621680486504 a6989586621680486505. (~>) (t6989586621680486504 [a6989586621680486505]) [a6989586621680486505] Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t6989586621680486504 [a6989586621680486505]) [a6989586621680486505] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680487086 :: t [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680487086 :: t [a]) = Concat a6989586621680487086

type ConcatSym1 (a6989586621680487086 :: t6989586621680486504 [a6989586621680486505]) = Concat a6989586621680487086 Source #

data ConcatMapSym0 :: forall a6989586621680486502 b6989586621680486503 t6989586621680486501. (~>) ((~>) a6989586621680486502 [b6989586621680486503]) ((~>) (t6989586621680486501 a6989586621680486502) [b6989586621680486503]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a6989586621680486502 ~> [b6989586621680486503]) (t6989586621680486501 a6989586621680486502 ~> [b6989586621680486503]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a6989586621680486502 ~> [b6989586621680486503]) (t6989586621680486501 a6989586621680486502 ~> [b6989586621680486503]) -> Type) (a6989586621680487070 :: a6989586621680486502 ~> [b6989586621680486503]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a6989586621680486502 ~> [b6989586621680486503]) (t6989586621680486501 a6989586621680486502 ~> [b6989586621680486503]) -> Type) (a6989586621680487070 :: a6989586621680486502 ~> [b6989586621680486503]) = ConcatMapSym1 a6989586621680487070 t6989586621680486501 :: TyFun (t6989586621680486501 a6989586621680486502) [b6989586621680486503] -> Type

data ConcatMapSym1 (a6989586621680487070 :: (~>) a6989586621680486502 [b6989586621680486503]) :: forall t6989586621680486501. (~>) (t6989586621680486501 a6989586621680486502) [b6989586621680486503] Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (ConcatMapSym1 d t :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ConcatMapSym1 d t) Source #

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680487070 t6989586621680486501 :: TyFun (t6989586621680486501 a6989586621680486502) [b6989586621680486503] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680487070 t :: TyFun (t a) [b] -> Type) (a6989586621680487071 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680487070 t :: TyFun (t a) [b] -> Type) (a6989586621680487071 :: t a) = ConcatMap a6989586621680487070 a6989586621680487071

type ConcatMapSym2 (a6989586621680487070 :: (~>) a6989586621680486502 [b6989586621680486503]) (a6989586621680487071 :: t6989586621680486501 a6989586621680486502) = ConcatMap a6989586621680487070 a6989586621680487071 Source #

data AndSym0 :: forall t6989586621680486500. (~>) (t6989586621680486500 Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AndSym0 :: TyFun (t6989586621680486500 Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487061 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487061 :: t Bool) = And a6989586621680487061

type AndSym1 (a6989586621680487061 :: t6989586621680486500 Bool) = And a6989586621680487061 Source #

data OrSym0 :: forall t6989586621680486499. (~>) (t6989586621680486499 Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing OrSym0 Source #

SuppressUnusedWarnings (OrSym0 :: TyFun (t6989586621680486499 Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487052 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487052 :: t Bool) = Or a6989586621680487052

type OrSym1 (a6989586621680487052 :: t6989586621680486499 Bool) = Or a6989586621680487052 Source #

data AnySym0 :: forall a6989586621680486498 t6989586621680486497. (~>) ((~>) a6989586621680486498 Bool) ((~>) (t6989586621680486497 a6989586621680486498) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AnySym0 :: TyFun (a6989586621680486498 ~> Bool) (t6989586621680486497 a6989586621680486498 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a6989586621680486498 ~> Bool) (t6989586621680486497 a6989586621680486498 ~> Bool) -> Type) (a6989586621680487039 :: a6989586621680486498 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a6989586621680486498 ~> Bool) (t6989586621680486497 a6989586621680486498 ~> Bool) -> Type) (a6989586621680487039 :: a6989586621680486498 ~> Bool) = AnySym1 a6989586621680487039 t6989586621680486497 :: TyFun (t6989586621680486497 a6989586621680486498) Bool -> Type

data AnySym1 (a6989586621680487039 :: (~>) a6989586621680486498 Bool) :: forall t6989586621680486497. (~>) (t6989586621680486497 a6989586621680486498) Bool Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AnySym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AnySym1 d t) Source #

SuppressUnusedWarnings (AnySym1 a6989586621680487039 t6989586621680486497 :: TyFun (t6989586621680486497 a6989586621680486498) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680487039 t :: TyFun (t a) Bool -> Type) (a6989586621680487040 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680487039 t :: TyFun (t a) Bool -> Type) (a6989586621680487040 :: t a) = Any a6989586621680487039 a6989586621680487040

type AnySym2 (a6989586621680487039 :: (~>) a6989586621680486498 Bool) (a6989586621680487040 :: t6989586621680486497 a6989586621680486498) = Any a6989586621680487039 a6989586621680487040 Source #

data AllSym0 :: forall a6989586621680486496 t6989586621680486495. (~>) ((~>) a6989586621680486496 Bool) ((~>) (t6989586621680486495 a6989586621680486496) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AllSym0 :: TyFun (a6989586621680486496 ~> Bool) (t6989586621680486495 a6989586621680486496 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a6989586621680486496 ~> Bool) (t6989586621680486495 a6989586621680486496 ~> Bool) -> Type) (a6989586621680487026 :: a6989586621680486496 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a6989586621680486496 ~> Bool) (t6989586621680486495 a6989586621680486496 ~> Bool) -> Type) (a6989586621680487026 :: a6989586621680486496 ~> Bool) = AllSym1 a6989586621680487026 t6989586621680486495 :: TyFun (t6989586621680486495 a6989586621680486496) Bool -> Type

data AllSym1 (a6989586621680487026 :: (~>) a6989586621680486496 Bool) :: forall t6989586621680486495. (~>) (t6989586621680486495 a6989586621680486496) Bool Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AllSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AllSym1 d t) Source #

SuppressUnusedWarnings (AllSym1 a6989586621680487026 t6989586621680486495 :: TyFun (t6989586621680486495 a6989586621680486496) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680487026 t :: TyFun (t a) Bool -> Type) (a6989586621680487027 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680487026 t :: TyFun (t a) Bool -> Type) (a6989586621680487027 :: t a) = All a6989586621680487026 a6989586621680487027

type AllSym2 (a6989586621680487026 :: (~>) a6989586621680486496 Bool) (a6989586621680487027 :: t6989586621680486495 a6989586621680486496) = All a6989586621680487026 a6989586621680487027 Source #

data MaximumBySym0 :: forall a6989586621680486494 t6989586621680486493. (~>) ((~>) a6989586621680486494 ((~>) a6989586621680486494 Ordering)) ((~>) (t6989586621680486493 a6989586621680486494) a6989586621680486494) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a6989586621680486494 ~> (a6989586621680486494 ~> Ordering)) (t6989586621680486493 a6989586621680486494 ~> a6989586621680486494) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a6989586621680486494 ~> (a6989586621680486494 ~> Ordering)) (t6989586621680486493 a6989586621680486494 ~> a6989586621680486494) -> Type) (a6989586621680487001 :: a6989586621680486494 ~> (a6989586621680486494 ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a6989586621680486494 ~> (a6989586621680486494 ~> Ordering)) (t6989586621680486493 a6989586621680486494 ~> a6989586621680486494) -> Type) (a6989586621680487001 :: a6989586621680486494 ~> (a6989586621680486494 ~> Ordering)) = MaximumBySym1 a6989586621680487001 t6989586621680486493 :: TyFun (t6989586621680486493 a6989586621680486494) a6989586621680486494 -> Type

data MaximumBySym1 (a6989586621680487001 :: (~>) a6989586621680486494 ((~>) a6989586621680486494 Ordering)) :: forall t6989586621680486493. (~>) (t6989586621680486493 a6989586621680486494) a6989586621680486494 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MaximumBySym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MaximumBySym1 d t) Source #

SuppressUnusedWarnings (MaximumBySym1 a6989586621680487001 t6989586621680486493 :: TyFun (t6989586621680486493 a6989586621680486494) a6989586621680486494 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680487001 t :: TyFun (t a) a -> Type) (a6989586621680487002 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680487001 t :: TyFun (t a) a -> Type) (a6989586621680487002 :: t a) = MaximumBy a6989586621680487001 a6989586621680487002

type MaximumBySym2 (a6989586621680487001 :: (~>) a6989586621680486494 ((~>) a6989586621680486494 Ordering)) (a6989586621680487002 :: t6989586621680486493 a6989586621680486494) = MaximumBy a6989586621680487001 a6989586621680487002 Source #

data MinimumBySym0 :: forall a6989586621680486492 t6989586621680486491. (~>) ((~>) a6989586621680486492 ((~>) a6989586621680486492 Ordering)) ((~>) (t6989586621680486491 a6989586621680486492) a6989586621680486492) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a6989586621680486492 ~> (a6989586621680486492 ~> Ordering)) (t6989586621680486491 a6989586621680486492 ~> a6989586621680486492) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a6989586621680486492 ~> (a6989586621680486492 ~> Ordering)) (t6989586621680486491 a6989586621680486492 ~> a6989586621680486492) -> Type) (a6989586621680486976 :: a6989586621680486492 ~> (a6989586621680486492 ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a6989586621680486492 ~> (a6989586621680486492 ~> Ordering)) (t6989586621680486491 a6989586621680486492 ~> a6989586621680486492) -> Type) (a6989586621680486976 :: a6989586621680486492 ~> (a6989586621680486492 ~> Ordering)) = MinimumBySym1 a6989586621680486976 t6989586621680486491 :: TyFun (t6989586621680486491 a6989586621680486492) a6989586621680486492 -> Type

data MinimumBySym1 (a6989586621680486976 :: (~>) a6989586621680486492 ((~>) a6989586621680486492 Ordering)) :: forall t6989586621680486491. (~>) (t6989586621680486491 a6989586621680486492) a6989586621680486492 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MinimumBySym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MinimumBySym1 d t) Source #

SuppressUnusedWarnings (MinimumBySym1 a6989586621680486976 t6989586621680486491 :: TyFun (t6989586621680486491 a6989586621680486492) a6989586621680486492 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680486976 t :: TyFun (t a) a -> Type) (a6989586621680486977 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680486976 t :: TyFun (t a) a -> Type) (a6989586621680486977 :: t a) = MinimumBy a6989586621680486976 a6989586621680486977

type MinimumBySym2 (a6989586621680486976 :: (~>) a6989586621680486492 ((~>) a6989586621680486492 Ordering)) (a6989586621680486977 :: t6989586621680486491 a6989586621680486492) = MinimumBy a6989586621680486976 a6989586621680486977 Source #

data NotElemSym0 :: forall a6989586621680486490 t6989586621680486489. (~>) a6989586621680486490 ((~>) (t6989586621680486489 a6989586621680486490) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NotElemSym0 :: TyFun a6989586621680486490 (t6989586621680486489 a6989586621680486490 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a6989586621680486490 (t6989586621680486489 a6989586621680486490 ~> Bool) -> Type) (a6989586621680486968 :: a6989586621680486490) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a6989586621680486490 (t6989586621680486489 a6989586621680486490 ~> Bool) -> Type) (a6989586621680486968 :: a6989586621680486490) = NotElemSym1 a6989586621680486968 t6989586621680486489 :: TyFun (t6989586621680486489 a6989586621680486490) Bool -> Type

data NotElemSym1 (a6989586621680486968 :: a6989586621680486490) :: forall t6989586621680486489. (~>) (t6989586621680486489 a6989586621680486490) Bool Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (NotElemSym1 d t) Source #

SuppressUnusedWarnings (NotElemSym1 a6989586621680486968 t6989586621680486489 :: TyFun (t6989586621680486489 a6989586621680486490) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680486968 t :: TyFun (t a) Bool -> Type) (a6989586621680486969 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680486968 t :: TyFun (t a) Bool -> Type) (a6989586621680486969 :: t a) = NotElem a6989586621680486968 a6989586621680486969

type NotElemSym2 (a6989586621680486968 :: a6989586621680486490) (a6989586621680486969 :: t6989586621680486489 a6989586621680486490) = NotElem a6989586621680486968 a6989586621680486969 Source #

data FindSym0 :: forall a6989586621680486488 t6989586621680486487. (~>) ((~>) a6989586621680486488 Bool) ((~>) (t6989586621680486487 a6989586621680486488) (Maybe a6989586621680486488)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FindSym0 :: TyFun (a6989586621680486488 ~> Bool) (t6989586621680486487 a6989586621680486488 ~> Maybe a6989586621680486488) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a6989586621680486488 ~> Bool) (t6989586621680486487 a6989586621680486488 ~> Maybe a6989586621680486488) -> Type) (a6989586621680486941 :: a6989586621680486488 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a6989586621680486488 ~> Bool) (t6989586621680486487 a6989586621680486488 ~> Maybe a6989586621680486488) -> Type) (a6989586621680486941 :: a6989586621680486488 ~> Bool) = FindSym1 a6989586621680486941 t6989586621680486487 :: TyFun (t6989586621680486487 a6989586621680486488) (Maybe a6989586621680486488) -> Type

data FindSym1 (a6989586621680486941 :: (~>) a6989586621680486488 Bool) :: forall t6989586621680486487. (~>) (t6989586621680486487 a6989586621680486488) (Maybe a6989586621680486488) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FindSym1 d t :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FindSym1 d t) Source #

SuppressUnusedWarnings (FindSym1 a6989586621680486941 t6989586621680486487 :: TyFun (t6989586621680486487 a6989586621680486488) (Maybe a6989586621680486488) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680486941 t :: TyFun (t a) (Maybe a) -> Type) (a6989586621680486942 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680486941 t :: TyFun (t a) (Maybe a) -> Type) (a6989586621680486942 :: t a) = Find a6989586621680486941 a6989586621680486942

type FindSym2 (a6989586621680486941 :: (~>) a6989586621680486488 Bool) (a6989586621680486942 :: t6989586621680486487 a6989586621680486488) = Find a6989586621680486941 a6989586621680486942 Source #