Hydrology, weirs and open flow (fluids.open_flow)¶
-
fluids.open_flow.
C_Chezy_to_n_Manning
(C, Rh)[source]¶ Converts a Chezy coefficient to a Manning roughness coefficient, given the hydraulic radius of the channel.
\[n = \frac{1}{C}R_h^{1/6}\]- Parameters
- Cfloat
Chezy coefficient [m^0.5/s]
- Rhfloat
Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]
- Returns
- nfloat
Manning roughness coefficient [s/m^(1/3)]
References
- 1
Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.
Examples
Custom example, checked.
>>> C_Chezy_to_n_Manning(26.15, Rh=5) 0.05000613713238358
-
fluids.open_flow.
Q_weir_V_Shen
(h1, angle=90)[source]¶ Calculates the flow rate across a V-notch (triangular) weir from the height of the liquid above the tip of the notch, and with the angle of the notch. Most of these type of weir are 90 degrees. Model from [1] as reproduced in [2].
Flow rate is given by:
\[Q = C \tan\left(\frac{\theta}{2}\right)\sqrt{g}(h_1 + k)^{2.5}\]- Parameters
- h1float
Height of the fluid above the notch [m]
- anglefloat, optional
Angle of the notch [degrees]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
angles = [20, 40, 60, 80, 100] Cs = [0.59, 0.58, 0.575, 0.575, 0.58] k = [0.0028, 0.0017, 0.0012, 0.001, 0.001]
The following limits apply to the use of this equation:
h1 >= 0.05 m h2 > 0.45 m h1/h2 <= 0.4 m b > 0.9 m
\[\frac{h_1}{b}\tan\left(\frac{\theta}{2}\right) < 2\]Flows are lower than obtained by the curves at http://www.lmnoeng.com/Weirs/vweir.php.
References
- 1
Shen, John. “Discharge Characteristics of Triangular-Notch Thin-Plate Weirs : Studies of Flow to Water over Weirs and Dams.” USGS Numbered Series. Water Supply Paper. U.S. Geological Survey : U.S. G.P.O., 1981
- 2
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
Examples
>>> Q_weir_V_Shen(0.6, angle=45) 0.21071725775478228
-
fluids.open_flow.
Q_weir_rectangular_Kindsvater_Carter
(h1, h2, b)[source]¶ Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [1] as reproduced in [2].
Flow rate is given by:
\[Q = 0.554\left(1 - 0.0035\frac{h_1}{h_2}\right)(b + 0.0025) \sqrt{g}(h_1 + 0.0001)^{1.5}\]- Parameters
- h1float
Height of the fluid above the crest of the weir [m]
- h2float
Height of the fluid below the crest of the weir [m]
- bfloat
Width of the rectangular flow section of the weir [m]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
The following limits apply to the use of this equation:
b/b1 ≤ 0.2 h1/h2 < 2 b > 0.15 m h1 > 0.03 m h2 > 0.1 m
References
- 1
Kindsvater, Carl E., and Rolland W. Carter. “Discharge Characteristics of Rectangular Thin-Plate Weirs.” Journal of the Hydraulics Division 83, no. 6 (December 1957): 1-36.
- 2
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
Examples
>>> Q_weir_rectangular_Kindsvater_Carter(0.2, 0.5, 1) 0.15545928949179422
-
fluids.open_flow.
Q_weir_rectangular_SIA
(h1, h2, b, b1)[source]¶ Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [1] as reproduced in [2].
Flow rate is given by:
\[Q = 0.544\left[1 + 0.064\left(\frac{b}{b_1}\right)^2 + \frac{0.00626 - 0.00519(b/b_1)^2}{h_1 + 0.0016}\right] \left[1 + 0.5\left(\frac{b}{b_1}\right)^4\left(\frac{h_1}{h_1+h_2} \right)^2\right]b\sqrt{g}h^{1.5}\]- Parameters
- h1float
Height of the fluid above the crest of the weir [m]
- h2float
Height of the fluid below the crest of the weir [m]
- bfloat
Width of the rectangular flow section of the weir [m]
- b1float
Width of the full section of the channel [m]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
The following limits apply to the use of this equation:
b/b1 ≤ 0.2 h1/h2 < 2 b > 0.15 m h1 > 0.03 m h2 > 0.1 m
References
- 1
Normen für Wassermessungen: bei Durchführung von Abnahmeversuchen an Wasserkraftmaschinen. SIA, 1924.
- 2
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
Examples
>>> Q_weir_rectangular_SIA(0.2, 0.5, 1, 2) 1.0408858453811165
-
fluids.open_flow.
Q_weir_rectangular_full_Ackers
(h1, h2, b)[source]¶ Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2], confirmed with [3].
Flow rate is given by:
\[Q = 0.564\left(1+0.150\frac{h_1}{h_2}\right)b\sqrt{g}(h_1+0.001)^{1.5}\]- Parameters
- h1float
Height of the fluid above the crest of the weir [m]
- h2float
Height of the fluid below the crest of the weir [m]
- bfloat
Width of the channel section [m]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
The following limits apply to the use of this equation:
h1 > 0.02 m h2 > 0.15 m h1/h2 ≤ 2.2
References
- 1
Ackers, Peter, W. R. White, J. A. Perkins, and A. J. M. Harrison. Weirs and Flumes for Flow Measurement. Chichester ; New York: John Wiley & Sons Ltd, 1978.
- 2
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
- 3(1,2)
Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
Examples
Example as in [3], matches. However, example is unlikely in practice.
>>> Q_weir_rectangular_full_Ackers(h1=0.9, h2=0.6, b=5) 9.251938159899948
-
fluids.open_flow.
Q_weir_rectangular_full_Kindsvater_Carter
(h1, h2, b)[source]¶ Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].
Flow rate is given by:
\[Q = \frac{2}{3}\sqrt{2}\left(0.602 + 0.0832\frac{h_1}{h_2}\right) b\sqrt{g} (h_1 +0.00125)^{1.5}\]- Parameters
- h1float
Height of the fluid above the crest of the weir [m]
- h2float
Height of the fluid below the crest of the weir [m]
- bfloat
Width of the channel section [m]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
The following limits apply to the use of this equation:
h1 > 0.03 m b > 0.15 m h2 > 0.1 m h1/h2 < 2
References
- 1
Kindsvater, Carl E., and Rolland W. Carter. “Discharge Characteristics of Rectangular Thin-Plate Weirs.” Journal of the Hydraulics Division 83, no. 6 (December 1957): 1-36.
- 2
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
Examples
>>> Q_weir_rectangular_full_Kindsvater_Carter(h1=0.3, h2=0.4, b=2) 0.641560300081563
-
fluids.open_flow.
Q_weir_rectangular_full_Rehbock
(h1, h2, b)[source]¶ Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].
Flow rate is given by:
\[Q = \frac{2}{3}\sqrt{2}\left(0.602 + 0.0832\frac{h_1}{h_2}\right) b\sqrt{g} (h_1 +0.00125)^{1.5}\]- Parameters
- h1float
Height of the fluid above the crest of the weir [m]
- h2float
Height of the fluid below the crest of the weir [m]
- bfloat
Width of the channel section [m]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
The following limits apply to the use of this equation:
0.03 m < h1 < 0.75 m b > 0.3 m h2 > 0.3 m h1/h2 < 1
References
- 1
King, H. W., Floyd A. Nagler, A. Streiff, R. L. Parshall, W. S. Pardoe, R. E. Ballester, Gardner S. Williams, Th Rehbock, Erik G. W. Lindquist, and Clemens Herschel. “Discussion of ‘Precise Weir Measurements.’” Transactions of the American Society of Civil Engineers 93, no. 1 (January 1929): 1111-78.
- 2
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
Examples
>>> Q_weir_rectangular_full_Rehbock(h1=0.3, h2=0.4, b=2) 0.6486856330601333
-
fluids.open_flow.
Q_weir_rectangular_full_SIA
(h1, h2, b)[source]¶ Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].
Flow rate is given by:
\[Q = \frac{2}{3}\sqrt{2}\left(0.615 + \frac{0.000615}{h_1+0.0016}\right) b\sqrt{g} h_1 +0.5\left(\frac{h_1}{h_1+h_2}\right)^2b\sqrt{g} h_1^{1.5}\]- Parameters
- h1float
Height of the fluid above the crest of the weir [m]
- h2float
Height of the fluid below the crest of the weir [m]
- bfloat
Width of the channel section [m]
- Returns
- Qfloat
Volumetric flow rate across the weir [m^3/s]
Notes
The following limits apply to the use of this equation:
0.025 < h < 0.8 m b > 0.3 m h2 > 0.3 m h1/h2 < 1
References
- 1
Normen für Wassermessungen: bei Durchführung von Abnahmeversuchen an Wasserkraftmaschinen. SIA, 1924.
- 2(1,2)
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
Examples
Example compares terribly with the Ackers expression - probable error in [2]. DO NOT USE.
>>> Q_weir_rectangular_full_SIA(h1=0.3, h2=0.4, b=2) 1.1875825055400384
-
fluids.open_flow.
V_Chezy
(Rh, S, C)[source]¶ Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Chezy coefficient C.
Flow rate is given by:
\[V = C\sqrt{S R_h}\]- Parameters
- Rhfloat
Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]
- Sfloat
Slope of the channel, m/m [-]
- Cfloat
Chezy coefficient [m^0.5/s]
- Returns
- Vfloat
Average velocity of the channel [m/s]
References
- 1
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
- 2
Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
- 3
Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.
Examples
Custom example, checked.
>>> V_Chezy(Rh=5, S=0.001, C=26.153) 1.8492963648371776
-
fluids.open_flow.
V_Manning
(Rh, S, n)[source]¶ Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Manning roughness coefficient n.
Flow rate is given by:
\[V = \frac{1}{n} R_h^{2/3} S^{0.5}\]- Parameters
- Rhfloat
Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]
- Sfloat
Slope of the channel, m/m [-]
- nfloat
Manning roughness coefficient [s/m^(1/3)]
- Returns
- Vfloat
Average velocity of the channel [m/s]
Notes
This is equation is often given in imperial units multiplied by 1.49.
References
- 1
Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.
- 2
Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
Examples
Example is from [2], matches.
>>> V_Manning(0.2859, 0.005236, 0.03) 1.0467781958118971
-
fluids.open_flow.
n_Manning_to_C_Chezy
(n, Rh)[source]¶ Converts a Manning roughness coefficient to a Chezy coefficient, given the hydraulic radius of the channel.
\[C = \frac{1}{n}R_h^{1/6}\]- Parameters
- nfloat
Manning roughness coefficient [s/m^(1/3)]
- Rhfloat
Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]
- Returns
- Cfloat
Chezy coefficient [m^0.5/s]
References
- 1
Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.
Examples
Custom example, checked.
>>> n_Manning_to_C_Chezy(0.05, Rh=5) 26.15320972023661