MINLOG REFERENCE MANUAL

CONTENTS

|Acknowledgements|

(1.__Introductionl

[1.1. Simultaneous free algebras|

T2 DPartial - [s

[1.3. Primitive recursion, computable functionals|

[1.4. Decidable predicates, axioms for predicates|

[1.5. Minimal logic, proof transtormation|

[1.6. Comparison with Coq and Isabelle|

[2. Types, with simultaneous tree algebras as base types|
[2.1. Generalitites for substitutions, type substitutions|
[2.2. Simultaneous free algebras as base types|

[B.__Variableg
d.__Constantd
4.1. Rewrite and computation rules for program constants|
|4.2. Recursion over simultaneous free algebras|
|4.3. Internal representation of constants|
(5. Predicate variables and constants|
.1, Predicate variables|
5.2, Predicate constants|
15.3. Inductively defined predicate constants|
|6. Terms and objects|
[6.1. Normalizationl
[6.2. Substitutionl
[7. Formulas and comprehension terms|
|8. Assumption variables and constants|
[8.1. Assumption variables|
8.2, Axiom constants|
[8.3. Theorems|
[8.4. Global assumptions|
0. Proofd
9.1. Constructors and accessors|
[9.2. Normalizationl
[9.3. Substitutionl
Displayi
19.5. Classical logic]|
[10. Interactive theorem proving with partial proots|
[10.1. Partial proots|
|10.2. Interactive theorem proving|

[II._Searchl

Date: December 10, 2016.

SO T W W N

Intro

2 MINLOG REFERENCE MANUAL

[12. Computational content ot classical proofs| 49
3. Fxtracted terms| 50
[14. Reading formulas in external form) 51
[14.1. Lexical analysis| 51
52
[References] 55
Mndex] 57

Acknowledgements. The MINLOG system has been under development
since around 1990. My sincere thanks go to the many contributors: Hol-
ger Benl (Dijkstra algorithm, inductive data types), Ulrich Berger (very
many contributions), Michael Bopp (program development by proof trans-
formation), Wilfried Buchholz (translation of classical proof into intuitionis-
tic ones), Laura Crosilla (tutorial), Matthias Eberl (normalization by eval-
uation), Dan Hernest (functional interpretation), Felix Joachimski (many
contributions, in particular translation of classical proofs into intuitionistic
ones, producing Tex output, documentation), Ralph Matthes (documenta-
tion), Karl-Heinz Niggl (program development by proof transformation),
Jaco van de Pol (experiments concerning monotone functionals), Martin
Ruckert (many contributions, in particular the MPC tool), Robert Stark
(alpha equivalence), Monika Seisenberger (many contributions, including
inductive definitions and translation of classical proofs into intuitionistic
ones), Klaus Weich (proof search, the Fibonacci numbers example), Wolf-
gang Zuber (documentation).

1. INTRODUCTION

MINLOG is intended to reason about computable functionals, using min-
imal logic. It is an interactive prover with the following features.

e Proofs are treated as first class objects: they can be normalized and
then used for reading off an instance if the proven formula is existen-
tial, or changed for program development by proof transformation.

e To keep control over the complexity of extracted programs, we follow
Kreisel’s proposal and aim at a theory with a strong language and
weak existence axioms. It should be conservative over (a fragment
of) arithmetic.

e MINLOG is based on minimal rather than classical or intuitionistic
logic. This more general setting makes it possible to implement
program extraction from classical proofs, via a refined A-translation
(cf. [3])-

e Constants are intended to denote computable functionals. Since
their (mathematically correct) domains are the Scott-Ershov partial
continuous functionals, this is the intended range of the quantifiers.

e Variables carry (simple) types, with free algebras as base types. The
latter need not be finitary (so we allow e.g. countably branching
trees), and can be simultaneously generated. Type parameters (ML
style) are allowed, but we keep the theory predicative and disallow
type quantification.

MINLOG REFERENCE MANUAL 3

S5(5(50))

FIGURE 1. The domain of natural numbers

e To simplify equational reasoning, the system identifies terms with
the same normal form. A rich collection of rewrite rules is provided,
which can be extended by the user. Decidable predicates are imple-
mented via boolean valued functions, hence the rewrite mechanism
applies to them as well.

We now describe in more details some of these features.

1.1. Simultaneous free algebras. A free algebra is given by constructors,
for instance zero and successor for the natural numbers. We want to treat
other data types as well, like lists and binary trees. When dealing with
inductively defined sets, it will also be useful to explicitely refer to the
generation tree. Such trees are quite often countably branching, and hence
we allow infinitary free algebras from the outset.

The freeness of the constructors is expressed by requiring that their ranges
are disjoint and that they are injective. Moreover, we view the free algebra
as a domain and require that its bottom element is not in the range of
the constructors. Hence the constructors are total and non-strict. For the
notion of totality cf. [I2, Chapter 8.3].

In our intended semantics we do not require that every semantic object is
the denotation of a closed term, not even for finitary algebras. One reason is
that for normalization by evaluation (cf. [4]) we want to allow term families
in our semantics.

To make a free algebra into a domain and still have the constructors injec-
tive and with disjoint ranges, we model e.g. the natural numbers as shown in
Figure|ll Notice that for more complex algebras we usually need many more
“infinite” elements; this is a consequence of the closure of domains under
suprema. To make dealing with such complex structures less annoying, we
will normally restrict attention to the total elements of a domain, in this
case — as expected — the elements labelled 0, S0, S(S0) etc.

1.2. Partial continuous functionals. As already mentioned, the (math-
ematically correct) domains of computable functionals have been identified
by Scott and Ershov as the partial continuous functionals; cf. [I2]. Since we
want to deal with computable functionals in our theory, we consider it as
mandatory to accommodate their domains. This is also true if one is inter-
ested in total functionals only; they have to be treated as particular partial
continuous functionals. We will make use of predicate constants Total, with

4 MINLOG REFERENCE MANUAL

the total functionals of type p as the intended meaning. To make formal
arguments with quantifiers relativized to total objects more managable, we
use a special sort of variables intended to range over such objects only.
For example, n0,n1,n2,...,m0,... range over total natural numbers, and
n~0,n"1,n"2,... are general variables. This amounts to an abbreviation of

Vi Total (&) —+ A by VaA,
Ji.Total,(#) AA by 3IzA.

1.3. Primitive recursion, computable functionals. The elimination
constants corresponding to the constructors are called primitive recursion
operators R. They are described in detail in Section |4l In this setup, every
closed term reduces to a numeral.

However, we shall also use constants for rather arbitrary computable func-
tionals, and axiomatize them according to their intended meaning by means
of rewrite rules. An example is the general fixed point operator fix, which
is axiomatized by fixF' = F(fixF'). Clearly then it cannot be true any more
that every closed term reduces to a numeral. We may have non-terminating
terms, but this just means that not always it is a good idea to try to nor-
malize a term.

An important consequence of admitting non-terminating terms is that our
notion of proof is not decidable: when checking e.g. whether two terms are
equal we may run into a non-terminating computation. But we still have
semi-decidability of proofs, i.e., an algorithm to check the correctness of a
proof that can only give correct results, but may not terminate. In practice
this is sufficient.

To avoid this somewhat unpleasant undecidability phenomenon, we may
also view our proofs as abbreviated forms of full proofs, with certain equality
arguments left implicit. If some information sufficient to recover the full
proof (e.g. for each node a bound on the number of rewrite steps needed to
verify it) is stored as part of the proof, then we retain decidability of proofs.

1.4. Decidable predicates, axioms for predicates. As already men-
tioned, decidable predicates are viewed via boolean valued functions, hence
the rewrite mechanism applies to them as well.

Equality is decidable for finitary algebras only; infinitary algebras are to
be treated similarly to arrow types. For infinitary algebras (extensional)
equality is a predicate constant, with appropriate axioms. In a finitary alge-
bra equality is a (recursively defined) program constant. Similarly, existence
(or totality) is a decidable predicate for finitary algebras, and given by pred-
icate constants Total, for infinitary algebras as well as composed types. The
axioms are listed in Subsection [8.2] of Section]

1.5. Minimal logic, proof transformation. For generalities about min-
imal logic cf. [I3]. A concise description of the theory behind the present
implementation can be found in “Minimal Logic for Computable Functions”
which is available on the MINLOG page www.minlog-system.de.

SS:Coq

MINLOG REFERENCE MANUAL 5

1.6. Comparison with Coq and Isabelle. CoQ (cf. coq.inria.fr) has
evolved from a calculus of constructions defined by HUET and COQUAND. It
is a constructive, but impredicative system based on type theory. More re-
cently it has been extended by PAULIN-MOHRING to also include inductively
defined predicates. Program extraction from proofs has been implemented
by PAULIN-MOHRING, FILLIATRE and LETOUZEY, in the sense that OCAML
programs are extracted from proofs.

The ISABELLE/HOL system of PAULSON and NIPKOW has its roots in
CHURCH’s theory of simple types and HILBERT’s Epsilon calculus. It is an
inherently classical system; however, since many proofs in fact use construc-
tive arguments, in is conceivable that program extraction can be done there
as well. This has been explored by BERGHOFER in his thesis [6].

Compared with the MINLOG system, the following points are of interest.

e The fact that in CoQ a formula is just a map into the type Prop
(and in ISABELLE into the type bool) can be used to define such a
function by what is called strong elimination, say by f(tt) := A and
f(ff) :== B with fixed formulas A and B. The problem is that then it
is impossible to assign an ordinary type (say in the sense of ML) to
a proof. It is not clear how this problem for program extraction can
be avoided (in a clean way) for both CoqQ and ISABELLE. In MINLOG
it does not exist due to the separation of terms and formulas.

e The impredicativity (in the sense of quantification over predicate
variables) built into COQ and ISABELLE has as a consequence that
extracted programs need to abstract over type variables, which is
not allowed in program languages of the ML family. Therefore one
can only allow outer universal quantification over type and predi-
cate variables in proofs to be used for program extraction; this is
done in the MINLOG system from the outset. However, many uses
of quantification over predicate variables (like defining the logical
connectives apart from — and V) can be achieved by means of in-
ductively defined predicates. This feature is available in all three
systems.

e The distinction between properties with and without computational
content seems to be crucial for a reasonable program extraction en-
vironment; this feature is available in all three systems. However, it
also seems to be necessary to distinguish between universal quanti-
fiers with and without computational content, as in BERGER’s [2].
At present this feature is availble in the MINLOG system only.

e CoQ has records, whose fields may contain proofs and may depend
on earlier fields. This can be useful, but does not seem to be really
essential. If desired, in MINLOG one can use products for this pur-
pose; however, proof objects have to be introduced explicitely via
assumptions.

e MINLOG’s automated proof search search tool is based on MILLER’S
[10]; it produces proofs in minimal logic. In addition, CoQ has many
strong tactics, for instance Omega for quantifier free PRESBURGER
arithmetic, Arith for proving simple arithmetic properties and Ring

S:Types

SS:GenSubst

6 MINLOG REFERENCE MANUAL

for proving consequences of the ring axioms. Similar tactics exist in
IsABELLE. These tactics tend to produce rather long proofs, which
is due to the fact that equality arguments are carried out explicitely.
This is avoided in MINLOG by relativizing every proof to a set of
rewrite rules, and identifyling terms and formulas with the same
normal form w.r.t. these rules.

e In ISABELLE as well as in MINLOG the extracted programs are pro-
vided as terms within the language, and a soundness proof can be
generated automatically. For CoQ (and similarly for NUPRL) such
a feature could at present only be achived by means of some form of
reflection.

2. TYPES, WITH SIMULTANEOUS FREE ALGEBRAS AS BASE TYPES

Generally we consider typed theories only. Types are built from type vari-
ables and type constants by algebra type formation (alg p;...pn), arrow
type formation p — o and product type formation p x o (and possibly other
type constructors).

We have type constants atomic, existential, prop and nulltype. They
will be used to assign types to formulas. E.g. Vnn = 0 receives the type
nat — atomic, and Vn,m3kn + m = k receives the type nat — nat —
existential. The type prop is used for predicate variables, e.g. R of arity
nat,nat -> prop. Types of formulas will be necessary for normalization by
evaluation of proof terms. The type nulltype will be useful when assigning
to a formula the type of a program to be extracted from a proof of this
formula. Types not involving the types atomic, existential, prop and
nulltype are called object types.

Type variable names are alpha,beta...; alpha is provided by default.
To have infinitely many type variables available, we allow appended indices:
alphal, alpha2, alphad... will be type variables. The only type constants
are atomic,existential, prop and nulltype.

2.1. Generalitites for substitutions, type substitutions. Generally, a
substitution is a list ((z1 t1)...(z, ty)) of lists of length two, with distinct
variables x; and such that for each 7, z; is different from ¢;. It is understood
as simultaneous substitution. The default equality is equal?; however, in
the versions ending with -wrt (for “with respect to”) one can provide special
notions of equality. To construct substitutions we have

(make-substitution args vals)

(make-substitution-wrt arg-val-equal? args vals)

(make-subst arg val)

(make-subst-wrt arg-val-equal? arg val)

empty-subst
Accessing a substitution is done via the usual access operations for associa-
tion list: assoc and assoc-wrt. We also provide
(restrict-substitution-wrt subst test?)

(restrict-substitution-to-args subst args)

MINLOG REFERENCE MANUAL 7

(substitution-equal? substl subst2)

(substitution-equal-wrt? arg-equal? val-equal? substl subst2)
(subst-item-equal-wrt? arg-equal? val-equal? iteml item2)
(consistent-substitutions-wrt?

arg-equal? val-equal? substl subst2)

Composition Yo of two substitutions

Y = (($1 31) e (xm Sm))a
o= (y1t1) .- (yn tn))

is defined as follows. In the list ((z1 s10)...(Tm Smo) (Y1 t1) ... (Yn tn))
remove all bindings (x; s;0) with s;0 = z;, and also all bindings (y; t;) with
yj € {x1,...,x,}. It is easy to see that composition is associative, with the
empty substitution as unit. We provide

(compose-substitutions-wrt substitution-proc arg-equal?

arg-val-equal? substl subst2)

We shall have occasion to use these general substitution procedures for
the following kinds of substitutions

for called | domain equality | arg-val-equality
type variables tsubst | equal? equal?

object variables osubst | equal? var-term-equal?
predicate variables psubst | equal? pvar-cterm-equal?
assumption variables | asubst | avar=7 avar-proof-equal?

The following substitutions will make sense for a

type tsubst

term tsubst and osubst

formula | tsubst and osubst and psubst

proof tsubst and osubst and psubst and asubst

In particular, for type substitutions tsubst we have

(type-substitute type tsubst)
(type-subst type tvar typel)
(compose-t-substitutions tsubstl tsubst2)

A display function for type substitutions is

(display-t-substitution tsubst)

2.2. Simultaneous free algebras as base types. We allow the formation

of inductively generated types pua &, where @ = aq, . .., a, is a list of distinct
type variables, and < is a list of “constructor types” whose argument types
contain aq, ..., a, in strictly positive positions only.

For instance, pa(a, @ — «) is the type of natural numbers; here the list
(o, — «) stands for two generation principles: « for “there is a natural
number” (the number 0), and o — « for “for every natural number there is
another one” (its successor).

8 MINLOG REFERENCE MANUAL

Let an infinite supply of type variables o, B be given. Let & = (a;j)j=1,...m
be a list of distinct type variables. Types p, o, T, u, v € Types and constructor
types k € KT(&) are defined inductively as follows.

Py01,...,0n € Types
p— (01— aj) == (Gn = aj,) = a; € KT(A)
Kl,...,kn € KT(Q)

(nd (K1,...,kn)); € Types
Here p' is short for a list p1,...,px (K > 0) of types and p — o means
p1 — -+ — pr — o, associated to the right. We shall use u,v for types
of the form (ud@(k1,...,K,)); only, and for types 7 = (7j)j=1,..m and a
constructor type kK = g — (61 = aj,) = -+ = (0 =) = a5 € KT(Q)
let

(n>0)

-
(n>1,5=1,...,m) PO € Types

p — o € Types

—

KT =p—= (61 = 75) = = (Gn = 15,) = 15

Examples.
unit = uoa,
boole = pa (o,),
nat = pa (o, — a),
ytensor(a) () 1= pa.a; — ag — a,
ypair(ai)(ag) = pa.(unit — a1) — (unit — ag) — unit — a,
yplus(ay) () = pa.(a; = a,as — «a),
list(cv) = pa (o, = o — a),
(tree, tlist) = (o, B) (a, = a,B,a = B — f),
btree = pa (o, — a — a),
(@) = po (o, 0 = a, (nat = a) = a),
To := nat,
Tn+1 = pa (o, (T, = @) =).

Note that we could have defined our primitive p X ¢ by pa.p - o — a.
However, this may lead to complex terms when it comes to extract programs
from proofs. Therefore we stick to using p x o as a primitive.

To add and remove names for type variables, we use

(add-tvar-name namel ...)

(remove-tvar-name namel ...)
We need a constructor, accessors and a test for type variables.

(make-tvar index name) constructor

(tvar-to-index tvar) accessor
(tvar-to-name tvar) accessor
(tvar? x).

To generate new type variables we use

(new-tvar type)

MINLOG REFERENCE MANUAL 9

To introduce simultaneous free algebras we use
add-algebras-with-parameters, abbreviated add-param-algs .

An example is
(add-param-algs
(list "labtree" "labtlist") ’alg-typeop 2
>("LabLeaf" "alphal=>labtree")
’("LabBranch" "labtlist=>alpha2=>labtree")
> ("LabEmpty" "labtlist")
> ("LabTcons" "labtree=>labtlist=>labtlist" pairscheme-op))

This simultaneously introduces the two free algebras labtree and labtlist,
both finitary, whose constructors are LabLeaf, LabBranch, LabEmpty and
LabTcons (written as an infix pair operator, hence right associative). The
constructors are introduced as “self-evaluating” constants; they play a spe-
cial role in our semantics for normalization by evaluation.
In case there are no parameters we use add-algs, and in case there is no
need for a simultaneous definition we use add-alg or add-param-alg.
For already introduced algebras we need constructors and accessors
(make-alg name typel ...)
(alg-form-to-name alg)
(alg-form-to-types alg)
(alg-name-to-simalg-names alg-name)
(alg-name-to-token-types alg-name)
(alg-name-to-typed-constr-names alg-name)
(alg-name-to-tvars alg-name)
(alg-name-to-arity alg-name)
We also provide the tests

(alg-form? x) incomplete test
(alg? x) complete test
(finalg? type) incomplete test
(ground-type? x) incomplete test
We require that there is at least one nullary constructor in every free
algebra; hence, it has a “canonical inhabitant”. For arbitrary types this

need not be the case, but occasionally (e.g. for general logical problems, like
to prove the drinker formula) it is useful. Therefore

(make-inhabited type terml ...)

marks the optional term as the canonical inhabitant if it is provided, and
otherwise creates a new constant of that type, which is taken to be the
canonical inhabitant. We also have

(type-to-canonical-inhabitant type),

which returns the canonical inhabitant; it is an error to apply this procedure
to a non-inhabited type. We do allow non-inhabited types to be able to
implement some aspects of [7, 1]

Variables

10 MINLOG REFERENCE MANUAL

To remove names for algebras we use
(remove-alg-name namel ...)

Examples. Standard examples for finitary free algebras are the type nat
of unary natural numbers, and the type btree of binary trees. The domain
Tnat of unary natural numbers is defined (as in [4]) as a solution to a domain
equation.

We always provide the finitary free algebra unit consisting of exactly one
element, and boole of booleans; objects of the latter type are (cf. loc. cit.)
true, false and families of terms of this type, and in addition the bottom
object of type boole.
Tests:
(arrow-form? type)
(star-form? type)
(object-type? type)

We also need constructors and accessors for arrow types

(make-arrow arg-type val-type) constructor
(arrow-form-to-arg-type arrow-type) accessor
(arrow-form-to-val-type arrow-type) accessor

and star types

(make-star typel type2) constructor
(star-form-to-left-type star-type) accessor
(star-form-to-right-type star-type) accessor.
For convenience we also have
(mk-arrow typel ... type)
(arrow-form-to-arg-types type <n>) all (first n) argument types
(arrow-form-to-final-val-type type) type of final value.
To check and to display a type we have
(type? x)
(type-to-string type).
Implementation. Type variables are implemented as lists:

(tvar index name).

3. VARIABLES

A variable of an object type is interpreted by a continuous functional (ob-
ject) of that type. We use the word “variable” and not “program variable”,
since continuous functionals are not necessarily computable. For readable
in- and output, and also for ease in parsing, we may reserve certain strings
as names for variables of a given type, e.g. n,m for variables of type nat.
Then also n0,n1,n2,...,m0,... can be used for the same purpose.

In most cases we need to argue about existing (i.e. total) objects only.
For the notion of totality we have to refer to [12 Chapter 8.3]; particularly

MINLOG REFERENCE MANUAL 11

relevant here is exercise 8.5.7. To make formal arguments with quantifiers
relativized to total objects more managable, we use a special sort of variables
intended to range over such objects only. For example, n0,n1,n2,...,m0,...
range over total natural numbers, and n"0,n"1,n"2,... are general vari-
ables. We say that the degree of totality for the former is 1, and for the
latter O.

n,m for variables of type nat), we use

(add-var-name namel ... type)
(remove-var-name namel ... type)

(default-var-name type).

The first variable name added for any given type becomes the default vari-
able name. If the system creates new variables of this type, they will carry
that name. For complex types it sometimes is necessary to talk about vari-
ables of a certain type without using a specific name. In this case one can
use the empty string to create a so called numerated variable (see below).
The parser is able to produce this kind of canonical variables from type
expressions.
We need a constructor, accessors and tests for variables.

(make-var type index t-deg name) constructor

(var-to-type var) accessor
(var-to-index var) accessor
(var-to-t-deg var) accessor
(var-to-name var) accessor
(var-form? x) incomplete test
(var? x). complete test

It is guaranteed that equal? is a valid test for equality of variables. More-
over, it is guaranteed that parsing a displayed variable reproduces the vari-
able; the converse need not be the case (we may want to convert it into some
canonical form).

For convenience we have the function

(mk-var type <index> <t-deg> <name>).

The type is a required argument; however, the remaining arguments are
optional. The default for the name string is the value returned by

(default-var-name type)

If there is no default name, a numerated variable is created. The default for
the totality is “total”.

Using the empty string as the name, we can create so called numerated
variables. We further require that we can test whether a given variable
belongs to those special ones, and that from every numerated variable we
can compute its index:

(numerated-var? var)

(numerated-var-to-index numerated-var).

Pconst

12 MINLOG REFERENCE MANUAL

It is guaranteed that make-var used with the empty name string is a bijec-
tion
Types X N x TDegs — NumVars

with inverses var-to-type, numerated-var-to-index and var-to-t-deg.

Although these functions look like an ad hoc extension of the interface
that is convenient for normalization by evaluation, there is also a deeper
background: these functions can be seen as the “computational content”
of the well-known phrase “we assume that there are infinitely many vari-
ables of every type”. Giving a constructive proof for this statement would
require to give infinitely many examples of variables for every type. This
of course can only be done by specifying a function (for every type) that
enumerates these examples. To make the specification finite we require the
examples to be given in a uniform way, i.e. by a function of two arguments.
To make sure that all these examples are in fact different, we would have
to require make-var to be injective. Instead, we require (classically equiva-
lent) make-var to be a bijection on its image, as again, this can be turned
into a computational statement by requiring that a witness (i.e. an inverse
function) is given.

Finally, as often the exact knowledge of infinitely many variables of every
type is not needed we require that, either by using the above functions or
by some other form of definition, functions

(type-to-new-var type)
(type-to-new-partial-var type)

are defined that return a (total or partial) variable of the requested type, dif-
ferent from all variables that have ever been returned by any of the specified
functions so far.

Occasionally we may want to create a new variable with the same name
(and degree of totality) as a given one. This is useful e.g. for bound renam-
ing. Therefore we supply

(var-to-new-var var).
Implementation. Variables are implemented as lists:

(var type index t-deg name).

4. CONSTANTS

Every constant (or more precisely, object constant) has a type and de-
notes a computable (hence continuous) functional of that type. We have the
following three kinds of constants:

e constructors, kind constr,

e constants with user defined rules (also called program(mable) con-
stant, or pconst), kind pconst,

e constants whose rules are fixed, kind fixed-rules.

The latter are built into the system: recursion operators for arbitrary al-
gebras, equality and existence operators for finitary algebras, and existence
elimination. They are typed in parametrized form, with the actual type (or
formula) given by a type (or type and formula) substitution that is also part
of the constant. For instance, equality is typed by a — a — boole and a

MINLOG REFERENCE MANUAL 13

type substitution o — p. This is done for clarity (and brevity, e.g. for large
p in the example above), since one should think of the type of a constant in
this way.

For constructors and for constants with fixed rules, by efficiency reasons
we want to keep the object denoted by the constant (as needed for normal-
ization by evaluation) as part of it. It depends on the type of the constant,
hence must be updated in a given proof whenever the type changes by a
type substitution.

4.1. Rewrite and computation rules for program constants. For ev-
ery program constant ¢’ we assume that some rewrite rules of the form
¢K +— N are given, where FV(N) C FV(K) and ¢K, N have the same type
(not necessarily a ground type). Moreover, for any two rules cK + N and
cK' — N’ we require that K and K’ are of the same length, called the
arity of c¢. The rules are divided into computation rules and proper rewrite
rules. They must satisfy the requirements listed in [4]. The idea is that a
computation rule can be understood as a description of a computation in a
suitable semantical model, provided the syntactic constructors correspond
to semantic ones in the model, whereas the other rules describe syntactic
transformations.

There a more general approach was used: one may enter into components
of products. Then instead of one arity one needs several “type informations”
P — o with p a list of types, 0’s and 1’s indicating the left or right part of
a product type. For example, if ¢ is of type 7 — (1 = 7 = 7) X (T = 7),
then the rules cyOzxz — a and cyl — b are admitted, and ¢ comes with the
type informations (7,0,7,7 — 7) — 7 and (7,1) — (7 — 7). — However, for
simplicity we only deal with a single arity here.

Given a set of rewrite rules, we want to treat some rules - which we call
computation rules - in a different, more efficient way. The idea is that a
computation rule can be understood as a description of a computation in a
suitable semantical model, provided the syntactic constructors correspond
to semantic ones in the model, whereas the other rules describe syntactic
transformations.

In order to define what we mean by computation rules, we need the notion
of a constructor pattern. These are special terms defined inductively as
follows.

e Every variable is a constructor pattern.

e If ¢ is a constructor and P, ..., P, are constructor patterns (or pro-
jection markers 0 or 1), such that cP is of ground type, then P is
a constructor pattern.

From the given set of rewrite rules we choose a subset CoMP with the
following properties.

o If cP — Q € Cowmp, then Pi,..., P, are constructor patterns or
projection markers.

e The rules are left-linear, i.e. if ¢P — Q € CoMP, then every variable
in ¢P occurs only once in cP.

e The rules are non-overlapping, i.e. for different rules cK — M and
¢L — N in CoMP the left hand sides cK and cL are non-unifiable.

SS:RewCompRules

SS:RecSFA

14 MINLOG REFERENCE MANUAL

We write cM —comp @ to indicate that the rule is in ComP. All other rules
will be called (proper) rewrite rules, written M e K.

In our reduction strategy computation rules will always be applied first,
and since they are non-overlapping, this part of the reduction is unique.
However, since we allowed almost arbitrary rewrite rules, it may happen that
in case no computation rule applies a term may be rewritten by different
rules ¢ CoMP. In order to obtain a deterministic procedure we then select
the first applicable rewrite rule (This is a slight simplification of [4], where
special functions sel. were used for this purpose).

4.2. Recursion over simultaneous free algebras. We now explain what
we mean by recursion over simultaneous free algebras. The inductive struc-
ture of the types i = ud < corresponds to two sorts of constants. With the
constructors constrf : Ki[fi] we can construct elements of a type p;, and with

the recursion operators R}, we can construct mappings from u; to 7; by
recursion on the structure of fi. So in (Rec arrow-types), arrow-types
is a list ugg — 71,...,ux — 7. Here puq,...,ur are the algebras defined
simultaneously and 71, ..., 7; are the result types.

For convenience in our later treatment of proofs (when we want to nor-
malize a proof by (1) translating it into a term, (2) normalizing this term
and (3) translating the normal term back into a proof), we also allow all-
formulas Vai" Ay, ..., Vai* Ay instead of arrow-types: they are treated as
1 — 7(Ar), ..., pr — 7(Ag) with 7(A4;) the type of A;.

Recall the definition of types and constructor types in Section [2, and the
examples given there. In order to define the type of the recursion operators
w.r.t. i = pd R and result types T, we first define for

Ki=p— (01— oj) == (0p = aj,) = a; € KT(Q)

the step type

(61 —=15) == (G = T5,) = 75

Here p, (61 — pj,),...,(0n — pj,) correspond to the components of the
object of type p; under consideration, and (&1 — 75,), ..., (6 — 7j,) to the

previously defined values. The recursion operator Rﬁf has type

R A SN |
We will often write RJ‘I ™ for Rgf, and omit the upper indices [, 7 when
they are clear from the context. In case of a non-simultaneous free algebra,

i.e. of type pa (), for RE™ we normally write R}
A simple example for simultaneous free algebras is

(tree, tlist) := (e, B) (a, B — o, B, = B = B).

The constructors are

(tree,tlist)

ftree .= constr; :

Lea

i tree,tlist
Branchtlist—tree . constrg ’),

(tree,tlist)

tlist .
:= constrs ,

Empty

MINLOG REFERENCE MANUAL 15

tree—stlist—tlist (tree,tlist)

Tcons := constr,

An example for a recursion constant is

(const Rec &1 — 99 — 03 — d4 — tree — o
(Oél = T1, (9 l—>’7'2))

with

01 1= aq,

09 = tlist = ag — ag,

53 = 9,

04 := tree — tlist - a1 — ag — ao.
Here the fact that we deal with a simultaneous recursion (over tree and
tlist), and that we define a constant of type tree — ..., can all be inferred
from what is given: the type tree — ... is right there, and for tlist we can

look up the simultaneously defined algebras.
For the external representation (i.e. display) we use the shorter notation

(Rec tree — 711 tlist —).

As already mentioned, it is also possible that the object constant Rec
comes with formulas instead of types, as the assumption constant Ind below.
This is due to our desire not to duplicate code when normalizing proofs, but
rather translate the proof into a term first, normalize the term and then
translate back into a proof. For the last step we must have the original
formulas of the induction operator available.

To see a concrete example, let us recursively define addition +: tree —
tree — tree and @: tlist — tree — tlist. The recursion equations to be
satisfied are

+ Leaf = \aa,
+ (Branch bs) = Aa.Branch(® bs a),

@ Empty = Aa Empty,
@ (Tconsb bs) = Aa.Tcons(+ba)(D bs a).

We define + and @ by means of the recursion operators Riree and Ryjist with
result types

T = tree — tree,
Ty := tree — tlist.
The step terms are
My := Aaa,
My := XbsAg™ Aa.Branch(ga),
M3 := Aa Empty,
My = NoAbsAf™ Ag™ Xa. Teons(f a)(ga).
Then

+ = RtreeM: tree — tree — tree,

16 MINLOG REFERENCE MANUAL

@ = Rt“stM: tlist — tree — tlist.

To explain the conversion relation, it will be useful to employ the following
notation. Let i = pud i,

Ki=p1— = pm — (01 =) = = (0n = aj,) = a; € KT(a),

and consider constré?LN. Then we write N¥ = NIP, ..., NP for the parameter

arguments NP*, ... Nf™ and NE = NlR, . ,Nf for the recursive arguments
F1—r g Grn—r L) R .

N1 oo Ny 7", and n* for the number n of recursive arguments.

We define a conversion relation +, between terms of type p by
(1) (AxM)N +— M[z:=N]
(2) Ax.Mx— M if x ¢ FV(M), M not an abstraction

3) N

(R’-I’?M)”j_wj (constrgj_f) > MZN((R]’II’?M) o NlR) o ((RE

7 0 M)oNf)

Here we have written R;‘ " for R}, and o means composition.

4.3. Internal representation of constants. Every object constant has
the internal representation

(const object-or-arity name uninst-type-or-formula subst

t-deg token-type arrow-types-or-repro-formulas),

where subst may have type, object and assumption variables in its domain.
The type of the constant is the result of carrying out this substitution in
uninst-type-or-formula (if this is a type; otherwise first substitute and then
convert the formula into a type); free type variables may again occur in this
type. Note that a formula will occur if name is Ex-Intro or Ex-Elim, and
may occur if it is Rec. Examples for object constants are

(const Compose (a—f)—(8—vy)—a—y (= p,f=o,y—T) ...)
(const Eq a@ — o — boole (a + finalg) ...)
(const E o — boole (o + finalg...))
(const Ex-Elim J2%P(z) — (V2*.P(z) - Q) — Q
(a7, P {27 [A},Q—{|B}) ...

object-or-arity is an object if this object cannot be changed, e.g. by allowing
user defined rules for the constant; otherwise, the associated object needs
to be updated whenever a new rule is added, and we have the arity of those
rules instead. The rules are of crucial importance for the correctness of a
proof, and should not be invisibly buried in the denoted object taken as
part of the constant (hence of any term involving it). Therefore we keep
the rules of a program constant and also its denoted objects (depending on
type substitutions) at a central place, a global variable PROGRAM-CONSTANTS
which assigns to every name of such a constant the constant itself (with
uninstantiated type), the rules presently chosen for it and also its denoted
objects (as association list with type substitutions as keys). When a new rule
has been added, the new objects for the program constant are computed,
and the new list to be associated with the program constant is written in

MINLOG REFERENCE MANUAL 17

PROGRAM-CONSTANTS instead. All information on a program constant exept
its denoted object and its computation and rewrite rules (i.e. its type, degree
of totality, arity and token type) is stable and hence can be kept as part of
it. The token type can be either const (i.e. constant written as application)
or one of: postfix-op, prefix-op, binding-op, add-op, mul-op, rel-op,
and-op, or-op, imp-op and pair-op.
Constructor, accessors and tests for all kinds of constants:
(make-const obj-or-arity name kind uninst-type tsubst
t-deg token-type . arrow-types-or-repro-formulas)

(const-to-object-or-arity const)

(const-to-name const)

(const-to-kind const)

(const-to-uninst-type const)

(const-to-tsubst const)

(const-to-t-deg const)

(const-to-token-type const)

(const-to-arrow-types-or-repro-formulas const)

(const? x)

(const=7 x y)
The type substitution tsubst must be restricted to the type variables in
uninst-type. arrow-types-or-repro-formulas are only present for the

Rec constants. They are needed for the reproduction case.
From these we can define

(const-to-type const)
(const-to-tvars const)

A constructor is a special constant with no rules. We maintain an as-
sociation list CONSTRUCTORS assigning to every name of a constructor an
association list associating with every type substitution (restricted to the
type parameters) the corresponding instance of the constructor. We pro-
vide

(constr-name? string)
(constr-name-to-constr name <tsubst>)

(constr-name-and-tsubst-to-constr name tsubst),
where in (constr-name-to-constr name <tsubst>), name is a string or
else of the form (Ex-Intro formula). If the optional tsubst is not present,
the empty substitution is used.
For given algebras one can display the associated constructors with their
types by calling

(display-constructors alg-namel ...).

We also need procedures recovering information from the string denoting
a program constant (via PROGRAM-CONSTANTS):

(pconst-name-to-pconst name)

S:Psyms
SS:PredVars

18 MINLOG REFERENCE MANUAL

(pconst-name-to-comprules name)
(pconst-name-to-rewrules name)
(pconst-name-to-inst-objs name)
(pconst-name-and-tsubst-to-object name tsubst)
(pconst-name-to-object name).

One can display the program constants together with their current com-
putation and rewrite rules by calling

(display-program-constants namel ...).
To add and remove program constants we use

(add-program-constant name type <rest>)
(remove-program-constant symbol);
rest consists of an initial segment of the following list: t-deg (default 0),
token-type (default const) and arity (default maximal number of argu-
ment types).
To add and remove computation and rewrite rules we have
(add-computation-rule 1lhs rhs)
(add-rewrite-rule lhs rhs)
(remove-computation-rules-for lhs)

(remove-rewrite-rules-for lhs).
To generate our constants with fixed rules we use

(finalg-to-=-const finalg) equality
(finalg-to-e-const finalg) existence
(arrow-types-to-rec-const . arrow-types) recursion
(ex-formula-and-concl-to-ex-elim-const

ex-formula concl)

Similarly to arrow-types-to-rec-const we also define the procedure
all-formulas-to-rec-const. It will be used in to achieve normalization
of proofs via translating them in terms.

[Noch einfiigen: arrow-types-to-cases-const und zur Behandlung von
Beweisen all-formulas-to-cases-const]

5. PREDICATE VARIABLES AND CONSTANTS

5.1. Predicate variables. A predicate variable of arity pi,...,p, is a
placeholder for a formula A with distinguished (different) variables x1, ...,z
of types p1,...,pn- Such an entity is called a comprehension term, written
{l’l,...,(L‘n ‘ A}

Predicate variable names are provided in the form of an association list,
which assigns to the names their arities. By default we have the predicate
variable bot of arity (arity), called (logical) falsity. It is viewed as a
predicate variable rather than a predicate constant, since (when translating
a classical proof into a constructive one) we want to substitute for bot.

MINLOG REFERENCE MANUAL 19

Often we will argue about Harrop formulas only, i.e. formulas without
computational content. For convenience we use a special sort of predicate
variables intended to range over comprehension terms with Harrop formulas
only. For example, PO,P1,P2,...,Q0,... range over comprehension terms
with Harrop formulas, and P"0,P~1,P~2,... are general predicate variables.
We say that Harrop degree for the former is 1, and for the latter 0.

We need constructors and accessors for arities

(make-arity typel ...)

(arity-to-types arity)
To display an arity we have

(arity-to-string arity)

We can test whether a string is a name for a predicate variable, and if so
compute its associated arity:

(pvar-name? string)
(pvar-name-to-arity pvar-name)

To add and remove names for predicate variables of a given arity (e.g. Q

for predicate variables of arity nat), we use
(add-pvar-name namel ... arity)

(remove-pvar-name namel ...)
We need a constructor, accessors and tests for predicate variables.

(make-pvar arity index h-deg name) constructor

(pvar-to-arity pvar) accessor
(pvar-to-index pvar) accessor
(pvar-to-h-deg pvar) accessor
(pvar-to-name pvar) accessor
(pvar? x)

(equal-pvars? pvarl pvar2)
For convenience we have the function
(mk-pvar arity <index> <h-deg> <name>)

The arity is a required argument; the remaining arguments are optional.
The default for index is —1, for h-deg is 1 (i.e. Harrop-formula) and for
name it is given by (default-pvar-name arity).

It is guaranteed that parsing a displayed predicate variable reproduces
the predicate variable; the converse need not be the case (we may want to
convert it into some canonical form).

SS:PredConsts
5.2. Predicate constants. We also allow predicate constants. The general

reason for having them is that we need predicates to be axiomatized, e.g.
Equal and Total (which are not placeholders for formulas). Prime formulas
built from predicate constants do not give rise to extracted terms, and cannot
be substituted for.

SS:IDPredConsts

20 MINLOG REFERENCE MANUAL

Notice that a predicate constant does not change its name under a type
substitution; this is in contrast to predicate (and other) variables. Notice
also that the parser can infer from the arguments the types p1 ... pn to be
substituted for the type variables in the uninstantiated arity of P.

To add and remove names for predicate constants of a given arity, we use

(add-predconst-name namel ... arity)

(remove-predconst-name namel ...)
We need a constructor, accessors and tests for predicate constants.

(make-predconst uninst-arity tsubst index name) constructor

(predconst-to-uninst-arity predconst) accessor
(predconst-to-tsubst predconst) accessor
(predconst-to-index predconst) accessor
(predconst-to-name predconst) accessor

(predconst? x)
Moreover we need
(predconst-name? name)
(predconst-name-to-arity predconst-name).

(predconst-to-string predconst).

5.3. Inductively defined predicate constants. As we have seen, type
variables allow for a general treatment of inductively generated types ud K.
Similarly, we can use predicate variables to inductively generate predicates
uX K.

More precisely, we allow the formation of inductively generated predicates
u)? K , where X = (Xj)j=1,...~ is a list of distinct predicate variables, and
K = (Ki)i=1,..k is a list of constructor formulas (or “clauses”) containing

X1,..., Xy in strictly positive positions only.
To introduce inductively defined predicates we use
add-ids.

An example is
(add-ids (list (list "Ev" (make-arity (py "nat")) "algEv")
(1ist "0d" (make-arity (py "nat")) "alg0d"))
>("Ev 0" "InitEv")
’("allnc n.0d n -> Ev(n+1)" "GenEv")
>("0d 1" "Init0d4")
>("allnc n.Ev n -> 0d(n+1)" "GenOd"))

This simultaneously introduces the two inductively defined predicate con-
stants Ev and 0d, by the clauses given. The presence of an algebra name
after the arity (here algEv and alg0d) indicates that this inductively de-
fined predicate constant is to have computational content. Then all clauses
with this constant in the conclusion must provide a constructor name (here
InitEv, GenEv, Init0d, GenOd). If the constant is to have no computa-
tional content, then all its clauses must be invariant (under realizability,
a.k.a. “negative”).

MINLOG REFERENCE MANUAL 21

Here are some further examples of inductively defined predicates:

(add-ids
(1ist (list "Even" (make-arity (py "nat")) "algEven"))
>("Even 0" "InitEven")
’("allnc n.Even n -> Even(n+2)" "GenEven"))

(add-ids
(list (list "Acc" (make-arity (py "mnat")) "algAcc"))
’("allnc n.(all m.m<n -> Acc m) -> Acc n" "GenAccSup"))

(add-ids (1list (list "OrID" (make-arity) "algOrID"))
>("P~1 -> OrID" "InlOrID")
>("P72 -> OrID" "InrOrID"))

(add-ids
(list (list "EqID" (make-arity (py "alpha") (py "alpha"))
"algEqID"))
>("allnc x~ EqID x~ x~" "GenEqID"))

(add-ids (list (list "ExID" (make-arity) "algExID"))
’("allnc x~.Q° x~ -> ExID" "GenExID"))

(add-ids
(1ist (list "FalsityID" (make-arity) "algFalsityID")))

6. TERMS AND OBJECTS

Terms are built from (typed) variables and constants by abstraction, ap-
plication, pairing, formation of left and right components (i.e. projections)
and the if-construct.

The if-construct distinguishes cases according to the outer constructor
form; the simplest example (for the type boole) is if-then-else. Here we do
not want to evaluate all arguments right away, but rather evaluate the test
argument first and depending on the result evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; e.g. in
SCHEME the if-construct is called a special form as opposed to an operator.
In accordance with this terminology we also call our if-construct a special
form. It will be given a special treatment in nbe-term-to-object.

Usually it will be the case that every closed term of an sfa ground type
reduces via the computation rules to a constructor term, i.e. a closed term
built from constructors only. However, we do not require this.

We have constructors, accessors and tests for variables

(make-term-in-var-form var) constructor
(term-in-var-form-to-var term) accessor,

(term-in-var-form? term) test,
for constants

(make-term-in-const-form const) constructor

Terms

22

for abstractions

for applications

for pairs

and for if-constructs

MINLOG REFERENCE MANUAL

(term-in-const-form-to-const term) accessor
(term-in-const-form? term) test,
(make-term-in-abst-form var term) constructor
(term-in-abst-form-to-var term) accessor
(term-in-abst-form-to-kernel term) accessor
(term-in-abst-form? term) test,
(make-term-in-app-form terml term2) constructor
(term-in-app-form-to-op term) accessor
(term-in-app-form-to-arg term) accessor
(term-in-app-form? term) test,
(make-term-in-pair-form terml term2) constructor
(term-in-pair-form-to-left term) accessor
(term-in-pair-form-to-right term) accessor
(term-in-pair-form? term) test,
for the left and right component of a pair
(make-term-in-lcomp-form term) constructor
(make-term-in-rcomp-form term) constructor
(term-in-lcomp-form-to-kernel term) accessor
(term-in-rcomp-form-to-kernel term) accessor
(term-in-lcomp-form? term) test
(term-in-rcomp-form? term) test
(make-term-in-if-form test alts rest) constructor
(term-in-if-form-to-test term) accessor
(term-in-if-form-to-alts term) accessor
(term-in-if-form-to-rest term) accessor
(term-in-if-form? term) test.

where in make-term-in-if-form, rest is either empty or an all-formula.

It is convenient to have more general application constructors and acces-
sors available, where application takes arbitrary many arguments and works
for ordinary application as well as for component formation.

(mk-term-in-app-form term terml

(term-in-app-form-to-final-op term)

(term-in-app-form-to-args term)

)

constructor
accessor

accessor,

MINLOG REFERENCE MANUAL 23

Also for abstraction it is convenient to have a more general constructor
taking arbitrary many variables to be abstracted one after the other

(mk-term-in-abst-form varl ... term).

We also allow vector notation for recursion (cf. Joachimski and Matthes [§]).
Moreover we need

(term? x)

(term=?7 terml term2)
(terms=? termsl terms2)
(term-to-type term)
(term-to-free term)
(term-to-bound term)
(term-to-t-deg term)
(synt-total? term)

(term-to-string term).

6.1. Normalization. We need an operation which transforms a term into
its normal form w.r.t. the given computation and rewrite rules. Here we
base our treatment on normalization by evaluation introduced in [5], and
extended to arbitrary computation and rewrite rules in [4].

For normalization by evaluation we need semantical objects. For an ar-
bitrary ground type every term family of that type is an object. For an
sfa ground type, in addition the constructors have semantical counterparts.
The freeness of the constructors is expressed by requiring that their ranges
are disjoint and that they are injective. Moreover, we view the free algebra
as a domain and require that its bottom element is not in the range of the
constructors. Hence the constructors are total and non-strict. Then by ap-
plying nbe-reflect followed by nbe-reify we can normalize every term,
where normalization refers to the computation as well as the rewrite rules.

An object consists of a semantical value and a type.

(nbe-make-object type value) constructor
(nbe-object-to-type object) accessor
(nbe-object-to-value object) accessor

(nbe-object? x) test.
To work with objects, we need
(nbe-object-apply function-obj arg-obj)

Again it is convenient to have a more general application operation available,
which takes arbitrary many arguments and works for ordinary application
as well as for component formation. We also need an operation composing
two unary function objects.

(nbe-object-app function-obj arg-objl ...)

(nbe-object-compose function-objl function-obj2)

24 MINLOG REFERENCE MANUAL

For ground type values we need constructors, accessors and tests. To make
constructors “self-evaluating”, a constructor value has the form

(constr-value name objs delayed-constr),

where delayed-constr is a procedure of zero arguments which evaluates to
this very same constructor. This is necessary to avoid having a cycle (for
nullary constructors, and only for those).
(nbe-make-constr-value name objs) constructor
(nbe-constr-value-to-name value) accessor
(nbe-constr-value-to-args value) accessor
(nbe-constr-value-to-constr value) accessor
(nbe-constr-value? value) test
(nbe-fam-value? value) test.
The essential function which “animates” the program constants according
to the given computation and rewrite rules is
(nbe-pconst-and-tsubst-and-rules-to-object
pconst tsubst comprules rewrules)

Using it we can the define an evaluation function, which assigns to a term
and an environment a semantical object:

(nbe-term-to-object term bindings) evaluation.

Here bindings is an association list assigning objects of the same type to
variables. In case a variable is not assigned anything in bindings, by default
we assign the constant term family of this variable, which always is an object
of the correct type.

The interpretation of the program constants requires some auxiliary func-
tions (cf. [4]):

(nbe-constructor-pattern? term) test

(nbe-inst? constr-pattern obj) test

(nbe-genargs constr-pattern obj) generalized arguments

(nbe-extract termfam) extracts a term from a family

(nbe-match pattern term)
Then we can define
(nbe-reify object) reification
(nbe-reflect term) reflection
and by means of these
(nbe-normalize-term term) normalization,

abbreviated nt.

The if-form needs a special treatment. In particular, for a full normaliza-
tion of terms (including permutative conversions), we define a preprocessing
step that 1 expands the alternatives of all if-terms. The result contains
if-terms with ground type alternatives only.

MINLOG REFERENCE MANUAL 25

6.2. Substitution. Recall the generalities on substitutions in Section

We define simultaneous substitution for type and object variables in a
term, via tsubst and subst. It is assumed that subst only affects those
vars whose type is not changed by tsubst.

In the abstraction case of the recursive definition, the abstracted variable
may need to be renamed. However, its type can be affected by tsubst.
Then the renaming cannot be made part of subst, because the condition
above would be violated. Therefore we carry along a procedure renaming
variables, which remembers the renaming of variables done so far.

(term-substitute term tosubst)
(term-subst term arg val)

(compose-o-substitutions substl subst2)

The o in compose-o-substitutions indicates that we substitute for object
variables. However, since this is the most common form of substitution, we
also write compose-substitutions instead.

Display functions for substitutions are

(display-substitution subst)

(substitution-to-string subst)

7. FORMULAS AND COMPREHENSION TERMS

A prime formula can have the form

e (atom r) with a term r of type boole,
o (predicate a rl ... rn) with a predicate variable or constant a
and terms rl ...rn.

Formulas are built from prime formulas by

implication (imp formulal formulaZ2)

conjunction (and formulal formula2)

tensor (tensor formulal formula2)

all quantification (all x formula)

existential quantification (ex x formula)

all quantification (allnc x formula) without computational con-
tent

e existential quantification (exnc x formula) without computational
content

Moreover we have classical existential quantification in an arithmetical and
a logical form:

(exca (x1...) formula) arithmetical version

(excl (x1 ...) formula) logical version.

Here we allow that the quantified variable is formed without ~, i.e. ranges
over total objects only.

Formulas can be unfolded in the sense that the all classical existential
quantifiers are replaced according to their definiton. Inversely a formula can
be folded in the sense that classical existential quantifiers are introduced
wherever possible.

S:Formulas

26 MINLOG REFERENCE MANUAL

Comprehension terms have the form (cterm vars formula). Note that
formula may contain further free variables.

Tests:
(atom-form? formula)
(predicate-form? formula)
(prime-form? formula)
(imp-form? formula)
(and-form? formula)
(tensor-form? formula)
(all-form? formula)
(ex-form? formula)
(allnc-form? formula)
(exnc-form? formula)
(exca-form? formula)

(excl-form? formula)
and also
(quant-prime-form? formula)
(quant-free? formula).
We need constructors and accessors for prime formulas

(make-atomic-formula boolean-term)
(make-predicate-formula predicate terml ...)
atom-form-to-kernel
predicate-form-to-predicate

predicate-form-to-args.
We also have constructors for special atomic formulas

(make-eq terml term2) constructor for equalities

(make-= terml term2) constructor for equalities on finalgs

(make-total term) constructor for totalities

(make-e term) constructor for existence on finalgs
truth

falsity

falsity-log.
We need constructors and accessors for implications
(make-imp premise conclusion) constructor
(imp-form-to-premise imp-formula) accessor
(imp-form-to-conclusion imp-formula) accessor,
conjunctions

(make-and formulal formula2) constructor

MINLOG REFERENCE MANUAL 27

(and-form-to-left and-formula) accessor

(and-form-to-right and-formula) accessor,
tensors

(make-tensor formulal formula2) constructor
(tensor-form-to-left tensor-formula) accessor
(tensor-form-to-right tensor-formula) accessor,
universally quantified formulas
(make-all var formula) constructor
(all-form-to-var all-formula) accessor
(all-form-to-kernel all-formula) accessor,
existentially quantified formulas
(make-ex var formula) constructor
(ex-form-to-var ex-formula) accessor
(ex—-form-to-kernel ex-formula) accessor,
universally quantified formulas without computational content
(make-allnc var formula) constructor
(allnc-form-to-var allnc-formula) accessor
(allnc-form-to-kernel allnc-formula) accessor,
existentially quantified formulas without computational content
(make-exnc var formula) constructor
(exnc-form-to-var exnc-formula) accessor
(exnc-form-to-kernel exnc-formula) accessor,
existentially quantified formulas in the sense of classical arithmetic
(make-exca var formula) constructor
(exca-form-to-var exca-formula) accessor
(exca-form-to-kernel exca-formula) accessor,
existentially quantified formulas in the sense of classical logic
(make-excl var formula) constructor
(excl-form-to-var excl-formula) accessor
(excl-form-to-kernel excl-formula) accessor.

For convenience we also have as generalized constructors

(mk-imp formula formulal ...) implication
(mk-neg formulal ...) negation
(mk-neg-log formulal ...) logical negation
(mk-and formula formulal ...) conjunction
(mk-tensor formula formulal ...) tensor

(mk-all varl ... formula) all-formula

28 MINLOG REFERENCE MANUAL

(mk-ex varl ... formula) ex-formula

(mk-allnc varl ... formula) allnc-formula

(mk-exnc varl ... formula) exnc-formula

(mk-exca varl ... formula) classical ex-formula (arithmetical)
(mk-excl varl ... formula) classical ex-formula (logical)

and as generalized accessors

(imp-form-to-premises-and-final-conclusion formula)
(tensor-form-to-parts formula)
(all-form-to-vars-and-final-kernel formula)

(ex-form-to-vars—and-final-kernel formula)

and similarly for exca-forms and excl-forms. Occasionally it is convenient
to have

(imp-form-to-premises formula <n>) all (first n) premises

(imp-form-to-final-conclusion formula <n>)

where the latter computes the final conclusion (conclusion after removing
the first n premises) of the formula.

It is also useful to have some general procedures working for arbitrary
quantified formulas. We provide

(make-quant-formula quant varl ... kernel) constructor
(quant-form-to-quant quant-form) accessor
(quant-form-to-vars quant-form) accessor
(quant-form-to-kernel quant-form) accessor
(quant-form? x) test.

and for convenience also
(mk-quant quant varl ... formula).
To fold and unfold formulas we have

(fold-formula formula)

(unfold-formula formula).
To test equality of formulas up to normalization and a-equality we use

(classical-formula=? formulal formulaZ2)

(formula=? formulal formula2),

where in the first procedure we unfold before comparing.
Morever we need

(formula-to-free formula),
(nbe-formula-to-type formula),

(formula-to-prime-subformulas formula),
Constructors, accessors and a test for comprehension terms are

(make-cterm varl ... formula) constructor

MINLOG REFERENCE MANUAL 29

(cterm-to-vars cterm) accessor
(cterm-to-formula cterm) accessor
(cterm? x) test.

Moreover we need

(cterm-to-free cterm)
(cterm=7 x)
(classical-cterm=7? x)
(fold-cterm cterm)

(unfold-cterm cterm).
Normalization of formulas is done with
(normalize-formula formula) normalization,

abbreviated nf.
To check equality of formulas we use

(classical-formula=? formulal formula2)

(formula=? formulal formula2)

where the former unfolds the classical existential quantifiers and normalizes
all subterms in its formulas.
Display functions for formulas and comprehension terms are

(formula-to-string formula)

(cterm-to-string cterm).

The former is abbreviated nf.

We can define simultaneous substitution for type, object and predicate
variables in a formula, via tsubst, subst and psubst. It is assumed that
subst only affects those variables whose type is not changed by tsubst, and
that psubst only affects those predicate variables whose arity is not changed
by tsubst.

In the quantifier case of the recursive definition, the abstracted variable
may need to be renamed. However, its type can be affected by tsubst. Then
the renaming cannot be made part of subst, because then the condition
above would be violated. Therefore we carry along a procedure rename
renaming variables, which remembers the renaming of variables done so far.

We will also need formula substitution to compute the formula of an
assumption constant. However, there (type and) predicate variables are
(implicitely) considered to be bound. Therefore, we also have to carry along
a procedure prename renaming predicate variables, which remembers the
renaming of predicate variables done so far.

(formula-substitute formula topsubst)
(formula-subst formula arg val)

(cterm-substitute cterm topsubst)

(cterm-subst cterm arg val)

S:AssumptionVarConst

30 MINLOG REFERENCE MANUAL

Display functions for predicate substitutions are

(display-p-substitution psubst)
(p—-substitution-to-string psubst)

8. ASSUMPTION VARIABLES AND CONSTANTS

8.1. Assumption variables. Assumption variables are for proofs what
variables are for terms. The main difference, however, is that assumption
variables have formulas as types, and that formulas may contain free vari-
ables. Therefore we must be careful when substituting terms for variables in
assumption variables. Our solution (as in Matthes’ thesis [9]) is to consider
an assumption variable as a pair of a (typefree) identifier and a formula, and
to take equality of assumption variables to mean that both components are
equal. Rather than using symbols as identifiers we prefer to use numbers
(i.e. indices). However, sometimes it is useful to provide an optional string
as name for display purposes.
We need a constructor, accessors and tests for assumption variables.

(make-avar formula index name) constructor

(avar-to-formula avar) accessor
(avar-to-index avar) accessor
(avar-to-name avar) accessor
(avar? x) test
(avar=7 avarl avar2) test.

For convenience we have the function
(mk-avar formula <index> <name>)

The formula is a required argument; however, the remaining arguments are
optional. The default for the name string is u. We also require that a
function

(formula-to-new-avar formula)

is defined that returns an assumption variable of the requested formula dif-
ferent from all assumption variables that have ever been returned by any of
the specified functions so far.

An assumption constant appears in a proof, as an axiom, a theorem or
a global assumption. Its formula is given as an “uninstantiated formula”,
where only type and predicate variables can occur freely; these are con-
sidered to be bound in the assumption constant. In the proof the bound
type variables are implicitely instantiated by types, and the bound predicate
variables by comprehension terms (the arity of a comprehension term is the
type-instantiated arity of the corresponding predicate variable). Since we
do not have type and predicate quantification in formulas, the assumption
constant contains these parts left implicit in the proof: tsubst and pinst
(which will become a psubst, once the arities of predicate variables are
type-instantiated with tsubst).

So we have assumption constants of the following kinds:

e axioms,

MINLOG REFERENCE MANUAL 31

e theorems, and
e global assumptions.

To normalize a proof we will first translate it into a term, then normalize
the term and finally translate the normal term back into a proof. To make
this work, in case of axioms we pass to the term appropriate formulas: all-
formulas for induction, an existential formula for existence introduction, and
an existential formula together with a conclusion for existence elimination.
During normalization of the term these formulas are passed along. When
the normal form is reached, we have to translate back into a proof. Then
these formulas are used to reconstruct the axiom in question.

Internally, the formula of an assumption constant is split into an unin-
stantiated formula where only type and predicate variables can occur freely,
and a substitution for at most these type and predicate variables. The for-
mula assumed by the constant is the result of carrying out this substitution
in the uninstantiated formula. Note that free variables may again occur in
the assumed formula. For example, assumption constants axiomatizing the
existential quantifier will internally have the form

(aconst Ex-Intro Vi®.P(#) — 32°P(#) (a7, P — {27 | A})
(aconst Ex-Elim 3i%P(2) — (Vi%.P(i) = Q) — Q
(= 7 P = {27 A},Q = {| B})

Interface for general assumption constants. To avoid duplication
of code it is useful to formulate some procedures generally for arbitrary
assumption constants, i.e. for all of the forms listed above.

(make-aconst name kind uninst-formula tpsubst

repro-formulal ...) constructor
(aconst-to-name aconst) accessor
(aconst-to-kind aconst) accessor
(aconst-to-uninst-formula aconst) accessor
(aconst-to-tpsubst aconst) accessor
(aconst-to-repro-formulas aconst) accessor
(aconst? x) test.

To construct the formula associated with an aconst, it is useful to separate

the instantiated formula from the variables to be generalized. The latter

can be obtained as free variables in inst-formula. We therefore provide
(aconst-to-inst-formula aconst)

(aconst-to-formula aconst)
We also provide

(aconst? aconst)
(aconst=7 aconstl aconst2)
(aconst-without-rules? aconst)

(aconst-to-string aconst)

32 MINLOG REFERENCE MANUAL

8.2. Axiom constants. We use the natural numbers as a prototypical fini-
tary algebra; recall Figure Assume that n, p are variables of type nat,
boole. Let &~ denote the equality relation in the model. Recall the domain of
type boole, consisting of tt, ff and the bottom element bb. The boolean val-
ued functions equality =,4;: nat — nat — boole and existence (definedness,
totality) epq:: nat — boole need to be continuous. So we have

=(0,0) ~ tt
=(0,5n) ~ =(5n,0) ~ ff e(0) ~ tt
=(Sny, Shgy) = =(n1, Ng) e(Sn) = e(n)
=(bbpat, 1) & =(0, bbpget) ~ bb e(bbnat) = bb
=(conat, M) ~ =(N, 00pat) = bb e(0onat) & bb
Write T, F for atom(tt), atom(ff), » = s for atom(=(r,s)) and E(r) for
atom(e(r)). We stipulate as axioms
T Truth-Axiom
T~ Eq-Refl
T1 R Ty — To R I Eq-Symm
I1 R T9g — To XT3 — T~ I3 Eq-Trans
Vifid = fad — fL = fo Eq-Ext
&1~ &9 — P(#1) — P(22) Eq-Compat

Totalp%(,(f) < Vz.Total,(z) — Total,(f#) Total
Total,(c) Constr-Total

Total(c#) — Total(2;) Constr-Total-Args

and for every finitary algebra, e.g. nat

1 &~ ng — E(ny) — Ny = N Eq-to-=-1-nat
1 &~ ng — E(ng) — Ny = N Eq-to-=-2-nat
N1 = Ng — N1 = Ny =-to-Eq-nat

ny = ng — E(n) =-to-E-1-nat
ny = ng — E(ng) =-to0-E-2-nat
Total(n) — E(n) Total-to-E-nat
E(n) — Total(n) E-to-Total-nat

Here ¢ is a constructor. Notice that in Total(c#) — Total(Z;), the type of
(c) need not be a finitary algebra, and hence #; may have a function type.

Remark. (E(n1) — 11 = ng) — (E(hg) — Ny = fig) — Ny & g is not valid
in our intended model (see Figure , since we have two distinct undefined
objects bbyqr and cogqt.

We abbreviate
Vi.Total,(Z) = A by VzA,

SS:AxiomConst

MINLOG REFERENCE MANUAL 33

37 Total ,(#) AA by 3zA.

Formally, these abbreviations appear as axioms
Vo P(x) — Vi.Total(#) — P(&)
(V2. Total(#) — P(&)) — VoP(x) AllPartial-All
JzP(z) — 3. Total(2) A P(2)
(32.Total(&) A P(#)) — 3zP(x) ExPartial-Ex

All-AllPartial

Ex-ExPartial

and for every finitary algebra, e.g. nat

VYnP(n) — Ya.E(R) — P(h) All-AllPartial-nat

(In.E(R) A P(7)) — InP(n)
Notice that AllPartial-All-nat ie. (VA.E(R) — P()) — VnP(n) is
provable (since E(n) — T'). Similarly, Ex-ExPartial-nat, i.e. InP(n) —

In.E(n) A P(n) is provable.
Finally we have axioms for the existential quantifier

Vi P(2) — 32°P(2)

ExPartial-Ex-nat

Ex-Intro

32 P(2) — (Va%.P(&) = Q) - Q Ex-Elim

The assumption constants corresponding to these axioms are

truth-aconst

eq-refl-aconst
eqg-symm-aconst

eq-trans-aconst

ext-aconst
eq-compat-aconst

total-aconst

(finalg-to-eq-to-=-1-aconst finalg)
(finalg-to-eq-to-=-2-aconst finalg)
(finalg-to-=-to-eq-aconst finalg)
(finalg-to-=-to-e-1-aconst finalg)
(finalg-to-=-to-e-2-aconst finalg)
(finalg-to-total-to-e-aconst finalg)
(finalg-to-e-to-total-aconst finalg)

all-allpartial-aconst
allpartial-all-aconst
ex—-expartial-aconst

expartial-ex-aconst

(finalg-to-all-allpartial-aconst finalg)

(finalg-to-expartial-ex-aconst finalg)

for Truth-Axiom

for Eq-Refl
for Eq-Symm

for Eq-Trans

for Eq-Ext
for Eq-Compat
for Total

for Eq-to-=-1
for Eq-to-=-2
for ==to-Eq
for ==to-E-1
for =-to-E-2
for Total-to-E
for E-to-Total

for A11-Al1Partial
for Al11Partial-All
for Ex-ExPartial
for ExPartial-Ex

for A11-Al11Partial
for ExPartial-Ex

34 MINLOG REFERENCE MANUAL

We now spell out what precisely we mean by induction over simultaneous
free algebras [i = ud K, with goal formulas Vx? 7 Pj(z;). For the constructor
type

Ki=p— (01— aj) == (0n = aj,) = a; € KT(Q)

we have the step formula

D; :=Vyi', ..., yﬁlm,yf;l;wl e ,yi";fj” N le (Ym41Z) = -+ —
V27" Pj, (Ymind) —
Pj(constrf(gj)).
Here 5 = yi"', ... ,yﬁ{”,yi}ﬁ“h - ,yi”;l“j" are the components of the ob-

ject constrf () of type p; under consideration, and
V27 P} (Yymia @), - - -, VI P, (Yman®)

are the hypotheses available when proving the induction step. The induction
axiom Ind,; then proves the formula

Ind,;: Dy — -+ — Dy — Va'? Pj(x;).

We will often write Ind; for Ind,;.
An example is

E| — Ey — E3 — Ey — V2™ Py (x)
with
B = Pl(Leaf),
By := V't Py(z) — P;(Branch(z)),
B3 := Py(Empty),
By :=Vatee zlist Py (z1) — Py(x2) — Py(Tcons(x1, 22)).

Here the fact that we deal with a simultaneous induction (over tree and
tlist), and that we prove a formula of the form Vz'"® ... can all be inferred
from what is given: the Vz'®®. .. is right there, and for t1list we can look
up the simultaneously defined algebras. — The internal representation is

(aconst Ind Fy — Ey — F3 — E4 — thlreepl (21)
(P {xf® | A1}, Py {25 A2 }))

A simplified version (without the recursive calls) of the induction axiom
is the following cases axiom.

(aconst Cases F); — Ey — Yzl Py(z)) (P — {2t | A1 })
with

E; := Py(Leaf),

By := Yzt P (Branch(z)).

However, rather than using this as an assumption constant we will — parallel
to the if-construct for terms — use a cases-construct for proofs. This does

MINLOG REFERENCE MANUAL 35

not change our notion of proof; it is done to have the if-construct in the
extracted programs.
The assumption constants corresponding to these axioms are generated

by
(all-formulas-to-ind-aconst all-formulal ...) for Ind

(all-formula-to-cases—aconst all-formula) for Cases

For the introduction and elimination axioms Ex-Intro and Ex-Elim for
the existential quantifier we provide

(ex-formula-to-ex—-intro-aconst ex-formula)
(ex-formula-and-concl-to-ex-elim-aconst ex-formula concl)

and similarly for exnc instead of ex.
To deal with inductively defined predicate constants, we need additional
axioms with names “Intro” and “Elim”, which can be generated by

(number-and-idpredconst-to-intro-aconst i idpc)
(imp-formulas-to-elim-aconst imp-formulal ...);

here an imp-formula is expected to have the form (%) — A.

8.3. Theorems. A theorem is a special assumption constant. Theorems
are normally created after successfully completing an interactive proof. One
may also create a theorem from an explicitely given (closed) proof. The
command is

(add-theorem string . opt-proof) or save

From a theorem name we can access its aconst, its (original) proof and also
its instantiated proof by

(theorem-name-to-aconst string)
(theorem-name-to-proof string)

(theorem-name-to-inst-proof string)
We also provide

(remove-theorem stringl ...)

(display-theorems stringl ...)

Initially we provide the following theorems

atom(p) > p=1t Atom-True
(atom(p) = F) —»p=ff Atom-False
F — atom(p) Efg-Atom

((atom(p) — F) — F) — atom(p) Stab-Atom
and for every finitary algebra, e.g. nat

n=mn =-Refl-nat
ny =ng — Ny =N =-Symm-nat

N1 = Ny — Mg = N3 — N1 = N3 =-Trans-nat

SS:Theorems

36 MINLOG REFERENCE MANUAL

Proof of Atom-True. By Ind. In case tt use Eq-Compat with & ~ =(1t, tt)
to infer atom(=(tt, tt)) (i.e. tt = tt) from atom(it). In case ff use Eq-Compat
with ff = =(ff, &t) to infer atom(=(ff, tt)) (i.e. ff = tt) from atom(ff). O

Proof of Atom-False. Use Ind, and Truth-Axiom in both cases. — Notice
that the more general (atom(p) — F') — p = ff does not hold with bb for p,
since =(bb, ff) ~ bb. O

Proof of Efg-Atom. Again by Ind. In case tt use Truth-Axiom, and the case
ff is obvious. 0

Proof of Stab-Atom. By Ind. In case tt use Truth-Axiom, and the case ff is
obvious. 0

Remark. Notice that from Efg-Atom one easily obtains F — A for every
formula A all whose strictly positions occurrences of prime formulas are of
the form atom(r), by induction on A. For all other formulas we shall make
use of the global assumption Efq: F — P (cf. Section. Similarly, Notice
that from Stab-Atom one again obtains (A — F) — F) — A for every
formula A all whose strictly positions occurrences of prime formulas are of
the form atom(r), by induction on A. For all other formulas we shall make
use of the global assumption Stab: ((P — F) — F) — P (cf. Section .

Proof of ==Refl-nat. Use Ind, and Truth-Axiom in both cases. — Notice
that 7 = n does not hold, since =(bb, bb) ~ bb. O

Here are some other examples of theorems; we give the internal repre-
sentation as assumption constants, which show how the assumed formula is
split into an uninstantiated formula and a substitution, in this case a type
substitution a — p, an object substitution f*—7"at s gP—"at and a predicate
variable substitution P(®) — {2° | A}.

(aconst Cvind-with-measure-11
VR (VY (f ()< f (@) - P)) > Pla)) = YeP(z)
(a = p, faﬁ\nat N gp%natpl—:)(a) N {ép ’ A})))
(aconst Minpr-with-measure-111
yemmat 30 pr) — Iz P(x)Vy. f (y)<f(z) — Ply) — L
(s p, o7 s P PO o {20 AY)).
Here 3¢ is the classical existential quantifier defined by 3zA := V(A —
1) — L with the logical form of falsity L (as opposed to the arithmetical
form (atom ff)). 1 indicates “logic” (we have used the logical form of falsity),
the first 1 that we have one predicate variable P, and the second that we
quantify over just one variable x. Both theorems can easily be generalized

to more such parameters.
When dealing with classical logic it will be useful to have

(P—P)— ((P— L1)— P)— P Cases-Log

The proof uses the global assumption Stab-Log (see below) for Pr; hence
we cannot extract a term from it.

MINLOG REFERENCE MANUAL 37

The assumption constants corresponding to these theorems are generated
by

(theorem—-name-to-aconst name)

SS:GlobalAss
8.4. Global assumptions. A global assumption is a special assumption
constant. It provides a proposition whose proof does not concern us pre-
sently. Global assumptions are added, removed and displayed by
(add-global-assumption name formula) (abbreviated aga)
(remove-global-assumption stringl ...)
(display-global-assumptions stringl ...)
We initially supply global assumptions for ex-falso-quodlibet and stability,
both in logical and arithmetical form (for our two forms of falsity).
1P Efq-Log
(P—1)— 1) — P Stab-Log
F—P Efq
(P—F)—F)— P Stab
The assumption constants corresponding to these global assumptions are
generated by
(global-assumption-name-to-aconst name)
9. PROOFS
Proof

Proofs are built from assumption variables and assumption constants (i.e.
axioms, theorems and global assumption) by the usual rules of natural de-
duction, i.e. introduction and elimination rules for implication, conjunction
and universal quantification. From a proof we can read off its context, which
is an ordered list of object and assumption variables.

9.1. Constructors and accessors. We have constructors, accessors and
tests for assumption variables

(make-proof-in-avar-form avar) constructor
(proof-in-avar-form-to-avar proof) accessor,
(proof-in-avar-form? proof) test,
for assumption constants
(make-proof-in-aconst-form aconst) constructor
(proof-in-aconst-form-to-aconst proof) accessor
(proof-in-aconst-form? proof) test,
for implication introduction
(make-proof-in-imp-intro-form avar proof) constructor
(proof-in-imp-intro-form-to-avar proof) accessor
(proof-in-imp-intro-form-to-kernel proof) accessor

(proof-in-imp-intro-form? proof) test,

38 MINLOG REFERENCE MANUAL

for implication elimination

(make-proof-in-imp-elim-form proofl proof2) constructor

(proof-in-imp-elim-form-to-op proof) accessor
(proof-in-imp-elim-form-to-arg proof) accessor
(proof-in-imp-elim-form? proof) test,

for and introduction

(make-proof-in-and-intro-form proofl proof2) constructor

(proof-in-and-intro-form-to-left proof) accessor
(proof-in-and-intro-form-to-right proof) accessor
(proof-in-and-intro-form? proof) test,

for and elimination
(make-proof-in-and-elim-left-form proof) constructor
(make-proof-in-and-elim-right-form proof) constructor
(proof-in-and-elim-left-form-to-kernel proof) accessor
(proof-in-and-elim-right-form-to-kernel proof) accessor
(proof-in-and-elim-left-form? proof) test
(proof-in-and-elim-right-form? proof) test,

for all introduction

(make-proof-in-all-intro-form var proof) constructor
(proof-in-all-intro-form-to-var proof) accessor
(proof-in-all-intro-form-to-kernel proof) accessor
(proof-in-all-intro-form? proof) test,

for all elimination

(make-proof-in-all-elim-form proof term) constructor

(proof-in-all-elim-form-to-op proof) accessor
(proof-in-all-elim-form-to-arg proof) accessor
(proof-in-all-elim-form? proof) test

and for cases-constructs

(make-proof-in-cases-form test altl ...) constructor
(proof-in-cases-form-to-test proof) accessor
(proof-in-cases-form-to-alts proof) accessor
(proof-in-cases-form-to-rest proof) accessor
(proof-in-cases-form? proof) test.

It is convenient to have more general introduction and elimination operators
that take arbitrary many arguments. The former works for implication-
introduction and all-introduction, and the latter for implication-elimination,
and-elimination and all-elimination.

(mk-proof-in-intro-form x1 ... proof)

MINLOG REFERENCE MANUAL 39

(mk-proof-in-elim-form proof argl ...)
(proof-in-intro-form-to-kernel-and-vars proof)
(proof-in-elim-form-to-final-op proof)
(proof-in-elim-form-to-args proof) .
(mk-proof-in-intro-form x1 ... proof) is formed from proof by first

abstracting xI, then x2 and so on. Here xI, x2 ...can be assumption or
object variables. We also provide

(mk-proof-in-and-intro-form proof proofl ...)

In our setup there are axioms rather than rules for the existential quan-
tifier. However, sometimes it is useful to construct proofs as if an existence
introduction rule would be present; internally then an existence introduction
axiom is used.

(make-proof-in-ex-intro-form term ex-formula proof-of-inst)
(mk-proof-in-ex-intro-form .
terms-and-ex-formula-and-proof-of-inst)
Moreover we need
(proof? x)
(proof=? proofl proof2)
(proofs=7 proofsl proofs2)
(proof-to-formula proof)
(proof-to-context proof)
(proof-to-free proof)
(proof-to-free-avars proof)
(proof-to-bound-avars proof)
(proof-to-free-and-bound-avars proof)
(proof-to-aconsts-without-rules proof).
(proof-to-aconsts proof).

To work with contexts we need

(context-to-vars context)
(context-to-avars context)

(context=? contextl context2).

9.2. Normalization. Normalization of proofs will be done by reduction
to normalization of terms. (1) Construct a term from the proof. To do
this properly, create for every free avar in the given proof a new variable
whose type comes from the formula of the avar; store this information. Note
that in this construction one also has to create new variables for the bound
avars. Similary to avars we have to treat assumption constants which are
not axioms, i.e. theorems or global assumptions. (2) Normalize the resulting
term. (3) Reconstruct a normal proof from this term, the end formula
and the stored information. — The critical variables are carried along for
efficiency reasons.

40 MINLOG REFERENCE MANUAL

To assign recursion constants to induction constants, we need to associate
type variables with predicate variables, in such a way that we can later refer
to this assignment. Therefore we carry along a procedure pvar-to-tvar
which remembers the assignment done so far (cf. make-rename).

Due to our distinction between general variables x~0,x"1,x72,... and
variables x0,x1,x2,... intended to range over existing (i.e. total) objects
only, n-conversion of proofs cannot be done via reduction to n-conversion of
terms. To see this, consider the proof

VP x
_Pxr
Ve Pz
ViP% — VxPx

The proof term is Aulzx.ux. If we n-normalize this to Auu, the proven for-
mula would be all V2 Pz — V2 P#. Therefore we split nbe-normalize-proof
into nbe-normalize-proof-without-eta and proof-to-eta-nf.
Moreover, for a full normalization of proofs (including permutative con-
versions) we need a preprocessing step that n-expands each ex-elim axiom
such that the conclusion is atomic or existential.
We need the following functions.

(proof-and-genavar-var-alist-to-pterm pvar-to-tvar proof)
(npterm-and-var-genavar-alist-and-formula-to-proof

npterm var-genavar-alist crit formula)
(elim-npterm-and-var-genavar-alist-to-proof

npterm var-genavar-alist crit).

Then we can define nbe-normalize-proof, abbreviated np.

9.3. Substitution. In a proof we can substitute

e types for type variables (by a type variable substitution tsubst),

e terms for variables (by a substitution subst),

e comprehension terms for predicate variables (by a predicate variable
substitution psubst), and

e proofs for assumption variables (by a assumption variable substitu-
tion asubst).

It is assumed that subst only affects those vars whose type is not changed
by tsubst, psubst only affects those predicate variables whose arity is not
changed by tsubst, and that asubst only affects those assumtion variabless
whose formula is not changed by tsubst, subst and psubst.

In the abstraction cases of the recursive definition, the abstracted variable
(or assumption variable) may need to be renamed. However, its type (or
formula) can be affected by tsubst (or tsubst, subst and psubst). Then
the renaming cannot be made part of subst (or asubst), because the condi-
tion above would be violated. Therefore we carry along procedures rename
renaming variables and arename for assumption variables, which remember
the renaming done so far.

MINLOG REFERENCE MANUAL 41

All these substitutions can be packed together, as an argument topasubst
for proof-substitute.

(proof-substitute proof topasubst)

If we want to substitute for a single variable only (which can be a type-, an
object-, a predicate - or an assumption-variable), then we can use

(proof-subst proof arg val)

The procedure expand-theorems expects a proof and a test whether a
string denotes a theorem to be replaced by its proof. The result is the
(normally quite long) proof obtained by replacing the theorems by their
saved proofs.

(expand-theorems proof name-test?)

9.4. Display. There are many ways to display a proof. We normally use
display-proof for a linear representation, showing the formulas and the
rules used. When we in addition want to check the correctness of the proof,
we can use check-and-display-proof.

However, we also provide a readable type-free lambda expression via
(proof-to-expr proof).

To display proofs we use the following functions. In case the optional
proof argument is not present, the current proof of an interactive proof
development is taken instead.

(display-proof . opt-proof) abbreviated dp

(check-and-display-proof . opt-proof) abbreviated cdp
(display-pterm . opt-proof) abbreviated dpt
(display-proof-expr . opt-proof) abbreviated dpe

We also provide versions which normalize the proof first:

(display-normalized-proof . opt-proof) abbreviated dnp
(display-normalized-pterm . opt-proof) abbreviated dnpt
(display-normalized-proof-expr . opt-proof) abbreviated dnpe

9.5. Classical logic. (proof-of-stab-at formula) generates a proof of
((A— F)— F) — A. For F, T one takes the obvious proof, and for other
atomic formulas the proof using cases on booleans. For all other prime or
existential formulas one takes an instance of the global assumption Stab:
(P — F) — F) — P. Here the argument formula must be unfolded. For
the logical form of falsity we take (proof-of-stab-log-at formula), and
similary for ex-falso-quodlibet we provide

(proof-of-efq-at formula)

(proof-of-efq-log-at formula)
Using these functions we can then define (reduce-efq-and-stab proof),
which reduces all instances of stability and ex-falso-quodlibet axioms in a

proof to instances of these global assumptions with prime or existential
formulas, or (if possible) replaces them by their proofs.

Pproof

42 MINLOG REFERENCE MANUAL

With rm-exc we can transform a proof involving classical existential quan-
tifiers in another one without, i.e. in minimal logic. The Exc-Intro and
Exc-Elim theorems are replaced by their proofs, using expand-theorems.

10. INTERACTIVE THEOREM PROVING WITH PARTIAL PROOFS

10.1. Partial proofs. A partial proof is a proof with holes, i.e. special
assumption variables (called goal variables) v, v1, v2 ...whose formulas
must be closed. We assume that every goal variable v has a single occurrence
in the proof. We then select a (not necessarily maximal) subproof vx1...xn
with distinct object or assumption variables x1...xn. Such a subproof is
called a goal. When interactively developing a partial proof, a goal vx1...xn
is replaced by another partial proof, whose context is a subset of x1...xn
(i.e. the context of the goal with v removed).

To gain some flexibility when working on our goals, we do not at each
step of an interactive proof development traverse the partial proof searching
for the remaining goals, but rather keep a list of all open goals together with
their numbers as we go along. We maintain a global variable PPROOF-STATE
containing a list of three elements: (1) num-goals, an alist of entries (number
goal drop-info hypname-info), (2) proof and (3) maxgoal, the maximal
goal number used.

At each stage of an interactive proof development we have access to the
current proof and the current goal by executing

(current-proof)
(current-goal)

10.2. Interactive theorem proving. For interactively building proofs we
need

(goal-to-goalvar goal)

(goal-to-context goal)

(goal-to-formula goal)

(goal=? proof goal)

(goal-subst proof goal proofl)
(pproof-state-to-num-goals)
(pproof-state-to-proof)
(pproof-state-to-formula)
(display-current-goal)
(display-current-goal-with-normalized-formulas)

(display-current-pproof-state)

We list some commands for interactively building proofs.

10.2.1. set-goal. An interactive proof starts with (set-goal formula), i.e.
with setting a goal. Here formula should be closed; if it is not, universal
quantifiers are inserted automatically.

10.2.2. normalize-goal. (normalize-goal goal) (abbreviated ng) replaces
every formula in the goal by its normal form.

MINLOG REFERENCE MANUAL 43

10.2.3. assume. With (assume x1 ...) we can move universally quanti-
fied variables and hypotheses into the context. The variables must be given
names (known to the parser as valid variable names for the given type), and
the hypotheses should be identified by numbers or strings.

10.2.4. use. In (use x . elab-path-and-terms), x is

e a number or string identifying a hypothesis form the context,

the string “Truth-Axiom”,

the name of a theorem or global assumption. If it is a global as-
sumption whose final conclusion is a nullary predicate variable dis-
tinct from L (e.g. Efq-Log or Stab-Log), this predicate variable is
substituted by the goal formula.

a closed proof,

a formula with free variables from the context, generating a new
goal.

The optional elab-path-and-terms is a list consisting of symbols left or
right, giving directions in case the used formula contains conjunctions, and
of terms. The universal quantifiers of the used formula are instantiated (via
pattern-unify) with appropriate terms in case a conclusion has the form of
the goal. The terms provided are substituted for those variables that cannot
be instantiated by pattern unification (e.g. using Vz.Pz — L for the goal
1). For the instantiated premises new goals are created.

10.2.5. use-with. This is a more verbose form of use, where the terms are
not inferred via unification, but have to be given explicitely. Also, for the
instantiated premises one can indicate how they are to come about. So in
(use-with x . x-list), x is as in use, and x-list is a list consisting of

a number or string identifying a hypothesis form the context,

the name of a theorem or global assumption,

a closed proof,

the string “?” (value of DEFAULT-GOAL-NAME), generating a new
goal,

a symbol left or right,

a term, whose free variables are added to the context,

a type, which is substituted for the first type variable,

a comprehension term, which is substituted for the first predicate
variable.

Notice that new free variables not in the ordered context can be intro-
duced in use-with. They will be present in the newly generated goals. The
reason is that proofs should be allowed to contain free variables. This is
necessary to allow logic in ground types where no constant is available (e.g
to prove VxPr — Vx—Px — L).

Notice also that there are situations where use-with can be applied but use
can not. For an example, consider the goal P(S(k +1)) with the hypothesis
VIP(k + 1) in the context. Then use cannot find the term SI by matching;
however, applying use-with to the hyposthesis and the term S succeeds
(since k + Sl and S(k + 1) have the same normal form).

44 MINLOG REFERENCE MANUAL

10.2.6. inst-with. inst-with does for forward chaining the same as use-with
for backward chaining. It replaces the present goal by a new one, with one
additional hypothesis obtained by instantiating a previous one. Notice that
this effect could also be obtained by cut. In (inst-with x . x-list), x
is

a number or string identifying a hypothesis form the context,

the name of a theorem or global assumption,

a closed proof,

a formula with free variables from the context, generating a new
goal.

and x-list is a list consisting of

a number or string identifying a hypothesis form the context,

the name of a theorem or global assumption,

a closed proof,

the string “?” (value of DEFAULT-GOAL-NAME), generating a new
goal,

a symbol left or right,

a term, whose free variables are added to the context,

a type, which is substituted for the first type variable,

a comprehension term, which is substituted for the first predicate
variable.

10.2.7. inst-with-to. inst-with-to expects a string as its last argument,
which is used (via name-hyp) to name the newly introduced instantiated
hypothesis.

10.2.8. cut. The command (cut A) replaces the goal B by the two new
goals A and A — B.

10.2.9. strip. To move (all or n) universally quantified variables and hy-
potheses of the current goal into the context, we uns the command (strip)
or (strip n).

10.2.10. drop. In (drop . x-1list), x-list is a list of numbers or strings
identifying hypotheses from the context. A new goal is created, which differs
from the previous one only in display aspects: the listed hypotheses are
hidden (but still present). If x-list is empty, all hypotheses are hidden.

10.2.11. name-hyp. The command name-hyp expects an index ¢ and a string.
Then a new goal is created, which differs from the previous one only in dis-
play aspects: the string is used to label the ith hypothesis.

10.2.12. split. The command (split) expects a conjunction A A B as goal
and splits it into the two new goals A and B.

10.2.13. get. To be able to work on a goal different from that on top of the
goal stack, we have have to move it up using (get n).

10.2.14. undo. With (undo . n), the last n steps of an interactive proof
can be made undone. (undo) has the same effect as (undo 1).

MINLOG REFERENCE MANUAL 45

10.2.15. ind. (ind) expects a goal Va” A with p an algebra. Let ci,..., ¢,
be the constructors of the algebra p. Then n new goals VZ;. Alx:=x1;] —
oo = Alzi=ay;] = Alx:=c¢;7;] are generated.

(ind t) expects a goal A[z:=t]. It computes the algebra p as type of
the term ¢. Then again n new goals VZ; A[z:=xy;] — -+ = A[zi=xp] —
Alx:=c¢;Z;] are generated.

10.2.16. simind. (simind all-formulal ...) also expects a goal VaPA
with p an algebra. Then we have to provide the other all formulas to be
proved simultaneously with the given one.

10.2.17. 4ntro. (intro i . terms) expects as goal an inductively defined
predicate. The i-th introduction axiom for this predicate is applied, via use
(hence terms may have to be provided).

10.2.18. elim. (elim) expects a goal I(f) — A[Z:=t]. Then the (strength-
ened) clauses are generated as new goals, via use-with.

10.2.19. ez-intro. In (ex-intro term), the user provides a term to be used
for the present (existential) goal. (exnc-intro x) works similarly for the
exnc-quanhtifier.

10.2.20. ez-elim. In (ex-elim x), x is

e a number or string identifying an existential hypothesis from the
context,

the name of an existential global assumption or theorem,

a closed proof on an existential formula,

an existential formula with free variables from the context, genera-
ting a new goal.

Let dyA be the existential formula identified by x. The user is then asked
to provide a proof for the present goal, assuming that a y satisfying A is
available. (exnc-elim x) works similarly for the exnc-quanhtifier.

10.2.21. by-assume-with. Suppose we are proving a goal GG from an existen-
tial hypothesis FxHyp: JyA. Then the natural way to use this hypothesis
is to say “by FxHyp assume we have a y satisfying A”. Correspondingly
we provide (by-assume-with x y u). Here x — as in ex-elim — identi-
fies an existential hypothesis, and we assume (i.e. add to the context) the
variable y and — with label u — the kernel A. (by-assume-with x y u)
is implemented by the sequence (ex-elim x), (assume y u), (drop x).
by-exnc-assume-with works similarly for the exnc-quantifier.

10.2.22. cases. (cases) expects a goal Vz?A with p an algebra. Assume
that ¢q,. .., ¢, are the constructors of the algebra p. Then n new (simplified)
goals VZ; Alx:=c;¥;] are generated.

(cases t) expects a goal A[z:=t]. It computes the algebra p as type of
the term ¢. Then again n new goals V¥; A[x:=c¢;Z;] are generated.

(cases ’auto) expects an atomic goal and checks whether its boolean
kernel contains an if-term whose test is neither an if-term nor contains bound
variables. With the first such test (cases test) is called.

46 MINLOG REFERENCE MANUAL

10.2.23. casedist. (casedist t) replaces the goal A containing a boolean
term ¢ by two new goals (atom t) — A[t:=tt] and ((atom t) — ff) — A[t:=ff].

10.2.24. simp. In (simp opt-dir x . elab-path-and-terms), the op-
tional argument opt-dir is either the string “<-" or missing. x is

a number or string identifying a hypothesis form the context,

the name of a theorem or global assumption,

a closed proof,

a formula with free variables from the context, generating a new
goal.

The optional elab-path-and-terms is a list consisting of symbols left or
right, giving directions in case the used formula contains conjunctions, and
of terms. The universal quantifiers of the used formula are instantiated
with appropriate terms to match a part of the goal. The terms provided are
substituted for those variables that cannot be inferred. For the instantiated
premises new goals are created. This generates a used formula, which is to
be an atom, a negated atom or t ~ s. If it as a (negated) atom, it is checked
whether the kernel or its normal form is present in the goal. If so, it is
replace by T (or F). If it is an equality t = s or ¢t & s with ¢ or its normal
form present in the goal, t is replaced by s. In case “<-" exchange ¢ and s.

10.2.25. simp-with. This is a more verbose form of simp, where the terms
are not inferred via matching, but have to be given explicitely. Also, for
the instantiated premises one can indicate how they are to come about. So
in (simp-with opt-dir x . x-1list), opt-dir and x are as in simp, and
x-list is a list consisting of

a number or string identifying a hypothesis form the context,

the name of a theorem or global assumption,

a closed proof,

the string “?” (value of DEFAULT-GOAL-NAME), generating a new
goal,

a symbol left or right,

a term, whose free variables are added to the context,

a type, which is substituted for the first type variable,

a comprehension term, which is substituted for the first predicate
variable.

10.2.26. min-pr. In (min-pr x measure), x is

e a number or string identifying a classical existential hypothesis from
the context,

the name of a classical existential global assumption or theorem,

a closed proof on a classical existential formula,

a classical existential formula with free variables from the context,
generating a new goal.

The result is a new implicational goal, whose premise provides the (classical)
existence of instances with least measure.

10.2.27. exc-intro. In (exc-intro terms), the user provides terms to be
used for the present (classical existential) goal.

MINLOG REFERENCE MANUAL 47

10.2.28. exc-elim. In (exc-elim x), x is

e a number or string identifying a classical existential hypothesis from
the context,

the name of a classical existential global assumption or theorem,

a closed proof on a classical existential formula,

a classical existential formula with free variables from the context,
generating a new goal.

Let Elcagjf_l' or Elc'gjff be the classical existential formula identified by x. The
user is then asked to provide a proof for the present goal, assuming that
terms ¢/ satisfying A are available.

10.2.29. pair-elim. In (pair-elim), a goal VpP(p) is replaced by the new
goal V1, 2o P({x1,x2)).

11. SEARCH

Following MILLER [10] and BERGER, we have implemented a proof search
algorithm for minimal logic. To enforce termination, every assumption can
only be used a fixed number of times.

We begin with a short description of the theory involved.

Q always denotes a V3IV-prefix, say V&3yVvz, with distinct variables. We
call ¥ the signature variables, i the flexible variables and 2’ the forbidden
variables of), and write Q3 for the existential part 35 of Q.

Q-terms are inductively defined by the following clauses.

e If u is a universally quantified variable in @) or a constant, and 7 are
Q-terms, then ui is a Q-term.

e For any flexible variable y and distinct forbidden variables 2z’ from
Q, yZ is a Q-term.

o If r is a QVz-term, then Azr is a Q-term.

Explicitely, r is a @-term iff all its free variables are in @), and for every
subterm y7 of r with y free in r and flexible in @), the i are distinct variables
either A\-bound in 7 (such that y7 is in the scope of this A) or else forbidden
in Q.

Q-goals and Q-clauses are simultaneously defined by

o If 7 are Q-terms, then P7 is a Q-goal as well as a Q)-clause.

If D is a Q-clause and G is a Q-goal, then D — G is a Q-goal.
If G is a @-goal and D is a @Q-clause, then G — D is a Q)-clause.
If G is a QVz-goal, then Vz(G is a ()-goal.
If D[y:=Y Z] is a VZ3y, YVZ-clause, then YyD is a VZ3yVz-clause.

Explicitely, a formula A is a Q-goal iff all its free variables are in (), and for
every subterm yi* of A with y either existentially bound in A (with y7 in the
scope) or else free in A and flexible in @, the 7 are distinct variables either
A- or universally bound in A (such that y7 is in the scope) or else free in A
and forbidden in Q.

A Q-sequent has the form P = G, where P is a list of @-clauses and G
is a Q-goal.

A Q-substitution is a substitution of Q-terms.

48 MINLOG REFERENCE MANUAL

A wunification problem U consists of a V3IV-prefix @) and a conjunction C
of equations between Q-terms of the same type, i.e. Ni_y 7 = ;. We may
assume that each such equation is of the form AxXr = AZs with the same &
(which may be empty) and r, s of ground type.

A solution to such a unification problem U is a @-substitution ¢ such
that for every i, ;o = s;p holds (i.e. r;p and s;p have the same normal
form). We sometimes write C' as ¥ = §, and (for obvious reasons) call it a
list of unification pairs.

We work with lists of sequents instead of single sequents; they all are
@-sequents for the same prefix). One then searches for a @-substitution
 and proofs of the y-substituted sequents. intro-search takes the first
sequent and extends () by all universally quantified variables x1 It then
calls select, which selects (using or) a fitting clause. If one is found, a new
prefix Q' (raising the new flexible variables) is formed, and the n (> 0) new
goals with their clauses (and also all remaining sequents) are substituted
with star o p, where star is the “raising” substitution and p is the mgu.
For this constellation intro-search is called again. In case of success, one
obtains a @Q’-substitution ¢’ and proofs of the star o p o ¢/ -substituted
new sequents. Let ¢ := (po ¢')[Q3, and take the first n proofs of these to
build a proof of the g-substituted (first) sequent originally considered by
intro-search.

Compared with Miller [I0], we make use of several simplifications, opti-
mizations and extensions, in particular the following.

e Instead of arbitrarily mixed prefixes we only use those of the form
vV3V. Nipkow in [II] already had presented a version of Miller’s
pattern unification algorithm for such prefixes, and Miller in [I0,
Section 9.2] notes that in such a situation any two unifiers can be
transformed into each other by a variable renaming substitution.
Here we restrict ourselves to VdV-prefixes throughout, i.e. in the
proof search algorithm as well.

e The order of events in the pattern unification algorithm is changed
slightly, by postponing the raising step until it is really needed. This
avoids unnecessary creation of new higher type variables. — Already
Miller noted in [I0, p.515] that such optimizations are possible.

e The extensions concern the (strong) existential quantifier, which has
been left out in Miller’s treatment, and also conjunction. The latter
can be avoided in principle, but of course is a useful thing to have.

(search m (namel m1) ...) expects for m a default value for multi-
plicity (i.e. how often assumptions are to be used), for namel ...

e numbers of hypotheses from the present context or
e names for theorems or global assumptions,

and for ml ...multiplicities (positive integers for global assumptions or
theorems). A search is started for a proof of the goal formula from the
given hypotheses with the given multiplicities and in addition from the other
hypotheses (but not any other global assumptions or theorems) with m
or mult-default. To exclude a hypothesis from being tried, list it with
multiplicity 0.

MINLOG REFERENCE MANUAL 49

12. COMPUTATIONAL CONTENT OF CLASSICAL PROOFS

Classical
This section is based on [3]. We restrict to formulas in the language
{L,—,V} in this section, and - as in the paper - make use of a special
nullary predicate variable X.
A formula is relevant if it ends with (logical) falsity. Definite and goal
formulas are defined by a simultaneous recursion, as in [3].

(atr-relevant? formula)
(atr-definite? formula)
(atr-goal? formula)
To implement [3, Lemma 3.1], we need to construct proofs from formulas:
Np: (D — L) = X) — DX for D relevant
Mp: D — DX
Ka: G — GX for G irrelevant
Hg:GX - (G—X) = X
This is done by
(atr-rel-definite-proof formula)
(atr-arb-definite-proof formula)
(atr-irrel-goal-proof formula)
(atr-arb-goal-proof formula)
Next we need to implement [3, Lemma 3.2], which says that for goal formulas
G = Gy,...,G, we can derive in minimal logic augmented with a special
predicate variable X
(G- X)—=GY = X.
In our implementation this function is called
(atr-goals-to-x-proof goall ...)
Finally we implement [3| Theorem 3.3], which says the following. Assume
that for definite formulas D and goal formulas G we can derive in minimal
logic
D— (VyG— 1)— L.
Then we can also derive in intuitionistic logic augmented with the special
predicate variable X
D — (V.G — X) = X.
In particular, substitution of the formula
37.G :=37.G1 A - NGy
for X yields a derivation in intuitionistic logic of
D— ng.é.
This is done by
(atr-min-excl-proof-to-x-proof min-excl-proof)

(atr-min-excl-proof-to-intuit-ex-proof min-excl-proof)

S:ExtrTerms

50 MINLOG REFERENCE MANUAL

See section [13| for an interpretation of the symbols of the extracted terms
in Minlog’s output.

13. EXTRACTED TERMS

We assign to every formula A an object 7(A) (a type or the symbol
nulltype). 7(A) is intended to be the type of the program to be extracted
from a proof of A. This is done by

(formula-to-et-type formula)

In formula-to-et-type we assign type variables to the predicate variables.
For to be able to later refer to this assignment, we use a global variable
PVAR-TO-TVAR-ALIST, which memorizes the assigment done so far. Later
reference is necessary, because such type variables will appear in extracted
programs of theorems involving predicate variables, and in a given develop-
ment there may be many auxiliary lemmata containing the same predicate
variable. A fixed pvar-to-tvar refers to and updates PVAR-TO-TVAR-ALIST.

When we want to execute the program, we have to replace the constant
cL corresponding to a lemma L by the extracted program of its proof, and
the constant cGA corresponding to a global assumption GA by an assumed
extracted term to be provided by the user. This can be achieved by adding
computation rules for cL and cGA. We can be rather flexible here and en-
able/block rewriting by using animate/deanimate as desired. Notice that
the type of the extracted term provided for a cGA must be the extracted type
of the assumed formula. When predicate variables are present, one must use
the type variables assigned to them in PVAR-TO-TVAR-ALIST.

(animate thm-or-ga-name . opt-eterm)

(deanimate thm-or-ga-name)

We can define, for a given derivation M of a formula A with 7(A) #
nulltype, its extracted term (or extracted program) et(M) of type 7(A).
We also need extracted terms for the axioms. For induction we take recur-
sion, for the proof-by-cases axiom we take the cases-construct for terms; for
the other axioms the extracted terms are rather clear. Term extraction is
implemented by

(proof-to-extracted-term proof)

The following table gives the symbols of Minlog’s output and the corre-
sponding notation in the A-calculus.

Explanation Symbol | Minlog’s Output
A-abstraction: Ax. M ([xIM)

pair: (M| N) (MON)

left element of a pair: (M 0) left M

right element of a pair: | (M 1) right M
arrow for types: — =>
product for types: X ©aQ
recursion operator: R R

MINLOG REFERENCE MANUAL 51

It is also possible to give an internal proof of soundness. This can be done
by

(proof-to-soundness-proof proof)

14. READING FORMULAS IN EXTERNAL FORM

A formula can be produced from an external representation, for example
a string, using the pt function. It has one argument, a string denoting a
formula, that is converted to the internal representation of the formula. For
the following syntactical entities parsing functions are provided:

(py string) for parsing types
(pv string) for parsing variables
(pt string) for parsing terms

(pf string) for parsing formulas

The conversion occurs in two steps: lexical analysis and parsing.

14.1. Lexical analysis. In this stage the string is brocken into short se-
quences, called tokens.
A token can be one of the following:

e An alphabetic symbol: A sequence of letters a—z and A-Z. Upper
and lower case letters are considered different.

e A number: A sequence of digits 0-9

e A punctuation mark: One of the characters: () [] ., ;

e A special symbol: A sequence of characters, that are neither letters,
digits, punctuation marks nor white space.

For example: abc, ABC and A are alphabetic symbols, 123, 0123 and 7 are
numbers, (is a punctuation mark, and <=, +, and #:-" are special symbols.

Tokens are always character sequences of maximal length belonging to one
of the above categories. Therefore f£x is a single alphabetic symbol not two
and likewise <+ is a single special symbol. The sequence alpha<=(-x+z),
however, consists of the 8 tokens alpha, <=, (, -, x, +, z, and). Note that
the special symbols <= and - are separated by a punctuation mark, and the
alphabetic symbols x and z are separated by the special symbol +.

If two alphabetic symbols, two special symbols, or two numbers follow
each other they need to be separated by white space (spaces, newlines, tabs,
formfeeds, etc.). Except for a few situations mentioned below, whitespace
has no significance other than separating tokens. It can be inserted and
removed between any two tokens without affecting the significance of the
string.

Every token has a token type, and a value. The token type is one of the
following: number, var-index, var-name, const, pvar-name, predconst, type-
symbol, pscheme-symbol, postfix-op, prefix-op, binding-op, add-op, mul-op,
rel-op, and-op, or-op, imp-op, pair-op, if-op, postfix-jct, prefix-jct, and-jct,
or-jct, tensor-jct, imp-jct, quantor, dot, hat, underscore, comma, semicolon,
arrow, lpar, rpar, lbracket, rbracket.

The possible values for a token depend on the token type and are explained
below.

Reading

52 MINLOG REFERENCE MANUAL

New tokens can be added using the function
(add-token string token-type value).
The inverse is the function
(remove-token string).

A list of all currently defined tokens sorted by token types can be obtained
by the function
(display-tokens).

14.2. Parsing. The second stage, parsing, extracts structure form the se-
quence of tokens.

Types. Type-symbols are types; the value of a type-symbol must be a type.
If o and 7 are types, then ;7 is a type (pair type) and o=>7 is a type (func-
tion type). Parentheses can be used to indicate proper nesting. For exam-
ple boole is a predefined type-symbol and hence, (boole;boole)=>boole
is again a type. The parentheses in this case are not strictly necessary, since
; binds stronger than =>. Both operators associate to the right.

Variables. Var-names are variables; the value of a var-name token must
be a pair consisting of the type and the name of the variable (the same
name string again! This is not nice and may be later, we find a way to give
the parser access to the string that is already implicit in the token). For
example to add a new boolean variable called “flag”, you have to invoke the
function (add-token "flag" ’var-name (cons ’boole "flag")). This
will enable the parser to recognize “flag3”, “flag~”, or “flag~14” as well.

Further, types, as defined above, can be used to construct variables.

A variable given by a name or a type can be further modified. If it is
followed by a ~, a partial variable is constructed. Instead of the ~ a _ can
be used to specify a total variable.

Total variables are the default and therefore, the _ can be omitted.

As another modifier, a number can immediately follow, with no white-
space in between, the ~ or the _, specifying a specific variable index.

In the case of indexed total variables given by a variable name or a type
symbol, again the _ can be omitted. The number must then follow, with no
whitespace in between, directly after the variable name or the type.

Note: This is the only place where whitespace is of any significance in
the input. If the =, _, type name or variable name is separated from the
following number by whitespace, this number is no longer considered to be
an index for that variable but a numeric term in its own right.

For example, assuming that p is declared as a variable of type boole, we
have:

p a total variable of type boole with name p and no index.

p_ a total variable of type boole with name p and no index.

p~ a partial variable of type boole with name p and no index.
p2 a total variable of type boole with name p and index 2.

p_2 a total variable of type boole with name p and index 2.
p~2 a partial variable of type boole with name p and index 2.
boole a total anonymous variable of type boole with no index.
boole_ a total anonymous variable of type boole with no index.

MINLOG REFERENCE MANUAL 53

boole” a partial anonymous variable of type boole with no index.
boole_2 a total anonymous variable of type boole with index 2.
boole2 a total anonymous variable of type boole with index 2.
boole”2 a partial anonymous variable of type boole with index 2.
boole 2 a total anonymous variable of type boole applied to the
numeric term 2.
e (boole)2 a total anonymous variable of type boole applied to the
numeric term 2.
e (boole)_2 a total anonymous variable of type boole with index 2.
e boole=>boole”2 a partial anonymous variable of type function of
boole to boole with index 2.

Terms are built from atomic terms using application and operators.

An atomic term is one of the following: a constant, a variable, a number,
a conditional, or any other term enclosed in parentheses.

Constants have const as token type, and the respective term in inter-
nal form as value. There are also composed constants, so-called constant
schemata. A constant schema has the form of the name of the constant
schema (token type constscheme) followed by a list of types, the whole
thing enclosed in parentheses. There are a few built in constant schemata:
(Rec <typelist>) is the recursion over the types given in the type list;
(EQat <type>) is the equality for the given type; (Eat <type>) is the ex-
istence predicate for the given type. The constant schema EQat can also be
written as the relational infix operator =; the constant schemata Eat can
also be written as the prefix operator E.

For a number, the user defined function make-numeric-term is called
with the number as argument. The return value of make-numeric-term
should be the internal term representation of the number.

To form a conditional term, the if operator if followed by a list of atomic
terms is enclosed in square brackets. Depending on the constructor of the
first term, the selector, a conditional term can be reduced to one of the
remaining terms.

From these atomic terms, compound terms are built not only by appli-
cation but also using a variety of operators, that differ in binding strength
and associativity.

Postfix operators (token type postfix-op) bind strongest, next in binding
strength are prefix operators (token type prefix-op), next come binding
operators (token type binding-op).

A binding operator is followed by a list of variables and finally a term.
There are two more variations of binding operators, that bind much weaker
and are discussed later.

Next, after the binding operators, is plain application. Juxtaposition of
two terms means applying the first term to the second. Sequences of appli-
cations associate to the left. According to the vector notation convention
the meaning of application depends on the type of the first term. Two
forms of applications are defined by default: if the type of the first term is
of arrow-form? then make-term-in-app-form is used; for the type of a free
algebra we use the corresponding form of recursion. However, there is one ex-
ception: if the first term is of type boole application is read as a short-hand

54 MINLOG REFERENCE MANUAL

for the “if...then ...else” construct (which is a special form) rather than
boolean recursion. The user may use the function add-new-application
to add new forms of applications. This function takes two arguments, a
predicate for the type of the first argument, and a function taking the two
terms and returning another term intended to be the result of this form of
application. Predicates are tested in the inverse order of their definition, so
more general forms of applications should be added first.

By default these new forms of application are not used for output; but the
user might declare that certain terms should be output as formal application.
When doing so it is the user’s responisbility to make sure that the syntax
used for the output can still be parsed correctly by the parser! To do so the
function (add-new-application-syntax pred toarg toop) can be used,
where the first argument has to be a predicate (i.e., a function mapping
terms to #t and #f) telling whether this special form of application can be
used. If so, the arguments toarg and toop have to be functions mapping
the term to operator and argument of this “application” respectively.

After that, we have binary operators written in infix notation. In order
of decreasing binding strength these are:

multiplicative operators, leftassociative, token type mul-op;
additive operators, leftassociative, token type add-op;

relational operators, not associative, token type rel-op;

boolean and operators, leftassociative, token type and-op;

boolean or operators, leftassociative, token type or-op;

boolean implication operators, rightassociative, token type imp-op;
pairing operators, rightassociative, token type pair-op.

On the top level, we have two more forms of binding operators, one using
the dot “.”, the other using square brackets “[]1”. Recall that a binding
operator is followed by a list of variables and a term. This notation can
be augmented by a period “.” following after the variable list and before
the term. In this case the scope of the binding extends as far to the right
as possible. Bindings with the lambda operator can also be specified by
including the list of variables in square brackets. In this case, again, the
scope of the binding extends as far as possible.

Predefined operators are E and = as described above, the binding operator
lambda, and the pairing operator @ with two prefix operators left and right
for projection.

The value of an operator token is a function that will obtain the internal
representation of the component terms as arguments and returns the internal
representation of the whole term.

If a term is formed by application, the function make-gen-application
is called with two subterms and returns the compound term. The default
here (for terms with an arrow type) is to make a term in application form.
However other rules of composition might be introduced easily.

Formulas are built from atomic formulas using junctors and quantors.

The simplest atomic formulas are made from terms using the implicit
predicate “atom”. The semantics of this predicate is well defined only for
terms of type boole. Further, a predicate constant (token type predconst)
or a predicate variable (token type pvar) followed by a list of atomic terms is

MINLOG REFERENCE MANUAL 55

an atomic formula. Lastly, any formula enclosed in parentheses is considered
an atomic formula.

The composition of formulas using junctors and quantors is very similar
to the composition of terms using operators and binding. So, first postfix
junctors, token type postfix-jct, are applied, next prefix junctors, token
type prefix-jct, and quantors, token type quantor, in the usual form:
quantor, list of variables, formula. Again, we have a notation using a pe-
riod after the list of variables, making the scope of the quantor as large as
possible. Predefined quantors are ex, excl, exca, and all.

The remaining junctors are binary junctors written in infix form. In order
of decreasing binding strength we have:

conjunction junctors, leftassociative, token type and-jct;
disjunction junctors, leftassociative, token type or-jct;
tensor junctors, rightassociative, token type tensor-jct;
implication junctors, rightassociative, token type imp-jct.

Predefined junctors are & (and), ! (tensor), and -> (implication).

The value of junctors and quantors is a function that will be called with
the appropriate subformulas, respectively variable lists, to produce the com-
pound formula in internal form.

REFERENCES

[1] Klaus Aehlig and Helmut Schwichtenberg, A syntactical analysis of non-size-increa-
sing polynomial time computation, Proceedings 15’th Symposium on Logic in Com-
puter Science (LICS 2000), 2000, pp. 84-91.

Ulrich Berger, Program extraction from normalization proofs, Typed Lambda Calculi

and Applications (M. Bezem and J.F. Groote, eds.), LNCS, vol. 664, Springer Verlag,

Berlin, Heidelberg, New York, 1993, pp. 91-106.

Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg, Refined program ex-

traction from classical proofs, Annals of Pure and Applied Logic 114 (2002), 3-25.

12

Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg, Term rewriting for nor-
malization by evaluation, Information and Computation 183 (2003), 19-42.
AT G

[5] Ulrich Berger and Helmut Schwichtenberg, An inverse of the evaluation functional
for typed X-calculus, Proceedings 6’th Symposium on Logic in Computer Science

(LICS’91) (R. Vemuri, ed.), IEEE Computer Society Press, Los Alamitos, 1991,

pp. 203-211. [6.1]

Stefan Berghofer, Proofs, programs and executable specifications in higher order logic,
Ph.D. thesis, Institut fiir Informatik, TU Miinchen, 2003. [L.6]

Martin Hofmann, Linear types and non-size-increasing polynomial time computa-

tion, Proceedings 14’th Symposium on Logic in Computer Science (LICS’99), 1999,

pp. 464-473.[22

Felix Joachimski and Ralph Matthes, Short proofs of normalisation for the simply-
typed A-calculus, permutative conversions and Gédel’s T, Archive for Mathematical
Logic 42 (2003), 59-87. [f]

[9] Ralph Matthes, Extensions of System F by Iteration and Primitive Recursion on
Monotone Inductive Types, Ph.D. thesis, Mathematisches Institut der Universitéat
Miinchen, 1998. @

[10] Dale Miller, A logic programming language with lambda—abstraction, function vari-
ables and simple unification, Journal of Logic and Computation 2 (1991), no. 4,

497-536. L6} [TT]

2

[3

[4

6

[7

8

56 MINLOG REFERENCE MANUAL

[11] Tobias Nipkow, Higher-order critical pairs, Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science (Los Alamitos) (R. Vemuri, ed.), IEEE
Computer Society Press, 1991, pp. 342-349. [T]]

[12] Viggo Stoltenberg-Hansen, Edward Griffor, and Ingrid Lindstrom, Mathematical the-
ory of domains, Cambridge Tracts in Theoretical Computer Science, Cambridge Uni-
versity Press, 1994. [T} 2] 3]

[13] AnneS. Troelstra and Helmut Schwichtenberg, Basic proof theory, 2nd ed., Cambridge
University Press, 2000. 5]

=—to-E-1, 37
=-to-E-2,[32]
=-to-Eq, [32]

aconst-to-formula, [30]
aconst-to-inst-formula, m
aconst-to-kind, [30]
aconst-to-name, [30]
aconst-to-repro-formulas, [30]
aconst-to-string, [30]
aconst-to-tpsubst, [30]
aconst-to-uninst-formula, @
aconst-without-rules?, [30]
aconst="7, [30]

aconst?, [30]

add-alg, [§
add-algebras-with-parameters, |§|
add-algs, [§]
add-computation-rule, [I7]
add-global-assumption, [36]
add-ids, [I9]
add-new-application, [53]
add-param-alg, [§]
add-param-algs, [§]
add-predconst-name, [I9]
add-program-constant, [I7]
add-pvar-name, [I§]
add-rewrite-rule, [I7]
add-theorem, [37]
add-tvar-name, [7]
add-var-name, [T0]

aga, [36]

alg-form-to-name, [§
alg-form-to-types, [§
alg-form?,[§
alg-name-to-arity, [
alg-name-to-simalg-names, |§|
alg-name-to-token-types, [
alg-name-to-tvars, [
alg-name-to-typed-constr-names, [§]
alg?,[§

Al1-Al1Partial, @
all-allpartial-aconst, 32
All-AllPartial-nat, [32]
all-form-to-kernel, @
all-form-to-var, [26]
all-form-to-vars-and. .., [27]
all-form?, 25
all-formula-to-cases-aconst, |3_Z|
all-formulas-to-ind-aconst, [34]
allnc-form-to-kernel, [2_3]
allnc-form-to-var, 20|
allnc-form?, [25]
AllPartial-All, @
allpartial-all-aconst, 32]

AllPartial-All-nat,,
and-form-to-left, [20]
and-form-to-right, [20]
and-form?, 2]
animate, [9]
animation, 23]
arity
of a predicate variable,
of a program constant,
arity-to-string, [I§
arity-to-types, [I§]
arrow-form-to-arg-type, [J]
arrow-form-to-arg-types, [J]
arrow-form-to-final-val-type, [J]
arrow-form-to-val-type, [J]
arrow-form?, [J]
arrow-types-to-rec-const, |T_7|
assume, [12]
assumption constant, @
asubst, [0]
Atom-False, [34]
atom-form-to-kernel, 25
atom-form?, [25]
Atom-True, [34]
atr-arb-definite-proof, [4§|
atr-arb-goal-proof, [Ag|
atr-definite?, [Ag]
atr-goal?, [4g]
atr-goals-to-x-proof, [Ag]
atr-irrel-goal-proof, @
atr-min-...-to-intuit-ex-proof, @
atr-min-excl-proof-to-x-proof, [4g]
atr-rel-definite-proof, 4§
atr-relevant?, [Ag]
avar-proof-equal?, [f]
avar-to-formula, [29]
avar-to-index, [29]
avar-to-name, [29]
avar="7, [f]
avar=7, [29]
avar?, [29]

Berger, [40]

bottom, [T7]
by-assume-with, [44]
by-exnc-assume-with, 4]

Cases, [33] 34

cases, [44]

cases-construct, [33]
Cases-Log, [35]
check-and-display-proof, 0]
classical-cterm=?, 28|
classical-formula=?, [27] 28|
clause,

Compatibility, [31]

58 MINLOG REFERENCE MANUAL

Compose, [I5]
compose-o-substitutions, [24]

compose-substitutions, |Q_Z|
compose-substitutions-wrt, |E_')'|
compose-t-substitutions, 0]
composition, [f]

comprehension term, [T7} [25]
computation rule,
computation rules,
consistent-substitutions-wrt?, |§|
const-to-arrow-types-or. . ., [[f]
const-to-kind, [If]
const-to-name, [T6]
const-to-object-or-arity, [If]
const-to-t-deg, [I6]
const-to-token-type, [If]
const-to-tsubst, [I0]
const-to-tvars, [If]
const-to-type, [0
const-to-uninst-type, [I6]
const=7, [T6]

const?, [I6]

constant scheme,
constr-name-and-tsubst. . ., [I0]
constr-name-to-constr, [If]
constr-name?, [If]
Constr-Total, [3]]
Constr-Total-Args, [3]]
constructor, [T6]
constructor pattern, @
context, [30]
context-to-avars, 38|
context-to-vars, 38|
context="7, 3§
conversion relation, [T5]
Coquand, [
cterm-subst, 2§
cterm-substitute, 28|
cterm-to-formula, 28|
cterm-to-free, [2§
cterm-to-string, [2§|
cterm-to-vars, 2§
cterm=7, 2§

cterm?, 2§
current-goal, [41]
current-proof, [A1]

cut, [3]

Cvind-with-measure-11, [39|

deanimate, [49]

default-var-name, [I0]

degree of totality,
display-constructors, [I0]
display-current-goal, [41]
display-current-goal-with. .., [4]]
display-current-num-goals. . ., [£]]
display-global-assumptions, @

display-normalized-proof, @
display-normalized-proof-expr, @
display-normalized-pterm, @
display-p-substitution, [29]
display-program-constants, [I7]
display-proof,
display-proof-expr,
display-pterm,
display-substitution, [24]
display-t-substitution, [f
display-theorens, [34]

£ [
E-to-Total, [32]
E-to-Total-nat, [3]]
Efq, [36]

Efq-Atom, [34]
Efqg-Log, [36]

Elim, [34]

elim, [44]
empty-subst, [f

Eq, [T5]

Eq-Compat, [32]
eq-compat-aconst, [32]
Eq-Ext, @

Eq-Refl, B1] B2
eq-refl-aconst, [32]
Eq-Symm, [3T] 32
eq-symm-aconst, [32]
Eq-to-=-1,[32
Eq-to-=-1-nat, [3]
Eq-to-=-2, @
Eq-to-=-2-nat, [3]]
Eq-Trans, [31] 32
eq-trans-aconst, 32
equal-pvars?, [I§]
=-Refl-nat, [34]
=-Symm-nat, [34]
=-Trans-nat, [34]
equality, [3]
=-to-E-1-nat, [3]]
=-to-E-2-nat, [3]]
=-to-Eq-nat, [3]]
evaluation,
Ex-Elim, [I5] 30} B2
Ex-Elim, [34]

ex-elim, [44]
Ex-ExPartial, [32]
ex-expartial-aconst, [32]

MINLOG REFERENCE MANUAL

Ex-ExPartial-nat, [32]
ex-form-to-kernel, [20]
ex-form-to-var, [2§]
ex-form-to-vars-and. . ., [27]
ex-form?, 25|
ex-for...-to-ex-elim-const, [I7] [34]
ex-formula-to-ex-intro-aconst, @
Ex-Intro, [30] B2
Ex-Intro, [34]

ex-intro, [{4]

exc-elim, [40]

exc-intro, [45

exca, [24]
exca-form-to-kernel, [20]
exca-form-to-var, [26]
exca-form?, 25

excl, [24]
excl-form-to-kernel, 2]
excl-form-to-var, [2§]
excl-form?, 25
exnc-elim, [44]
exnc-form-to-kernel, [20]
exnc-form-to-var, [26]
exnc-form?, 25
exnc-intro, [{4]
expand-theorens, [A(]
ExPartial-Ex, [32]
expartial-ex-aconst, [32]
ExPartial-Ex-nat, [32]
ext-aconst, [32]
Extensionality, [31]
extracted program, @
extracted term, [49]

falsity, 29

falsity-log, 25

Filliatre,

finalg-to-=-const, [I7]
finalg-to-=-to-e-1-aconst, 32
finalg-to-=-to-e-2-aconst, 32
finalg-to-=-to-eq-aconst, 32|

finalg-to-all-allpartial-aconst, [32]

finalg-to-e-const, [I7]
finalg-to-e-to-total-aconst, @
finalg-to-eq-to-=-1-aconst, 32
finalg-to-eq-to-=-2-aconst, 32
finalg-to-expartial-ex-aconst, [32]
finalg-to-total-to-e-aconst, 32
finalg?,
fold-cterm, 28|
fold-formula, [27]
formula

definite,

folded,

goal, [4§]

prime, [24]

relevant,

unfolded, [24]
formula-subst, 2§
formula-substitute, 2§
formula-to-et-type, A9
formula-to-free, [27]
formula-to-prime-subformulas, |Z7|
formula-to-string, [2§|

formula=7, 27] 28|
get, @3]

global assumption,
global-assdots-name-to-aconst, [30]
goal, []

goal-subst, [A1]

goal-to-context, [A]]
goal-to-formula, 4]
goal-to-goalvar, [4]]

goal=7,]

ground-type?,

Harrop degree,
Harrop formula,
Huet, @

if-construct, 20} B3]
imp-form-to-conclusion, [25]
imp-form-to-final-conclusion, @
imp-form-to-premise, [25]
imp-form-to-premises, |Z7|
imp-form?, [25]
imp-formulas-to-elim-aconst, [34]
Ind, 33} 34

Ind, [33]

ind, @

induction, [33]

inst-with, A3

inst-with-to, {3

Intro, [34]

intro, [{4]

intro-search, 7]

Letouzey, [4]
lexical analysis,

make-=, [25]

make-aconst, [30]
make-alg,
make-all, 26]
make-allnc, [26]
make-and, [25]
make-arity, [I§
make-arrow, [J]
make-atomic-formula, [25]
make-avar, [29]
make-const, [If]
make-cterm, [27]
make-e, [25]
make-eq, [25]
make-ex, [26]

59

60 MINLOG REFERENCE MANUAL

make-exca, [26]

make-excl, [26]

make-exnc, [26]

make-imp, [25]

make-inhabited, [§]
make-predconst, [T9]
make-predicate-formula, @
make-proof-in-aconst-form, @
make-proof-in-all-elim-form, 37|
make-proof-in-all-intro-form, @
make-proof-in-and-elim-1...,[37]
make-proof-in-and-elim-r.. ., [37]
make-proof-in-and-intro-form, |3;7|
make-proof-in-avar-form, |3_B'|
make-proof-in-cases-form, [37]
make-proof-in-ex-intro-form, @
make-proof-in-imp-elim-form, |3_7|
make-proof-in-imp-intro-form, [3¢
make-pvar, [I§]
make-quant-formula, [27]
make-star, [J]

make-subst, [f

make-subst-wrt, [
make-substitution, 5]
make-substitution-wrt, [f
make-tensor, [20]
make-term-in-abst-form, 21]
make-term-in-app-form, [2]]
make-term-in-const-form, [20]
make-term-in-if-form, [2]]
make-term-in-lcomp-form, @
make-term-in-pair-form, |?_T|
make-term-in-rcomp-form, @
make-term-in-var-form, 20|
make-total, [25]

Miller, [4] [46]

min-pr, [5|
Minpr-with-measure-111, 35
mk-all, 26]

mk-allnc, [27]

mk-and, [26]

mk-arrow, [J]

mk-ex, [27]

mk-exca, [2;7]

mk-excl, [27]

mk-exnc, [27]

mk-imp, [26]

mk-neg, [26]

mk-neg-1log, [26]
mk-proof-in-and-intro-form, @
mk-proof-in-elim-form, 3§
mk-proof-in-ex-intro-form, @
mk-proof-in-intro-form, [37]
mk-quant, 27]

mk-tensor, [26]
mk-term-in-abst-form, [22]
mk-term-in-app-form, 2]]

mk-var, [I0]

name-hyp, (3]

nbe-constr-value-to-constr, @
nbe-constr-value-to—-name, @
nbe-constr-value?, 23
nbe-constructor-pattern?, 23|
nbe-extract, [23
nbe-fam-value?, 23]
nbe-formula-to-type, [27]
nbe-genargs, [23]

nbe-inst?, 23
nbe-make-constr-value, @
nbe-make-object, 22]
nbe-match, 23]
nbe-normalize-proof, 39
nbe-normalize-term, 23]
nbe-object-app, [22]
nbe-object-apply, 22|
nbe-object-compose, 22]
nbe-object-to-type, 22
nbe-object-to-value, [22]
nbe-object?, 22

nbe-pconst-. ..-to-object, [23]
nbe-reflect, 23

nbe-reify, 23
nbe-term-to-object, 23|
new-tvar, [7]

nf, 2§

ng, [@7]

Nipkow, [

normalize-formula, [2§]
normalize-goal, [4]]

np, 39

nf, 2§

nt, 23

number-and-idpredconst-to-intro-aconst,

B4
numerated-var-to-index, [I0]
numerated-var, [I(]

object-type?,[J
osubst, [f]

p-substitution-to-string, [29]
pair-elim, [40]

parsing, [51]

pattern-unify, @2]
Paulin-Mohring,

Paulson,
pconst-name-to-comprules, [I7]
pconst-name-to-inst-objs, |T_7|
pconst-name-to-object, [I7]
pconst-name-to-pconst, @
pconst-name-to-rewrules, [I7]
pf, [50)
pproof-state-to-formula, @
pproof-state-to-proof, @

MINLOG REFERENCE MANUAL

predconst-name-to-arity, [I9]
predconst-name?, [I9]
predconst-to-index, [T9]
predconst-to-name, [T9]
predconst-to-string, [I9]
predconst-to-tsubst, [I9]
predconst-to-uninst-arity, [I9]
predconst?, [I9]

predicate constant, [I§]
predicate-form-to-args, [25]
predicate-form-to-predicate, @
predicate-form?, [25]

prename, [2§]

Presburger, []

prime-form?, 25
proof-in-aconst-form-to-aconst, |3_E|
proof-in-aconst-form?, @
proof-in-all-elim-form-to-arg, [37]
proof-in-all-elim-form-to-op, [37]
proof-in-all-elim-form?, [37]
pr...all-intro-form-to-kernel, |3_7|
pr...all-intro-form-to-var, m
proof-in-all-intro-form?, [37]
proof-in-and-elinm. . ., [37]
proof-in-and-elim-left-form?, 37|
proof-in-and-elim...,[37]
proof-in-and-elim-right-form?, [37]
pr...and-intro-form-to-left, 37|
pr...and-intro-form-to-right, m
proof-in-and-intro-form?, 37|
proof-in-avar-form-to-avar, @
proof-in-avar-form?, [30|
proof-in-cases-form-to-alts, |3;7|
proof-in-cases-form-to-rest, [37]
proof-in-cases-form-to-test, |3_7|
proof-in-cases-form?, |3;7|
proof-in-elim-form-to-args, 3§
pr...elim-form-to-final-op, @
proof-in-imp-elim-form-to-arg, @
proof-in-imp-elim-form-to-op, @
proof-in-imp-elim-form?, 37|
proof-in-imp-intro-form-to-avar, @
pr...-imp-intro-form-to-kernel, [30]
proof-in-imp-intro-form?, @
proof-in-intro-form-to.. ., [3g
proof-of-efq-at, [A0]
proof-of-efq-log-at, [(]
proof-of-stab-at, [A0]
proof-of-stab-log-at, [40]
proof-subst, [0

proof-substitute, [A0]
proof-to-aconsts, [35]
proof-to-aconsts-without-rules, 3§
proof-to-bound-avars, @
proof-to-context, [3§]
proof-to-expr, [A0]
proof-to-extracted-term, @

proof-to-formula, 3§
proof-to-free, 3§

proof-to-free-and-bound-avars, [3§]

proof-to-free-avars, [3§|

proof-to-soundness-proof, [50|

proof=7, 3§

proof?, 3§

proofs=7?, 3§

psubst, [0]

pt, [50)

pv, B0
pvar-cterm-equal?, [0
pvar-name-to-arity, [I§]
pvar-name?, [I§]
pvar-to-arity, [I§]
pvar-to-h-deg, [I§]
pvar-to-index, [I§]
pvar-to-name, [I§|
pvar?, [I§]

py, B0

Q-clause, [46]

Q-goal,]

Q-sequent, [46]
Q-substitution, [46]
Q-term, [46]
quant-form-to-kernel, [27]
quant-form-to-quant, [27]
quant-form-to-vars, [27]
quant-form?, [27]
quant-free?, 25]
quant-prime-form?, [25]

Rec, [I4]
Rec, 52

recursion, [[3]

recursion operator, [I3]
reduce-efq-and-stab, [40]
remove-alg-name, [J]

remove-computation-rules-for, [I7]
remove-global-assumption, [36]

remove-predconst-name, [I9]

remove-program-constant, E

remove-pvar-name, [I§]

remove-rewrite-rules-for, [I7]

remove-theorem, [34]
remove-tvar-name, [7]
remove-var-name, [I0]

rename, [2§]

restrict-substitution-to-args, |§|
restrict-substitution-wrt, |§|

rewrite rule, [[2]

rm-exc, [4]]
save, [34]

search, [17]

select, [47]

semantical model, [[2]

61

62 MINLOG REFERENCE MANUAL

set-goal, []] theorem-name-to-aconst, [34] [36]
simind, [44] theorem-name-to-inst-proof, 3]

simp, [45]

simp-with, 45|

special form,

split, [43]

Stab, [36]

Stab-Atom, [34]

Stab-Log, [36]
star-form-to-left-type, [J]
star-form-to-right-type, [J]
star-form?, [g

strip, [43]

strong elimination, [
subst-item-equal-wrt?, [
substitution-equal-wrt?, 0]
substitution-equal?, [f]
substitution-to-string, [24]
synt-total?, 22

tensor-form-to-left, [26]
tensor-form-to-parts, [27]
tensor-form-to-right, [20]
tensor-form?, 25
term-in-abst-form-to-kernel, [2]]
term-in-abst-form-to-var, @
term-in-abst-form?, [2]]
term-in-app-form-to-arg, 21]
term-in-app-form-to-args, [21]
term-in-app-form-to-final-op, @
term-in-app-form-to-op, @
term-in-app-form?, [2]]
term-in-const-form-to-const, @
term-in-const-form?, 21|
term-in-if-form-to-alts, [2]]
term-in-if-form-to-rest, 21]
term-in-if-form-to-test, 21]
term-in-if-form?, 2]]
term-in-lcomp-form-to-kernel, @
term-in-lcomp-form?, |7_T|
term-in-pair-form-to-left, [2]]
term-in-pair-form-to-right, 2]]
term-in-pair-form?, 2]
term-in-rcomp-form-to-kernel, @
term-in-rcomp-form?, 2]
term-in-var-form-to-var, 20]
term-in-var-form?, [20]
term-subst, [24]

term-substitute, [24]
term-to-bound, 22]

term-to-free, 22]

term-to-string, [22]
term-to-t-deg, [22]

term-to-type, [22]

term=7, 22]

term?, [22]

terms=7, 22

theorem-name-to-proof, 3]

token, [50]
token type, [16] [50]
Total, B1] 32

total-aconst, [32]
Total-to-E, [32]
Total-to-E-nat, [3]]
truth, [25]
truth-aconst, [32]
Truth-Axiom, [3T] B2
tsubst, [
tvar-to-index, |Z|
tvar-to-name, [7]
tvar?, 7]

type constant, [
type substitutions, |§|
type variable, [f]
type-subst, [0]
type-substitute, [0]
type-to-new-partial-var, [T]]
type-to-new-var, [T]]
type-to-string, [J]
type?, [

undo, [43]

unfold-cterm, 28|
unfold-formula, [27]

use, [A2]

use-with, 2]

var-form?, [I0]
var-term-equal?, [0]
var-to-index, [I0]
var-to-name, [I0]
var-to-new-var, [I]]
var-to-t-deg, [I0]
var-to-type, [I0]
var?, [I0]

vector notation, [52]

	Acknowledgements
	1. Introduction
	1.1. Simultaneous free algebras
	1.2. Partial continuous functionals
	1.3. Primitive recursion, computable functionals
	1.4. Decidable predicates, axioms for predicates
	1.5. Minimal logic, proof transformation
	1.6. Comparison with Coq and Isabelle

	2. Types, with simultaneous free algebras as base types
	2.1. Generalitites for substitutions, type substitutions
	2.2. Simultaneous free algebras as base types

	3. Variables
	4. Constants
	4.1. Rewrite and computation rules for program constants
	4.2. Recursion over simultaneous free algebras
	4.3. Internal representation of constants

	5. Predicate variables and constants
	5.1. Predicate variables
	5.2. Predicate constants
	5.3. Inductively defined predicate constants

	6. Terms and objects
	6.1. Normalization
	6.2. Substitution

	7. Formulas and comprehension terms
	8. Assumption variables and constants
	8.1. Assumption variables
	8.2. Axiom constants
	8.3. Theorems
	8.4. Global assumptions

	9. Proofs
	9.1. Constructors and accessors
	9.2. Normalization
	9.3. Substitution
	9.4. Display
	9.5. Classical logic

	10. Interactive theorem proving with partial proofs
	10.1. Partial proofs
	10.2. Interactive theorem proving

	11. Search
	12. Computational content of classical proofs
	13. Extracted terms
	14. Reading formulas in external form
	14.1. Lexical analysis
	14.2. Parsing

	References
	Index

