
Minimal Logic for Computable Functionals

Helmut Schwichtenberg

Mathematisches Institut der Universität München
December 10, 2016

Contents

Chapter 1. Minimal Logic 1
1.1. Natural Deduction 2
1.2. Embedding Classical and Intuitionistic Logic 3
1.3. Glivenko’s Theorem 8
1.4. Negative Translation 10
1.5. Notes 14

Chapter 2. Algebras 15
2.1. Examples of Finitary and Infinitary Algebras 15
2.2. Recursion, Strong Normalization 17
2.3. Rewrite Rules 25
2.4. Axioms 27
2.5. Notes 32

Chapter 3. Unification and Proof Search 33
3.1. Huet’s Unification Algorithm 33
3.2. The Pattern Unification Algorithm 36
3.3. Proof Search 41
3.4. Extension by ∧ and ∃ 43
3.5. Notes 46

Chapter 4. Program Extraction from Constructive Proofs 47
4.1. Quantifiers Without Computational Content 47
4.2. Computational Content of Proofs 48
4.3. Realizability 51
4.4. Case Studies 65
4.5. Notes 74

Chapter 5. Inductive Definitions 75
5.1. Axioms 75
5.2. Computational Content 81
5.3. Soundness 83
5.4. Notes 84

Chapter 6. Program Extraction from Classical Proofs 85
6.1. Arithmetic for Functionals 87
6.2. Definite and Goal Formulas 88
6.3. Program Extraction 93
6.4. Computational Content of Classical Proofs 94
6.5. Examples 96
6.6. Notes 103

i

ii CONTENTS

Bibliography 105

Index 107

CHAPTER 1

Minimal Logic

One of our goals is to study program extraction from proofs. We shall
cover the theoretical foundations of the subject, but also try to gain some
practical experience. For the latter we will make use of the system Minlog.

Minlog is intended to reason about computable functionals, using mi-
nimal logic. It is an interactive prover with the following features.

• Proofs are treated as first class objects: they can be normalized
and then used for reading off an instance if the proven formula is
existential, or changed for program development by proof transfor-
mation.
• To keep control over the complexity of extracted programs, we fol-

low Kreisel’s proposal and aim at a theory with a strong language
and weak existence axioms. It should be conservative over (a frag-
ment of) arithmetic.
• Minlog is based on minimal rather than classical or intuitionistic

logic. This more general setting makes it possible to implement
program extraction from classical proofs, via a refined A-translation
(cf. [8]).
• Constants are intended to denote computable functionals. Since

their (mathematically correct) domains are the Scott-Ershov par-
tial continuous functionals, this is the intended range of the quan-
tifiers.
• Variables carry (simple) types, with free algebras as base types.

The latter need not be finitary (so we allow e.g. countably branch-
ing trees), and can be simultaneously generated. Type parameters
(ML style) are allowed, but we keep the theory predicative and dis-
allow type quantification. Also predicate variables are allowed, as
placeholders for formulas (or more precisely, comprehension terms).
• To simplify equational reasoning, the system identifies terms with

the same normal form. A rich collection of rewrite rules is pro-
vided, which can be extended by the user. Decidable predicates
are implemented via boolean valued functions, hence the rewrite
mechanism applies to them as well.

Acknowledgements. The Minlog system has been under develop-
ment since around 1990. My sincere thanks go to the many contributors:
Holger Benl (Dijkstra algorithm, inductive data types), Ulrich Berger (very
many contributions), Michael Bopp (program development by proof trans-
formation), Wilfried Buchholz (translation of classical proof into intuitionis-
tic ones), Laura Crosilla (tutorial), Matthias Eberl (normalization by eval-
uation), Dan Hernest (functional interpretation), Felix Joachimski (many

1

2 1. MINIMAL LOGIC

contributions, in particular translation of classical proofs into intuitionistic
ones, producing Tex output, documentation), Ralph Matthes (documenta-
tion), Karl-Heinz Niggl (program development by proof transformation),
Jaco van de Pol (experiments concerning monotone functionals), Martin
Ruckert (many contributions, in particular the MPC tool), Robert Stärk
(alpha equivalence), Monika Seisenberger (many contributions, including
inductive definitions and translation of classical proofs into intuitionistic
ones), Klaus Weich (proof search, the Fibonacci numbers example), Wolf-
gang Zuber (documentation).

1.1. Natural Deduction

The system we pick for the representation of proofs is Gentzen’s natural
deduction, from [19]. Our reasons for this choice are twofold. First, as
the name says this is a natural notion of formal proof, which means that
the way proofs are represented corresponds very much to the way a careful
mathematician writing out all details of an argument would go anyway.
Second, formal proofs in natural deduction are closely related (via the Curry-
Howard correspondence) to terms in typed λ-calculus. This provides us not
only with a compact notation for logical derivations (which otherwise tend
to become somewhat unmanagable tree-like structures), but also opens up a
route to applying the computational techniques which underpin λ-calculus.

1.1.1. First Order Languages. For first order languages we use the
standard language containing →, ∧, ∀, ∃ as primitive logical operators. We
assume countably infinite supplies of individual variables, n-place predicate
(or relation) symbols (constants or variables) for all n ∈ N, symbols (again
constants or variables) for n-ary functions for all n ∈ N. 0-place predicate
symbols are also called propositional symbols. 0-argument function symbols
are also called (individual) constants. The language will not, unless stated
otherwise, contain = as a primitive.

Atomic formulas are formulas of the form Rt1 . . . tn, R a predicate sym-
bol, t1, . . . , tn individiual terms. For formulas which are either atomic or ⊥
we use the term prime formula.

We use certain categories of symbols, possibly with sub- or superscripts
or primed, as metavariables for certain syntactical categories (locally differ-
ent conventions may be introduced):

• x, y, z, u, v, w for individual variables;
• f, g, h for function symbols;
• c, d for individual constants;
• t, s, r for terms;
• P,Q for atomic formulas;
• R for predicate symbols;
• A,B,C,D,E, F for arbitrary formulas in the language.

We introduce abbreviations:

¬A := A→ ⊥,
A↔ B := (A→ B) ∧ (B → A),

∃clxA := ¬∀x¬A (the classical existential quantifier).

1.2. EMBEDDING CLASSICAL AND INTUITIONISTIC LOGIC 3

In writing formulas we save on parentheses by assuming that ∀, ∃,¬ bind
more strongly than ∧, and that in turn ∧ binds more strongly than →,↔.
Outermost parentheses are also usually dropped. Thus A∧¬B → C is read
as ((A∧ (¬B))→ C). In the case of iterated implications we sometimes use
the short notation

A1 → A2 → . . . An−1 → An for A1 → (A2 → . . . (An−1 → An) . . .).

To save parentheses in quantified formulas, we use a mild form of the dot
notation: a dot immediately after ∀x or ∃xmakes the scope of that quantifier
as large as possible, given the parentheses around. So ∀x.A → B means
∀x(A→ B), not (∀xA)→ B.

We also save on parentheses by writing e.g. Rxyz, Rt0t1t2 instead of
R(x, y, z), R(t0, t1, t2), where R is some predicate symbol. Similarly for a
unary function symbol with a (typographically) simple argument, so fx for
f(x), etc. In this case no confusion will arise. But readability requires that
we write in full R(fx, gy, hz), instead of Rfxgyhz.

1.1.2. Natural Deduction. We give an inductive definition of deriva-
tion terms in Table 1.1.2, where for clarity we have written the corresponding
derivations to the left.

Notice that we have left out the standard connectives ∃ and ∨, although
they could easily be included, with the rules given below. The reason for
this omission is that for simplicity we want our derivation terms to be pure
lambda terms formed just by lambda abstraction, application, pairing and
projections. This would be violated by the rules for ∃ and ∨, which require
additional constructs.

In spite of this omission we can use ∃ and ∨ in our logic, if we allow
appropriate axioms as constant derivation terms, e.g. for ∃

∃+x,A : ∀x.A→ ∃xA
∃−x,A,B : ∃xA→ (∀x.A→ B)→ B

with the usual proviso x /∈ FV(B). For ∨ we could introduce similar axioms;
however, we do not do so here, since in the presence of e.g. the booleans we
can define ∨ from ∃ via

A ∨B :≡ ∃p.(p = tt→ A) ∧ (p = ff → B).

Notice that there is one price to pay in this approach: derivations in
normal form are not as normal as they could be. In particular, in the
presence of the constants ∃+x,A and ∃−x,A,B the subformula property clearly is
weaker than than it would be with the ∃,∨-rules and permutative conversion:
permute an elimination immediately following an ∃,∨-rule over this rule to
the minor premise.

1.2. Embedding Classical and Intuitionistic Logic

In minimal logic all propositional symbols play the same role. We now
distinguish a special propositional symbol: ⊥, to be read “falsum”. We then
obtain classical and intuitionistic logic by allowing appropriate additional
assumptions.

4 1. MINIMAL LOGIC

derivation term

u : A uA

|M
A

| N
B ∧+A ∧B

〈MA, NB〉A∧B

|M
A ∧B ∧−0
A

|M
A ∧B ∧−1
B

(MA∧B0)A (MA∧B1)B

[u : A]

|M
B →+ uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+ x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

|M
∀xA t ∀−
A[x:=t]

(M∀xAt)A[x:=t]

Table 1.1.1. Derivation terms for ∧, → and ∀

1.2.1. Ex-Falso-Quodlibet and Stability. To obtain intuitionistic
logic we use as additional assumptions the ex-falso-quodlibet formulas EfqR
for every predicate symbol R different from ⊥:

∀~x.⊥ → R~x. (EfqR)

Similarly one obtains classical logic by allowing for every predicate symbol R
different from ⊥ the principle of indirect proof as an additional assumption,
i.e. the formula

∀~x.¬¬R~x→ R~x; (StabR)

1.2. EMBEDDING CLASSICAL AND INTUITIONISTIC LOGIC 5

derivation term

t

|M
A[x:=t]

∃+∃xA

(
∃+x,AtMA[x:=t]

)∃xA

|M
∃xA

[u : A]

| N
B ∃− u (var.cond.)

B

(
M∃xA(uA.NB)

)B
(var.cond.)

|M
A ∨+0

A ∨B

|M
B ∨+1

A ∨B

(
∨I0,BM

A
)A∨B (

∨I1,AM
B
)A∨B

|M
A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨− u, v

C

(
MA∨B(uA.NC , vB.KC)

)C

Table 1.1.2. Derivation terms for ∃ and ∨

this formula is also called stability of R.
Notice that with ⊥ for R~x both formulas are trivially derivable; e.g. for

stability we have ¬¬⊥ → ⊥ = ((⊥ → ⊥)→ ⊥)→ ⊥. The derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥
Let

Efq := {EfqR | R predicate symbol 6= ⊥},
Stab := { StabR | R predicate symbol 6= ⊥}.

We call the formula B classically (intuitionistically) derivable and write
`c B (`i B) if there is a derivation of B from stability assumptions StabA
(ex-falso-quodlibet assumptions EfqA). Similarly we define classical (intu-
itionistic) derivability from Γ and write Γ `c B (Γ `i B), i.e.

Γ `i B :⇐⇒ Γ ∪ Efq ` B,
Γ `c B :⇐⇒ Γ ∪ Stab ` B.

Lemma (Ex-falso-quodlibet). `i ⊥ → A for every formula A.

6 1. MINIMAL LOGIC

Proof. By induction on A we construct for every formula A a derivation
DA of ⊥ → A. Case A atomic formula. Use EfqA. Case A ∧B.

DA
⊥ → A u : ⊥

A

DB
⊥ → B u : ⊥

B
A ∧B →+u⊥ → A ∧B

Case A→ B.
DB
⊥ → B u : ⊥

B
A→ B →+u⊥ → A→ B

Case ∀xA.
DA
⊥ → A u : ⊥

A
∀xA →+u⊥ → ∀xA

Case ∃xA.

x

DA
⊥ → A u : ⊥

A
∃xA →+u⊥ → ∃xA

This concludes the proof.

Lemma (Stability). For every formula A without ∃, `c ¬¬A→ A.

Proof. Induction on A. In the constructed derivations we omit (for
brevity) the introductions at the end. Case A atomic formula. Use StabA.

Case A∧B. Use ` (¬¬A→ A)→ (¬¬B → B)→ ¬¬(A∧B)→ A∧B,
which can be derived easily from ` ¬¬(A ∧ B) ↔ (¬¬A ∧ ¬¬B) (Exercise:
derive the latter formula).

Case A → B. Use ` (¬¬B → B) → ¬¬(A → B) → A → B. A
derivation is

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B

Case ∀xA. Clearly it suffices to show ` (¬¬A → A) → ¬¬∀xA → A. A
derivation is

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

1.2. EMBEDDING CLASSICAL AND INTUITIONISTIC LOGIC 7

This concludes the proof.

Lemma. Γ ` A⇒ Γ `i A and Γ `i A⇒ Γ `c A.

Proof. It suffices to show `c EfqA. This can be seen as follows; for
brevity assume R to be unary.

∀x.¬¬Rx→ Rx x
¬¬Rx→ Rx

u : ⊥ →+v¬Rx¬¬Rx
Rx →+u⊥ → Rx ∀+∀x.⊥ → Rx

This concludes the proof.

Note that neither of the two implications can be reversed. Counterex-
amples are

6` ⊥ → P, but `i ⊥ → P,

6`i ((P → Q)→ P)→ P, but `c ((P → Q)→ P)→ P.

Apart from 6`i ((P → Q) → P) → P the proofs are easy. However, to
prove the non-derivability of the Peirce formula ((P → Q) → P) → P in
intuitionistic logic requires a more careful study of intuitionistic derivability.

Lemma (Proof by cases). `c (A→ B) ∧ (¬A→ B)→ B.

Proof. Let C abbreviate (A→ B) ∧ (¬A→ B)

DStab

¬¬B → B

w : ¬B

u : C
¬A→ B

w : ¬B

u : C
A→ B v : A

B
⊥ →+v¬A

B
⊥ →+w¬¬B

B

where DStab is a derivation provided by the Stability Lemma..

1.2.2. Equivalence. Call two formulas A and B equivalent in minimal
(classical, intuitionistic) logic if ` A↔ B (`c A↔ B, `i A↔ B).

Lemma (Equivalence). Let `mic∈ {`,`i,`c}. Then `mic A1 ↔ A2 and
B2 is obtained from B1 by replacing one subformula A1 of B1 by A2, then
we also have `mic B1 ↔ B2.

Proof. Induction on B1. If all of B1 had been replaced, the claim is
obvious. Otherwise B1 must be a composed formula.

Case C1 ∧D1. Assume the replacement takes places in C1. We have to
show `mic C1 ∧D1 ↔ C2 ∧D1. →:

D
C1 → C2

C1 ∧D1

C1

C2

C1 ∧D1

D1

C2 ∧D1

where D is known by induction hypothesis. ← is proved similarly.

8 1. MINIMAL LOGIC

Case C1 → D1. Assume the replacement takes places in C1. We have
to show `mic (C1 → D1)↔ (C2 → D1). →:

C1 → D1

D
C2 → C1 u : C2

C1

D1 →+uC2 → D1

where again D is known by induction hypothesis. ← is proved similarly.
Assume now that the replacement takes places in D1. We must show `mic
(C1 → D1)↔ (C1 → D2). →:

D
D1 → D2

C1 → D1 u : C1

D1

D2 →+uC1 → D2

where again D is known by induction hypothesis. ← is proved similarly.
Case ∀xC1. We must show `mic ∀xC1 ↔ ∀xC2. →:

D
C1 → C2

∀xC1 x
C1

C2

∀xC2

where again D is known by induction hypothesis. Observe that D does not
contain free assumptions. ← is proved similarly.

Case ∃xC1. Similar.

1.3. Glivenko’s Theorem

As an illustration of what can be done in intuitionistic propositional
logic we prove Glivenko’s theorem, which says that every negation, which is
a classical tautology, can be derived intuitionistically.

1.3.1. Valuations.

Lemma. ` (A→ B)→ (¬A→ B)→ ¬¬B.

Proof. Assume ¬B. Then ¬A, hence B, hence ⊥.

For σ ∈ {0, 1} let

Aσ :=

{
A if σ = 1

¬A if σ = 0

A valuation v is a mapping from propositional variables into truth values,
which are taken here to be 0 and 1, for falsity and truth. Call a formula a
tautology if for every valuation v its truth value v(A) is 1. For ∗ ∈ {→,∧}
let σ ∗ τ be the truth value given by the well-known truth table for the
connective ∗.

1.3. GLIVENKO’S THEOREM 9

1.3.2. Intuitionistic Derivability and Valuations.

Lemma. `i Aσ → Bτ → (A ∗B)σ∗τ for ∗ ∈ {→,∧}.

Proof. Case →.

` B → A→ B

` A→ ¬B → ¬(A→ B)

`i ¬A→ A→ B

Case ∧.

` A→ B → A ∧B
` ¬A→ ¬(A ∧B)

` ¬B → ¬(A ∧B)

Notice that these formulas are slightly stronger than required.

Lemma. Let A be a formula in propositional logic, and let P1, . . . , Pn be
all propositional variables in A. The we have, for every valuation v,

`i P v(P1)
1 → · · · → P v(Pn)n → Av(A).

Proof. By induction on A. Case Pi. Clear. Case A ∗B. Use

`i Av(A) → Bv(B) → (A ∗B)v(A)∗v(B),

which holds by the previous lemma.

1.3.3. Glivenko’s Theorem.

Theorem (Glivenko). `i ¬A for ¬A a tautology.

Proof. By the final lemma in 1.3.2 we have, for every valuation v,

`i P v(P1)
1 → · · · → P v(Pn)n → ¬A,

since by assumption v(¬A) = 1. We show

`i P v(P1)
1 → · · · → P

v(Pk)
k → ¬A for every valuation v,

by induction on i := n− k. Base i = 0. Clear, by what we just noted. Step.
We must show

`i P v(P1)
1 → · · · → P

v(Pk−1)
k−1 → ¬A.

By IH we have

`i P v(P1)
1 → · · · → P

v(Pk−1)
k−1 → Pk → ¬A,

`i P v(P1)
1 → · · · → P

v(Pk−1)
k−1 → ¬Pk → ¬A.

Using the lemma in 1.3.1 we obtain

`i P v(P1)
1 → · · · → P

v(Pk−1)
k−1 → ¬¬¬A.

The claim follows from ` ¬¬¬A → ¬A. – Applying the inductively proven
claim with i = n (i.e., k = 0) yields `i ¬A, as required.

10 1. MINIMAL LOGIC

1.4. Negative Translation

Having defined classical and intuitionistic logic out of minimal logic by
adding axioms, we next show that in fact, both logics can be embedded
into minimal logic, as long as we restrict ourselves to the language based
on {→,∧, ∀,⊥}. This restriction will be in force for the rest of the present
chapter.

1.4.1. Negative Formulas. A formula A of the {→,∧,∀,⊥}-language
is called negative, if every atomic formula of A different from ⊥ occurs
negated.

Lemma. For negative A we have ` ¬¬A→ A.

Proof. Use the Stability Lemma and ` ¬¬¬R~t→ ¬R~t.

We now define the Gödel-Gentzen (or “negative”) translation of classical
logic into minimal logic. The basic idea is to double negate every atomic
formula.

Definition (Negative translation g of Gödel-Gentzen).

⊥g := ⊥,
R~tg := ¬¬R~t,
(A ∧B)g := Ag ∧Bg,

(A→ B)g := Ag → Bg,

(∀xA)g := ∀xAg.

Notice that Ag is the same as A for negative A.

Theorem. For all formulas A we have

(a) `c A↔ Ag,
(b) Γ `c A iff Γg ` Ag, where Γg := {Bg | B ∈ Γ }.

Proof. (a). The claim follows easily from the Equivalence Lemma..
(b) ⇐. Obvious. ⇒. By induction on the classical derivation. For a

stability assumption ¬¬R~t→ R~t we have (¬¬R~t→ R~t)g = ¬¬R~t→ ¬¬R~t,
and this is easily derivable.

Case →+. Assume
[u : A]

D
B →+uA→ B

We have by induction hypothesis

[u : Ag]

Dg
Bg

→+uAg → Bg

Case →−. Assume
D0

A→ B

D1

A
B

1.4. NEGATIVE TRANSLATION 11

We have by induction hypothesis

Dg0
Ag → Bg

Dg1
Ag

Bg

The other cases are treated similarly.

Corollary (Embedding of classical logic). For negative A,

`c A ⇐⇒ ` A.

Proof. By the theorem we have `c A iff ` Ag. Since A is negative,
every atom distinct from ⊥ in A must occur negated, as ¬R~t, and hence in
Ag it appears in same form.

Since every formula is classically equivalent to a negative formula, we
have achieved an embedding of classical logic into minimal logic.

Note that 6` ¬¬P → P . The corollary therefore does not hold for all
formulas A.

1.4.2. Formulas Implying Their Negative Translation. We in-
troduce a further observation (due to Leivant; see Troelstra and van Dalen
[35, Ch.2, Sec.3]) which will be useful for program extraction from classical
proofs (cf. Chapter 6). There it will be necessary to actually transform a
given classical derivation `c A into a minimal logic derivation ` Ag. In
particular, for every assumption constant C used in the given derivation we
have to provide a derivation of Cg. Now for some formulas S – the so-called
spreading formulas – this is immediate, for we can derive S → Sg, and hence
can use the original assumption constant.

Recall that our formulas may contain predicate variables denoted by X,
which are place holders for comprehension terms, i.e. formulas with distin-
guished variables. We use the obvious notation A[X:={ ~x | B }] or shortly
A[{ ~x | B }] or even A[B] for substitution for predicate variables. Clearly
the Gödel-Gentzen translation of X~t is ¬¬X~t.

Recall also that an assumption constant consists of an uninstantiated
formula (e.g. X0→ (∀n.Xn→ X(n+ 1))→ ∀nXn for induction) together
with a substitution of comprehension terms for predicate variables (e.g. X 7→
{n | n < n + 1 }). Then in order to immediately obtain a derivation of Cg

for C an assumption constant it suffices to know that its uninstantiated

formula S is spreading, for then we generally have ` S[~Ag] → S[~A]g (see
the theorem below) and hence can use the same assumption constant with
a different substitution.

We define spreading formulas S, wiping formulas W and isolating for-
mulas I inductively.

S := ⊥ | R~t | X~t | S ∧ S | I → S | ∀xS,
W := ⊥ | X~t |W ∧W | S →W | ∀xW,
I := R~t |W | I ∧ I.

Let S (W, I) be the class of spreading (wiping, isolating) formulas.

12 1. MINIMAL LOGIC

Theorem.

` S[~Ag]→ S[~A]g for every spreading formula S,

`W [~A]g →W [~Ag] for every wiping formula W ,

` I[~A]g → ¬¬I[~Ag] for every isolating formula I.

We assume here that all occurrences of predicate variables are substituted.

Proof. For brevity we write Sg for S[~A]g and S for S[~Ag], and similarly
for W and I.

Case ⊥ ∈ S. We must show ` ⊥ → ⊥g. Take λu⊥u.
Case R~t ∈ S. We must show ` R~t→ ¬¬R~t. Take λuR~tλv¬R~t.vu.
Case X~t ∈ S, with X substituted by { ~x | A }. We must show ` Ag[~t]→

Ag[~t], which is trivial.
Case S1 ∧ S2 ∈ S. We must show ` S1 ∧ S2 → Sg1 ∧ S

g
2 . Take

IH

S1 → Sg1

u : S1 ∧ S2
S1

Sg1

IH

S2 → Sg2

u : S1 ∧ S2
S2

Sg2
Sg1 ∧ S

g
2

Case I → S ∈ S. We must show ` (I → S) → Ig → Sg. Recall that
` ¬¬Sg → Sg by the Stability Lemma, because Sg is negative. Take

Stab
¬¬Sg → Sg

IH
Ig → ¬¬I v : Ig

¬¬I

w1 : ¬Sg

IH
S → Sg

u : I → S w2 : I
S

Sg

⊥ →+w2¬I
⊥ →+w1¬¬Sg

Sg

Case ∀xS ∈ S. We must show ` ∀xS → ∀xSg. Take

IH
S → Sg

u : ∀xS x
S

Sg

Case ⊥ ∈ W. We must show ` ⊥g → ⊥. Take λu⊥u.
Case X~t ∈ W, with X substituted by { ~x | A }. We must show ` Ag[~t]→

Ag[~t], which is trivial.
Case W1 ∧W2 ∈ W. We must show `W g

1 ∧W
g
2 →W1 ∧W2. Take

IH

W g
1 →W1

u : W g
1 ∧W

g
2

W g
1

W1

IH

W g
2 →W2

u : W g
1 ∧W

g
2

W g
2

W2

W1 ∧W2

Case S →W ∈ W. We must show ` (Sg →W g)→ S →W . Take

IH
W g →W

u : Sg →W g

IH
S → Sg v : S

Sg

W g

W

1.4. NEGATIVE TRANSLATION 13

Case ∀xW ∈ W. We must show ` ∀xW g → ∀xW . Take

IH
W g →W

u : ∀xW g x
W g

W

Case R~t ∈ I. We must show ` ¬¬R~t→ ¬¬R~t, which is trivial.
Case W ∈ I. We must show ` W g → ¬¬W , which trivially follows

from the IH `W g →W . Take

v : ¬W

IH
W g →W u : W g

W
⊥

Case I1 ∧ I2 ∈ I. We must show ` Ig1 ∧ I
g
2 → ¬¬(I1 ∧ I2). Take

IH

Ig2 → ¬¬I2
Ig1∧I

g
2

Ig2
¬¬I2

IH

Ig1 → ¬¬I1
Ig1∧I

g
2

Ig1
¬¬I1

¬(I1 ∧ I2)
I1 I2
I1 ∧ I2

⊥
¬I1

⊥
¬I2

⊥
This completes the proof.

Notice that the Gödel-Gentzen translation double negates every atom,
and hence may produce triple negations. However, because of ` ¬¬¬A ↔
¬A and the Equivalence Lemma we can systematically replace triple nega-
tions by single negations. As a guide for the implementation, we carry out
some of the details here.

Let A∗ (the reduced form of A) be obtained from A by replacing ¬¬¬A
by ¬A whenever possible. So

⊥∗ := ⊥,
R~t∗ := R~t,

(A ∧B)∗ := A∗ ∧B∗,

(A→ B)∗ :=

{
(¬C)∗ if A→ B = ¬¬¬C
A∗ → B∗, otherwise

(∀xA)∗ := ∀xA∗.

We simultaneously construct derivations of A→ A∗ and A∗ → A.

Lemma. (a) ` A→ A∗,
(b) ` A∗ → A.

Proof. Case A prime formula. Then A∗ is A, and we can take λuAu.
Case ∀xA. (a). We must show ` ∀xA→ ∀xA∗. Take

IH(a)

A→ A∗
u : ∀xA x

A
A∗

14 1. MINIMAL LOGIC

(b). We must show ` ∀xA∗ → ∀xA. Take

IH(b)

A∗ → A
u : ∀xA∗ x

A∗

A

Case ¬¬¬A. (a). We must show ` ¬¬¬A→ (¬A)∗.

IH(a)

¬A→ (¬A)∗

u : ¬¬¬A

v : ¬A w : A
⊥ →+v¬¬A

⊥ →+w¬A
(¬A)∗

(b). We must show ` (¬A)∗ → ¬¬¬A.

v : ¬¬A

IH(b)

(¬A)∗ → ¬A u : (¬A)∗

¬A
⊥

Case A→ B not of the form ¬¬¬C. (a). We must show ` (A→ B)→
A∗ → B∗.

IH(a)

B → B∗
u : A→ B

IH(b)

A∗ → A v : A∗

A
B

B∗

(b). We must show ` (A∗ → B∗)→ A→ B.

IH(b)

B∗ → B
u : A∗ → B∗

IH(a)

A→ A∗ v : A
A∗

B∗

B

1.5. Notes

The proof of Glivenko’s theorem is taken form Mints’ book [28].

CHAPTER 2

Algebras

A free algebra is given by constructors, for instance zero and successor
for the natural numbers. We want to treat other data types as well, like
lists and binary trees. When dealing with inductively defined sets, it will
also be useful to explicitely refer to the generation tree. Such trees are quite
often infinitely branching, and hence we allow infinitary free algebras from
the outset.

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. Moreover, we view the free
algebra as a domain and require that its bottom element is not in the range
of the constructors. Hence the constructors are total and non-strict. For
the notion of totality cf. [34, Chapter 8.3].

To make a free algebra into a domain and still have the constructors in-
jective and with disjoint ranges, we model e.g. the natural numbers as shown
in Figure 1. Notice that for more complex algebras we usually need many
more “infinite” elements; this is a consequence of the closure of domains un-
der suprema. To make dealing with such complex structures less annoying,
we will normally restrict attention to the total elements of a domain, in this
case – as expected – the elements labelled 0, S0, S(S0) etc.

2.1. Examples of Finitary and Infinitary Algebras

We shall consider some examples of free algebras, generated from con-
structors.

(1) The easiest example is the algebra U, which has just one nullary
constructor called Dummy. It consists of exactly one element.

(2) Almost as easy is the next example, the algebra B, which has just
two nullary constructors called tt and ff (sometimes we use True

and False instead). It consists of exactly two elements.

•bb@
@@
•0

�
��
• Sbb@

@@
•S0

�
��
• S(Sbb)@

@@
•S(S0)

�
��
• S(S(Sbb))@

@@
•S(S(S0))

�
��

..
. • ∞

Figure 1. The domain of natural numbers

15

16 2. ALGEBRAS

(3) The next example is the simplest algebra with infinitely many el-
ements, the algebra N of natural numbers. Its constructors are a
nullary constructor 0 (also written Zero) and a unary constructor
S (also written Succ).

(4) We shall also allow parametrized algebras, depending on type pa-
rameters. The simplest example is the algebra L(ρ) (sometimes
we use (list ρ) instead) of lists of objects of a given type ρ. Its
constructors are a nullary constructor Nil and a binary constructor
cons; the latter takes an object x of type ρ and a list l and con-
structs out of these the new list obtained by putting x to the front
of l.

(5) Another important parametrized algebra is the disjoint union of
the algebras given by types ρ1 and ρ2. It is called (ρ1 yplus ρ2)
(“y” from type), and is given by two unary constructors Inl and Inr
of types ρ1 → ρ1 + ρ2 and ρ2 → ρ1 + ρ2, respectively.

(6) We also admit simultaneously generated free algebras. An example
is provided by the obvious way to simultaneously generate trees and
finite lists (of arbitrary length) of trees. The algebra tree has one
nullary constructor Leaf (taking a natural number as parameter)
and one unary constructor Branch, building a tree from a tree list.
The algebra tlist has one nullary constructor Empty and one binary
constructor Tcons; the latter takes an object t of type tree and a
tree list l and constructs out of these the new tree list obtained by
putting t to the front of l.

All these algebras are finitary , in the sense that every constructor takes only
finitely many arguments. Then for any two elements of the algebra we can
decide whether they are equal.

When dealing with inductively defined sets, it will also be useful to
explicitely refer to the generation tree. Such trees are quite often countably
branching, and hence we also allow infinitary free algebras from the outset,
whose constructors may take infinitely many arguments. Notice that then
equality is not decidable any more, and hence needs to be axiomatized.

For an example of an infinitary algebra, consider the countable ordinals.
They can be seen as generated from a nullary constructor 0, a unary con-
structor for the successor and a constructor building the supremum out of
a countably infinite list of ordinals (given by a function from the natural
numbers to ordinals).

Clearly the generation process of the elements of a free algebra allows
recursive definitions of functions on such algebras. For the examples above,
they have (when no parameters are present) the following form.

(1) For the algebra U we may just define

f(Dummy) = a

(2) Similarly for the algebra B we can explicitely define

f(tt) = a,

f(ff) = b.

2.2. RECURSION, STRONG NORMALIZATION 17

(3) For the algebra N of natural numbers we obtain the familiar recur-
sion scheme

f(0) = a,

f(S(n)) = h(n, f(n)).

(4) For the parametrized algebra L(ρ) we have a very similar recursion
scheme:

f(Nil) = a,

f(cons(x, l)) = h(x, l, f(l)).

(5) For the disjoint union of given types ρ1 and ρ2, the algebra does not
require recursive calls, and hence the recursion scheme is simply

f(Inl(x)) = g(x),

f(Inr(y)) = h(y).

(6) Somewhat more interesting are simultaneously generated free alge-
bras. Here we may define

f(Leaf(n)) = h1(n),

f(Branch(l)) = h2(l, g(l)),

g(Empty) = b,

g(Tcons(x, l)) = h3(x, l, f(x), g(l)).

2.2. Recursion, Strong Normalization

We give a predicative proof of strong normalization for terms with re-
cursion operators in a system of simultaneously defined free algebras. The
proof uses a variant of the Tait’s strong computability predicates.

It is well known that in a system of simultaneously defined free algebras
every term (possibly involving recursion operators) is strongly normalizing.
However, the standard proof reduces the problem to strong normalization
of second order propositional logic (called system F by Girard [20]). This
latter result requires a method not formalizable in analysis. Here we give a
much simpler proof, which only uses predicative methods.

2.2.1. Types. Our type system is defined by three type forming oper-
ations: arrow types ρ→ σ, pair types ρ×σ and the formation of inductively
generated types µ~α~κ, where ~α = (αj)j=1,...,N is a list of distinct “type vari-
ables”, and ~κ = (κi)i=1,...,k is a list of “constructor types”, whose argument
types contain α1, . . . , αN in strictly positive positions only.

For instance, µα(α, α→ α) is the type of natural numbers; here the list
(α, α → α) stands for two generation principles: α for “there is a natural
number” (the 0), and α→ α for “for every natural number there is another
one” (its successor).

Let an infinite supply of type variables α, β be given.

Definition. Let ~α = (αj)j=1,...,N be a list of distinct type variables.
Types ρ, σ, τ, µ ∈ T and constructor types κ ∈ KT(~α) are defined inductively

18 2. ALGEBRAS

as follows.

~ρ, ~σ1, . . . , ~σn ∈ T

~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α)
(n ≥ 0)

κ1, . . . , κn ∈ KT(~α)

(µ~α (κ1, . . . , κn))j ∈ T
(n ≥ 1)

ρ, σ ∈ T

ρ→ σ ∈ T

ρ, σ ∈ T

ρ× σ ∈ T

Here ~ρ is short for a list ρ1, . . . , ρm (m ≥ 0) of types and ~ρ → σ means
ρ1 → · · · → ρm → σ, associated to the right. We shall use µ for types
of the form (µ~α (κ1, . . . , κk))j only, and for types ~τ and a constructor type
κ = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α) let

κ[~τ] := ~ρ→ (~σ1 → τj1)→ · · · → (~σn → τjn)→ τj .

Examples.

U := µαα,

B := µα (α, α),

N := µα (α, α→ α),

L(ρ) := µα (α, ρ→ α→ α),

ρ1 + ρ2 := µα (ρ1 → α, ρ2 → α),

(tree, tlist) := µ(α, β) (N→ α, β → α, β, α→ β → β),

Bin := µα (α, α→ α→ α),

O := µα (α, α→ α, (N→ α)→ α),

T0 := N,

Tn+1 := µα (α, (Tn → α)→ α).

Notice that there are many equivalent ways to define these types. For
instance, we could take U + U to be the type of booleans, and L(U) to be
the type of natural numbers.

Notice also that we have added the pair type ρ × σ for simplicity only.
Products could have been defined in two forms, as tensor products and as
cartesian products, by

ρ1 ⊗ ρ2 := µα.ρ1 → ρ2 → α,

ρ1 ×σ ρ2 := µα.(σ → ρ1)→ (σ → ρ2)→ σ → α,

If we would allow ourselves to quantify over types, the cartesian product
could be defined as

ρ1 × ρ2 := µα∀σ.(σ → ρ1)→ (σ → ρ2)→ σ → α.

2.2.2. Terms. The inductive structure of the types ~µ = µ~α~κ corre-

sponds to two sorts of constants. With the constructors constr~µi : κi[~µ] we

can construct elements of a type µj , and with the recursion operators R~µ,~τµj
we can construct mappings from µj to τj by recursion on the structure of ~µ.
In order to define the type of the recursion operators w.r.t. ~µ = µ~α~κ and
result types ~τ , we first define for

κi = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α)

2.2. RECURSION, STRONG NORMALIZATION 19

the step type

δ~µ,~τi := ~ρ→ (~σ1 → µj1)→ · · · → (~σn → µjn)→
(~σ1 → τj1)→ · · · → (~σn → τjn)→ τj .

Here ~ρ, (~σ1 → µj1), . . . , (~σn → µjn) correspond to the components of the
object of type µj under consideration, and (~σ1 → τj1), . . . , (~σn → τjn) to the

previously defined values. The recursion operator R~µ,~τµj has type

R~µ,~τµj : δ~µ,~τ1 → · · · → δ~µ,~τk → µj → τj

(recall that k is the total number of constructors for all types µ1, . . . , µN).

We will often write R~µ,~τj for R~µ,~τµj , and omit the upper indices ~µ, ~τ when
they are clear from the context. In case of a non-simultaneous free algebra,
i.e. of type µακ, for Rµ,τµ we normally write Rτµ.

Definition. Terms are inductively defined from typed variables and

the constants constr~µi and R~µ,~τµj by means of

• abstraction (λxρMσ)ρ→σ,
• application (Mρ→σNρ)σ,
• pairing 〈Mρ, Nσ〉ρ×σ and
• projections (Mρ×σ0)ρ, (Mρ×σ1)σ.

Examples.

ttB := constrB1 , ffB := constrB2 ,

RτB : τ → τ → B→ τ,

0N := constrN1 , SN→N := constrN2 ,

RτN : τ → (N→ τ → τ)→ N→ τ,

NilL(α) := constr
L(α)
1 , consα→L(α)→L(α) := constr

L(α)
2 ,

RτL(α) : τ → (α→ L(α)→ τ → τ)→ L(α)→ τ,(
Inlρ1ρ2

)ρ1→ρ1+ρ2 := constrρ1+ρ21 ,(
Inrρ1ρ2

)ρ2→ρ1+ρ2 := constrρ1+ρ22 ,

Rτρ1+ρ2 : (ρ1 → τ)→ (ρ2 → τ)→ ρ1 + ρ2 → τ.

Remark. Notice that for the defined products the constructors and
recursion operators are(

⊗+
ρ1ρ2

)ρ1→ρ2→ρ1⊗ρ2 := constrρ1⊗ρ21 ,

Rτρ1⊗ρ2 : (ρ1 → ρ2 → τ)→ ρ1⊗ρ2 → τ,(
×+
ρ1ρ2σ

)(σ→ρ1)→(σ→ρ2)→σ→ρ1×σρ2 := constrρ1×σρ21 ,

Rτρ1×σρ2 : ((σ → ρ1)→ (σ → ρ2)→ σ → τ)→ ρ1 ×σ ρ2 → τ,

Examples. The append -function :+: for lists is defined recursively by

Nil :+: l2 := l2,

(consx l1) :+: l2 := consx(l1 :+: l2).

20 2. ALGEBRAS

It can be defined as the term

M:+: := RL(α)→L(α)
L(α) (λl2l2)(λxλl1λpλl2.consx(pl2).

Using the append function :+: we can define list reversal Rev by

Rev Nil := Nil,

Rev(consx l) = (Rev l) :+: (consxNil).

It can be defined as the term

RL(α)
L(α)Nil(λxλlλp.M:+: p (consxNil)).

Assume we want to define by simultaneous recursion two functions on
N, say Even,Odd : N→ B. We want

Even(0) := tt Odd(0) := ff

Even(Sn) := Odd(n) Odd(Sn) := Even(n)

This can be achieved by using pair types: we recursively define the single
function EvenOdd : N→ B×B. The step types are

δ1 = B×B,

δ2 = N→ B×B→ B×B,

and we can define EvenOdd := RB×B
N 〈ff, tt〉(λnλp.〈p1, p0〉).

Our final example concerns the simultaneously defined free algebras tree

and tlist, whose constructors constr
(tree,tlist)
i for i ∈ {1, . . . , 4} are

LeafN→tree,Branchtlist→tree,Emptytlist,Tconstree→tlist→tlist.

Observe that the elements of the algebra tree are just the finitely branching
trees, which carry natural numbers on their leaves.

Let us compute the types of the recursion operators w.r.t. the result

types τ1, τ2, i.e. of R(tree,tlist),(τ1,τ2)
tree and R(tree,tlist),(τ1,τ2)

tlist , or shortly Rtree and
Rtlist. The step types are

δ1 := N→ τ1,

δ2 := tlist→ τ2 → τ1,

δ3 := τ2,

δ4 := tree→ tlist→ τ1 → τ2 → τ2.

Hence the types of the recursion operators are

Rtree : δ1 → δ2 → δ3 → δ4 → tree→ τ1,

Rtlist : δ1 → δ2 → δ3 → δ4 → tlist→ τ2.

To see a concrete example, let us recursively define addition +: tree →
tree → tree and ⊕ : tlist → tree → tlist. The recursion equations to be
satisfied are

+ (Leaf n) = λaa,

+ (Branch bs) = λa.Branch(⊕ bs a),

⊕ Empty = λaEmpty,

⊕ (Tcons b bs) = λa.Tcons(+ b a)(⊕ bs a).

2.2. RECURSION, STRONG NORMALIZATION 21

We define + and ⊕ by means of the recursion operators Rtree and Rtlist with
result types

τ1 := tree→ tree,

τ2 := tree→ tlist.

The step terms are

M1 := λnλaa,

M2 := λbsλgτ2λa.Branch(g a),

M3 := λaEmpty,

M4 := λbλbsλf τ1λgτ2λa.Tcons(f a)(g a).

Then

+ := Rtree
~M : tree→ tree→ tree,

⊕ := Rtlist
~M : tlist→ tree→ tlist.

Remark 2.2.1. It may happen that in a recursion on simultaneously
defined algebras one only needs to recur on some of those algebras. Then
we can simplify the type of the recursion operator accordingly, by

• omitting all step types δ~µ,~τi with irrelevant value type τj , and
• simplifying the remaining step types by omitting from the types

(~σ1 → τj1), . . . , (~σn → τjn) of previously defined values all those
with irrelevant τjν .

In the tree, tlist-example, if we only want to recur on tlist, then the step
types are

δ3 := τ2,

δ4 := tree→ tlist→ τ2 → τ2.

Hence the type of the simplified recursion operator is

Rtlist : δ3 → δ4 → tlist→ τ2.

An example is the recursive definition of the length of a tlist. The recursion
equations are

len(Empty) = 0,

len(Tcons b bs) = len(bs) + 1.

The step terms are

M3 := Empty,

M4 := λbλbsλp.p+ 1.

Remark 2.2.2. There is an important variant of recursion, where no re-
cursive calls occur. This variant is called the cases operator ; it distinguishes
cases according to the outer constructor form. Here all step types have the
form

δ~µ,~τi := ~ρ→ (~σ1 → µj1)→ · · · → (~σn → µjn)→ τj .

The intended meaning of the cases operator is given by the conversion rule
(cf. (5) below)

(Cj ~M)µj→τj (constr~µi
~N) 7→Mi

~N.

22 2. ALGEBRAS

Notice that only those step terms are used whose value type is the present
τj ; this is due to the fact that there are no recursive calls. Therefore the
type of the cases operator is

C~µµj→τj : δi1 → · · · → δiq → µj → τj ,

where δi1 , . . . , δiq consists of all δi with value type τj . We write Cµj→τj or

even Cj for C~µµj→τj .
The simplest example (for the type B) is if-then-else. Another example

is the predecessor function on N, i.e. P(0) := 0, P(S(n)) := n. It can
formally be defined by the term

CN→N0(λnn).

In the tree, tlist-example we have

Ctlist→τ2 : τ2 → (tree→ tlist→ τ2)→ tlist→ τ2.

Remark 2.2.3. When computing the value of a cases operator, we may
not want to (eagerly) evaluate all arguments, but rather evaluate the test ar-
gument first and depending on the result (lazily) evaluate at most one of the
other arguments. This phenomenon is well known in functional languages;
e.g. in Scheme the if-construct is called a special form (as opposed to an
operator). Therefore we also provide an if-construct to build terms, which
differs from the cases operator only in that it employs lazy evaluation. The
predecessor function could then be written in the form λm[if m 0 λnn].

2.2.3. Conversion Relation. It will be useful to employ the following
notation. Let ~µ = µ~α~κ and

κi = ρ1 → · · · → ρm → (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α),

and consider constr~µi
~N . Then we write ~NP = NP

1 , . . . , N
P
m for the parameter

arguments Nρ1
1 , . . . , Nρm

m and ~NR = NR
1 , . . . , N

R
n for the recursive arguments

N
~σ1→µj1
m+1 , . . . , N

~σn→µjn
m+n , and nR for the number n of recursive arguments.

We define a conversion relation 7→ρ between terms of type ρ by

(λxM)N 7→M [x:=N](1)

〈M0,M1〉i 7→Mi (i = 0, 1)(2)

λx.Mx 7→M if x /∈ FV(M) (M not an abstraction)(3)

〈M0,M1〉 7→M (M not a pair)(4)

(Rj ~M)µj→τj (constr~µi
~N) 7→Mi

~N
(
(Rj1 ~M) ◦NR

1

)
. . .
(
(Rjn ~M) ◦NR

n

)
(5)

Here we have written Rj for R~µ,~τµj .
The one step reduction relation → can now be defined as follows. M →

N if N is obtained from M by replacing a subterm M ′ in M by N ′, where
M ′ 7→ N ′. The reduction relations →+ and →∗ are the transitive and the
reflexive transitive closure of →, respectively. For ~M = M1, . . . ,Mn we

write ~M → ~M ′ if Mi → M ′i for some i ∈ {1, . . . , n} and Mj = M ′j for all

i 6= j ∈ {1, . . . , n}. A term M is normal (or in normal form) if there is no
term N such that M → N .

Clearly normal closed terms are of the form constr~µi
~N .

2.2. RECURSION, STRONG NORMALIZATION 23

Example. Let us check the conversion rules for the defined + and ⊕ of
our example above. We have

+ (Leaf n) = Rtree
~M(Leaf n) 7→M1n 7→ λaa,

⊕ Empty = Rtlist
~M Empty 7→M3 = λaEmpty

and

+(Branch bs) = Rtree
~M(Branch bs)

7→M2 bs
(
(Rtlist

~M) ◦ bs
)

= M2 bs (⊕ bs)

→ λa.Branch(⊕ bs a),

⊕(Tcons b bs) = Rtlist
~M(Tcons b bs)

7→M4 b bs
(
(Rtree

~M) ◦ b
)(

(Rtlist
~M) ◦ bs

)
= M4 b bs (+ b)(⊕ bs)

→ λa.Tcons(+ b a)(⊕ bs a).

2.2.4. Strong Computability Predicates.

Definition. The set SN of strongly normalizable terms is inductively
defined by

(6) (∀N.M → N ⇒ N ∈ SN)⇒M ∈ SN

Note that with M clearly every subterm of M is strongly normalizable.

Definition. We define strong computability predicates SCρ by induction
on ρ.

Case µj = (µ~α~κ)j . Then M ∈ SCµj if

∀N.M → N ⇒ N ∈ SC, and(7)

M = constr~µi
~N ⇒ ~NP ∈ SC ∧

nR∧∧
p=1

(∀ ~K∈SC)NR
p
~K ∈ SCµjp .(8)

Case ρ→ σ.

M ∈ SCρ→σ :⇐⇒ (∀N∈SCρ)MN ∈ SCσ.

Case ρ× σ.

M ∈ SCρ×σ :⇐⇒ M0 ∈ SCρ and M1 ∈ SCσ.

Notice that the reference to ~NP ∈ SC and ~K∈SC in (8) is legal, because

the types ~ρ, ~σi of ~N, ~K must have been generated before µj . Note also that

by (8) constr~µi
~N ∈ SC implies ~N ∈ SC.

We now set up a sequence of lemmas leading to a proof that every term
is strongly normalizing. In the proofs we disregard the product case, since
it can be treated routinely.

Lemma 2.2.4. If M ∈ SCρ and M →M ′, then M ′ ∈ SC.

24 2. ALGEBRAS

Proof. Induction on ρ. Case µ. By (7). Case ρ → σ. Assume M ∈
SCρ→σ and M → M ′; we must show M ′ ∈ SC. So let N ∈ SCρ; we must
show M ′N ∈ SCσ. But this follows from MN → M ′N and MN ∈ SCρ by
induction hypothesis (IH) on σ.

Lemma 2.2.5. (∀ ~M∈SN). ~M ∈ SC⇒ (x ~M)µ ∈ SC.

Proof. Induction on ~M ∈ SN. Assume ~M ∈ SN and ~M ∈ SC; we must

show (x ~M)µ ∈ SC. So assume x ~M → N ; we must show N ∈ SC. Now by

the form of the conversion rules N must be of the form x ~M ′ with ~M → ~M ′.
But ~M ′ ∈ SC by Lemma 2.2.4, hence x ~M ′ ∈ SC by IH for ~M ′.

Lemma 2.2.6. (a) SCρ ⊆ SN,
(b) x ∈ SCρ.

Proof. By simultaneous induction on ρ. Case µj = (µ~α~κ)j . (a). We
show M ∈ SCµj ⇒ M ∈ SN by (side) induction on M ∈ SCµj . So assume
M ∈ SCµj ; we must show M ∈ SN. But for every N with M → N we have
N ∈ SC by (7), hence N ∈ SN by the side induction hypothesis SIH. (b).
x ∈ SCµj holds trivially.

Case ρ → σ. (a). Assume M ∈ SCρ→σ; we must show M ∈ SN. By
IH(b) for ρ we have x ∈ SCρ, hence Mx ∈ SCσ, hence Mx ∈ SN by IH(a) for

σ. But Mx ∈ SN clearly implies M ∈ SN. (b). Let ~M ∈ SC~ρ with ρ1 = ρ;

we must show x ~M ∈ SCµ. But this follows from Lemma 2.2.5, using IH(a)
for ~ρ.

Corollary 2.2.7. ~N ∈ SC⇒ constr~µi
~N ∈ SC, i.e. constr~µi ∈ SC.

Proof. First show (∀ ~N∈SN). ~N ∈ SC ⇒ constr~µi
~N ∈ SC by induction

on ~N ∈ SN as in Lemma 2.2.5, and then use Lemma 2.2.6(a).

Lemma 2.2.8.

(∀M,N, ~N∈SN).M [x:=N] ~N ∈ SCµ ⇒ (λxM)N ~N ∈ SCµ.

(∀M0,M1, ~N∈SN).M0
~N,M1

~N ∈ SCµ ⇒ 〈M0,M1〉i ~N ∈ SCµ.

Proof. By induction on M,N, ~N ∈ SN. Let M,N, ~N ∈ SN and assume

M [x:=N] ~N ∈ SC; we must show (λxM)N ~N ∈ SC. Assume (λxM)N ~N →
K; we must show K ∈ SC. Case K = (λxM ′)N ′ ~N ′ with M,N, ~N →
M ′, N ′, ~N ′. Then M [x:=N] ~N →∗ M ′[x:=N ′] ~N ′, hence by (7) from our

assumption M [x:=N] ~N ∈ SC we can infer M ′[x:=N ′] ~N ′ ∈ SC, therefore

(λxM ′)N ′ ~N ′ ∈ SC by IH. Case K = M [x:=N] ~N . Then K ∈ SC by assump-
tion.

Corollary 2.2.9.

(∀M,N, ~N∈SN).M [x:=N] ~N ∈ SCρ ⇒ (λxM)N ~N ∈ SCρ.

(∀M0,M1, ~N∈SN).M0
~N,M1

~N ∈ SCρ ⇒ 〈M0,M1〉i ~N ∈ SCρ.

Proof. By induction on ρ, using Lemma 2.2.6(a).

Lemma 2.2.10. (∀N∈SCµj)(∀ ~M, ~L∈SN). ~M, ~L ∈ SC⇒ Rj ~MN~L ∈ SCµ.

2.3. REWRITE RULES 25

Proof. By main induction on N ∈ SCµj , and side induction on ~M, ~L ∈
SN. Assume

Rj ~MN~L→ L.

We must show L ∈ SC.
Case 1. Rj ~M ′N ~L′ ∈ SC by the SIH.

Case 2. Rj ~MN ′~L ∈ SC by the main induction hypothesis (IH).

Case 3. N = constr~µi
~N and

L = Mi
~N
(
(Rj ~M) ◦NR

1

)
. . .
(
(Rj ~M) ◦NR

n

)
~L.

~M, ~L ∈ SC by assumption. ~N ∈ SC follows from N = constr~µi
~N ∈ SC by (8).

Note that for all recursive arguments NR
p of N and all strongly computable

~K by (8) we have the IH for NR
p
~K available. It remains to show (Rj ~M) ◦

NR
p = λ~xp.Rj ~M(NR

p ~xp) ∈ SC. So let ~K, ~Q ∈ SC be given. We must show

(λ~xp.Rj ~M(NR
p ~xp))

~K ~Q ∈ SC. By IH for NR
p
~K we have Rj ~M(NR

p
~K) ~Q ∈

SC, since by Lemma 2.2.6(a) ~K, ~Q ∈ SN. Now Corollary 2.2.9 yields the
claim.

Corollary 2.2.11. Rj ∈ SC.

Definition. A substitution ξ is strongly computable, if ξ(x) ∈ SC for all
variables x. A term M is strongly computable under substitution, if Mξ ∈ SC
for all strongly computable substitutions ξ.

Theorem 2.2.12. Every term is strongly computable under substitution.

Proof. Induction on the term M . Case x. xξ ∈ SC, since ξ is strongly

computable. Case constr~µi . By Corollary 2.2.7. Case Rj . By Corol-
lary 2.2.11. Case MN . By IH Mξ,Nξ ∈ SC, hence (MN)ξ = (Mξ)(Nξ) ∈
SC. Case λxM . Let ξ be a strongly computable substitution; we must show
(λxM)ξ = λxMξxx ∈ SC. So let N ∈ SC; we must show (λxMξxx)N ∈ SC.
By IH MξNx ∈ SC, hence (λxMξxx)N ∈ SC by Corollary 2.2.9.

Corollary 2.2.13. Every term is strongly normalizable.

2.3. Rewrite Rules

The elimination constants corresponding to the constructors are called
primitive recursion operators R. They have been described in detail in
Section 2.2. In this setup, every closed term reduces to a numeral.

For convenience, we shall also use constants for rather arbitrary com-
putable functionals, and axiomatize them according to their intended mean-
ing by means of rewrite rules. An example is the general fixed point operator
fix, which is axiomatized by fixF = F (fixF). Clearly then it cannot be true
any more that every closed term reduces to a numeral. We may have non-
terminating terms, but this just means that not always it is a good idea to
try to normalize a term.

An important consequence of admitting non-terminating terms is that
our notion of proof is not decidable: when checking e.g. whether two terms
are equal we may run into a non-terminating computation. To avoid this
somewhat unpleasant undecidability phenomenon, we may view our proofs

26 2. ALGEBRAS

as abbreviated forms of full proofs, with certain equality arguments left
implicit. If some information sufficient to recover the full proof (e.g. for
each node a bound on the number of rewrite steps needed to verify it) is
stored as part of the proof, then we retain decidability of proofs.

However, even without such additional information we still have semi-
decidability of proofs, i.e., an algorithm to check the correctness of a proof
that can only give correct results, but may not terminate. In practice this
is sufficient.

We now describe in some detail our concept of rewrite rules. For every

program constant cρ we assume that some rewrite rules of the form c ~K 7→ N

are given, where FV(N) ⊆ FV(~K) and c ~K, N have the same type (not

necessarily a ground type). Moreover, for any two rules c ~K 7→ N and

c ~K ′ 7→ N ′ we require that ~K and ~K ′ are of the same length, called the arity
of c.

Given a set of rewrite rules, we want to treat some rules - which we call
computation rules - in a different, more efficient way (cf. [9]). The idea is that
a computation rule can be understood as a description of a computation in
a suitable semantical model , provided the syntactic constructors correspond
to semantic ones in the model, whereas the other rules describe syntactic
transformations.

In order to define what we mean by computation rules, we need the
notion of a constructor pattern. These are special terms defined inductively
as follows.

• Every variable is a constructor pattern.
• If c is a constructor and P1, . . . , Pn are constructor patterns (or

projection markers 0 or 1) such that c ~P is of ground type, then c ~P
is a constructor pattern.

From the given set of rewrite rules we choose a subset Comp with the
following properties.

• If c ~P 7→ Q ∈ Comp, then P1, . . . , Pn are constructor patterns or
projection markers.

• The rules are left-linear, i.e. if c ~P 7→ Q ∈ Comp, then every variable

in c ~P occurs only once in c ~P .

• The rules are non-overlapping, i.e. for different rules c ~K 7→M and

c~L 7→ N in Comp the left hand sides c ~K and c~L are non-unifiable.

We write c ~M 7→comp Q to indicate that the rule is in Comp. All other rules

will be called (proper) rewrite rules, written c ~M 7→rew K.
In our reduction strategy computation rules will always be applied first,

and since they are non-overlapping, this part of the reduction is unique.
However, since we allowed almost arbitrary rewrite rules, it may happen that
in case no computation rule applies a term may be rewritten by different
rules /∈ Comp. In order to obtain a deterministic procedure we then select
the first applicable rewrite rule (This is a slight simplification of [9], where
special functions selc were used for this purpose).

2.4. AXIOMS 27

2.4. Axioms

The intended model of our theory is a many-sorted structure, with one
sort for every type. We assume that the model consists of domains, in
the sense of domain theory (cf. [34]). The reason for the setting is that
we want to deal with computable functionals. Since their (mathematically
correct) domains are the Scott-Ershov partial continuous functionals, this is
the intended range of the quantifiers.

2.4.1. Languages for Algebras. We now define the specific logical
language we use for our algebras. It should be thought of as a form of arith-
metical language, since it is supposed to describe our particular intended
model.

A variable of a given type is interpreted by a continuous functional (ob-
ject) of that type. We use the word “variable” and not “program variable”,
since continuous functionals are not necessarily computable. So for each
type ρ we have general variables x̂ρ, ŷρ, . . . of type ρ.

In most cases we need to argue about existing (i.e. total) objects only.
For the notion of totality we have to refer to [34, Chapter 8.3]; particularly
relevant here is exercise 8.5.7. To make formal arguments with quantifiers
relativized to total objects more managable, we use a special sort of variables
intended to range over such objects only. So for each type ρ we have total
variables xρ, yρ, . . . of type ρ.

For readable in- and output, and also for ease in parsing, we may reserve
certain strings as names for variables of a given type, e.g. n,m for variables of
type N. Then also n0, n1, n2, . . . ,m0, . . . can be used for the same purpose.
For example, n0, n1, n2, . . . ,m0, . . . range over total natural numbers, and
n̂0, n̂1, n̂2, . . . are general variables. We say that the degree of totality for
the former is 1, and for the latter 0.

A predicate variable P̂ of arity ρ1, . . . , ρn is a placeholder for a formula A
with distinguished (different) variables x̂1, . . . , x̂n of types ρ1, . . . , ρn. Such
an entity is called a comprehension term, written { x̂1, . . . , x̂n | A }. By
default we have the predicate variable ⊥ (of empty arity), called (logical)
falsity . It is viewed as a predicate variable rather than a predicate constant,
since (when translating a classical proof into a constructive one) we want to
substitute for ⊥.

Often we will argue about Harrop formulas only, i.e. formulas without
computational content. For convenience we use a special sort of predicate
variables intended to range over comprehension terms with Harrop formulas
only. For example, P0, P1, P2, . . . , Q0, . . . range over comprehension terms
with Harrop formulas, and P̂0, P̂1, P̂2, . . . are general predicate variables. We
say that Harrop degree for the former is 1, and for the latter 0.

We also allow predicate constants with a fixed intended meaning. Pred-
icate variables and constants are both called predicate symbols. The need
for predicate constants comes up when e.g. an inductively defined set is ex-
pressed via a formula stating the existence of a generation tree; the kernel
of this formula is to be axiomatized, using the tree constructors. Prime
formulas built from predicate constants do not give rise to extracted terms,
and cannot be substituted for.

28 2. ALGEBRAS

Specific predicate constants are

• atom of arity (B),
• for every type ρ equality ≈ρ of arity (ρ, ρ), and
• for every type ρ totality Totalρ of arity (ρ).

Notice that for finitary algebras, e.g. N, we have continuous boolean valued
functions equality =nat : N → N → B and existence (definedness, totality)
enat : N → B. Then we can express equality r = s by atom(=(r, s)) and
existence E(r) by atom(e(r)).

A prime formula has the form P (r1, . . . , rn) with a predicate variable or
constant P and terms r1, . . . , rn. Write

• T , F for atom(tt), atom(ff),
• r = s for atom(=(r, s)),
• E(r) for atom(e(r)), and
• r ≈ s for ≈ (r, s).

Formulas are built from prime formulas by

• implication A→ B,
• conjunction A ∧B,
• tensor A⊗B,
• all quantification ∀x̂ρA and
• existential quantification ∃x̂ρA.

Moreover we have classical existential quantification in an arithmetical and
a logical form:

∃cax̂1 . . . x̂n.A1 ⊗ . . .⊗Am arithmetical version

∃clx̂1 . . . x̂n.A1 ⊗ . . .⊗Am logical version.

For all quantifiers we allow that the quantified variable is formed without ^,
i.e. ranges over total objects only.

Remark. When dealing with the classical existential quantifier, it is –
for obvious reasons – useful to be able to unfold and fold it as it seems appro-
priate. In Minlog the commands are fold-formula and unfold-formula.
However, notice that there are some slight difficulties in this context. To see
the problems, consider

∃clx, yA
If we read this as ∃clx∃clyA, then the unfolded form would be

¬∀x¬¬∀y¬A

However, it would be simpler if we could unfold this formula into the equiv-
alent

¬∀x∀y¬A
To achive this effect, we allow lists of variables after a classical existen-
tial quantifier, and unfold ∃clx, yA into the latter (shorter) formula, but
∃clx∃clyA into the former.

Another (small) problem arises when we want to fold

(9) ¬∀x.A→ B → ⊥

2.4. AXIOMS 29

The result should be ∃clx.A ∧ B, but this is not quite correct, since the
latter formula unfolds into ¬∀x.A ∧ B → ⊥. Therefore in Minlog there is
a connective called tensor (written ⊗) with the property that (9) folds into

∃clx.A⊗B
and unfolds again into (9).

Formulas can be unfolded in the sense that all classical existential quan-
tifiers are replaced according to their definiton

∃cax̂1 . . . x̂n.A1 ⊗ . . .⊗Am := (∀x̂1 . . . x̂n.A1 → · · · → Am → F)→ F

∃clx̂1 . . . x̂n.A1 ⊗ . . .⊗Am := (∀x̂1 . . . x̂n.A1 → · · · → Am → ⊥)→ ⊥
Inversely a formula can be folded in the sense that classical existential quan-
tifiers are introduced wherever possible.

Comprehension terms have the form { ~x | A }; note that the formula A
may contain further free variables.

2.4.2. Algebras and Totality. We use the natural numbers as a pro-
totypical finitary algebra; recall Figure 1. Assume that n, p are variables of
type N, B. Let ≈ denote the equality relation in the model. Recall the do-
main of type B, consisting of tt, ff and the bottom element bb. The boolean
valued functions equality =nat : N → N → B and existence (definedness,
totality) enat : N→ B need to be continuous. So we have

=(0, 0) ≈ tt

=(0, Sn̂) ≈ =(Sn̂, 0) ≈ ff e(0) ≈ tt

=(Sn̂1, Sn̂2) ≈ =(n̂1, n̂2) e(Sn̂) ≈ e(n̂)

=(bbnat, n̂) ≈ =(n̂, bbnat) ≈ bb e(bbN) ≈ bb

=(∞nat, n̂) ≈ =(n̂,∞nat) ≈ bb e(∞N) ≈ bb

We stipulate as axioms

T Truth-Axiom

x̂ ≈ x̂ Eq-Refl

x̂1 ≈ x̂2 → x̂2 ≈ x̂1 Eq-Symm

x̂1 ≈ x̂2 → x̂2 ≈ x̂3 → x̂1 ≈ x̂3 Eq-Trans

∀x̂f̂1x̂ ≈ f̂2x̂→ f̂1 ≈ f̂2 Eq-Ext

x̂1 ≈ x̂2 → P̂ (x̂1)→ P̂ (x̂2) Eq-Compat

∀x̂1, x̂2P̂ (〈x̂1, x̂2〉)→ ∀p̂P̂ (p̂) Pair-Elim

Totalρ→σ(f̂)↔ ∀x̂.Totalρ(x̂)→ Totalσ(f̂ x̂) Total

Totalρ(c) Constr-Total

Total(c~̂x)→ Total(x̂i) Constr-Total-Args

and for every finitary algebra, e.g. nat

n̂1 ≈ n̂2 → E(n̂1)→ n̂1 = n̂2 Eq-to-=-1-nat

30 2. ALGEBRAS

n̂1 ≈ n̂2 → E(n̂2)→ n̂1 = n̂2 Eq-to-=-2-nat

n̂1 = n̂2 → n̂1 ≈ n̂2 =-to-Eq-nat

n̂1 = n̂2 → E(n̂1) =-to-E-1-nat

n̂1 = n̂2 → E(n̂2) =-to-E-2-nat

Total(n̂)→ E(n̂) Total-to-E-nat

E(n̂)→ Total(n̂) E-to-Total-nat

Here c is a constructor. Notice that in Total(c~̂x)→ Total(x̂i), the type of c~̂x
need not be a finitary algebra, and hence x̂i may have a function type.

Remark. (E(n̂1) → n̂1 = n̂2) → (E(n̂2) → n̂1 = n̂2) → n̂1 ≈ n̂2 is
not valid in our intended model (see Figure 1), since we have two distinct
undefined objects bbnat and ∞nat.

We abbreviate

∀x̂.Totalρ(x̂)→ A by ∀xA,
∃x̂.Totalρ(x̂) ∧A by ∃xA.

Formally, these abbreviations appear as axioms

∀xP̂ (x)→ ∀x̂.Total(x̂)→ P̂ (x̂) All-AllPartial

(∀x̂.Total(x̂)→ P̂ (x̂))→ ∀xP̂ (x) AllPartial-All

∃xP̂ (x)→ ∃x̂.Total(x̂) ∧ P̂ (x̂) Ex-ExPartial

(∃x̂.Total(x̂) ∧ P̂ (x̂))→ ∃xP̂ (x) ExPartial-Ex

and for every finitary algebra, e.g. nat

∀nP̂ (n)→ ∀n̂.E(n̂)→ P̂ (n̂) All-AllPartial-nat

(∃n̂.E(n̂) ∧ P̂ (n̂))→ ∃nP̂ (n) ExPartial-Ex-nat

Notice that AllPartial-All-nat i.e. (∀n̂.E(n̂) → P̂ (n̂)) → ∀nP̂ (n) is

provable (since E(n) 7→ T). Similarly, Ex-ExPartial-nat, i.e. ∃nP̂ (n) →
∃n̂.E(n̂) ∧ P̂ (n̂) is provable.

Finally we have axioms for the existential quantifier

∀x̂α.P̂ (x̂)→ ∃x̂αP̂ (x̂) Ex-Intro

∃x̂αP̂ (x̂)→ (∀x̂α.P̂ (x̂)→ Q̂)→ Q̂ Ex-Elim

2.4.3. Induction. We now spell out what we mean by induction over
simultaneous free algebras ~µ = µ~α~κ, with goal formulas ∀xµjj P̂j(xj). For
the constructor type

κi = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α)

we have the step formula

Di := ∀yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n .∀~x~σ1 P̂j1(ym+1~x)→ · · · →

∀~x~σn P̂jn(ym+n~x)→

P̂j(constr~µi (~y)).

2.4. AXIOMS 31

Here ~y = yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n are the components of the ob-

ject constr~µi (~y) of type µj under consideration, and

∀~x~σ1 P̂j1(ym+1~x), . . . ,∀~x~σn P̂jn(ym+n~x)

are the hypotheses available when proving the induction step. The induction

axiom Ind~x,
~A

µj with ~x = (x
µj
j)j=1,...,N and ~A = (Aj)j=1,...,N = (P̂j(x

µj
j))j=1,...,N

then proves the formula

D1 → · · · → Dk → ∀x
µj
j P̂j(xj).

We will often write Ind~x,
~A

j for Ind~x,
~A

µj , and omit the upper indices ~x, ~A when

they are clear from the context. In case of a non-simultaneous free algebra,
i.e. of type µακ, for Indx,Aµ we normally write Indx,A.

Examples.

Indp,A : A[p:=tt]→ A[p:=ff]→ ∀pBA,
Indn,A : A[n:=0]→ (∀n.A→ A[n:=Sn])→ ∀nNA,

Indl,A : A[l:=Nil]→ (∀x, l.A→ A[l:=cons(x, l)])→ ∀lL(α)A
Indx,A : ∀y1A[x:=Inl(y1)]→ ∀y2A[x:=Inr(y2)]→ ∀xρ1+ρ2A.

For the simultaneously defined algebras tree and tlist the induction axiom

Ind
b,bs,P̂1(b),P̂2(bs)
tree is

D1 → D2 → D3 → D4 → ∀btreeP̂1(b)

with

D1 := ∀nP̂1(Leaf(n)),

D2 := ∀bstlist.P̂2(bs)→ P̂1(Branch(bs)),

D3 := P̂2(Empty),

D4 := ∀btree, bstlist.P̂1(b)→ P̂2(bs)→ P̂2(Tcons(b, bs)).

Remark 2.4.1. It may happen that in an induction on simultaneously
defined algebras one only needs to induct on some of those algebras. Then
we can simplify the induction formula accordingly, by

• omitting all step formulas Di corresponding to constructor types
with irrelevant value type τj , and
• simplifying the remaining step formulas by omitting from the induc-

tion hypotheses ∀~x~σ1 P̂j1(ym+1~x), . . . , ∀~x~σn P̂jn(ym+n~x) all those
corresponding to constructor types with irrelevant value type τjν .

In the tree, tlist-example, if we only want to induct on tlist, then the step
formulas are

D3 := P̂2(Empty),

D4 := ∀btree, bstlist.P̂2(bs)→ P̂2(Tcons(b, bs)).

Hence the simplified induction axiom is

Indbs,P̂2(bs)
: D3 → D4 → ∀bstlistP̂2(bs).

32 2. ALGEBRAS

2.4.4. Cases. There is an important variant of the induction axiom,
where no induction hypotheses are used, i.e. all step formulas have the form

Di := ∀yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n .P̂j(constr~µi (~y)).

This variant is called the cases axiom; it distinguishes cases according to
the outer constructor form. The formula of the cases axiom is

Casesxj ,P̂j(xj) : Di1 , . . . , Diq → ∀x
µj
j P̂j(xj),

where Di1 , . . . , Diq consists of all Di concerning constructors for µj .
Examples are

Casesn,A : A[n:=0]→ ∀nA[n:=Sn]→ ∀nNA,

Casesl,A : A[l:=Nil]→ ∀x, lA[l:=cons(x, l)]→ ∀lL(α)A.
In the tree, tlist-example, if we want to distinguish cases on tlist, then

the step formulas are

D3 := P̂ (Empty),

D4 := ∀btree∀bstlistP̂ (Tcons(b, bs)).

Hence the cases axiom is

Casesbs,P̂ (bs) : P̂ (Empty)→ ∀btree∀bstlistP̂ (Tcons(b, bs))→ ∀bstlistP̂ (bs).

2.5. Notes

Section 2.2 is based on an extension of Tait’s method of strong com-
putability predicates. The definition of these predicates and also the proof
are related to Zucker’s proof of strong normalization of his term system
for recursion on the first three number or tree classes. However, Zucker
uses a combinatory term system and defines strong computability for closed
terms only. Following some ideas in an unpublished note of Berger, Benl
(in his diploma thesis [3]) adapted this proof to terms in the simply typed
λ-calculus, possibly involving free variables. Here this proof is extended to
the case of simultaneously defined free algebras.

In a recent paper of Abel and Altenkirch [1], a similar result is proved
with a different method, involving Aczel’s notion of a set-based relation. It
seems worthwile to verify that an appropriate variant of the standard Tait
proof also yields this result. However, an additional merit of the method of
Abel and Altenkirch is that they are also able to treat co-inductive types.
We have not tried to extend our’s in this direction as well.

CHAPTER 3

Unification and Proof Search

We describe a proof search method suitable for minimal logic with higher
order functionals. It is based on Huet’s [22] unification algorithm for the
simply typed lambda calculus, which is treated first.

Huet’s unification algorithm does not terminate in general; this cannot
be avoided, since it is well known that higher order unification is undecidable.
This non-termination can be avoided if we restrict ourselves to a certain
fragment of higher order (simply typed) minimal logic. This fragment is
determined by requiring that every higher order variable Y can only occur
in a context Y ~x, where ~x are distinct bound variables in the scope of the
operator binding Y , and of opposite polarity. Note that for first order logic
this restriction does not mean anything, since there are no higher order
variables. However, when designing a proof search algorithm for first order
logic only, one is naturally led into this fragment of higher order logic, where
the algorithm works as well.

3.1. Huet’s Unification Algorithm

We work in the simply typed λ-calculus, with the usual conventions. For
instance, whenever we write a term we assume that it is correctly typed.
Substitutions are denoted by ϕ,ψ, ρ. The result of applying a substitution
ϕ to a term r or a formula A is written as rϕ or Aϕ, with the understanding
that after the substitution all terms are brought into long normal form.

Q always denotes a ∀∃∀-prefix, say ∀~x∃~y∀~z, with distinct variables. We
call ~x the signature variables, ~y the flexible variables and ~z the forbidden
variables of Q, and write Q∃ for the existential part ∃~y of Q.

A Q-term is a term with all its free variables in Q, and similarly a Q-
formula is a formula with all its free variables in Q. A Q-substitution is a
substitution of Q-terms.

A unification problem U consists of a ∀∃∀-prefix Q and a conjunction C
of equations between Q-terms of the same type, i.e.

∧∧n
i=1 ri = si. We may

assume that each such equation is of the form λ~xr = λ~xs with the same ~x
(which may be empty) and r, s of ground type.

A solution to such a unification problem U is a Q-substitution ϕ such
that for every i, riϕ = siϕ holds (i.e. riϕ and siϕ have the same normal
form). We sometimes write C as ~r = ~s, and (for obvious reasons) call it a
list of unification pairs.

We now define the unification algorithm. It takes a unification problem
U = QC and produces a not necessarily well-founded tree (called matching
tree by Huet [22]) with nodes labelled by unification problems and vertices
labelled by substitutions.

33

34 3. UNIFICATION AND PROOF SEARCH

Definition (Unification algorithm). We distinguish cases according to
the form of the unification problem, and either give the transition done by
the algorithm, or else state that it fails.

Case identity, i.e. Q.r = r ∧ C. Then

(Q.r = r ∧ C) =⇒ε QC.

Case ξ, i.e. Q.λ~x r = λ~x s ∧ C. We may assume here that the bound
variables ~x are the same on both sides.

(Q.λ~x r = λ~x s ∧ C) =⇒ε Q∀~x.r = s ∧ C.

Case rigid-rigid, i.e. Q.f~r = g~s ∧ C with both f and g rigid, that is
either a signature variable or else a forbidden variable. If f is different from
g then fail. If f equals g,

(Q.f~r = f~s ∧ C) =⇒ε Q.~r = ~s ∧ C.

Case flex-rigid, i.e. Q.u~r = f~s ∧ C with f rigid. Then the algorithm
branches into one imitation branch and m projection branches, where r =
r1, . . . , rm. Imitation replaces the flexible head u, using the substitution

ρ = [u:=λ~x.f(h1~x) . . . (hn~x)] with new variables ~h and ~x. For ri we have a
projection if and only if the final value type of ri is the (ground) type of f~s.
Then the i-th projections pulls ri in front, by ρ = [u:=λ~x.xi(h1~x) . . . (hni~x)].
In each of these branches we have

(Q.u~r = f~s ∧ C) =⇒ρ Q
′.(u~r = f~s ∧ C)ρ,

where Q′ is obtained from Q by removing ∃u and adding ∃~h.
Case flex-flex, i.e. Q.u~r = v~s∧C. If there is a first flex-rigid or rigid-flex

equation in C, pull this equation (possibly swapped) to the front and apply
case flex-rigid. Otherwise, i.e. if all equations are between terms with flexible
heads, pick a new variable z of ground type and let ρ be the substitution
mapping each of these flexible heads u to λ~xz.

(Q.u~r = v~s ∧ C) =⇒ρ Q.∅.

This concludes the definition of the unification algorithm.

Clearly ρ is defined on flexible variables of Q only, and its value terms
have no free occurrences of forbidden variables from Q. Our next task is to
prove correctness and completeness of this algorithm.

Theorem 3.1.1 (Huet). Let a unification problem U consisting of a ∀∃∀-
prefix Q and a list ~r = ~s of unification pairs be given. Then either

• the unification algorithm can make a transition, and
– (correctness) for every transition U =⇒ρ U ′ and U ′-solution
ϕ′ the substitution (ρ ◦ ϕ′)�Q∃ is a U-solution, and

– (completeness) for every U-solution ϕ there is a transition
U =⇒ρ U ′ and U ′-solution ϕ′ such that ϕ = (ρ ◦ ϕ′)�Q∃, and
moreover µ(ϕ′) ≤ µ(ϕ) with < in case flex-rigid, or else

• the unification algorithm fails, and there is no U-solution, or else
• the unification algorithm succeeds, and ~r = ~s is empty.

Here µ(ϕ) denotes the number of applications in the value terms of ϕ.

3.1. HUET’S UNIFICATION ALGORITHM 35

Proof. Case identity, i.e. Q.r = r ∧C =⇒ε QC. Then correctness and
completeness are obvious.

Case ξ, i.e. Q.λ~x r = λ~x s ∧ C =⇒ε Q∀~x.r = s ∧ C. Again correctness
and completeness are obvious.

Case rigid-rigid, i.e. Q.f~r = g~s ∧ C =⇒ε Q.~r = ~s ∧ C. If f 6= g, then
the unification algorithm fails and there is no U-solution. If f = g, again
correctness and completeness are obvious.

Case flex-rigid, i.e. U is Q.u~r = f~s ∧ C.
Correctness. Assume U =⇒ρ U ′, which is to say (Q.u~r = f~s ∧ C) =⇒ρ

Q′.(u~r = f~s ∧ C)ρ. Let ϕ′ be a U ′-solution, i.e. (u~r = f~s ∧ C)ρϕ′. Then
clearly (ρ ◦ ϕ′)�Q∃ is a U-solution.

Completeness. Assume ϕ is a U-solution, i.e. (u~r = f~s ∧ C)ϕ. We have
to find a transition U =⇒ρ U ′ and a U ′-solution ϕ′ such that ϕ = (ρ◦ϕ′)�Q∃,
and moreover µ(ϕ′) < µ(ϕ). Now uϕ must be of the form λ~x.a~t with a either
f or xi.

Subcase a is f . Then take the imitation branch, i.e. replace the flexible
head u using the substitution ρ = [u:=λ~x.f(h1~x) . . . (hn~x)] with new vari-

ables ~h and ~x. Recall (Q.u~r = f~s ∧ C) =⇒ρ Q
′.(u~r = f~s ∧ C)ρ, where

Q′ is obtained from Q by removing ∃u and adding ∃~h. Define ϕ′ on the

new variables ~h by hjϕ
′ := λ~xtj , and as ϕ on all other variables. Then

ϕ = (ρ ◦ ϕ′)�Q∃ because of

uρϕ′ = λ~x.f
(
(~hϕ′)~x

)
= λ~x.f~t = uϕ,

and our assumption says that

f~t[~x:=~rϕ] = f(~sϕ)

Now ϕ′ is a U ′-solution because of

(u~r)ρϕ′ = f
(
~t[~x:=~rρϕ′]

)
= f

(
~t[~x:=~rϕ]

)
= f(~sϕ) = f(~sρϕ′).

Subcase a is xi. Then take the i-th projections branch, i.e. replace the
flexible head u using the substitution ρ = [u:=λ~x.xi(h1~x) . . . (hni~x)] with

new variables ~h and ~x. Recall (Q.u~r = f~s ∧ C) =⇒ρ Q
′.(u~r = f~s ∧ C)ρ,

where Q′ is obtained from Q by removing ∃u and adding ∃~h. Define ϕ′ on

the new variables ~h by hjϕ
′ := λ~xtj , and as ϕ on all other variables. Then

ϕ = (ρ ◦ ϕ′)�Q∃ because of

uρϕ′ = λ~x.xi
(
(~hϕ′)~x

)
= λ~x.xi~t = uϕ,

and our assumption says that

(riϕ)~t[~x:=~rϕ] = f(~sϕ)

Now ϕ′ is a U ′-solution because of

(u~r)ρϕ′ = (riρϕ
′)
(
~t[~x:=~rρϕ′]

)
= (riϕ)

(
~t[~x:=~rϕ]

)
= f(~sϕ) = f(~sρϕ′).

Case flex-flex, i.e. Q.C where all equations in C are between terms with
flexible heads. Then for a new variable z of ground type we have taken ρ to
be the substitution mapping each of these flexible heads to λ~xz, and

(QC) =⇒ρ Q.∅.
Correctness. (ρ ◦ ϕ′)�Q∃ clearly is a U-solution for every ϕ′.

36 3. UNIFICATION AND PROOF SEARCH

Completeness. To simplify the notation let C = (ur = vs). Assume that
ϕ is a U-solution, i.e. (ur = vs)ϕ. Then uϕ = λx.f1t1 and vϕ = λx.f2t2,
and by assumption f1t1[x:=r] = f2t2[x:=s]. Define ϕ′ to be ϕ with the
assignments to u, v removed and z 7→ f1t1[x:=r] (= f2t2[x:=s]) added. Then
clearly (ρ ◦ ϕ′)�Q∃ = ϕ, and µ(ϕ′) ≤ µ(ϕ).

Corollary 3.1.2. Given a unification problem U = QC, and a success
node in the matching tree, labelled with a prefix Q′ (i.e. a unification problem
U ′ with no unification pairs). Then by composing the substitution labels on
the branch leading to this node we obtain a pair (Q′, ρ) with a “transition”
substitution ρ and such that for any Q′-substitution ϕ′, (ρ ◦ ϕ′)�Q∃ is an
U-solution. Moreover, every U-solution can be obtained in this way, for an
appropriate success node. Since the empty substitution is a Q′-substitution,
ρ�Q∃ is a U-solution, which is most general in the sense stated.

3.2. The Pattern Unification Algorithm

We modify restrict the notion of Q-term as follows. Q-terms are induc-
tively defined by the following clauses.

• If u is a universally quantified variable in Q or a constant, and ~r
are Q-terms, then u~r is a Q-term.
• For any flexible variable y and distinct forbidden variables ~z from
Q, y~z is a Q-term.
• If r is a Q∀z-term, then λzr is a Q-term.

Explicitely, r is a Q-term iff all its free variables are in Q, and for every
subterm y~r of r with y free in r and flexible in Q, the ~r are distinct variables
either λ-bound in r (such that y~r is in the scope of this λ) or else forbidden
in Q.

Q-goals and Q-clauses are simultaneously defined by

• If ~r are Q-terms, then P~r is a Q-goal as well as a Q-clause.
• If D is a Q-clause and G is a Q-goal, then D → G is a Q-goal.
• If G is a Q-goal and D is a Q-clause, then G→ D is a Q-clause.
• If G is a Q∀x-goal, then ∀xG is a Q-goal.
• If D[y:=Y ~z] is a ∀~x∃~y, Y ∀~z-clause, then ∀yD is a ∀~x∃~y∀~z-clause.

Explicitely, a formula A is a Q-goal iff all its free variables are in Q, and for
every subterm y~r of A with y either existentially bound in A (with y~r in the
scope) or else free in A and flexible in Q, the ~r are distinct variables either
λ- or universally bound in A (such that y~r is in the scope) or else free in A
and forbidden in Q.

A Q-substitution is a substitution of Q-terms.
A pattern unification problem U consists of a ∀∃∀-prefix Q and a con-

junction C of equations between Q-terms of the same type, i.e.
∧∧n

i=1 ri = si.
We may assume that each such equation is of the form λ~xr = λ~xs with the
same ~x (which may be empty) and r, s of ground type.

A solution to such a unification problem U is a Q-substitution ϕ such
that for every i, riϕ = siϕ holds (i.e. riϕ and siϕ have the same normal
form). We sometimes write C as ~r = ~s, and (for obvious reasons) call it a
list of unification pairs.

3.2. THE PATTERN UNIFICATION ALGORITHM 37

We now define the pattern unification algorithm. It takes a unifica-
tion problem U = QC and returns a substitution ρ and another unification
problem U ′ = Q′C ′. Note that ρ will be neither a Q-substitution nor a
Q′-substitution, but will have the property that

• ρ is defined on flexible variables of Q only, and its value terms have
no free occurrences of forbidden variables from Q,
• if G is a Q-goal, then Gρ is a Q′-goal, and
• whenever ϕ′ is a U ′-solution, then (ρ ◦ ϕ′)�Q∃ is a U-solution.

Definition (Pattern Unification Algorithm). We distinguish cases ac-
cording to the form of the unification problem, and either give the transition
done by the algorithm, or else state that it fails.

Case identity, i.e. Q.r = r ∧ C. Then

(Q.r = r ∧ C) =⇒ε QC.

Case ξ, i.e. Q.λ~x r = λ~x s ∧ C. We may assume here that the bound
variables ~x are the same on both sides.

(Q.λ~x r = λ~x s ∧ C) =⇒ε Q∀~x.r = s ∧ C.
Case rigid-rigid, i.e. Q.f~r = f~s∧C with f either a signature variable or

else a forbidden variable.

(Q.f~r = f~s ∧ C) =⇒ε Q.~r = ~s ∧ C.
Case flex-flex with equal heads, i.e. Q.u~y = u~z ∧ C.

(Q.u~y = u~z ∧ C) =⇒ρ Q
′.Cρ

with ρ = [u:=λ~y.u′ ~w], Q′ is Q with ∃u replaced by ∃u′, and ~w an enu-
meration of those yi which are identical to zi (i.e. the variable at the same
position in ~z). Notice that λ~y.u′ ~w = λ~z.u′ ~w.

Case flex-flex with different heads, i.e. Q.u~y = v~z ∧ C.

(Q.u~y = v~z ∧ C) =⇒ρ Q
′Cρ,

where ρ and Q′ are defined as follows. Let ~w be an enumeration of the
variables both in ~y and in ~z. Then ρ = [u, v:=λ~y.u′ ~w, λ~z.u′ ~w], and Q′ is Q
with ∃u,∃v removed and ∃u′ inserted.

Case flex-rigid, i.e. Q.u~y = t ∧ C with t rigid, i.e. not of the form v~z
with flexible v.

Subcase occurrence check: t contains (a critical subterm with head) u.
Fail.

Subcase pruning: t contains a subterm v ~w1z ~w2 with ∃v in Q, and z free
in t but not in ~y.

(Q.u~y = t ∧ C) =⇒ρ Q
′.u~y = tρ ∧ Cρ

where ρ = [v:=λ~w1λzλ~w2.v
′ ~w1 ~w2], Q

′ is Q with ∃v replaced by ∃v′.
Subcase pruning impossible: λ~yt (after all pruning steps are done still)

has a free occurrence of a forbidden variable z. Fail.
Subcase explicit definition: otherwise.

(Q.u~y = t ∧ C) =⇒ρ Q
′Cρ

where ρ = [u:=λ~yt], and Q′ is obtained from Q by removing ∃u. This
concludes the definition of the pattern unification algorithm.

38 3. UNIFICATION AND PROOF SEARCH

Our next task is to prove that this algorithm indeed has the three prop-
erties stated above. The first one (ρ is defined on flexible variables of Q only,
and its value terms have no free occurrences of forbidden variables from Q)
is obvious from the definition. We now prove the second one; the third one
will be proved next.

Lemma 3.2.1. If Q =⇒ρ Q
′ and G is a Q-goal, then Gρ is a Q′-goal.

Proof. We distinguish cases according to the definition of the unifica-
tion algorithm. All cases are straightforward:

Cases identity, ξ and rigid-rigid. Then ρ = ε and the claim is trivial.
Case flex-flex with equal heads. Then ρ = [u:=λ~y.u′ ~w] with ~w a sublist

of ~y, and Q′ is Q with ∃u replaced by ∃u′. Then clearly G[u:=λ~y.u′ ~w] is a
Q′-goal (recall that after a substitution we always normalize).

Case flex-flex with different heads. Then ρ = [u, v:=λ~y.u′ ~w, λ~z.u′ ~w]
with ~w an enumeration of the variables both in ~y and in ~z, and Q′ is Q with
∃u,∃v removed and ∃u′ inserted. Again clearly G[u, v:=λ~y.u′ ~w, λ~z.u′ ~w] is a
Q′-goal.

Case flex-rigid, Subcase pruning: Then ρ = [v:=λ~w1, z, ~w2.v
′ ~w1 ~w2], and

Q′ is Q with ∃v replaced by ∃v′. Suppose G is a Q-goal. Then clearly
G[v:=λ~w1, z, ~w2.v

′ ~w1 ~w2] is a Q′-goal.
Case flex-rigid, Subcase explicit definition: Then ρ = [u:=λ~yt] with a Q-

term λ~yt without free occurrences of forbidden variables, and Q′ is obtained
from Q by removing ∃u. Suppose G is a Q-goal. Then clearly G[u:=λ~yt]
form) is a Q′-goal.

Let Q −→ρ Q
′ mean that for some C,C ′ we have QC =⇒ρ Q

′C ′. Write
Q −→∗ρ Q′ if there are ρ1, . . . , ρn and Q1, . . . , Qn−1 such that

Q −→ρ1 Q1 −→ρ2 . . . −→ρn−1 Qn−1 −→ρn Q
′,

and ρ = ρ1 ◦ · · · ◦ ρn.

Corollary 3.2.2. If Q −→∗ρ Q′ and G is a Q-goal, then Gρ is a Q′-goal.

Lemma 3.2.3. Let a unification problem U consisting of a ∀∃∀-prefix Q
and a list ~r = ~s of unification pairs be given. Then either

• the unification algorithm makes a transition U =⇒ρ U ′, and

Φ′ : U ′-solutions→ U-solutions

ϕ′ 7→ (ρ ◦ ϕ′)�Q∃
is well-defined and we have Φ: U-solutions→ U ′-solutions such that
Φ′ is inverse to Φ, i.e. Φ′(Φϕ) = ϕ, or else
• the unification algorithm fails, and there is no U-solution.

Proof. Case identity, i.e. Q.r = r∧C =⇒ε QC. Let Φ be the identity.
Case ξ, i.e. Q.λ~x r = λ~x s ∧ C =⇒ε Q∀~x.r = s ∧ C. Let again Φ be the

identity.
Case rigid-rigid, i.e. Q.f~r = f~s ∧ C =⇒ε Q.~r = ~s ∧ C. Let again Φ be

the identity.
Case flex-flex with equal heads, i.e. Q.u~y = u~z ∧ C =⇒ρ Q

′.Cρ with
ρ = [u:=λ~y.u′ ~w], Q′ is Q with ∃u replaced by ∃u′, and ~w an enumeration of

3.2. THE PATTERN UNIFICATION ALGORITHM 39

those yi which are identical to zi (i.e. the variable at the same position in
~z). Notice that λ~y.u′ ~w = λ~z.u′ ~w.

1. Φ′ is well-defined: Let ϕ′ be a U ′-solution, i.e. assume that Cρϕ′

holds. We must show that ϕ := (ρ ◦ ϕ′)�Q∃ is a U-solution.
For u~y = u~z: We need to show (uϕ)~y = (uϕ)~z. But uϕ = uρϕ′ =

(λ~y.u′ ~w)ϕ′. Hence (uϕ)~y = (uϕ)~z by the construction of ~w.
For (r = s) ∈ C: We need to show (r = s)ϕ. But by assumption

(r = s)ρϕ′ holds, and r = s has all its flexible variables from Q∃.
2. Definition of Φ: U-solutions → U ′-solutions. Let a Q-substitution

ϕ be given such that (u~y = u~z)ϕ and Cϕ. Define u′(Φϕ) := λ~w.(uϕ)~w~0
(w.l.o.g), and v(Φϕ) := v for every other variable v in Q∃.

Φϕ =: ϕ′ is a U ′-solution: Let (r = s) ∈ C. Then (r = s)ϕ by assump-
tion, for ϕ is a Q-substitution such that Cϕ holds. We must show

(r = s)ρϕ′.

Notice that our assumption (uϕ)~y = (uϕ)~z implies that the normal form of
both sides can only contain the variables in ~w. Therefore

uρϕ′ = (λ~y.u′ ~w)ϕ′

= λ~y.(λ~w.(uϕ)~w~0)~w

= λ~y.(uϕ)~w~0

= λ~y.(uϕ)~y

= uϕ

and hence (r = s)ρϕ′.
3. Φ′(Φϕ) = ϕ: So let ϕ be an U-solution, and ϕ′ := Φϕ. Then

u
(
Φ′ϕ′

)
= u

(
(ρ ◦ ϕ′)�Q∃

)
= uρϕ′

= uϕ, as proved in 2.

For every other variable v in Q∃ we obtain

v
(
Φ′ϕ′

)
= v
(
(ρ ◦ ϕ′)�Q∃

)
= vρϕ′

= vϕ′

= vϕ.

Case flex-flex with different heads, i.e. U is Q.u~y = v~z ∧C. Let ~w be an
enumeration of the variables both in ~y and in ~z. Then ρ = [u, v:=λ~y.u′ ~w, λ~z.u′ ~w],
Q′ is Q with ∃u,∃v removed and ∃u′ inserted, and U ′ = Q′Cρ.

1. Φ′ is well-defined: Let ϕ′ be a U ′-solution, i.e. assume that Cρϕ′

holds. We must show that ϕ := (ρ ◦ ϕ′)�Q∃ is a U-solution.
For u~y = v~z: We need to show (uϕ)~y = (vϕ)~z. But (uϕ)~y = (uρϕ′)~y =

(λ~y.(u′ϕ′)~w)~y = (u′ϕ′)~w, and similarly (vϕ)~z = (u′ϕ′)~w.
For (r = s) ∈ C: We need to show (r = s)ϕ. But since u′ is a new

variable, ϕ and ρ ◦ ϕ′ coincide on all variables free in r = s, and we have
(r = s)ρϕ′ by assumption.

40 3. UNIFICATION AND PROOF SEARCH

2. Definition of Φ: U-solutions → U ′-solutions. Let a Q-substitution ϕ
be given such that (u~y = v~z)ϕ and Cϕ. Define

u′(Φϕ) := λ~w.(uϕ)~w~0 w.l.o.g.; ~0 arbitrary

v′(Φϕ) := λ~w.(vϕ)~0~w

w(Φϕ) := wϕ otherwise, i.e. w 6= u′, v′, u flexible.

Since by assumption (uϕ)~y = (vϕ)~z, the normal forms of both (uϕ)~y and
(vϕ)~z can only contain the common variables ~w from ~y, ~z free. Hence, for
ϕ′ := Φϕ, uρϕ′ = uϕ by the argument in the previous case, and similarly
vρϕ′ = vϕ. Since rϕ = sϕ ((r = s) ∈ C arbitrary) by assumption, and ρ
only affects u and v, we obtain rρϕ′ = sρϕ′, as required. Φ′(Φϕ) = ϕ can
now be proved as in the previous case.

Case flex-rigid, U is Q.u~y = t ∧ C.
Subcase occurrence check: t contains (a critical subterm with head) u.

Then clearly there is no Q-substitution ϕ such that (uϕ)~y = tϕ.
Subcase pruning: Here t contains a subterm v ~w1z ~w2 with ∃v in Q, and

z free in t. Then ρ = [v:=λ~w1, z, ~w2.v
′ ~w1 ~w2], Q

′ is Q with ∃v replaced by
∃v′, and U ′ = Q′.u~y = tρ ∧ Cρ.

1. Φ′ is well-defined: Let ϕ′ be a U ′-solution, i.e. (uϕ′)~y = tρϕ′, and
rρϕ′ = sρϕ′ for (r = s) ∈ C. We must show that ϕ := (ρ ◦ ϕ′)�Q∃ is a
U-solution.

For u~y = t: We need to show (uϕ)~y = tρϕ′. But

(uϕ)~y = (uρϕ′)~y

= (uϕ′)~y since ρ does not touch u

= tρϕ′ by assumption.

For (r = s) ∈ C: We need to show (r = s)ϕ. But since v′ is a new
variable, ϕ = (ρ ◦ ϕ′)�Q∃ and ρ ◦ ϕ′ coincide on all variables free in r = s,
and the claim follows from (r = s)ρϕ′.

2. Definition of Φ: U-solutions→ U ′-solutions. For a U-solution ϕ define

v′(Φϕ) := λ~w1, ~w2.(vϕ)~w10~w2

w(Φϕ) := wϕ otherwise, i.e. w 6= v′, v flexible.

Since by assumption (uϕ)~y = tϕ, the normal form of tϕ cannot contain z
free. Therefore, for ϕ′ := Φϕ,

vρϕ′ = (λ~w1, z, ~w2.v
′ ~w1 ~w2)ϕ

′

= λ~w1, z, ~w2.(λ~w1, ~w2.(vϕ)~w10~w2)~w1 ~w2

= λ~w1, z, ~w2.(vϕ)~w10~w2

= λ~w1, z, ~w2.(vϕ)~w1z ~w2

= vϕ.

Hence ϕ′ = Φϕ satisfies (uϕ′)~y = tρϕ′. For r = s this follows by the same
argument. Φ′(Φϕ) = ϕ can again be proved as in the previous case.

Subcase pruning impossible: Then λ~yt has an occurrence of a univer-
sally quantified (i.e. forbidden) variable z. Therefore clearly there is no
Q-substitution ϕ such that (uϕ)~y = tϕ.

3.3. PROOF SEARCH 41

Subcase explicit definition. Then ρ = [u:=λ~yt], Q′ is obtained from Q
by removing ∃u, and U ′ = Q′Cρ. Note that ρ is a Q′-substitution, for we
have performed the pruning steps.

1. Φ′ is well-defined: Let ϕ′ be a U ′-solution, i.e. rρϕ′ = sρϕ′ for (r =
s) ∈ C. We must show that ϕ := (ρ ◦ ϕ′)�Q∃ is an U-solution.

For u~y = t: We need to show (uρϕ′)~y = tρϕ′. But

(uρϕ′)~y = ((λ~yt)ϕ′)~y

= tϕ′

= tρϕ′ since u does not appear in t.

For (r = s) ∈ C: We need to show (r = s)ϕ. But this clearly follows
from (r = s)ρϕ′.

2. Definition of Φ: U-solutions→ U ′-solutions, and proof of Φ′(Φϕ) = ϕ.
For a U-solution ϕ define Φϕ = ϕ�Q∃. Then

uρϕ′ = λ~ytϕ′ = λ~ytϕ = uϕ,

and clearly vρϕ′ = vϕ for all other flexible ϕ. For (r = s) ∈ C, from rϕ = sϕ
we easily obtain rϕ′ = sϕ′.

It is not hard to see that the unification algorithm terminates, by defining
a measure that decreases with each transition.

Corollary 3.2.4. Given a unification problem U = QC, the unification
algorithm either fails, and there is no U-solution, or else returns a pair
(Q′, ρ) with a “transition” substitution ρ and a prefix Q′ (i.e. a unification
problem U ′ with no unification pairs) such that for any Q′-substitution ϕ′,
(ρ ◦ ϕ′)�Q∃ is an U-solution, and every U-solution can be obtained in this
way. Since the empty substitution is a Q′-substitution, ρ�Q∃ is a U-solution,
which is most general in the sense stated.

3.3. Proof Search

A Q-sequent has the form P ⇒ G, where P is a list of Q-clauses and G
is a Q-goal.

We write M [P] to indicate that all assumption variables in the derivation
M are assumptions of clauses in P.

Write `n S for a set S of sequents if there are derivations MGi
i [Pi] in

long normal form for all (Pi ⇒ Gi) ∈ S such that
∑

dp(Mi) ≤ n. Let `<n S
mean ∃m<n `m S.

We now prove correctness and completeness of the proof search proce-
dure: correctness is the if-part of the two lemmata to follow, and complete-
ness the only-if-part.

Lemma 3.3.1. Let Q be a ∀∃∀-prefix, {P ⇒ ∀~x. ~D → A} ∪ S Q-sequents

with ~x, ~D not both empty. Then we have for every substitution ϕ:

ϕ is a Q-substitution such that `n
(
{P ⇒ ∀~x. ~D → A} ∪ S

)
ϕ

if and only if

ϕ is a Q∀~x-substitution such that `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ.

42 3. UNIFICATION AND PROOF SEARCH

Proof. “If”. Let ϕ be a Q∀~x-substitution and `<n
(
{P ∪ ~D ⇒ A} ∪

S
)
ϕ. So we have

NAϕ[~Dϕ ∪ Pϕ].

Since ϕ is a Q∀~x-substitution, no variable in ~x can be free in Pϕ, or free in
yϕ for some y ∈ dom(ϕ). Hence

M (∀~x. ~D→A)ϕ[Pϕ] := λ~xλ~u
~DϕN

is a correct derivation.
“Only if”. Let ϕ be a Q-substitution and `n

(
{P ⇒ ∀~x. ~D → A} ∪ S

)
ϕ.

This means we have a derivation (in long normal form)

M (∀~x. ~D→A)ϕ[Pϕ] = λ~xλ~u
~Dϕ.NAϕ[~Dϕ ∪ Pϕ].

Now dp(N) < dp(M), hence `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ, and ϕ clearly is a

Q∀~x-substitution.

Lemma 3.3.2. Let Q be a ∀∃∀-prefix, {P ⇒ P~r} ∪ S Q-sequents and ϕ
a substitution. Then

ϕ is a Q-substitution such that `n
(
{P ⇒ P~r} ∪ S

)
ϕ

if and only if there is a clause ∀~x. ~G→ P~s in P such that the following holds.

Let ~z be the final universal variables in Q, ~X be new (“raised”) variables such
that Xi~z has the same type as xi, let Q∗ be Q with the existential variables ex-

tended by ~X, and let ∗ indicate the substitution [x1, . . . , xn:=X1~z, . . . , Xn~z].
Then there is a result (Q′, ρ) of either Huet’s or the pattern unification al-
gorithm applied to Q∗.~r = ~s∗ and a Q′-substitution ϕ′ such that `<n

(
{P ⇒

~G∗} ∪ S
)
ρϕ′, and ϕ = (ρ ◦ ϕ′)�Q∃.

Proof. “If”. Let (Q′, ρ) be such a result, and assume that ϕ′ is a Q′-

substitution such that Ni `
(
P ⇒ ~G∗

)
ρϕ′. Let ϕ := (ρ ◦ ϕ′)�Q∃. From

unif(Q∗, ~r = ~s∗) = (Q′, ρ) we know ~rρ = ~s∗ρ, hence ~rϕ = ~s∗ρϕ′. Then

u(∀~x.
~G→P~s)ϕ((~Xρϕ′)~z) ~N ~G∗ρϕ′

derives P~s∗ρϕ′ (i.e. P~rϕ) from Pϕ.
“Only if”. Assume ϕ is a Q-substitution such that ` (P ⇒ P~r)ϕ, say by

u(∀~x.
~G→P~s)ϕ~t ~N (~Gϕ)[~x:=~t], with ∀~x. ~G→ P~s a clause in P, and with additional

assumptions from Pϕ in ~N . Then ~rϕ = (~sϕ)[~x:=~t]. Since we can assume
that the variables ~x are new and in particular not range variables of ϕ, with

ϑ := ϕ ∪ [~x:=~t]

we have ~rϕ = ~sϑ. Let ~z be the final universal variables in Q, ~X be new
(“raised”) variables such that Xi~z has the same type as xi, let Q∗ be Q with

the existential variables extended by ~X, and for terms and formulas let ∗
indicate the substitution [x1, . . . , xn:=X1~z, . . . , Xn~z]. Moreover, let

ϑ∗ := ϕ ∪ [X1, . . . , Xn:=λ~z.t1, . . . , λ~z.tn].

Then ~rϑ∗ = ~rϕ = ~sϑ = ~s∗ϑ∗, i.e. ϑ∗ is a solution to the unification problem
given by Q∗ and ~r = ~s. Hence by Corollary 3.1.2 unif(Q∗, ~r = ~s∗) = (Q′, ρ)
and there is a Q′-substitution ϕ′ such that ϑ∗ = (ρ ◦ ϕ′)�Q∗∃, hence ϕ =

(ρ ◦ ϕ′)�Q∃. Also, (~Gϕ)[~x:=~t] = ~Gϑ = ~G∗ϑ∗ = ~G∗ρϕ′.

3.4. EXTENSION BY ∧ AND ∃ 43

A state is a pair (Q,S) with Q a prefix and S a finite set of Q-sequents.
By the two lemmas just proved we have state transitions

(Q, {P ⇒ ∀~x. ~D → A} ∪ S) 7→ε (Q∀~x, {P ∪ ~D ⇒ A} ∪ S)

(Q, {P ⇒ P~r} ∪ S) 7→ρ (Q′, ({P ⇒ ~G∗} ∪ S)ρ),

where in the latter case there is a clause ∀~x. ~G → P~s in P such that the
following holds. Let ~z be the final universal variables in Q, ~X be new
(“raised”) variables such that Xi~z has the same type as xi, let Q∗ be Q with

the existential variables extended by ~X, and let ∗ indicate the substitution
[x1, . . . , xn:=X1~z, . . . , Xn~z], and unif(Q∗, ~r = ~s∗) = (Q′, ρ).

Notice that by Lemma 3.2.1, if P ⇒ P~r is a Q-sequent (which means

that
∧∧
P → P~r is a Q-goal), then (P ⇒ ~G∗)ρ is a Q′-sequent.

Theorem 3.3.3. Let Q be a prefix, and S be a set of Q-sequents. For
every substitution ϕ we have: ϕ is a Q-substitution satisfying ` Sϕ iff there
is a prefix Q′, a substitution ρ and a Q′-substitution ϕ′ such that

(Q,S) 7→ρ∗ (Q′, ∅),
ϕ = (ρ ◦ ϕ′)�Q∃.

Examples. (i) The sequent ∀y.∀zRyz → Q,∀y1, y2Ry1y2 ⇒ Q leads
first to ∀y1, y2Ry1y2 ⇒ Ryz under ∃y∀z, then to y1 = y∧y2 = z under
∃y∀z∃y1, y2, and finally to Y1z = y∧Y2z = z under ∃y, Y1, Y2∀z, which
has the solution Y1 = λzy, Y2 = λzz.

(ii) ∀y.∀zRyz → Q,∀y1Ry1y1 ⇒ Q leads first to ∀y1Ry1y1 ⇒ Ryz under
∃y∀z, then to y1 = y ∧ y1 = z under ∃y∀z∃y1, and finally to Y1z =
y ∧ Y1z = z under ∃y, Y1∀z, which has no solution.

(iii) Here is a more complex example (derived from proofs of the Orevkov-
formulas), for which we only give the derivation tree.

∀y.(∀zRyz→⊥)→⊥
(∀zR0z→⊥)→⊥

∀y.(∀z1Ryz1→⊥)→⊥
(∀z1Rzz1→⊥)→⊥

∀zS0z→⊥
S0z1→⊥

(∗) R0z Rzz1
S0z1

⊥
Rzz1→⊥
∀z1Rzz1→⊥

⊥
R0z→⊥
∀zR0z→⊥

⊥
where (∗) is a derivation from Hyp1 : ∀z, z1.R0z → Rzz1 → S0z1.

3.4. Extension by ∧ and ∃

The extension by conjunction is rather easy; it is even superfluous in
principle, since conjunctions can always be avoided at the expense of having
lists of formulas instead of single formulas.

However, having conjunctions available is clearly useful at times, so let’s
add it. This requires the notion of an elaboration path for a formula (cf. [27]).
The reason is that the property of a formula to have a unique atom as its
head is lost when conjunctions are present. An elaboration path is meant to

44 3. UNIFICATION AND PROOF SEARCH

give the directions (left or right) to go when we encounter a conjunction as
a strictly positive subformula. For example, the elaboration paths of ∀xA∧
(B ∧C → D ∧ ∀yE) are (left), (right, left) and (right, right). Clearly,
a formula is equivalent to the conjunction (over all elaboration paths) of
all formulas obtained from it by following an elaboration path (i.e. always
throwing away the other part of the conjunction). In our example,

∀xA ∧ (B ∧ C → D ∧ ∀yE)↔ ∀xA ∧ (B ∧ C → D) ∧ (B ∧ C → ∀yE).

In this way we regain the property of a formula to have a unique head, and
our previous search procedure continues to work.

For the existential quantifier ∃ the problem is of a different nature. We
chose to introduce ∃ by means of axiom schemata. Then the problem is
which of such schemes to use in proof search, given a goal G and a set P of
clauses. We might proceed as follows.

List all prime, positive and negative existential subformulas of P ⇒ G,
and remove any formula from those lists which is of the form of another one1.
For every positive existential formula – say ∃xB – add (the generalization
of) the existence introduction scheme

∃+x,B : ∀x.B → ∃xB

to P. Moreover, for every negative existential formula – say ∃xA – and every
(prime or existential) formula C in any of those two lists, exept the formula
∃xA itself, add (the generalization of) the existence elimination scheme

∃−x,A,B : ∃xA→ (∀x.A→ B)→ B

to P. Then start the search algorithm as described in Section 3.3. The
normal form theorem for the natural deduction system of minimal logic
with ∃ then guarantees completeness.

However, experience has shown that this complete search procedure
tends to be trapped in too large a search space. Therefore in our actual
implementation we decided to only take instances of the existence elimina-
tion scheme with existential conclusions.

Moreover, it seems appropriate that – before the search is started – one
eliminates in a preprocessing step as many existential quantifiers as possible.
We shall discuss in the following to what extent this might be done. As a
preparation, we first prove a lemma.

Call a formula decidable, if it is built from atoms atom(t) and contains
boolean quantifiers only (i.e., only quantifiers ∀b or ∃b with variables b of
type B).

Remark. Notice that this is a rather crude syntactical notion of de-
cidability for formulas; a more elaborate version would also allow bounded
quantification over e.g. the natural numbers. The lemma to follow says that
it implies the derivability of D ∨ ¬D, for the usual second order definition
of ∨.

1To do this, for patterns the dual of the theory of “most general unifiers”, i.e. a theory
of “most special generalizations”, needs to be developed.

3.4. EXTENSION BY ∧ AND ∃ 45

Lemma (Case distinction on decidable formulas). For decidable formulas
D we have

`i (D → A)→ (¬D → A)→ A.

Proof. By induction on D. Case atom(t). To prove

` (atom(p)→ A)→ (¬atom(p)→ A)→ A,

use boolean induction, and the truth axiom atom(tt).
Case D → E. We have to show

`i ((D → E)→ A)→ (¬(D → E)→ A)→ A.

By IH it suffices to argue by cases on D and E. We proceed informally. If
E holds, then we have D → E and hence A. If ¬E holds, then distinguish
cases on D. If D holds, then ¬(D → E), hence A. If ¬D holds, then D → E
by ex-falso, hence A.

Case D ∧ E. Easy, again using the IH, and cases on D and E.
Case ∃pD. We must show

`i (∃pD → A)→ (¬∃pD → A)→ A.

By IH it suffices to argue by cases on D[p:=tt] and D[p:=ff]. If either D[p:=tt]
or D[p:=ff] hold, then we clearly have A, by the assumption ∃pD → A. If
both ¬D[p:=tt] and ¬D[p:=ff] hold, then ∀p¬D (by boolean induction),
hence ¬∃pD, hence A by the assumption ¬∃pD → A.

Case ∀pD. We must show

`i (∀pD → A)→ (¬∀pD → A)→ A.

Use ∀pD ↔ D[p:=tt]∧D[p:=ff] (provable by boolean induction), and the IH
for D[p:=tt] and D[p:=ff].

Lemma (Independence of premise for decidable formulas). For decidable
formulas D we have

`i (D → ∃xA)→ ∃x.D → A.

Proof. One can see easily that

` (D → ∃xA)→ D → ∃x.D → A,

`i ¬D → ∃x.D → A.

Now use case distinction on decidable formulas (i.e., the lemma above).

We now assign to every formula A an “existentially reduced” formula
A∗ equivalent to A. It is obtained by first moving existential quantifiers
to the front (as much as possible), and then – if they appear to the left of
an implication – changing them into universal quantifiers (again as much as
possible). Both processes are done simultaneously in the following definition.

Definition (A∗). In the recursive cases below, assume A∗ = ∃~xA0 with
A0 not an existential formula, and similarly for B.

atom(t)∗ := atom(t),

(A ∧B)∗ := ∃~x∃~y.A0 ∧B0,

46 3. UNIFICATION AND PROOF SEARCH

(A→ B)∗ :=


∃~y.A∗ → B0 if A is decidable,

∀~x.A0 → B∗ else, and ~x not empty,

A∗ → B∗ otherwise,

(∀xA)∗ := ∀xA∗,
(∃xA)∗ := ∃xA∗.

Theorem. `i A↔ A∗.

Proof. Use independence of premise for decidable formulas.

3.5. Notes

I have benefitted from a presentation of Miller’s [27] given by Ulrich
Berger, in a logic seminar in München in June 1991. The type of restriction
to higher order terms described in the text has been introduced in [27]; it
has been called patterns by Nipkow [30]. Miller also noted its relevance
for extensions of logic programming, and showed that the unification prob-
lem for patterns is solvable and admits most general unifiers. The present
treatment was motivated by the desire to use Miller’s approach as a basis
for an implementation of a simple proof search engine for (first and higher
order) minimal logic. This goal prompted us into several simplifications,
optimizations and extensions, in particular the following.

• Instead of arbitrarily mixed prefixes we only use those of the form
∀∃∀. Nipkow in [30] already had presented a version of Miller’s
pattern unification algorithm for such prefixes, and Miller in [27,
Section 9.2] notes that in such a situation any two unifiers can be
transformed into each other by a variable renaming substitution.
Here we restrict ourselves to ∀∃∀-prefixes throughout, i.e. in the
proof search algorithm as well.
• The order of events in the pattern unification algorithm is changed

slightly, by postponing the raising step until it is really needed.
This avoids unnecessary creation of new higher type variables. –
Already Miller noted in [27, p.515] that such optimizations are
possible.
• The extensions concern the (strong) existential quantifier, which

has been left out in Miller’s treatment, and also conjunction. The
latter can be avoided in principle, but of course is a useful thing to
have.

Moreover, since part of the motivation to write this exposition was the
necessity to have a guide for our implementation, we have paid particular
attention to write at least the parts of the proofs with algorithmic content
as clear and complete as possible.

CHAPTER 4

Program Extraction from Constructive Proofs

4.1. Quantifiers Without Computational Content

For program extraction it is useful to distinguish between quantifiers
with and without computational content.

4.1.1. Rules for ∀nc and ∃nc. We introduce ∀nc and ∃nc to indicate
that there should be no computational content. The logical meaning of these
quantifiers is unchanged. However, we have to observe a special variable
condition for ∀nc-introduction: the variable to be abstracted should not be
a computational variable in the given proof, i.e. the extracted program of
this proof should not depend on x. So the rules for ∀nc are

|M
A ∀nc+x (. . . and x /∈ FV([[M]]))
∀ncxA

|M
∀ncxA t ∀nc−
A[x:=t]

Here [[M]] is the extracted term (or program) of M , defined below. The
derivation term for the rule ∀nc+x is written λncxM .

The existence introduction and elimination schemes

∃+x,B : ∀x.B → ∃xB
∃−x,A,B : ∃xA→ (∀x.A→ B)→ B with x /∈ FV(B).

need to be modified for the nc-versions, to

(∃nc)+x,B : ∀ncx.B → ∃ncxB
(∃nc)−x,A,B : ∃ncxA→ (∀ncx.A→ B)→ B with x /∈ FV(B).

4.1.2. Properties of ∀nc and ∃nc.

Lemma (∀nc implies ∀). ` ∀ncxA→ ∀xA.

Proof.
u : ∀ncxA x

A ∀+ x∀xA
Here only the usual variable condition needs to be observed, which clearly
is satisfied.

Lemma (∀ implies ∀nc). ` ∀xA→ ∀ncxA, provided τ(A) = ε.

Proof.
u : ∀xA x

A ∀nc+ x (with var.cond.)
∀ncxA

For the final inference to be correct we need τ(A) = ε.

47

48 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

We show that ∃xA implies ∃ncxA. The converse cannot be expected,
since there is no way to provide the x necessary to prove ∃xA when we only
know ∃ncxA.

Lemma (∃ implies ∃nc). ` ∃xA→ ∃ncxA.

Proof.

(∃nc)−x,A,B ∃xA
L.(∀nc imp. ∀) (∃nc)+x,A : ∀ncx.A→ ∃ncxA

∀x.A→ ∃ncxA
∃ncxA

Lemma (∃nc implies ∃ca). ` ∃ncxA→ ∃caxA.

Proof. By definition, ∃caxA is (∀x.A→ F)→ F . Assume ∀x.A→ F .
Since this formula has no computational content (i.e., τ(∀x.A → F) = ε),
we obtain ∀ncx.A→ F . Now from the assumption ∃ncxA the claim F follows
by the axiom (∃nc)−x,A.F .

4.1.3. Refining Axioms Using ∀nc and ∃nc. This distinction be-
tween quantifiers with and without computational content allows us to re-
fine our axioms. Generally, the universal closure of such an axiom should
now be done with ∀nc-quantifiers. For instance, the compatibility axiom is
taken to be

Eq-Compatx1,A : ∀nc~p, x1, x2.x1 ≈ x2 → A→ A[x1:=x2].

The induction axioms can be refined; in case of the natural numbers we
obtain a version corresponding to iteration.

4.2. Computational Content of Proofs

4.2.1. The Type of a Formula. We assign to every formula A an
object τ(A) (a type or the symbol ε). τ(A) is intended to be the type of the
program to be extracted from a proof of A. In case τ(A) = ε proofs of A
have no computational content; such formulas A are called Harrop formulas.

Recall that we allow free predicate variables, to be viewed as placeholders
for formulas (or more precisely, comprehension terms). Since we do not know
in advance which formula will be substituted for a predicate variable, we use
a type variable as the type of the program to be extracted from a proof of
an atom involving a predicate variable. Therefore our definition of τ(A) is
relative to a given assignment of type variables to some (see below) predicate
variables.

τ(P (~s)) :=

{
αP if P is a predicate variable with assigned αP

ε otherwise

τ(∃xρA) :=

{
ρ if τ(A) = ε

ρ× τ(A) otherwise

τ(∀xρA) :=

{
ε if τ(A) = ε

ρ→ τ(A) otherwise

τ(∃ncxρA) := τ(A)

4.2. COMPUTATIONAL CONTENT OF PROOFS 49

τ(∀ncxρA) := τ(A)

τ(A0 ∧A1) :=

{
τ(Ai) if τ(A1−i) = ε

τ(A0)× τ(A1) otherwise

τ(A→ B) :=


τ(B) if τ(A) = ε

ε if τ(B) = ε

τ(A)→ τ(B) otherwise

4.2.2. The Program Extracted from a Derivation. We now de-
fine, for a given derivation M of a formula A with τ(A) 6= ε, its extracted
program [[M]] of type τ(A).

[[uA]] := xτ(A)u (x
τ(A)
u uniquely associated with uA)

[[λuAM]] :=

{
[[M]] if τ(A) = ε

λx
τ(A)
u [[M]] otherwise

[[MA→BN]] :=

{
[[M]] if τ(A) = ε

[[M]][[N]] otherwise

[[〈MA0
0 ,MA1

1 〉]] :=

{
[[Mi]] if τ(A1−i) = ε

〈[[M0]], [[M1]]〉 otherwise

[[MA0∧A1i]] :=

{
[[M]] if τ(A1−i) = ε

[[M]]i otherwise

[[(λxρM)∀xA]] := λxρ[[M]]

[[M∀xAt]] := [[M]]t

[[(λxρM)∀
ncxA]] := [[M]]

[[M∀
ncxAt]] := [[M]]

We also need extracted programs for induction, cases and ∃-axioms; these
will be defined below. For derivations MA where τ(A) = ε (i.e. A is a
Harrop formula) we define [[M]] := ε (ε some new symbol). This applies in
particular if A is ∃-free and contains no predicate variables.

4.2.3. Extracted Program of an Induction Axiom. Recall the ge-
neral form of induction over simultaneous free algebras ~µ = µ~α~κ, with goal
formulas ∀xµjj Aj , from Section 2.4.3. For the constructor type

κi = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α)

we have the step formula

Di := ∀yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n .

∀~x~σ1 Aj1 [xj1 :=ym+1~x]→ · · · →

∀~x~σn Ajn [xjn :=ym+n~x]→

Aj [xj :=constr~µi (~y)].

(10)

50 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

Here ~y = yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n are the components of the ob-

ject constr~µi (~y) of type µj under consideration, and

∀~x~σ1 Aj1 [xj1 :=ym+1~x], . . . ,∀~x~σn Ajn [xjn :=ym+n~x]

are the hypotheses available when proving the induction step. The induction

axiom Ind~x,
~A

µj or shortly Indj then proves the universal closure (w.r.t. ∀nc) of

the formula

D1 → · · · → Dk → ∀x
µj
j Aj .

[[Indj]] is defined to be the recursion operator R~µ,~τµj . Here ~µ, ~τ list only
the types µj , τj with τj := τ(Aj) 6= ε, i.e. the recursion operator is simplified
accordingly, as indicated in Remark 2.2.1.

Remark. It is possible to use variants of the induction scheme, were
some or all of the universal quantifiers in the step formula (10) have no
computational content.

Example. For the induction scheme

Indn,A : A[n:=0]→ (∀n.A→ A[n:=n+ 1])→ ∀nA

we have

[[Indn,A]] := RτN : τ → (N→ τ → τ)→ N→ τ,

where τ := τ(A) 6= ε. The variant

A[n:=0]→ (∀ncn.A→ A[n:=n+ 1])→ ∀nA

has as extracted term the iteration operator of type τ → (τ → τ)→ N→ τ .

4.2.4. Extracted Program of a Cases Axiom. Recall the cases ax-
ioms from Section 2.4.4. They again refer to simultaneous free algebras
~µ = µ~α~κ, and goal formulas ∀xµjj Aj . For the constructor type

κi = ~ρ→ (~σ1 → αj1)→ · · · → (~σn → αjn)→ αj ∈ KT(~α)

we have the step formula

Di := ∀yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n .Aj [xj :=constr~µi (~y)].

Here ~y = yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n are the components of the ob-

ject constr~µi (~y) of type µj under consideration; notice that no induction
hypotheses are available. The cases axiom Casesxj ,Ajor shortly Casesj then
proves the universal closure of the formula

Di1 , . . . , Diq → ∀x
µj
j Aj .

where Di1 , . . . , Diq consists of all Di concerning constructors for µj .
[[Casesj]] is defined by means of the if-construct – for the reasons given

in Remark 2.2.3 – to be

[[Casesj]] := λf1 . . . λfqλx[if x f1 . . . fq],

provided τ(Aj) 6= ε.

4.3. REALIZABILITY 51

Example. For the cases axioms

Casesn,A : A[n:=0]→ ∀nA[n:=Sn]→ ∀nNA,

Casesl,A : A[l:=Nil]→ ∀x, lA[l:=cons(x, l)]→ ∀lL(α)A.

we have

[[Casesn,A]] := λf1λf2λn[if n f1 f2],

[[Casesl,A]] := λf1λf2λl[if l f1 f],

where we assume τ(A) 6= ε.

4.2.5. Extracted Programs of Existence Axioms. For the axioms

∃+x,B : ∀xρ.A→ ∃xρA Ex-Intro

∃−x,A,B : ∃xρA→ (∀xρ.A→ B)→ B Ex-Elim

we set

[[∃+xρ,A]] :=

{
λxρx if τ(A) = ε

λxρλyτ(A)〈x, y〉 otherwise

[[∃−xρ,A,B]] :=

{
λxρλfρ→τ(B).fx if τ(A) = ε

λzρ×τ(A)λfρ→τ(A)→τ(B).f(z0)(z1) otherwise

and for the axioms

(∃nc)+x,B : ∀ncxρ.A→ ∃ncxρA Exnc-Intro

(∃nc)−x,A,B : ∃ncxρA→ (∀ncxρ.A→ B)→ B Exnc-Elim

we set

[[(∃nc)+xρ,A]] := λyτ(A)y

[[(∃nc)−xρ,A,B]] :=

{
λzτ(B).z if τ(A) = ε

λyτ(A)λf τ(A)→τ(B).fy otherwise

4.2.6. Extracted Program of a Compatibility Axiom. For the
compatibility axiom

Eq-Compatx1,A : ∀nc~p, x1, x2.x1 ≈ x2 → A→ A[x1:=x2]

we set

[[Eq-Compatx1,A]] := λyτ(A)y.

4.3. Realizability

Finally we define the notion of (modified) realizability . The term “mod-
ified” is used sometimes for historical reasons, to distinguish this form of
realizability from the (earlier) Kleene-style realizability. More precisely, we
define formulas r rA, where A is a formula and r is either a term of type
τ(A) if the latter is a type, or the symbol ε if τ(A) = ε.

52 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

4.3.1. Definition of Realizability. In order to define realizability for
atoms built with predicate variables, we have to provide for every predicate
variable P of arity ~ρ with assigned αP a new predicate variable P r of arity
αP , ~ρ.

r rP (~s) =

{
P r(r, ~s) if P is a predicate variable with assigned αP

P (~s) if P is a predicate constant

r r (∃xA) =

{
ε rA[x:=r] if τ(A) = ε

r1 rA[x:=r0] otherwise

r r (∀xA) =

{
∀x.ε rA if τ(A) = ε

∀x.rx rA otherwise

r r (∃ncxA) =

{
∃ncx.ε rA if τ(A) = ε

∃ncx.r rA otherwise

r r (∀ncxA) =

{
∀ncx.ε rA if τ(A) = ε

∀ncx.r rA otherwise

r r (A→ B) =


ε rA → r rB if τ(A) = ε

∀x.x rA → ε rB if τ(A) 6= ε = τ(B)

∀x.x rA → rx rB otherwise

r r (A0 ∧A1) =


ε rA0 ∧ r rA1 if τ(A0) = ε

r rA0 ∧ ε rA1 if τ(A1) = ε

r0 rA0 ∧ r1 rA1 otherwise

Formulas which do not contain the existence quantifier ∃ play a special role
in this context; we call them ∃-free (or invariant) formulas; in the literature
such formulas are also called “negative”. Their crucial property is that for
an ∃-free formula A without predicate variables P with assigned αP we have
τ(A) = ε and ε rA = A. In particular, we have to assign an αP to every
predicate variable P of “existence degree” 6= 0, which means that it can be
substituted by a formula containing ∃ or other predicate variables Q with
assigned αQ.

For the formulation of the soundness theorem below it will be useful to
let xu := ε if uA is an assumption variable with a Harrop formula A. The
soundness theorem says that for every derivation M of a formula B there
is a derivation µ(M) of [[M]] rB from assumptions {xu rC | uC ∈ FA(M) }.
We first tackle this for the axioms.

4.3.2. Realizing an Induction Axiom. The induction axiom Ind~x,
~A

µj

or shortly Indj proves the universal closure (w.r.t. ∀nc) of the formula

D1 → · · · → Dk → ∀x
µj
j Aj ,

with step formulas Di from (10). We may assume τ(Aj) 6= ε for at least one
j, for otherwise [[Indj]] = ε and we can easily find a derivation µ(Indj) of

ε r
(
∀nc~p.D1 → · · · → Dk → ∀x

µj
j Aj

)
= ∀nc~p.ε r

(
D1 → · · · → Dk → ∀x

µj
j Aj

)

4.3. REALIZABILITY 53

= ∀nc~p.ε rD1 → · · · → ε rDk → ∀x
µj
j ε rAj .

Indeed, µ(Indj) is just Indx1,...,xN ,ε rA1,...,ε rAN
µj .

Recall [[Indj]] = Rj . Hence we must find a derivation µ(Indj) of

Rj r
(
∀nc~p.D1 → · · · → Dk → ∀x

µj
j Aj

)
= ∀nc~p.Rj~p r

(
D1 → · · · → Dk → ∀x

µj
j Aj

)
= ∀nc~p, f1.f1 rD1 → · · · → ∀fk.fk rDk → ∀x

µj
j Rj ~fx

µj
j rAj .

Notice that for the step formula Di spelled out in (10) the formula fi rDi is
defined to be (we assume for simplicity τ(Aj) 6= ε)

fi rDi :=∀yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n

∀z1.
(
∀~x~σ1 z1~x rAj1 [xj1 :=ym+1~x]

)
→ · · · →

∀zn.
(
∀~x~σn zn~x rAjn [xjn :=ym+n~x]

)
→

fi~yz1 . . . zn rAj [xj :=constr~µi (~y)].

We proceed informally. Assume ~p, f1, u1 : f1 rD1, . . . , fk, uk : fk rDk; our

goal is ∀xµjj Rj ~fx
µj
j rAj . For the proof we use simultaneous induction w.r.t.

all ∀xµjj Rj ~fx
µj
j rAj . Hence it suffices to prove the step formulas w.r.t. the

latter induction, i.e. all formulas

Dr
i :=∀yρ11 , . . . , y

ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n .

∀~x~σ1 Rj1 ~f(ym+1~x) rAj1 [xj1 :=ym+1~x]→ · · · →

∀~x~σn Rjn ~f(ym+n~x) rAjn [xjn :=ym+n~x]→

Rj ~f(constr~µi (~y)) rAj [xj :=constr~µi (~y)].

So assume yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n and

v1 : ∀~x~σ1 Rj1 ~f(ym+1~x) rAj1 [xj1 :=ym+1~x], . . . ,

vn : ∀~x~σn Rjn ~f(ym+n~x) rAjn [xjn :=ym+n~x].

We must showRj ~f(constr~µi (~y)) rAj [xj :=constr~µi (~y)]. For the proof use ufi rDii
with

~y, (Rj1 ~f) ◦ ym+1, v1, . . . , (Rjn ~f) ◦ ym+n, vn
and recall that

Rj ~f(constr~µi (~y)) = fi~y
(
(Rj1 ~f) ◦ ym+1

)
. . . ,

(
(Rjn ~f) ◦ ym+n

)
.

Examples. Consider a particular induction axiom, say on the natural
numbers N:

Indn,A : ∀nc~p.A[n:=0]→ (∀n.A→ A[n:=n+ 1])→ ∀nA.
We must find a derivation µ(Indn,A) of

[[Indn,A]] r
(
∀nc~p.A[n:=0]→ (∀n.A→ A[n:=n+ 1])→ ∀nA

)
.

Case τ(A) 6= ε. Then [[Indn,A]] = RτN and we obtain

RτN r ∀nc~p.A[n:=0]→ (∀n.A→ A[n:=n+ 1])→ ∀nA
= ∀nc~p∀f1.f1 rA[n:=0]→ ∀f2.f2 r (∀n.A→ A[n:=n+ 1])→

54 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

∀n(RτNf1f2n rA)

= ∀nc~p∀f1.f1 rA[n:=0]→ ∀f2.(∀n, y.y rA→ f2ny rA[n:=n+ 1])→
∀n(RτNf1f2n rA)

Hence we can define µ(Indn,A) to be the obvious inductive proof of this
formula, which uses the induction axiom

Indn,(RτNf1f2n rA) : ∀nc~p.
(RτNf1f2n rA)[n:=0]→
(∀n.RτNf1f2n rA→ (RτNf1f2n rA)[n:=n+ 1])→
∀n(RτNf1f2n rA).

Notice that because of our identification of βηR-equivalent terms this is the
same as

Indn,(RτNf1f2n rA) : ∀nc~p.
f1 rA[n:=0]→
(∀n.RτNf1f2n rA→ f2n(RτNf1f2n) rA[n:=n+ 1])→
∀n(RτNf1f2n rA).

Let

u1 : f1 rA[n:=0]

u2 : ∀n, y.y rA→ f2ny rA[n:=n+ 1]

v : RτNf1f2n rA

be assumption variables. Then the proof term is

λ~pλf1λu1λf2λu2.Indn,(RτNf1f2n rA)~pu1(λnλv.u2n(RτNf1f2n)v)

Case τ(A) = ε. Then [[Indn,A]] = ε and we obtain

ε r ∀nc~p.A[n:=0]→ (∀n.A→ A[n:=n+ 1])→ ∀nA
= ∀nc~p.ε rA[n:=0]→ (∀n.ε rA→ ε rA[n:=n+ 1])→
∀n(ε rA)

= ∀nc~p.(ε rA)[n:=0]→ (∀n.ε rA→ (ε rA)[n:=n+ 1])→
∀n(ε rA).

Hence we can define µ(Indn,A) = Indn,(ε rA).
Let us also treat an example of simultaneous induction. Consider an

induction axiom for the simultaneously generated free algebras tree and tlist:

∀nc~p.∀nA[b:=Leaf n]→
(∀bs.B → A[b:=Branch bs])→
B[bs:=Empty]→
(∀b, bs.A→ B → B[bs:=Tcons b bs])→
∀bA

Case τ(A) 6= ε 6= τ(B). Then [[Indb,bs,A,B]] = λ~pRtree and we obtain

(writing ~f for f1f2f3f4)

λ~pRtree r ∀nc~p.∀nA[b:=Leaf n]→

4.3. REALIZABILITY 55

(∀bs.B → A[b:=Branch bs])→
B[bs:=Empty]→
(∀b, bs.A→ B → B[bs:=Tcons b bs])→
∀bA

= ∀nc~p.∀f1.f1 r∀nA[b:=Leaf n]→
∀f2.f2 r (∀bs.B → A[b:=Branch bs])→
∀f3.f3 rB[bs:=Empty]→
∀f4.f4 r (∀b, bs.A→ B → B[bs:=Tcons b bs])→

∀b(Rtree
~fb rA)

= ∀nc~p.∀f1.∀n(f1n rA[b:=Leaf n])→
∀f2.(∀bs, y.y rB → f2 bs y rA[b:=Branch bs])→
∀f3.f3 rB[bs:=Empty]→
∀f4.(∀b, bs, y1.y1 rA→ ∀y2.y2 rB →

f4 b bs y1 y2 rB[bs:=Tcons b bs])→

∀b(Rtree
~fb rA)

Hence we can define µ(Indb,bs,A,B) to be the expected inductive proof of this
formula, which uses the induction axiom

Ind
b,bs,(Rtree

~fb rA),(Rtlist
~fbs rB)

: ∀nc~p∀~f.

∀n(Rtree
~fb rA)[b:=Leaf n]→

(∀bs.Rtlist
~fbs rB → (Rtree

~fb rA)[b:=Branch bs])→

(Rtlist
~fbs rB)[bs:=Empty]→

(∀b, bs.Rtree
~fb rA→ Rtlist

~fbs rB →

(Rtlist
~fbs rB)[bs:=Tcons b bs])→

∀b(Rtree
~fb rA)

Because of the recursion equations

Rtree
~f(Leaf n) = f1n

Rtree
~f(Branch bs) = f2 bs(Rtlist

~fbs)

Rtlist
~fEmpty = f3

Rtlist
~f(Tcons b bs) = f4 b bs(Rtree

~fb)(Rtlist
~fbs)

and our identification of βηR-equivalent terms this is the same as

Ind
b,bs,(Rtree

~fb rA),(Rtlist
~fbs rB)

: ∀nc~p∀~f.
∀n(f1n rA[b:=Leaf n])→

(∀bs.Rtlist
~fbs rB → f2 bs(Rtlist

~fbs) rA[b:=Branch bs])→
f3 rB[bs:=Empty]→

(∀b, bs.Rtree
~fb rA→ Rtlist

~fbs rB →

56 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

f4 b bs(Rtree
~fb)(Rtlist

~fbs) rB[bs:=Tcons b bs])→

∀b(Rtree
~fb rA)

Let

u1 : ∀n(f1n rA[b:=Leaf n])

u2 : ∀bs, y.y rB → f2 bs y rA[b:=Branch bs]

u3 : f3 rB[bs:=Empty]

u4 : ∀b, bs, y1.y1 rA→ ∀y2.y2 rB → f4 b bs y1 y2 rB[bs:=Tcons b bs]

be assumption variables. Then the proof term is

λ~pλf1λu1λf2λu2λf3λu3λf4λu4.Ind
b,bs,(Rtree

~fb rA),(Rtlist
~fbs rB)

~p~f

u1(λbs.u2 bs(Rtlist
~fbs))u3(λbλbs.u4 b bs(Rtree

~fb)v(Rtlist
~fbs))

Case τ(A) = ε 6= τ(B). Then [[Indb,bs,A,B]] = ε and we obtain

ε r ∀nc~p.∀nA[b:=Leaf n]→
(∀bs.B → A[b:=Branch bs])→
B[bs:=Empty]→
(∀b, bs.A→ B → B[bs:=Tcons b bs])→
∀bA

= ∀nc~p.ε r ∀nA[b:=Leaf n]→
ε r (∀bs.B → A[b:=Branch bs])→
∀f3.f3 rB[bs:=Empty]→
∀f4.f4 r (∀b, bs.A→ B → B[bs:=Tcons b bs])→
∀b(ε rA)

= ∀nc~p.∀n(ε rA[b:=Leaf n])→
(∀bs, y.y rB → ε rA[b:=Branch bs])→
∀f3.f3 rB[bs:=Empty]→
∀f4.(∀b, bs.ε rA→ ∀y2.y2 rB →

f4 b bs y2 rB[bs:=Tcons b bs])→
∀b(ε rA)

Hence we can define µ(Indb,bs,A,B) to be the expected inductive proof of this
formula, which uses the induction axiom

Indb,bs,(ε rA),(Ff3f4bs rB) : ∀nc~p ∀f3, f4.
∀n(ε rA)[b:=Leaf n]→
(∀bs.Ff3f4bs rB → (ε rA)[b:=Branch bs])→
(Ff3f4bs rB)[bs:=Empty]→
(∀b, bs.ε rA→ Ff3f4bs rB →

(Ff3f4bs rB)[bs:=Tcons b bs])→
∀b(ε rA)

4.3. REALIZABILITY 57

with f defined by the recursion equations

Ff3f4Empty = f3,

Ff3f4(Tcons b bs) = f4 b bs(Ff3f4bs).

By our identification of βηR-equivalent terms this is the same as

Indb,bs,(ε rA),(Ff3f4bs rB) : ∀nc~p∀f3, f4.
∀n(ε rA[b:=Leaf n])→
(∀bs.Ff3f4bs rB → ε rA[b:=Branch bs])→
f3 rB[bs:=Empty]→
(∀b, bs.ε rA→ Ff3f4bs rB →

f4 b bs(Ff3f4bs) rB[bs:=Tcons b bs])→
∀b(ε rA)

Let

u1 : ∀n(ε rA[b:=Leaf n])

u2 : ∀bs, y.y rB → ε rA[b:=Branch bs]

u3 : f3 rB[bs:=Empty]

u4 : ∀b, bs.ε rA→ ∀y2.y2 rB → f4 b bs y2 rB[bs:=Tcons b bs]

v1 : ε rA

v2 : Ff3f4bs rB

be assumption variables. Then the proof term is

λ~pλu1λu2λf3λu3λf4λu4.Indb,bs,(ε rA),(Ff3f4bs rB)~pf3f4

u1(λbs.u2 bs(Ff3f4bs))u3(λbλbsλv1.u4 b bs v1(Ff3f4bs)v2).

Case τ(A) 6= ε = τ(B). Then [[Indb,bs,A,B]] = F and we obtain

F r ∀nc~p.∀nA[b:=Leaf n]→
(∀bs.B → A[b:=Branch bs])→
B[bs:=Empty]→
(∀b, bs.A→ B → B[bs:=Tcons b bs])→
∀bA

= ∀nc~p.∀f1.f1 r ∀nA[b:=Leaf n]→
∀f2.f2 r (∀bs.B → A[b:=Branch bs])→
ε rB[bs:=Empty]→
ε r (∀b, bs.A→ B → B[bs:=Tcons b bs])→
∀b(Ff1f2b rA)

= ∀nc~p.∀f1.∀n(f1n rA[b:=Leaf n])→
∀f2.(∀bs.ε rB → f2 rA[b:=Branch bs])→
ε rB[bs:=Empty]→
(∀b, bs, y1.y1 rA→ ε rB → ε rB[bs:=Tcons b bs])→
∀b(Ff1f2b rA).

58 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

Hence we can define µ(Indb,bs,A,B) to be the expected inductive proof of this
formula, which uses the induction axiom

Indb,bs,(Ff1f2b rA),(ε rB) : ∀nc~p ∀f1, f2.
∀n(Ff1f2b rA)[b:=Leaf n]→
(∀bs.ε rB → (Ff1f2b rA)[b:=Branch bs])→
(ε rB)[bs:=Empty]→
(∀b, bs.Ff1f2b rA→ ε rB → (ε rB)[bs:=Tcons b bs])→
∀b(Ff1f2b rA)

with F defined by the recursion equations

Ff1f2(Leaf n) = f1n,

Ff1f2(Branch bs) = f2 bs.

By our identification of βηR-equivalent terms this is the same as

Indb,bs,(ε rA),(ε rB) : ∀nc~p ∀f1, f2.
∀n(f1n rA[b:=Leaf n])→
(∀bs.ε rB → f2 bs rA[b:=Branch bs])→
ε rB[bs:=Empty]→
(∀b, bs.Ff1f2b rA→ ε rB → ε rB[bs:=Tcons b bs])→
∀b(Ff1f2b rA)

Let

u1 : ∀n(f1n rA[b:=Leaf n])

u2 : ∀bs.ε rB → f2bs rA[b:=Branch bs]

u3 : ε rB[bs:=Empty]

u4 : ∀b, bs, y1.y1 rA→ ε rB → ε rB[bs:=Tcons b bs]

be assumption variables. Then the proof term is

λ~pλf1λu1λf2λu2λu3λu4λb.Indb,bs,(Ff1f2b rA),(ε rB)~pf1f2

(λn.u1n)(λbs, v1.u2 bs v1)u3(λb, bs, v
Ff1f2b rA
1 , vε rB2 .u4 b bs(Ff1f2b)v1v2)b

4.3.3. Realizing a Cases Axiom. The cases axiom Casesxj ,Aj or shortly
Casesj proves the universal closure (w.r.t. ∀nc) of the formula

Di1 → · · · → Diq → ∀x
µj
j Aj .

where Di1 → · · · → Diq consists of all Di concerning constructors for µj .
We may assume τ(Aj) 6= ε, for otherwise [[Casesj]] = ε and we can easily
find a derivation µ(Casesj) of

ε r
(
∀nc~p.Di1 → · · · → Diq → ∀x

µj
j Aj

)
= ∀nc~p.ε r

(
Di1 → · · · → Diq → ∀x

µj
j Aj

)
= ∀nc~p.ε rDi1 → · · · → ε rDiq → ∀x

µj
j ε rAj .

Indeed, µ(Casesj) is just Casesxj ,ε rAj .
Recall

[[Casesj]] = λf1 . . . λfqλx[if x f1 . . . fq].

4.3. REALIZABILITY 59

Hence we must find a derivation µ(Casesj) of

λf1 . . . λfqλx[if x f1 . . . fq] r
(
∀nc~p.Di1 → · · · → Diq → ∀x

µj
j Aj

)
= ∀nc~p.λf1 . . . λfqλx[if x f1 . . . fq] r

(
Di1 → · · · → Diq → ∀x

µj
j Aj

)
= ∀nc~p ∀f1.f1 rDi1 → · · · → ∀fq.fq rDiq → ∀x

µj
j [if xj f1 . . . fq] rAj .

Notice that for the step formula Dip the formula fp rDip is defined to be

∀yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n fp~y rAj [xj :=constr~µip(~y)].

We proceed informally. Assume ~p, f1, u1 : f1 rDi1, . . . , fq, uq : fq rDiq ; our

goal is ∀xµjj [if xj f1 . . . fq] rAj . For the proof we use the cases axiom

w.r.t. ∀xµjj [if xj f1 . . . fq] rAj . Hence it suffices to prove the step formulas
w.r.t. the latter cases axiom, i.e. all formulas

Dr
ip :=∀yρ11 , . . . , y

ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n .

[if (constr~µip(~y)) f1 . . . fq] rAj [xj :=constr~µip(~y)].

But this follows from [if (constr~µip(~y)) f1 . . . fq] 7→ fp~y. Hence the proof

term is

λ~pλf1λu1 . . . λfqλuqCasesxj ,[if xj f1 ... fq] rAj~qu1 . . . uq.

with ~q the parameters of Casesxj ,[if xj f1 ... fq] rAj .

4.3.4. Existence Introduction and Elimination. Consider an ex-
istence introduction axiom

∃+x,A : ∀nc~p ∀x.A→ ∃xρA.

We must find a derivation µ(∃+x,A) of [[∃+x,A]] r ∀nc~p∀x.A→ ∃xρA.

Case τ(A) = ε. Then [[∃+x,A]] = λxx and we obtain

(λxx) r∀nc~p∀x.A→ ∃xA = ∀nc~p ∀x.x r (A→ ∃xA)

= ∀nc~p ∀x.ε rA→ x r ∃xA
= ∀nc~p ∀x.ε rA→ ε rA.

Hence we can define µ(∃+x,A) = λ~pλxλuu.

Case τ(A) 6= ε. Then [[∃+x,A]] = λxλf〈x, f〉 and we obtain

λxλf〈x, f〉 r ∀nc~p∀x.A→ ∃xA
= ∀nc~p ∀x, f.f rA→ 〈x, f〉 r ∃xA
= ∀nc~p ∀x, f.f rA→ f rA

Hence we can define µ(∃+x,A) = λ~pλxλfλuu.
Consider now the existence elimination axioms

∃−x,A,B : ∀nc~p.∃xA→ (∀x.A→ B)→ B with x /∈ FV(B).

We must find a derivation µ(∃−x,A,B) of

[[∃−x,A,B]] r ∀nc~p.∃xA→ (∀x.A→ B)→ B.

60 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

Case τ(A) = ε = τ(B). Then [[∃−x,A,B]] = ε and we obtain

ε r ∀nc~p.∃xA→ (∀x.A→ B)→ B

= ∀nc~p ∀x.x r∃xA→ ε r ((∀x.A→ B)→ B)

= ∀nc~p ∀x.ε rA→ ε r (∀x.A→ B)→ ε rB

= ∀nc~p ∀x.ε rA→ ∀x ε r (A→ B)→ ε rB

= ∀nc~p ∀x.ε rA→ (∀x.ε rA→ ε rB)→ ε rB.

Hence we can define µ(∃−x,A,B) = λ~pλxλuλv.vxu.

Case τ(A) 6= ε = τ(B). Then we again have [[∃−x,A,B]] = ε and we obtain

ε r ∀nc~p.∃xA→ (∀x.A→ B)→ B

= ∀nc~p∀f.f r∃xA→ ε r ((∀x.A→ B)→ B)

= ∀nc~p∀f.(f1) rA[x:=f0]→ ε r (∀x.A→ B)→ ε rB

= ∀nc~p∀f.(f1) rA[x:=f0]→ ∀x ε r (A→ B)→ ε rB

= ∀nc~p∀f.(f1) rA[x:=f0]→ (∀x∀g.g rA→ ε rB)→ ε rB.

Hence we can define µ(∃−x,A,B) = λ~pλfλuλv.v(f0)(f1)u.

Case τ(A) = ε 6= τ(B). Then [[∃−x,A,B]] = λxλz(zx) and we obtain

λxλz(zx) r ∀nc~p.∃xA→ (∀x.A→ B)→ B

= ∀nc~p ∀x.x r ∃xA→ λz(zx) r ((∀x.A→ B)→ B)

= ∀nc~p ∀x.ε rA→ ∀z.z r (∀x.A→ B)→ zx rB

= ∀nc~p ∀x.ε rA→ ∀z.∀x zx r (A→ B)→ zx rB

= ∀nc~p ∀x.ε rA→ ∀z.(∀x.ε rA→ zx rB)→ zx rB.

Hence we can define µ(∃−x,A,B) = λ~pλxλuλzλv.vxu.

Case τ(A) 6= ε 6= τ(B). Then [[∃−x,A,B]] = λfλz(z(f0)(f1)) and we
obtain

λfλz(z(f0)(f1)) r ∀nc~p.∃xA→ (∀x.A→ B)→ B

= ∀nc~p∀f.f r∃xA→ λz(z(f0)(f1)) r ((∀x.A→ B)→ B)

= ∀nc~p∀f.(f1) rA[x:=f0]→
∀z.z r (∀x.A→ B)→ z(f0)(f1) rB

= ∀nc~p∀f.(f1) rA[x:=f0]→
∀z.(∀x, g.g rA→ zxg rB)→ z(f0)(f1) rB.

Hence we can define µ(∃−x,A,B) = λ~pλfλuλzλv.v(f0)(f1)u.
The treatment of the introduction and elimination axioms for the quan-

tifiers ∀nc,∃nc is somewhat different: we will need other instances of these
axioms in our derivations. Consider an existence introduction axiom

(∃nc)+x,A : ∀nc~p, x.A→ ∃ncxρA.

We must find a derivation µ((∃nc)+x,A) of [[(∃nc)+x,A]] r ∀nc~p, x.A→ ∃ncxρA.

Case τ(A) = ε. Then [[(∃nc)+x,A]] = ε and we obtain

ε r ∀nc~p, x.A→ ∃ncxA = ∀nc~p, x.ε r (A→ ∃ncxA)

4.3. REALIZABILITY 61

= ∀nc~p, x.ε rA→ ε r ∃ncxA
= ∀nc~p, x.ε rA→ ∃ncx.ε rA.

Hence we can define µ((∃nc)+x,A) = (∃nc)+x,ε rA.

Case τ(A) 6= ε. Then [[(∃nc)+x,A]] = λyy and we obtain

λyy r ∀nc~p, x.A→ ∃ncxA
= ∀nc~p, x.λyy r (A→ ∃ncxA)

= ∀nc~p, x∀y.y rA→ y r ∃ncxA
= ∀nc~p, x∀y.y rA→ ∃ncx.y rA

Now observe that τ(y rA) = ε, hence we can equivalently replace ∀y by
∀ncy. Therefore we can define µ((∃nc)+x,A) = λnc~p, x, y.(∃nc)+x,y rA~qx with ~q
the free variables of y rA.

Consider now the existence elimination axioms

(∃nc)−x,A,B : ∀nc~p.∃ncxA→ (∀ncx.A→ B)→ B with x /∈ FV(B).

We must find a derivation µ((∃nc)−x,A,B) of

[[(∃nc)−x,A,B]] r ∀nc~p.∃ncxA→ (∀ncx.A→ B)→ B.

Case τ(A) = ε = τ(B). Then [[(∃nc)−x,A,B]] = ε and we obtain

ε r ∀nc~p.∃ncxA→ (∀ncx.A→ B)→ B

= ∀nc~p.ε r∃ncxA→ ε r ((∀ncx.A→ B)→ B)

= ∀nc~p.∃ncx ε rA→ ε r (∀ncx.A→ B)→ ε rB

= ∀nc~p.∃ncx ε rA→ ∀ncx ε r (A→ B)→ ε rB

= ∀nc~p.∃ncx ε rA→ (∀ncx.ε rA→ ε rB)→ ε rB.

Hence we can define µ((∃nc)−x,A,B) = (∃nc)−x,ε rA,ε rB. [Todo: check the next

three cases]
Case τ(A) 6= ε = τ(B). Then again [[(∃nc)−x,A,B]] = ε and we obtain

ε r ∀nc~p.∃ncxA→ (∀ncx.A→ B)→ B

= ∀nc~p ∀y.y r ∃ncxA→ ε r ((∀ncx.A→ B)→ B)

= ∀nc~p ∀y.∃ncx y rA→ ε r (∀ncx.A→ B)→ ε rB

= ∀nc~p ∀y.∃ncx y rA→ ∀ncx ε r (A→ B)→ ε rB

= ∀nc~p ∀y.∃ncx y rA→ (∀ncx∀y.y rA→ ε rB)→ ε rB.

Here again we can equivalently replace ∀y by ∀ncy, and then use the general
fact that ` (∀ncx.A→ B)↔ (∃ncxA→ B). So our claim is equivalent to

∀nc~p.∃ncx∃ncy y rA→ (∀ncx.∃ncy y rA→ ε rB)→ ε rB,

which is the axiom (∃nc)−x,∃ncy y rA,ε rB. To spell out the derivation term, let

~p = ~q1, ~q2 with ~q1 the variables free in B, ~q2 those free in A, and ~q3 those

62 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

free in A with x removed. The derivation term is

λnc~pλyλu∃
ncx y rAλv∀

ncx∀y.y rA→ε rB.(∃nc)−x,∃ncy y rA,ε rBM1M2 with

M∃
ncx∃ncy y rA

1 := (∃nc)−x,y rA,∃ncx,y y rA ~q3yu

(λncxλyλuy rA1 .(∃nc)+x.∃ncy y rA ~q2((∃
nc)+y,y rA ~q2yu1))

M∀
ncx.∃ncy y rA→ε rB

2 := λncxλu∃
ncy y rA

2 .(∃nc)−y,y rA,ε rB~pu2(λ
ncy.vxy)

Case τ(A) = ε 6= τ(B). Then [[(∃nc)−x,A,B]] = λzz and we obtain

λzz r ∀nc~p.∃ncxA→ (∀ncx.A→ B)→ B

= ∀nc~p.ε r∃ncxA→ λzz r ((∀ncx.A→ B)→ B)

= ∀nc~p.∃ncx ε rA→ ∀z.z r (∀ncx.A→ B)→ z rB

= ∀nc~p.∃ncx ε rA→ ∀z.∀ncx z r (A→ B)→ z rB

= ∀nc~p.∃ncx ε rA→ ∀z.(∀ncx.ε rA→ z rB)→ z rB.

This is equivalent to

∀nc~p, z.∃ncx ε rA→ (∀ncx.ε rA→ z rB)→ z rB,

which is the axiom (∃nc)−x,ε rA,z rB.

Case τ(A) 6= ε 6= τ(B). Then [[(∃nc)−x,A,B]] = λyλz.zy and we obtain

(λyλz.zy) r ∀nc~p.∃ncxA→ (∀ncx.A→ B)→ B

= ∀nc~p ∀y.y r ∃ncxA→ λz.zy r ((∀ncx.A→ B)→ B)

= ∀nc~p ∀y.∃ncx y rA→ ∀z.z r (∀ncx.A→ B)→ zy rB

= ∀nc~p ∀y.∃ncx y rA→ ∀z.(∀ncx∀y1.y1 rA→ zy1 rB)→ zy rB.

This follows from

∀nc~p, z, y.∃ncx y rA→ (∀y.∃ncx y rA→ zy rB)→ zy rB,

which is the axiom (∃nc)−y,∃ncx y rA,zy rB.

4.3.5. Compatibility. Consider a compatibility axiom

Eq-Compatx1,A : ∀nc~p ∀x1, x2.x1 ≈ x2 → A→ A[x1:=x2].

We must find a derivation µ(Eq-Compatx1,A) of

[[Eq-Compatx1,A]] r
(
∀nc~p ∀x1, x2.x1 ≈ x2 → A→ A[x1:=x2]

)
.

Case τ(A) = ε. Then [[Eq-Compatx1,A]] = ε and we clearly can define
µ(Eq-Compatx1,A) := Eq-Compatx1,ε rA.

Case τ(A) 6= ε. Then [[Eq-Compatx1,A]] = λx1λx2λf f and we obtain

λx1λx2λf f r ∀nc~p ∀x1, x2.x1 ≈ x2 → A→ A[x1:=x2]

= ∀nc~p ∀x1, x2.x1 ≈ x2 → ∀f.f rA→ f rA[x1:=x2].

Hence we can define

µ(Eq-Compatx1,A) := λ~pλx1λx2λu
x1≈x2λf.Eq-Compatx1,(f rA)f~px1x2u.

4.3. REALIZABILITY 63

4.3.6. The Soundness Theorem. Recall that xu := ε if uA is an
assumption variable with a Harrop-formula A.

Theorem (Soundness). If M is a derivation of a formula B, then there
is a derivation µ(M) of [[M]] rB from {xu rC | uC ∈ FA(M) }.

Proof. Induction on M .
Case u : A. Then ū : xu rA. Let µ(u) := ū.
Case c : A, c an axiom. These cases have been treated above.
Case λuAMB. We must find a derivation µ(λuM) of

[[λuM]] r (A→ B).

Subcase τ(A) = ε. Then [[λuM]] = [[M]], hence

[[λuM]] r (A→ B) = ε rA → [[M]] rB.

By IH we can define µ(λuM) := λūµ(M) with ū : ε rA.
Subcase τ(A) 6= ε = τ(B). Then [[λuM]] = ε and

[[λuM]] r (A→ B) = ∀x.x rA → ε rB,

and by IH we can define µ(λuM) := λxuλūµ(M) with ū : xu rA.
Subcase τ(A) 6= ε 6= τ(B). Then

[[λuM]] r (A→ B) = ∀x.x rA → [[λuM]]x rB

Because of [[λuM]] = λxu[[M]] and since we identify terms with the same
β-normal form, again by IH we can define µ(λuM) := λxuλūµ(M).

Case MA→BNA. We must find a derivation µ(MN) of [[MN]] rB.
Subcase τ(A) = ε. Then [[MN]] = [[M]]. By IH we have derivations

µ(M) of
[[M]] r (A→ B) = ε rA → [[M]] rB

and µ(N) of ε rA; hence we can define µ(MN) := µ(M)µ(N).
Subcase τ(A) 6= ε = τ(B). Then [[MN]] = ε. By IH we have derivations

µ(M) of
[[M]] r (A→ B) = ∀x.x rA → ε rB

and µ(N) of [[N]] rA; hence we can define µ(MN) := µ(M)[[N]]µ(N).
Subcase τ(A) 6= ε 6= τ(B). Then [[MN]] = [[M]][[N]]. By induction

hypothesis we have derivations µ(M) of

[[M]] r (A→ B) = ∀x.x rA → [[M]]x rB

and µ(N) of [[N]] rA; hence we can define µ(MN) := µ(M)[[N]]µ(N).

Case 〈MA0
0 ,MA1

1 〉. We must find a derivation µ(〈M0,M1〉) of

[[〈M0,M1〉]] r (A0 ∧A1).

Subcase τ(A0) = ε = τ(A1). Then [[〈M0,M1〉]] = ε, hence

[[〈M0,M1〉]] r (A0 ∧A1) = ε rA0 ∧ ε rA1

and by IH we can define µ(〈M0,M1〉) := 〈µ(M0), µ(M1)〉.
Subcase τ(A0) = ε 6= τ(A1). Then [[〈M0,M1〉]] = [[M1]], hence

[[〈M0,M1〉]] r (A0 ∧A1) = ε rA0 ∧ [[M1]] rA1

and by IH we can define µ(〈M0,M1〉) := 〈µ(M0), µ(M1)〉.
Subcase τ(A0) 6= ε = τ(A1). Similar.

64 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

Subcase τ(A0) 6= ε 6= τ(A1). Then [[〈M0,M1〉]] = 〈[[M0]], [[M1]]〉, hence

[[〈M0,M1〉]] r (A0 ∧A1) = [[M0]] rA0 ∧ [[M1]] rA1

and by IH we can define µ(〈M0,M1〉) := 〈µ(M0), µ(M1)〉.
Case (MA0∧A10). We must find a derivation µ(M0) of

[[M0]] rA0.

Subcase τ(A1) = ε. Then [[M0]] = [[M]]. By IH we have a derivation
µ(M) of

[[M]] r (A0 ∧A1) = [[M]] rA0 ∧ ε rA1.

hence we can define µ(M0) := µ(M)0.
Subcase τ(A0) = ε 6= τ(A1). Then [[M0]] = ε. By IH we have a derivation

µ(M) of
[[M]] r (A0 ∧A1) = ε rA0 ∧ [[M]] rA1.

hence we can define µ(M0) := µ(M)0).
Subcase τ(A0) 6= ε 6= τ(A1). Similar; we can define µ(〈M0,M1〉) :=

〈µ(M0), µ(M1)〉.
Case MA0∧A11. Similar.
Case λzMA. We must find a derivation µ(λzM) of [[λzM]] r∀zA. By

definition [[λzM]] = λz[[M]].
Subcase τ(A) = ε. Then

λz[[M]] r ∀zA = ∀z.ε rA

and by IH we can define µ(λzM) := λzµ(M). The variable condition is
satisfied, since λzMA is a derivation term, and hence z does not occur free
in any assumption variable u : B free in MA, hence also does not occur free
in the free assumption ū : xu rB.

Subcase τ(A) 6= ε. Then

λz[[M]] r ∀zA = ∀z.(λz[[M]])z rA.

Since we identify terms with the same β-normal form, by IH we again can
define µ(λzM) := λzµ(M). As before one can see that the variable condition
is satisfied.

Case M∀zAt. We must find a derivation µ(Mt) of [[Mt]] rA[z:=t]. By
definition we have [[Mt]] = [[M]]t.

Subcase τ(A) = ε. By IH we have a derivation of

[[M]] r ∀zA = ∀z.ε rA

hence we can define µ(Mt) := µ(M)t.
Subcase τ(A) 6= ε. By IH we have a derivation of

[[M]] r ∀zA = ∀z.[[M]]z rA,

hence we again can define µ(Mt) := µ(M)t.
Case (λzM)∀

nczA. We must find a derivation µ(λzM) of [[λzM]] r ∀nczA.
By definition [[(λzM)∀

nczA]] = [[M]].
Subcase τ(A) = ε. Then

[[M]] r ∀nczA = ∀z.ε rA

and by IH we can define µ((λzM)∀
nczA) := λzµ(M). The variable condition

is satisfied, since (λzM)∀
nczA is a derivation term, and hence z does not

4.4. CASE STUDIES 65

occur free in any assumption variable u : B free in MA, hence also does not
occur free in the free assumption ū : xu rB.

Subcase τ(A) 6= ε. Then

[[M]] r ∀nczA = ∀z.[[M]] rA.

By IH we again can define µ((λzM)∀
nczA) := λzµ(M). As before one can

see that the variable condition is satisfied.
Case M∀

nczAt. We must find a derivation µ(Mt) of [[Mt]] rA[z:=t]. By
definition we have [[Mt]] = [[M]].

Subcase τ(A) = ε. By IH we have a derivation µ(M) of

[[M]] r ∀nczA = ∀z.ε rA

hence we can define µ(Mt) := µ(M)t.
Subcase τ(A) 6= ε. By IH we have a derivation µ(M) of

[[M]] r∀nczA = ∀z.[[M]] rA.

Define µ(Mt) := µ(M)t, since we can assume that z /∈ FV([[M]]).

If B is ∃-free, then ε rB = B. Hence for ∀xρ∃yσB with ∃-free B we have
τ(∀x∃yB) = ρ→ σ and

t r∀x∃yB = ∀xB[y:=tx].

Then as a corollary to the soundness theorem we obtain the extraction
theorem

Corollary (Extraction). From a derivation M : ∀xρ∃yσB with B ∃-
free from ∃-free assumptions Γ one can extract a closed term [[M]]ρ→σ such
that the formula ∀xB[y:=[[M]]x] is provable from Γ.

Here Γ should be viewed as lemmata, i.e. true formulas (proved sepa-
rately, to keep M short). The theorem says that the extracted program is
independent of how this shortcut is achieved.

4.4. Case Studies

4.4.1. Fibonacci Numbers. Let αn be the n-th Fibonacci number,
i.e.

α0 := 0

α1 := 1

αn := αn−2 + αn−1 for n ≥ 2

Here is a naive Scheme-program to compute them

(define (f n)

(if (= n 0)

0

(if (= 1 n)

1

(+ (f (- n 2)) (f (- n 1))))))

66 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

Clearly this program is very inefficient, since it leads to many recompu-
tations. Our goal here is to demonstrate that deriving a program from a
constructive proof of the existence of Fibonacci numbers avoids the imme-
diate source of the inefficiency.

We first build a constructive existence proof for the Fibonacci numbers.

(set-goal

(pf "G 0 0 -> G 1 1 ->

(all n,k,l.G n k -> G(n+1)l -> G(n+2)(k+l)) ->

all n ex k,l. G n k & G(n+1)l"))

(assume "Init-Zero" "Init-One" "Step")

(ind)

; Base

(ex-intro (pt "0"))

(ex-intro (pt "1"))

(prop)

; Step

(assume "n" "IH")

(by-assume-with "IH" "k" "IH-k")

(by-assume-with "IH-k" "l" "IH-l")

(ex-intro (pt "l"))

(ex-intro (pt "k+l"))

(search)

The extracted program can now be obtained as follows.

(define Fib-neterm

(nt (proof-to-extracted-term

(theorem-name-to-proof "Fib"))))

The extracted term is obtained by

(term-to-string Fib-neterm)

which yields

(Rec nat=>nat@@nat)(0@1)([n1,p2]right p2@left p2+right p2)

This clearly is a linear algorithm. To run it, type

(pp (nt (make-term-in-app-form Fib-neterm (pt "13"))))

which yields

233@377

We can also use an “external” extraction, yielding Scheme code:

(term-to-expr Fib-neterm)

produces

((natrec (cons 0 1))

(lambda (n1)

(lambda (p2) (cons (cdr p2) (+ (car p2) (cdr p2))))))

To run this code, we need to give a Scheme-definition of natrec, that is
recursion on the natural numbers:

4.4. CASE STUDIES 67

(define (natrec init)

(lambda (step)

(lambda (n)

(if (= 0 n)

init

((step n) (((natrec init) step) (- n 1)))))))

This again is a linear algorithm. We will see later that a classical proof
yields a linear algorithm as well, which however uses functions instead of
pairs.

Remark. There are other algorithms to compute the Fibonacci numbers
αn, which run in logarithmic time. By definition we have(

0 1
1 1

)(
αn−2
αn−1

)
=

(
αn−1

αn−2 + αn−1

)
=

(
αn−1
αn

)
,

hence with A =
(
0 1
1 1

)
∈ R2×2

An
(

0
1

)
=

(
αn
αn+1

)
.

So an easy way to compute the Fibonacci numbers is by computing the
powers of A. This can be done in time O(log(n)), since

A2n = (An)2

A2n+1 = A2n ·A

It is possible to obtain this algorithm as computational content of a proof:
Use u, v to denote vectors in Z2 and X,Y to denote matrices in Z2×2. Let
G(n, u) mean that u is the vector of the n-th and (n + 1)-th Fibonacci
number. G can be axiomatized by

G(1,

(
1
1

)
), G(n,

(
α
β

)
)→ G(n+ 1,

(
β

α+ β

)
).

Then prove by induction on the positive (binary) numbers n

∀n∃X∀m,u.G(m,u)→ G(m+ n,Xu).

Clearly this X must be An.
Using some linear algebra, one can even give an explicit formula for αn.

To this end we first diagonalize the matrix A. The general recipe runs as
follows. Form B := At, hence B = A in our case. The eigenvalues can be
computed as the zeros of the characteristic polynomial pA = |A − tE| =

−t(1 − t) − 1 = t2 − t − 1. So the eigenvalues are λ1,2 = 1±
√
5

2 . We now
compute eigenvectors for these eigenvalues.

For λ1 = 1+
√
5

2 . Let x =
(ξ1
ξ2

)
, and solve the linear equation system(

−λ1 1
1 1− λ1

)(
ξ1
ξ2

)
=

(
0
0

)
.

So −λ1ξ1 + ξ2=0. For ξ1 = 1 we obtain ξ2 = λ1, so x1 =
(

1
λ1

)
is an

eigenvector. For λ2 = 1−
√
5

2 we similarly obtain x2 =
(

1
λ2

)
as an eigenvector.

68 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

For the dimensions of the eigenspaces and the multiplicities of the eigen-
values we obtain

dim(Eig(fB, λ1)) = 1 = µ(pB, λ1)

dim(Eig(fB, λ2)) = 1 = µ(pB, λ2),

so the matrix B is diagonalizable, and
(

1
λ1

)
,
(

1
λ2

)
is a basis of R2 consisting

of eigenvectors of fB. Let

T :=

(
1 1
λ1 λ2

)
, S := T t =

(
1 λ1
1 λ2

)
.

Then the general theory yields

SAS−1 = D :=

(
λ1 0
0 λ2

)
, S−1 =

1

λ2 − λ1

(
λ2 −λ1
−1 1

)
.

We can now give an explicit formula for An and hence also for the Fibonacci
numbers.

An = (S−1DS)n

= (S−1DS) · . . . · (S−1DS)︸ ︷︷ ︸
n times

= S−1DnS

= S−1
(
λn1 0
0 λn2

)
S

= S−1
(
λn1 0
0 λn2

)(
1 λ1
1 λ2

)
= S−1

(
λn1 λn+1

1

λn2 λn+1
2

)
=

1

λ2 − λ1

(
λ2 −λ1
−1 1

)(
λn1 λn+1

1

λn2 λn+1
2

)
= − 1√

5

(
λn1λ2 − λn2λ1 λ2λ

n+1
1 − λ1λn+1

2

−λn1 + λn2 −λn+1
1 + λn+1

2

)
= − 1√

5

(
−λn−11 + λn−12 −λn1 + λn2
−λn1 + λn2 −λn+1

1 + λn+1
2

)
since λ1λ2 = −1

=
1√
5

(
βn−1 βn
βn βn+1

)
with βn := λn1 − λn2 .

Hence by the above(
αn
αn+1

)
=

1√
5

(
βn−1 βn
βn βn+1

)(
0
1

)
.

In particular we then have for αn

αn =
1√
5
βn =

1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]
.

Other examples for program extraction from constructive proofs are
abundant in the literature. Major case studies done in our group include the

4.4. CASE STUDIES 69

development of the Warshall algorithm in [11], and of the Dijkstra algorithm
in [4].

4.4.2. The Warshall Algorithm. Our language consists of the fol-
lowing relation and function symbols. We deal with a binary relation R on
{0, 1, . . . , n−1}, whose transitive closure is to be determined.

k ∈ x k occurs in the path x,

Rf(x) x is a repitition free path,

Pi(x, j, k) x is an R-path from j to k whose inner elements are < i,

x | y concatenation,

where the concatenation function x | y is defined as follows. If x and y are
paths with the same end and initial point, then x | y is the path obtained
by concatenating the two, where the same end and initial point is used only
once. If end and initial points are different, the result is the empty list ε.

We list the used properties (“Lemmata”) without computational con-
tent.

Pi(x, j, k)→ Pi+1(x, j, k)(11)

P0(x, j, k)→ j 6= k → R(j, k)(12)

Pi(x, j, i)→ Pi(y, i, k)→ Pi+1(x | y, j, k)(13)

Pi(x, j, i)→ Rf(x)→ Pi(y, i, k)→ Rf(y)→ ∀z¬Pi(z, j, k)→ Rf(x | y)(14)

Pi+1(x, j, k)→ ¬Pi(x, j, k)→ ∃cly Pi(y, j, i)(15)

Pi+1(x, j, k)→ ¬Pi(x, j, k)→ ∃clz Pi(z, i, k)(16)

The last two propositions contain the main idea of the proof: if there is a
path from j to k whose inner elements are smaller than i+1, but not smaller
than i, then there exist (classical existence!) paths from j to i and from i to
k with inner elements smaller than i. Proposition (14) can be seen as follows:
under the given hypothesises x | y could only contain a repetition if x and
y have a common inner element. But this would contradict ∀z¬Pi(z, j, k).

We now give a constructive proof of the present ∀∃-Proposition. We first
formulate the claim, that for our relation R (suppressed in the notation) and
given i, j, k there is a path x with the following properties.

• If x is the empty list ε, then there is no R-path from j to k with
inner elements < i, and
• if x is not the empty list ε, then x connects the nodes j and k, has

inner elements < i and is repitition free.

Proposition (Warshall).

∀i, j, k∃x.
(
x = ε→ ∀y¬Pi(y, j, k)

)
∧
(
x 6= ε→ Pi(x, j, k) ∧ Rf(x)

)
.

Proof. Induction on i. Base i = 0. Given j, k.
Case j = k. Choose x := j:. Then P0(j:, j, k) because of j = k and

Rf(j:) by definition.
Case j 6= k.
UCase R(j, k). Choose x := j :: k:. Then we have P0(j :: k:, j, k)

because of R(j, k) and Rf(j :: k:) because of j 6= k.

70 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

UCase ¬R(j, k). Choose x := ε. We must show ∀y¬P0(y, j, k). Let y be
given, and assume P0(y, j, k). Then R(j, k) by (12), a contradiction.

Step i+ 1. Given j, k. By IH we have xi. Tp find: xi+1.
Case xi = ε. Then ∀y¬Pi(y, j, k). By IH we have xi,j,i and xi,i,k.
SubCase xi,j,i = ε. Then ∀y¬Pi(y, j, i). Let xi+1 = ε. Given y. As-

sume Pi+1(y, j, k). by (15) (because of ¬Pi(y, j, k)) we have ∃cly Pi(y, j, i).
Contradiction.

SubCase xi,j,i 6= ε.
SubSubCase xi,i,k = ε. Then ∀y¬Pi(y, i, k). Let xi+1 = ε. Given y. As-

sume Pi+1(y, j, k). By (16) (because of ¬Pi(y, j, k)) we have ∃clz Pi(z, i, k).
Contradiction.

SubSubCase xi,i,k 6= ε. Let xi+1 := xi,j,i | xi,i,k. Then Pi+1(xi+1, j, k) by
(13) and Rf(xi+1) by (14), since ∀y¬Pi(y, j, k) follows from xi = ε.

Case xi 6= ε. Choose xi+1 := xi. Then Rf(xi+1) and Pi(xi+1, j, k), hence
Pi+1(xi+1, j, k) by (11).

From a formal proof of this proposition we can extract the following
program: (original output of Minlog, with renaming of bound variables,
and indentation added)

[r](Rec 1 nat=>nat=>boole nat=>nat=>nat=>list nat)r

([j,k][if (j=k) ([x6,x7]x6) ([x6,x7]x7)]j:

([if (r j k) ([x6,x7]x6) ([x6,x7]x7)](j::k:)(Nil nat)))

([i,f,j,k]

[if (f j k=(Nil nat)) ([x8,x9]x8) ([x8,x9]x9)]

([if (f j i=(Nil nat)) ([x8,x9]x8) ([x8,x9]x9)]

(Nil nat)

([if (f i k=(Nil nat)) ([x8,x9]x8) ([x8,x9]x9)]

(Nil nat)(f j i|f i k)))

(f j k))

To make this program more readable, we give the (primitive) recursion equa-
tions for the defined function f . For given i, j, k they either yield a path
from j to k with innee elements < i or else the empty path ε.

f(0, j, k) := if j = k then j : else

if Rjk then j :: k : else ε fi fi

f(i+ 1, j, k) := if f(i, j, k) = ε then

if f(i, j, i) = ε then

ε else

if f(i, i, k) = ε then

ε else

f(i, j, i) | f(i, i, k) fi fi else

f(i, j, k) fi

Note that the algorithm in exactly this form is exponential, since in the step
case f(i+ 1, j, k) it contains the three recursive calls f(i, j, k), f(i, j, i) und
f(i, i, k). With a well known technique we can transform it into a polynomial
algorithm: consider f as a unary function computing a n × n-matrix (i.e.
not as a function of three arguments).

4.4. CASE STUDIES 71

4.4.3. An Informal Proof for the Dijkstra Algorithm. We want
to show how the Dijkstra algorithm can be obtained from a proof of an
appropriate existence theorem. To this end we enrich the Dijkstra algorithm
such that it not only yields shortest distances, but also corresponding paths.
This seems to be an useful information anyway.

Notice that a common proof for the correctness of the Dijkstra algorithm
cannot be used for this purpose, since it uses the minimum principle (it starts
with choosing a shortest path u1 = v0, v1, . . . , vm, ui+1 from v0 to ui+1) and
hence is not constructive.

So let a weighted graph Γ = (V,E,W) be given, where W : E → N. For
simplicity we assume V = {0, 1, . . . , N − 1}, where 0 is the distinguished
node. Assume W (0, 0) = 0 and – if u, v are not both 0 – W (u, v) := ∞ if
{u, v} /∈ E.

We show: for every node a there is a “shortest distance” s ∈ N from the
distinguished node v0 to a. Writing

Sf (m) :=
∑
i<m

W (f(i), f(i+ 1)) (distance sum),

this means

(a) There is a sequence g of n+1 nodes starting with the distinguished node
0 and ending with the node a, whose distance sum Sg(n) is s.

(b) For every sequence f ofm nodes, which also starts with the distinguished
node 0 and ends with a, the distance sum Sf (m) is at least as big as s.

In other words:

Theorem. For every a ∈ V there is an s ∈ N such that

(a) (∃g, n<N).g(0) = 0 ∧ g(n) = a ∧ s = Sg(n)
(b) ∀f,m.f(0) = 0→ f(m) = a→ s ≤ Sf (m)

For the proof we shall construct functions nxt : V → V and d : V →
N ∪ {∞} with the following intended meaning:

nxt(a) successor on a shortest path to 0, or 0,

d(a) length of this path.

For these we will show the following properties, for all a, b ∈ V :

d(0) = 0(17)

a 6= 0→ nxt(a) 6= a(18)

d(nxt(a)) <∞(19)

d(a) = d(nxt(a)) +W (nxt(a), a)(20)

d(a) ≤ d(b) +W (b, a)(21)

We first show that from (17)–(21) the above theorem follows.

Proof. Fix s := d(a).
(a). Let

h(0) := a, h(i+ 1) :=

{
nxt(h(i)) if h(i) 6= 0

0 sonst.

72 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

In case h(i) 6= 0 we have

d(h(i+ 1)) = d(nxt(h(i)))

< d(nxt(h(i))) +W (nxt(h(i)), h(i)) because of (18) and (19)

= d(h(i)). because of (20).

Hence there is a least n < N such that h(n) = 0. Let g(i) := h(n − i), so
g(0) = h(n) = 0 and g(n) = h(0) = a. We show∑

k<j

W (g(k), g(k + 1)) = d(g(j)),

by induction on j. Basis j = 0. Clear from g(0) = 0. Step j 7→ j + 1.
Because of j < n we have i := n− j − 1 < n, hence

h(i+ 1) = nxt(h(i))

h(n− (n− i− 1)) = nxt(h(n− (n− i)))
g(n− i− 1) = nxt(g(n− i))

g(j) = nxt(g(j + 1)).

Therefore∑
k<j+1

W (g(k), g(k + 1))

=
∑
k<j

W (g(k), g(k + 1)) +W (g(j), g(j + 1))

= d(g(j)) +W (g(j), g(j + 1)) by IH

= d(nxt(g(j + 1))) +W (nxt(g(j + 1)), g(j + 1)) see above

= d(g(j + 1)) by (20).

(b). Let f : N → V be given with f(0) = 0. We show f(m) = a →
d(a) ≤ Sf (m) by induction on m. Basis m = 0. Then a = f(0) = 0,
hence d(a) = 0 by (17). Step m 7→ m + 1. Assume a = f(m + 1). Then
s = d(a) = d(f(m+ 1)) and

d(f(m+ 1)) ≤ d(f(m)) +W (f(m), f(m+ 1)) by (21)

≤
∑
i<m

W (f(i), f(i+ 1)) +W (f(m), f(m+ 1)) by IH

=
∑

i<m+1

W (f(i), f(i+ 1))

= Sf (m+ 1).

This completes the proof.

To construct the functions nxt : V → V and d : V → N∪ {∞} we define,
for every n < N

• a set Cn ⊆ V , the set of computed nodes of level n,
• a function nxtn : V → V assigning to every node the next node on

a shortest path from a to 0, as far as this is known at level n,

4.4. CASE STUDIES 73

• a function dn : V → N ∪ {∞} assigning to every node its distance
from 0 along the path to 0 determined by the nxt-function, again
as far as this is known at level n,
• pn, the node “picked” at level n.

Let
C0 := {0}, nxt0(a) := 0, d0(a) := W (a, 0).

Assume that at level n we have picked pn such that

(22) pn < N ∧ pn /∈ Cn ∧ ∀a.dn(a) < dn(pn)→ a ∈ Cn.
Let

Cn+1 := Cn ∪ {pn},

nxtn+1(a) :=

{
pn if dn(pn) +W (pn, a) < dn(a),

nxtn(a) otherwise,

dn+1(a) := min{dn(pn) +W (pn, a), dn(a)}.
Observe that the algorithm is relative to another simple search algorithm
pick, which assigns to a given set C (V and distance function d : V →
N∪{∞} a pick(C, d) ∈ V \C that among all a ∈ V \C has minimal distance
d(a).

We will prove for every n < N :

#(Cn) = n+ 1,(23)

dn(0) = 0,(24)

a 6=0→ nxtn(a) 6= a,(25)

nxtn(a) ∈ Cn,(26)

dn(nxtn(a)) <∞,(27)

dn(a) = dn(nxtn(a)) +W (nxtn(a), a),(28)

b ∈ Cn → dn(a) ≤ dn(b) +W (b, a),(29)

b ∈ Cn → dn(a) < dn(b)→ a ∈ Cn.(30)

From (23) it follows that CN−1 = V , and (24)–(29) then express that d :=
dN−1 and nxt := nxtN−1 satisfy the conditions (17)–(21).

It remains to show that (23)–(30) hold. We prove this by induction on
n. The base case n = 0 is clear. For the step assume that (23)–(30) hold for
n, and that pn is chosen according to (22), hence

pn < N, pn /∈ Cn, ∀a.dn(a) < dn(pn)→ a ∈ Cn.
(23) for n + 1 follows from pn < N and pn /∈ Cn. (24) for n + 1 is clear,
and (25) for n+ 1 follows from the definition with IH(25). Also (26) follows
immediately from the definitions. – We now first show

dn+1(a) = dn(a) for all a ∈ Cn.(31)

Let a ∈ Cn. Because of pn /∈ Cn we have dn(a) ≤ dn(pn) by IH(30), hence
dn+1(a) = dn(a) by definition.

Proof of dn+1(nxtn+1(a)) < ∞. In case dn(pn) + W (pn, a) < dn(a) we
have dn+1(a) = dn(pn) +W (pn, a) <∞, hence

dn+1(nxtn+1(a)) = dn+1(pn) = dn(pn) <∞.

74 4. PROGRAM EXTRACTION FROM CONSTRUCTIVE PROOFS

On the other hand nxtn+1(a) = nxtn(a), hence by nxtn(a) ∈ Cn (because of
(31)) also dn+1(nxtn+1(a)) = dn(nxtn(a)) <∞.

Proof of ∀a dn+1(a) = dn+1(nxtn+1(a)) + W (nxtn+1(a), a)). Case 1:
dn(pn)+W (pn, a) < dn(a). Observe that dn+1(pn) = dn(pn), for dn+1(pn) =
min{dn(pn) +W (pn, pn), dn(pn)}. Hence

dn+1(a)

= dn+1(pn) +W (pn, a) by definition and remark

= dn+1(nxtn+1(a)) +W (nxtn+1(a), a) by definition of nxtn+1(a).

Case 2: Otherwise. Then by definition dn+1(a) = dn(a) and nxtn+1(a) =
nxtn(a). The claim follows from the IH and (31) because of nxtn(a) ∈ Cn.

Proof of ∀a, b.b ∈ Cn+1 → dn+1(a) ≤ dn+1(b) + W (b, a). Let b ∈ Cn+1.
Case b ∈ Cn. Then

dn+1(a) ≤ dn(a) by definition

≤ dn(b) +W (b, a) by IH

= dn+1(b) +W (b, a) by (31).

Case 2: b = pn. Observe again that dn+1(pn) = dn(pn), since dn+1(pn) =
min{dn(pn) +W (pn, pn), dn(pn)}. Then

dn+1(a) ≤ dn(pn) +W (pn, a) by definition

= dn+1(pn) +W (pn, a) by the remark

= dn+1(b) +W (b, a).

Proof of ∀a, b.b ∈ Cn+1 → dn+1(a) < dn+1(b) → a ∈ Cn+1. Assume
b ∈ Cn+1 and dn+1(a) < dn+1(b). Case dn(pn) + W (pn, a) < dn(a), i.e.
dn+1(a) = dn(pn) +W (pn, a), hence

dn(pn) ≤ dn(pn) +W (pn, a)

= dn+1(a) by definition

< dn+1(b) by assumption

≤ dn(b) by definition.

Subcase b ∈ Cn. Then from the IH and the inequality above we obtain
pn ∈ Cn, hence a contradiction. Subcase b = pn. The above inequality
immediately entails the contradiction dn(pn) < dn(pn).

Case otherwise, i.e. dn+1(a) = dn(a), hence

dn(a) = dn+1(a) by definition

< dn+1(b) by assumption

≤ dn(b) by definition.

Subcase b ∈ Cn. From the IH we obtain a ∈ Cn. Subcase b = pn. The above
inequality yields a ∈ Cn, by the choice of pn.

4.5. Notes

We have made extensive use of [11]. The idea of using universal quanti-
fiers without computational content is taken from Berger’s [5]. Dan Hernest
pointed out an oversight in my original definition of realizability for ∃nc.

CHAPTER 5

Inductive Definitions

As we have seen, type variables allow for a general treatment of induc-
tively generated types µ~α~κ. Similarly, we can use predicate variables to

inductively generate predicates µ ~X ~K.
More precisely, we allow the formation of inductively generated predi-

cates µ ~X ~K, where ~X = (Xj)j=1,...,N is a list of distinct predicate variables,

and ~K = (Ki)i=1,...,k is a list of constructor formulas (or “clauses”) contain-
ing X1, . . . , XN in strictly positive positions only.

In this chapter, totality plays no role. For the sake of readability we
therefore use object variables x, y, . . . without a hatˆto range over arbitrary
objects of the underlying domain.

5.1. Axioms

5.1.1. Introduction and Elimination Axioms.

Definition. Let ~X = (Xj)j=1,...,N be a list of distinct predicate vari-
ables. Formulas A,B,C,D ∈ F, predicates P,Q, I ∈ P and constructor

formulas K ∈ KF(~X) are defined inductively as follows.

~A, ~B1, . . . , ~Bn ∈ F (n ≥ 0)

∀nc~x′∀~x. ~A→
(
∀nc~y′ν∀~yν . ~Bν → Xjν (~sν)

)
ν=1,...,n

→ Xj(~t) ∈ KF(~X)

K1, . . . ,Kn ∈ KF(~X) (n ≥ 1)

(µ ~X (K1, . . . ,Kn))j ∈ P

P ∈ P

P (~r) ∈ F

C ∈ F

{ ~x | C } ∈ P

A,B ∈ F

A→ B ∈ F

A,B ∈ F

A ∧B ∈ F

A ∈ F

∀xρA ∈ F

A ∈ F

∀ncxρA ∈ F

A predicate of the form { ~x | C } is called a comprehension term. We identify
{ ~x | C }(~r) with C[~x:=~r].

We shall use I for predicates of the form (µ ~X (K1, . . . ,Kk))j only, and

for predicates ~P and a constructor formula

Ki = ∀nc~x′i∀~xi. ~Ai →
(
∀nc~y′iν∀~yiν . ~Biν → Xjiν (~siν)

)
ν=1,...,ni

→ Xji(~ti)

with 1 ≤ i ≤ k we shall write

Ki[~P] = ∀nc~x′i∀~xi. ~Ai →
(
∀nc~y′iν∀~yiν . ~Biν → Pjiν (~siν)

)
ν=1,...,ni

→ Pji(~ti).

Now let ~I := µ ~X ~K be inductively defined predicates. According to

their intended meaning, we postulate the introduction axioms ~K[~I], i.e. all
axioms
(32)

Ki[~I] = ∀nc~x′i∀~xi. ~Ai →
(
∀nc~y′iν∀~yiν . ~Biν → Ijiν (~siν)

)
ν=1,...,ni

→ Iji(~ti)

75

76 5. INDUCTIVE DEFINITIONS

for i = 1, . . . , k, and for j = 1, . . . , N the elimination axioms

∀nc~xj .K1[~P]→ · · · → Kk[~P]→ Ij(~xj)→ Pj(~xj).

5.1.2. Introduction and Elimination Axioms. However, in appli-
cations one often wants to use a strengthened form of the elimination axioms.

For their formulation it is useful to introduce the notation K[~Q, ~P] for

∀nc~x′j∀~xj . ~A→
(
∀nc~y′ν∀~yν . ~Bν → Qjν (~sν)

)
ν=1,...,n

→(
∀nc~y′ν∀~yν . ~Bν → Pjν (~sν)

)
ν=1,...,n

→ Pj(~t).

Then the strengthened elimination axioms are

(33) ∀nc~xj .K1[~I, ~P]→ · · · → Kk[~I, ~P]→ Ij(~xj)→ Pj(~xj).

They are indeed stronger (or better: easier to use), because each premise

Ki[~I, ~P] is weaker than Ki[~P] (because Ki[~I, ~P] has more premises than

Ki[~P]). However, there is no essential difference, because from the (ordinary)
elimination axiom

∀nc~xj .K1[~I ∧ ~P]→ · · · → Kk[~I ∧ ~P]→ Ij(~xj)→ Ij(~xj) ∧ Pj(~xj)

(with ~I∧ ~P denoting the list of predicates { ~xj | Ij(~xj)∧Pj(~xj) }) we can de-

rive the strengthened one (33). To see this, assume ~xj , K1[~I, ~P] . . . Kk[~I, ~P]
and Ij(~xj). We must show Pj(~xj). To this end we use the ordinary elimina-

tion axiom above. Hence it suffices to prove each Ki[~I ∧ ~P]. So assume ~x′,

~x, ~A and ∀nc~y′ν∀~yν . ~Bν → Ijν (~sν) ∧ Pjν (~sν) for ν = 1, . . . , n. We must show

Ij(~t) ∧ Pj(~t). Now Ij(~t) follows from the introduction axioms, and Pj(~t)

follows from Ki[~I, ~P].
We shall from now on normally use the strengthened elimination axioms,

for they are more useful in practice.
As is to be expected from the terminology, we have conversion rules,

converting a (strengthened) elimination immediately following an introduc-
tion:

Elimj~p~q~ti[~xi:=~ri](M
Kκ[~I[~p], ~P [~p,~q]]
κ)κ=1,...,k(Introi~p~r′i~ri ~N

P
i
~NR
i) 7→

Mi
~r′i~ri ~N

P
i
~NR
i(

λ~yiνλ~uiν .Elimjiν~p~q~siν [~xi:=~ri](Mκ)κ=1,...,k(N
R
iν~yiν~uiν)

)
ν=1,...,ni

,

for j = 1, . . . , N . Here ~p are to be substituted for the free variables of ~I, and

~q for those of ~P which are not in ~I. Moreover, the ~NP
i are the parameter

arguments for the i-th introduction axiom Ki[~I] (i.e., proofs of its premises
~Ai), and ~NR

i are the recursive arguments (i.e., proofs of its further premises

∀nc~y′iν∀~yiν . ~Biν → Ijiν (~siν)).

5.1.3. Examples.

5.1. AXIOMS 77

5.1.3.1. The Even Numbers. We begin with a very simple example, an
inductive definition of the set Even of the even numbers. As underlying
algebra we take the one generated from 0 by one unary constructor S, i.e.
the natural numbers. The introduction axioms are

Even(0)

∀ncn.Even(n)→ Even(S(S(n)))

and the (strengthened) elimination axiom is

∀ncn.P (0)→ (∀ncn.Even(n)→ P (n)→ P (S(S(n))))→ Even(n)→ P (n).

As an example of the use of the elimination axiom we prove

∀ncn.Even(S(S(n)))→ Even(n).

Let P be the comprehension term {n | ∀ncm.n = S(S(m)) → Even(m) }.
Then P (0) holds (by ex-falso), and for an arbitrary n with Even(n) we
have P (S(S(n))). Then ∀ncn.Even(n) → P (n) by the elimination axiom.
Specializing this to S(S(n)) and unfolding P gives

Even(S(S(n)))→ ∀ncm.S(S(n)) = S(S(m))→ Even(m),

hence the claim.
5.1.3.2. The Even and the Odd Numbers. As an easy example of a simul-

taneous inductive definition we take the sets Ev and Od of the even and odd
numbers. Again we choose the natural numbers as the underlying algebra.
The introduction axioms are

Ev(0)

∀ncn.Od(n)→ Ev(S(n))

Od(1)

∀ncn.Ev(n)→ Od(S(n))

and the (strengthened) elimination axioms are

∀ncn.P0(0)→ (∀ncn.Od(n)→ P1(n)→ P0(S(n)))→
P1(1)→ (∀ncn.Ev(n)→ P0(n)→ P1(S(n)))→ Ev(n)→ P0(n),

∀ncn.P0(0)→ (∀ncn.Od(n)→ P1(n)→ P0(S(n)))→
P1(1)→ (∀ncn.Ev(n)→ P0(n)→ P1(S(n)))→ Od(n)→ P1(n).

5.1.3.3. Trees and Tree Lists. As another example of a simultaneous in-
ductive definition we consider trees and tree lists. In Section 2.1 we viewed
trees and tree lists as an example of simultaneously defined algebras. Al-
ternatively, we can choose as a somewhat more general underlying algebra
the one generated from 0 and Nil by one binary constructor cons, and then
single out trees and tree lists by a simultaneous inductive definition. Let a, b
range over elements of the underlying algebra. The introduction axioms are

Tree(0)

∀nca.Tlist(a)→ Tree(a)

Tlist(Nil)

∀nca, b.Tree(a)→ Tlist(b)→ Tlist(cons(a, b))

78 5. INDUCTIVE DEFINITIONS

and the (strengthened) elimination axioms are

∀nca.P0(0)→
(
∀nca.Tlist(a)→ P1(a)→ P0(a)

)
→

P1(Nil)→
(
∀nca, b.Tree(a)→Tlist(b)→P0(a)→P1(b)→P1(cons(a, b))

)
→

Tree(a)→ P0(a),

∀nca.P0(0)→
(
∀nca.Tlist(a)→ P1(a)→ P0(a)

)
→

P1(Nil)→
(
∀nca, b.Tree(a)→Tlist(b)→P0(a)→P1(b)→P1(cons(a, b))

)
→

Tlist(a)→ P1(a).

5.1.3.4. The Accessible Part of an Ordering. We assume that we have a
binary relation ≺. Its accessible part is inductively defined as follows. The
introduction axiom is

Acc+1 : ∀ncx.(∀y.y ≺ x→ Acc(y))→ Acc(x),

and the (strengthened) elimination axiom Acc− is

∀ncx.
(
∀ncx.(∀y.y ≺ x→ Acc(y))→ (∀y.y ≺ x→ P (y))→ P (x)

)
→

Acc(x)→ P (x).

Notice that the ordinary elimination axiom in this case is

∀ncx.
(
∀ncx.(∀y.y ≺ x→ P (y))→ P (x)

)
→ Acc(x)→ P (x).

Conversion:

Acc−~qrM
∀ncx.(∀y.y≺x→Acc(y))→(∀y.y≺x→P (y))→P (x)
1

(
Acc+1 rN

R
)
7→

M1rN
Rλyλuy≺r.Acc−~qyM1(N

Ryu).

5.1.3.5. The Bar predicate. Call a sequence w0, . . . , wn−1 of words good
if there are indices i < j < n and an embedding f of wi into wj . The
introduction axioms are

∀ncws.Good(ws)→ Bar(ws),

∀ncws.∀wBar(ws ∗ w)→ Bar(ws).

and the (strengthened) elimination axiom is

∀ncws.
(
∀ncws.Good(ws)→ P (ws)

)
→(

∀ncws.∀wBar(ws ∗ w)→ ∀wP (ws ∗ w)→ P (ws)
)
→

Bar(ws)→ P (ws).

5.1.3.6. The Transitive Closure of a Relation ≺. The introduction ax-
ioms are

∀ncx, y.x ≺ y → TrCl(x, y),

∀ncx, y, z.x ≺ y → TrCl(y, z)→ TrCl(x, z).

and the (strengthened) elimination axiom is

∀ncx, y.
(
∀ncx, y.x ≺ y → P (x, y)

)
→(

∀ncx, y, z.x ≺ y → TrCl(y, z)→ P (y, z)→ P (x, z)
)
→

TrCl(x, y)→ P (x, y).

5.1. AXIOMS 79

5.1.3.7. The Strongly Normalizable λ-Terms. Introduction axioms:

SN(Var(0))

∀ncM.
(
∀N.(M N)→ SN(N)

)
→ SN(M),

Here Var(n) denotes the n-th (untyped) variable, and M N expresses
that M reduces to N in one step.

5.1.3.8. The Strongly Computable λ-Terms. The set SCµj of strongly
computable λ-terms of type µj (cf. Subsection 2.2.4). Here SC1 are previ-
ously defined SC-predicates, for previous types. Introduction axioms:

SC(Var(0))

∀ncM.
(
∀NP , NR.M = c(NP , NR)→ SC1(N

P)
)
→(

∀NP , NR,K.M = c(NP , NR)→ SC1(K)→ SC(NRK)
)
→(

∀N.(M N)→ SC(N)
)
→

SC(M).

As an example of predicates defined by simultaneous induction we con-
sider SCtree and SCtlist, defining the strongly computable terms of these types.
The algebras tree and tlist have been simultaneously defined in with con-
structors

LeafN→tree,Branchtlist→tree,Emptytlist,Tconstree→tlist→tlist.

Following the general pattern above, the clauses for SCtree and SCtlist are

SCtree(Leaf(0)),

∀ncM.
(
∀NN.M = Leaf(N)→ SCN(N)

)
→(

∀N tlist.M = Branch(N)→ SCtlist(N)
)
→(

∀N tree.(M N)→ SCtree(N)
)
→

SCtree(M),

SCtlist(Empty),

∀ncM.
(
∀N tree

1 , N tlist
2 .M = Tcons(N1, N2)→ SCtree(N1)

)
→(

∀N tree
1 , N tlist

2 .M = Tcons(N1, N2)→ SCtlist(N2)
)
→(

∀N tlist.(M N)→ SCtlist(N)
)
→

SCtlist(M).

The following inductive definitions of disjunction, equality, the tensor,
the existential quantifier and falsity have already been considered by Martin-
Löf [26] and are used in the proof systems Coq [32] and ALF [13]; see also
Berger’s draft [6].

5.1.3.9. Disjunction. A1 ∨A2 := µX(A1 → X,A2 → X). The introduc-
tion axioms are

∨+0 : A1 → A1 ∨A2

∨+1 : A2 → A1 ∨A2

80 5. INDUCTIVE DEFINITIONS

and the elimination axiom is

∨− : (A1 → C)→ (A2 → C)→ A1 ∨A2 → C.

Conversion rules:

∨−MA1→C
i MA2→C

2

(
∨+0 N

A1
)
7→M1N,

∨−MA1→C
i MA2→C

2

(
∨+1 N

A2
)
7→M2N,

and in case A1 ∨ A2 has free variables to be substituted by ~p and the re-
maining free variables of C are to be substituted by ~q

∨−~p~qMA1[~p]→C[~p,~q]
i M

A2[~p]→C[~p,~q]
2

(
∨+0 ~pN

A1[~p]
)
7→M1N,

∨−~p~qMA1[~p]→C[~p,~q]
i M

A2[~p]→C[~p,~q]
2

(
∨+1 ~pN

A2[~p]
)
7→M2N.

5.1.3.10. Equality. Eq := µX∀ncx.X(x, x). The introduction axiom is

Eq+ : ∀ncxEq(x, x)

and the elimination axiom

Eq− : ∀ncx, y.∀ncxR(x, x)→ Eq(x, y)→ R(x, y).

The conversion rule is

Eq−~qrrM∀
ncxR[~q](x,x)(Eq+r) 7→Mr.

5.1.3.11. Tensor. A1 ⊗ A2 := µX(A1 → A2 → X). The introduction
axiom is

⊗+ : A1 → A2 → A1 ⊗A2

and the elimination axiom is

⊗− : (A1 → A2 → C)→ A1 ⊗A2 → C.

Conversion (assuming that there are no free variables in A1, A2 and C):

⊗−MA1→A2→C(⊗+NA1
1 NA2

2) 7→MN1N2.

5.1.3.12. Existential Quantifier. ∃Q(α) := µX∀xα.Q(x) → X. The in-
troduction axiom is

∃+ : ∀yρ.A→ ∃yρA

where ∃yρA abbreviates ∃{ yρ | A }, and the elimination axiom is

∃− : (∀yρ.A→ C)→ ∃yρA→ C.

Conversion:

∃−~p~qM∀ncyρ.A[~p]→C[~p,~q]
(
∃+~ptρNA[~p][y:=t]

)
7→MtN.

5.1.3.13. Falsity. This example is somewhat extreme, since the list ~K in

the general form µ ~X ~K is empty here. There is no introduction axiom, and
hence no conversion as well; the elimination axiom is

⊥− : ⊥ → A.

5.2. COMPUTATIONAL CONTENT 81

5.1.4. Cases. As in Section 2.4.4 there is an important variant of the
elimination axiom, where for a certain Pj no induction hypotheses are used.
To understand what this means, consider a Pj-clause

∀nc~x′∀~x. ~A→
(
∀nc~y′ν∀~yν . ~Bν → Xjν (~sν)

)
ν=1,...,n

→ Xj(~t).

In the (strengthened) elimination axiom it gives rise to a premise K[~I, ~P]

∀nc~x′∀~x. ~A→
(
∀nc~y′ν∀~yν . ~Bν → Ijν (~sν)

)
ν=1,...,n

→(
∀nc~y′ν∀~yν . ~Bν → Pjν (~sν)

)
ν=1,...,n

→ Pj(~t).

For the cases axiom we instead take KC [~I, ~P]:

∀nc~x′∀~x. ~A→
(
∀nc~y′ν∀~yν . ~Bν → Ijν (~sν)

)
ν=1,...,n

→ Pj(~t).

The cases axiom then is

CasesIj(~x)→Pj(~x) : ∀nc~x.KCi1 [~I, ~P]→ · · · → KCik [~I, ~P]→ Ij(~x)→ Pj(~x),

where KCi1 [~I, ~P], . . . ,KCik [~I, ~P] consists of all clauses KCi [~I, ~P] concerning Pj .
So this axiom amounts to distinguish cases on all clauses generating Ij .

Examples are

CasesEven(n)→A : ∀ncn.A[n:=0]→ ∀ncn.A[n:=S(S(n))]→ Even(n)→ A

and for the simultaneous inductive definition of trees and tree lists above

CasesTlist(b)→A : ∀ncb.A[b:=Nil]→(
∀nca, b.Tree(a)→ Tlist(b)→ A[b:=cons(a, b)]

)
→

Tlist(b)→ A.

5.2. Computational Content

The intended meaning of an inductively defined predicate constant I is
quite clear. However, we first have to make up our mind as to whether
it is to have computational content. We can decide that we do not want
computational content, but only when all clauses K are “invariant” (i.e.
have the property that r rK is the same as K). Then we can only apply the
elimination axiom to invariant formulas as well. Both conditions are needed
for the Soundness Theorem.

Suppose I is to have computational content. Then the new predicate
Ir to be used in the definition of realizability should have an arity (µ, ~ρ),
where the first argument of type µ represents a generation tree, witnessing
how the other arguments were put into the inductively defined predicate.

Clearly this type µ is an algebra type in the sense of Chapter 2: it is one
component of the types ~µ = µ~α~κ generated from constructor types κi :=

τ(Ki) for all constructor formulas K1, . . .Kk from ~I = µ ~X (K1, . . . ,Kk). In
case there is no nullary constructor type for µ, we add one with the name
Dummyµ.

Notice that for k predicate variables in the clauses of I, we have 2k

possibilities for the type µ, depending on which of these predicate variables
are to have Harrop degree 0. For example, the inductive definition of the
existential quantifier in 5.1.3.12 needs two versions, depending on whether
we use a predicate variable Q̂ of Harrop degree 0 or Q of Harrop degree 1.

82 5. INDUCTIVE DEFINITIONS

So we extend for inductively defined predicate constants the definition
of the computational content from Section 4.2 by

τ(I(~s)) :=

{
µ if I has computational content

ε otherwise

and the definition of realizability from Section 4.3 by

r r I(~s) =

{
Ir(r, ~s) if I has computational content

I(~s) otherwise.

From the intended meaning of ~Ir it is rather obvious how these predicates
should de defined inductively. For every constructor formula

K = ∀nc~x′∀~x. ~A→
(
∀nc~y′ν∀~yν . ~Bν → Xjν (~sν)

)
ν=1,...,n

→ Xj(~t)

of the original inductive definition of ~I we build the new constructor formula
Kr as

∀nc~x′∀~x, ~u, ~f.~u r ~A→
(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → Yjν (fν~yν~vν , ~sν)

)
ν=1,...,n

→

Yj(c~x~u~f,~t).

Here c is the constructor of the algebra ~µ = µ~α~κ generated from our con-
structor types κi := τ(Ki) (i.e. for Ki we have c := constri). Recall that

τ(K) = ~ρ→ τ(~A)→
(
~σν → τ(~Bν)→ αjν

)
ν=1,...,n

→ αj ∈ KT(~α),

and c is the corresponding constructor. Then ~Ir := µ~Y (~Kr), an inductive
definition with no computational content. The introduction axioms for Irj
are Kr[~Ir]:

∀nc~x′∀~x∀~u, ~f.~u r ~A→
(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → Irjν (fν~yν~vν , ~sν)

)
ν=1,...,n

→

Irj (c~x~u~f,~t)

and the (strengthened) elimination axioms for Irj are

∀nc~x,w.Kr
1 [~Ir, ~Q]→ · · · → Kr

k[~Ir, ~Q]→ Irj (w, ~x)→ Qj(w, ~x)

where Kr[~Ir, ~Q] is

∀nc~x′∀~x, ~u, ~f.~u r ~A→
(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → Irjν (fν~yν~vν , ~sν)

)
ν=1,...,n

→(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → Qjν (fν~yν~vν , ~sν)

)
ν=1,...,n

→

Irj (c~x~u~f,~t).

Examples. The accessible part of an ordering ≺. Recall the introduc-
tion axiom

K1[Acc] := ∀ncx.(∀y.y ≺ x→ Acc(y))→ Acc(x).

The corresponding constructor type is

κ1 := τ(K1) = (ρ→ α)→ α.

Then the algebra algAcc := µα (α, κ1) has two constructors

DummyalgAcc : algAcc,

5.3. SOUNDNESS 83

Sup : (ρ→ algAcc)→ algAcc.

Here DummyalgAcc had to be added, because there is no nullary constructor
type κi for Acc. We obtain

Kr
1 [Accr] := ∀ncx∀f.(∀y.y ≺ x→ Accr(f(y), y))→ Accr(Sup(f), x).

5.3. Soundness

Let ~I := µ ~X (K1, . . . ,Kk) be inductively defined. We define the ex-
tracted programs for the introduction axioms (32) and (strengthened) elim-
ination axioms (33) by

[[IntroK]] := c,

[[Elimj]] := Rj .

By Kr[~Ir] we clearly have c r IntroK . For to prove

Rj r
(
∀nc~x.K1[~I, ~P]→ · · · → Kk[~I, ~P]→ Ij(~x)→ Pj(~x)

)
let ~x,w1, . . . , wk be given such that wi rKi[~I, ~P], i.e.

∀nc~x′∀~x, ~u, ~f,~g.~u r ~A→
(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → fν~yν~vν r Ijν (~sν)

)
ν=1,...,n

→(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → gν~yν~vν rPjν (~sν)

)
ν=1,...,n

→

wi~x~u~f~g rPj(~t).

(34)

Let further w be given and assume w r Ij(~x), i.e. Irj (w, ~x). Our goal is

Rj ~ww rPj(~x) =: Qj(w, ~x).

We use the (strengthened) elimination axiom for Irj with Qj(w, ~x), i.e.

∀nc~x,w.Kr
1 [~Ir, ~Q]→ · · · → Kr

k[~Ir, ~Q]→ Irj (w, ~x)→ Qj(w, ~x).

Hence it suffices to prove Kr[~Ir, ~Q] for every constructor formula K, i.e.

∀nc~x′∀~x, ~u, ~f.~u r ~A→
(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → Irjν (fν~yν~vν , ~sν)

)
ν=1,...,n

→(
∀nc~y′ν∀~yν , ~vν .~vν r ~Bν → Qjν (fν~yν~vν , ~sν)

)
ν=1,...,n

→

Qj(c~x~u~f,~t).

(35)

So assume ~x′, ~x, ~u, ~f and the premises of (35). We must show Qj(c~x~u~f,~t),
i.e.,

Rj ~w(c~x~u~f) rPj(~t).

Since c = constri, by the conversion rules for R this is the same as

wi~x~u~f
(
(Rj1 ~w) ◦ f1

)
. . .
(
(Rjn ~w) ◦ fn

)
rPj(~t).

To this end we use (34) with ~x′, ~x, ~u, ~f, (Rj1 ~w) ◦ f1, . . . , (Rjn ~w) ◦ fn. Its
conclusion is what we want, and its premises follow from the premises of
(35).

84 5. INDUCTIVE DEFINITIONS

5.4. Notes

Part of the the material in the present Chapter 5 is based on Monika
Seisenberger’s Thesis [33].

CHAPTER 6

Program Extraction from Classical Proofs

In this chapter we will concentrate on the question of classical versus
constructive proofs. It is known that any classical proof of a specification of
the form ∀x∃clyB with B quantifier-free can be transformed into a construc-
tive proof of the same formula. However, when it comes to extraction of a
program from a proof obtained in this way, one easily ends up with a mess.
Therefore, some refinements of the standard transformation are necessary.

We develop a refined method of extracting reasonable and sometimes
unexpected programs from classical proofs. We also generalize previously
known results since B in ∀x∃clyB no longer needs to be quantifier-free, but
only has to belong to the strictly larger class of goal formulas defined in
Section 6.2. Furthermore we allow unproven lemmas D in the proof of
∀x∃clyB, where D is a definite formula (also defined in Section 6.2).

Other interesting examples of program extraction from classical proofs
have been studied by Murthy [29], Coquand’s group (see e.g. [14]) in a type
theoretic context and by Kohlenbach [23] using a Dialectica interpretation.

There is also a different line of research aimed at giving an algorithmic
interpretation to (specific instances of) the classical double negation rule.
It essentially started with Griffin’s observation [21] that Felleisen’s control
operator C [16, 17] can be given the type of the stability scheme ¬¬A→ A.
This initiated quite a bit of work aimed at extending the Curry-Howard cor-
respondence to classical logic, e.g. by Barbanera and Berardi [2], Constable
and Murthy [12], Krivine [24] and Parigot [31].

We now describe in more detail what the chapter is about. In Section
6.1 we fix our version of intuitionistic arithmetic for functionals, and recall
how classical arithmetic can be seen as a subsystem. Then our argument
goes as follows. It is well known that from a derivation of a classical exis-
tential formula ∃clyA := (∀y.A→ ⊥)→ ⊥ one generally cannot read off an
instance. A simple example has been given by Kreisel: Let R be a primitive
recursive relation such that ∃clzR(x, z) is undecidable. Clearly we have –
even logically –

` ∀x∃cly∀z.R(x, z)→ R(x, y).

But there is no computable f satisfying

∀x∀z.R(x, z)→ R(x, f(x)),

for then ∃clzR(x, z) would be decidable: it would be true if and only if
R(x, f(x)) holds.1

1Notice our slightly unusual formula notation: the scope of a quantifier followed by a
dot extends as far as the surrounding parentheses allow. Otherwise we follow the standard
convention that quantifiers bind stronger than ∧, which binds stronger than →.

85

86 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

However, it is well known that in case ∃clyG with G quantifier-free one
can read off an instance. Here is a simple idea of how to prove this: replace
⊥ anywhere in the proof by ∃yG (we use ∃ for the constructive existential
quantifier). Then the end formula (∀y.G→ ⊥)→ ⊥ is turned into (∀y.G→
∃yG)→ ∃yG, and since the premise is trivially provable, we have the claim.

Unfortunately, this simple argument is not quite correct. First, G may
contain ⊥, and hence is changed under the substitution ⊥ 7→ ∃yG. Second,
we may have used axioms or lemmata involving ⊥ (e.g. ⊥ → P), which need
not be derivable after the substitution. But in spite of this, the simple idea
can be turned into something useful.

To take care of lemmata we normally want to use in a derivation of
∃clyG, let us first slightly generalize the situation we are looking at. Let a

derivation (in minimal logic) of ∃clyG from ~D and axioms

Indn,A : A[n:=0]→ (∀n.A→ A[n:=n+ 1])→ ∀nA
Indp,A : A[p:=tt]→ A[p:=ff]→ ∀pA
Axtrue : atom(tt)

EfqA : atom(ff)→ A

be given. Here atom is a unary predicate symbol taking one argument of
the type B of booleans. The intended interpretation of atom is the set {tt};
hence “atom(r)” means “r = tt”. Assume that the lemmata ~D and the goal
formula G are such that

`i ~D → Di[⊥:=∃yG],(36)

`i G[⊥:=∃yG]→ ∃yG;(37)

here `i means derivability in intuitionistic arithmetic, i.e. with the additional
axioms Efq-LogA : ⊥ → A. The substitution ⊥ 7→ ∃yG turns the axioms
above (except Efq-LogA) into instances of the same scheme with different

formulas, and hence from our given derivation (in minimal logic) of ~D →
(∀y.G→ ⊥)→ ⊥ we obtain

`i ~D[⊥:=∃yG]→ (∀y.G[⊥:=∃yG]→ ∃yG)→ ∃yG.

Now (36) allows to drop the substitution in ~D, and by (37) the second
premise is derivable. Hence we obtain as desired

`i ~D → ∃yG.
We shall identify classes of formulas – to be called definite and goal formulas
– such that slight generalizations of (36) and (37) hold. This will be done
in Section 6.2.

We will also give (in Section 6.4) an explicit and useful representation
of the program term extracted (by the well-known modified realizability

interpretation, cf. [35]) from the derivation M of ~D → ∃yG just constructed.
The program term has the form pt1 . . . tns, where p is extracted from M and

t1, . . . , tn, s are determined by the formulas ~D and G only.
Since the constructive existential quantifier ∃ only enters our derivation

in the context ∃yG, it is easiest to replace this formula everywhere by a new
propositional symbol X and stipulate that a term r realizes X iff G[y:=r].
This allows for a short and self-contained exposition – in Section 6.3 – of all

6.1. ARITHMETIC FOR FUNCTIONALS 87

we need about modified realizability, including the soundness theorem. In
Section 6.4 we then prove our main theorem about program extraction from
classical proofs.

The final Section 6.5 then contains some examples of our general machi-
nery. From a classical proof of the existence of the Fibonacci numbers
we extract in 6.5.1 a short and surprisingly efficient program, where λ-
expressions rather than pairs are passed. In 6.5.2 we treat as a further
example a classical proof of the wellfoundedness of < on N. Finally in 6.5.4
we take up a suggestion of Veldman and Bezem [36] and present a short
classical proof of (the general form of) Dickson’s Lemma, as an interesting
candidate for further study.

6.1. Arithmetic for Functionals

We restrict the formal system introduced in Section 2.4 to the predicate
constant atom and the predicate variables ⊥ and moreover a special nullary
predicate variable X. So formulas are

⊥, X, atom(rB), A→ B, ∀xρA; abbreviation: ¬A := A→ ⊥.

As axioms we take the induction schemes Indn,A and Indp,A for the ground
types N and B; for simplicity we only consider these two algebras in the
present chapter. In addition we have the axioms

Axtrue : atom(tt) truth axiom

EfqA : atom(ff)→ A ex-falso-quodlibet for atom(ff)

Efq-LogA : ⊥ → A ex-falso-quodlibet for ⊥

Let ZX denote this system of intuitionistic arithmetic; Z is obtained
from ZX by omittingX. Z0 (ZX0 , resp.) is Z (ZX , resp.) without the axioms
Efq-LogA. For every Z0-derivation M let MX denote the ZX0 -derivation
resulting from M by substituting X for ⊥. Write CX := C[⊥:=X]. – L[X]
(L, resp.) denotes the language of ZX (Z, resp.). We use P for atomic
L-formulas and A,B,C,D,G for L[X]-formulas. ` denotes derivability in
minimal logic.

Note that in our setting derivability in ZX is essentially the same as in
ZX0 :

Lemma 6.1.1. Let F := atom(ff) and AF := A[⊥:=F]. Then

ZX ` A ⇐⇒ ZX0 ` AF .

Proof. ⇒ holds since (Efq-LogA)F is EfqAF .
⇐. We have ZX ` ⊥ ↔ F by Efq-LogF : ⊥ → F and Efq⊥ : F → ⊥.

This implies the claim.

Since our formulas do not contain the constructive existential quantifier
∃, we can derive stability for all L-formulas. Hence classical arithmetic (in
all finite types) is a subsystem of our present system Z:

Lemma 6.1.2 (Stability). Z ` ¬¬A→ A for every L-formula A.

88 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

Proof. Induction on A.
Case atom(r). We have Z ` ∀p.¬¬atom(p) → atom(p) by boolean in-

duction, again using Z ` ⊥ ↔ F and the truth axiom Axtrue : atom(tt).
Case ⊥. Obviously Z ` ¬¬⊥ → ⊥.
Case A→ B. By induction hypothesis for B:

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
F →+u2¬(A→ B)

F →+u1¬¬B
B

Case ∀xA. Clearly it suffices to show Z ` (¬¬A→ A)→ ¬¬∀xA→ A:

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
F →+u2¬∀xA

F →+u1¬¬A
A

This concludes the proof.

Lemma 6.1.3 (Cases). ZX ` (¬C → A) → (C → A) → A for every
quantifier-free L-formula C.

Proof. We may assume that ⊥ does not occur in C, since Z ` ⊥ ↔
atom(ff). Note that for every such quantifier-free formula C we can easily
construct a boolean term tC such that Z0 ` atom(tC)↔ C. Hence it suffices
to derive

∀p.((atom(p)→ atom(ff))→ A)→ (atom(p)→ A)→ A.

This is done by induction on p, using the truth axiom Axtrue : atom(tt).

6.2. Definite and Goal Formulas

A formula is relevant if it “ends” with ⊥. More precisely, relevant for-
mulas are defined inductively by the clauses

• ⊥ is relevant,
• if C is relevant and B is arbitrary, then B → C is relevant, and
• if C is relevant, then ∀xC is relevant.

A formula which is not relevant is called irrelevant .
We define goal formulas G and definite formulas D inductively. These

notions are related to similar ones common under the same name in the con-
text of extensions of logic programming. Recall that P ranges over atomic
L-formulas (including ⊥).

G := P | D → G provided D irrelevant ⇒ D quantifier-free

| ∀xG provided G irrelevant,

D := P | G→ D provided D irrelevant ⇒ G irrelevant

6.2. DEFINITE AND GOAL FORMULAS 89

| ∀xD.

Lemma 6.2.1. For definite formulas D and goal formulas G we have

ZX ` (¬D → X)→ DX for D relevant,(38)

ZX ` D → DX ,(39)

ZX ` GX → G for G irrelevant,(40)

ZX ` GX → (G→ X)→ X.(41)

Proof. We prove all four claims (38) – (41) simultaneously, by induc-
tion on formulas.

(38). Let D be relevant. Case ⊥. Clearly ((⊥ → ⊥) → X) → X is
derivable.

Case G→ D.

|
(¬D→X)→DX

|
GX→(G→X)→X GX

(G→ X)→ X

¬(G→D)→X

¬D
G→D G

D
⊥

¬(G→ D)

X
G→ X

X
¬D → X

DX

(¬(G→ D)→ X)→ GX → DX

Here we have used the induction hypotheses (38) for D and (41) for G.
Case ∀xD.

|
(¬D → X)→ DX

¬∀xD → X

¬D
∀xD
D

⊥
¬∀xD

X
¬D → X

DX

∀xDX

(¬∀xD → X)→ ∀xDX

Here we have used the induction hypothesis (38) for D.
(39). Case D relevant.

|
(¬D → X)→ DX

⊥ → X
¬D D
⊥

X
¬D → X

DX

D → DX

Here we have used (38) and ⊥ → X.

90 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

Case D irrelevant. Subcase P . Then PX = P and the claim is obvious.
Subcase G→ D. Then D is irrelevant, hence also G is irrelevant.

|
D → DX

G→ D

|
GX → G GX

G
D

DX

(G→ D)→ GX → DX

Here we have used the induction hypotheses (40) for G and (39) for D.
Subcase ∀xD. By the induction hypothesis (39) for D we have D → DX ,

which clearly implies ∀xD → ∀xDX .
(40). Let G be irrelevant. Case P . Then PX = P and the claim is

obvious.
Case D → G.

|
GX → G

DX → GX

|
D → DX D

DX

GX

G

(DX → GX)→ D → G

Here we have used the induction hypotheses (40) for G and (39) for D.
Case ∀xG.

|
GX → G

∀xGX
GX

G
∀xG

∀xGX → ∀xG
Here we have used the induction hypothesis (40) for G.

(41). We may assume that G is relevant, for otherwise the claim clearly
follows from (40). Case ⊥. Obvious, since ⊥X = X.

Case D → G. Our goal is (DX → GX) → ((D → G) → X) → X. Let
D1[D

X → GX , (D → G)→ X] be

|
GX → (G→ X)→ X

DX → GX DX

GX

(G→ X)→ X

(D → G)→ X
G

D → G

X
G→ X

X

DX → X

(using the induction hypothesis (41) for G) and D2[(D → G)→ X] be

(D → G)→ X

¬D D
⊥
G

D → G

X
¬D → X

Note that the passage from ⊥ to G can be done by means of introduction
rules, since G is relevant.

6.2. DEFINITE AND GOAL FORMULAS 91

Subcase D relevant.

D1[D
X→GX , (D→G)→X]

|
DX → X

|
(¬D → X)→ DX

D2[(D→G)→X]

|
¬D → X

DX

X

(DX → GX)→ ((D → G)→ X)→ X

Here we have used the induction hypothesis (38) for D.
Subcase D irrelevant. Then D is quantifier-free. We use case distinction

on D from Lemma 6.1.3, in the form (D → X) → (¬D → X) → X. So it
suffices to derive from DX → GX and (D → G)→ X both premises; recall
that our goal was (DX → GX)→ ((D → G)→ X)→ X. The negative case
is provided by D2[(D → G)→ X], and the positive case by

D1[D
X → GX , (D → G)→ X]

|
DX → X

|
D → DX D

DX

X
D → X

Here we have used the induction hypothesis (39) for D.

Lemma 6.2.2. For goal formulas ~G = G1, . . . , Gn we have

ZX ` (~G→ X)→ ~GX → X.

Proof. By Lemma 6.2.1(41) we have

ZX ` GXi → (Gi → X)→ X

for all i = 1, . . . , n. Now the assertion follows by minimal logic: Assume
~G→ X and ~GX ; we must show X.

By GX1 → (G1 → X)→ X it suffices to prove G1 → X. Assume G1.
By GX2 → (G2 → X)→ X it suffices to prove G2 → X. Assume G2.
Repeating this pattern, we finally have assumptions G1, . . . , Gn avail-

able, and obtain X from ~G→ X.

Theorem 6.2.3. Assume that for definite formulas ~D and goal formulas
~G we have

Z0 ` ~D → (∀~y. ~G→ ⊥)→ ⊥.

Then we also have

ZX ` ~D → (∀~y. ~G→ X)→ X.

In particular, substitution of the formula

∃~y. ~G := ∃~y.G1 ∧ . . . ∧Gn

for X yields

Z ` ~D → ∃~y. ~G.

92 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

Proof. Substitution of X for ⊥ in the given derivation yields

ZX0 ` ~DX → (∀~y. ~GX → X)→ X.

Now by Lemma 6.2.1(39) we can drop X in ~DX , and by Lemma 6.2.2 also

in ~GX .
The second assertion follows from the first one since ∀~y. ~G→ ∃~y. ~G clearly

is derivable.

The theorem can be viewed in the standard way to yield a method for
program extraction from classical proofs. However, in Section 6.4 we give a
finer analysis of the extracted programs, and an explanation of the role of
definite and goal formulas.

Example 6.2.4. Let us check the mechanism of working with definite
and goal formulas for Kreisel’s “non-example” given in the introduction.
There we gave a trivial proof in classical logic of a ∀∃cl-formula that cannot
be realized by a computable function, and we better make sure that our
general result also does not provide such a function. The example amounts
to a proof in minimal logic of

(∀z.¬¬R(x, z)→ R(x, z))→
(
∀y.(R(x, y)→ ∀zR(x, z))→ ⊥

)
→ ⊥.

Here R(x, y)→ ∀zR(x, z) is a goal formula, but the premise ∀z.¬¬R(x, z)→
R(x, z) is not definite. Replacing R by ¬S (to get rid of the stability assump-
tion) does not help, for then ¬S(x, y) → ∀z¬S(x, z) is not a goal formula.
A third possibility would be to use the fact that R is primitive recursive
and write atom(rxy) instead of R(x, y). However, then

(
∀y.(atom(rxy) →

∀z atom(rxz))→ ⊥
)
→ ⊥ could only be proved in Z, not in Z0 as required

in Theorem 6.2.3.

How to obtain definite and goal formulas. To apply these results
we have to know that our assumptions are definite formulas and our goal is
given by goal formulas. For quantifier-free formulas this clearly can always
be achieved by inserting double negations in front of every atom (cf. the
definitions of definite and goal formulas). This corresponds to the original
(unrefined) so-called A-translation of Friedman [18] (or Leivant [25]). How-
ever, in order to obtain reasonable programs which do not unneccessarily
use higher types or case analysis we want to insert double negations only at
as few places as possible.

We describe a more economical general way to obtain definite and goal
formulas, following [7, 10]. It consists in singling out some predicate symbols
as being “critical”, and then double negating only the atoms formed with
critical predicate symbols; call these critical atoms.

Assume we have a proof in minimal arithmetic Z0 of

∀~x1C1 → · · · → ∀~xnCn → (∀~y. ~B → ⊥)→ ⊥

with ~C, ~B quantifier-free (among the premises ∀~xiCi we may have efq-axioms
for quantifier-free formulas, hence in fact the situation described applies to
intuitionistic logic). Let

L := {C1, . . . , Cn, ~B → ⊥}

6.3. PROGRAM EXTRACTION 93

The set of L-critical predicate symbols is defined to be the smallest set
satisfying

(i) ⊥ is critical.

(ii) If (~C1 → R1(~s1)) → · · · → (~Cm → Rm(~sm)) → R(~s) is a positive
subformula of L, and if some Ri is L-critical, then R is L-critical.

Now if we double negate every L-critical atom different from ⊥ we clearly

obtain definite assumptions ~C ′ and goal formulas ~B′. Furthermore the proof
term of the given derivation can easily be transformed into a correct deriva-
tion of the translated formula from the translated assumptions (by inserting
the obvious proofs of the translated axioms).

However, in particular cases we might be able to obtain definite and
goal formulas with still fewer double negations: it may not be necessary to
double negate every critical atom.

Of course this method will be really useful only if besides atom and
⊥ there are other predicate symbols available. Our results could be easily
adapted to a language with free predicate symbols.

6.3. Program Extraction

We assign to every formula A an object τ(A) (a type or the symbol ε).
τ(A) is intended to be the type of the program to be extracted from a proof
of A, assuming that a proof of X carries computational content of some
given type ν.

τ(X) := ν

τ(P) := ε (in particular τ(⊥) = ε)

τ(∀xρA) :=

{
ε if τ(A) = ε

ρ→ τ(A) otherwise

τ(A→ B) :=


τ(B) if τ(A) = ε

ε if τ(B) = ε

τ(A)→ τ(B) otherwise

We now define, for a given derivation M of a formula A with τ(A) 6= ε, its
extracted program [[M]] of type τ(A).

[[uA]] := xτ(A)u

[[λuAM]] :=

{
[[M]] if τ(A) = ε

λx
τ(A)
u [[M]] otherwise

[[MA→BN]] :=

{
[[M]] if τ(A) = ε

[[M]][[N]] otherwise

[[λxρM]] := λxρ[[M]]

[[Mt]] := [[M]]t

We also need extracted programs for the axioms.

[[Indp,A]] := RτB : τ → τ → B→ τ with τ := τ(A) 6= ε,

[[Indn,A]] := RτN : τ → (N→ τ → τ)→ N→ τ with τ := τ(A) 6= ε,

94 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

[[Efq-LogX]] := dummyν

where dummyν is an arbitrary closed term of type ν. For derivations M of
A with τ(A) = ε we define [[M]] := ε (ε some new symbol). This applies in
particular if A is an L-formula.

Finally we define modified realizability for formulas in L[X]. For the
propositional symbol X we need a comprehension term A := { yν | A0 }
with an L-formula A0; write A(r) for A0[y

ν :=r]. More precisely, we define
formulas r rA A, where r is either a term of type τ(A) if the latter is a type,
or the symbol ε if τ(A) = ε.

r rA X = A(r)

r rA P = P

r rA ∀xA =

{
∀x.ε rA A if τ(A) = ε

∀x.rx rA A otherwise

r rA (A→ B) =


ε rA A → r rA B if τ(A) = ε

∀x.x rA A → ε rA B if τ(A) 6= ε = τ(B)

∀x.x rA A → rx rA B otherwise

Note that for L-formulas A we have τ(A) = ε and ε rA A = A. For the

formulation of the soundness theorem it will be useful to let x
τ(A)
u := ε if uA

is an assumption variable with τ(A) = ε.

Theorem 6.3.1 (Soundness). Assume that M is a ZX-derivation of B.
Then there is a Z-derivation of [[M]] rA B from the assumptions

{xτ(C)
u rA C | uC ∈ FA(M) }.

Proof. Induction on M . Case Indn,A. Take RτN. Case Indp,A. Take
RτB. Case Efq-LogA : ⊥ → A. Then

[[Efq-LogA]] rA (⊥ → A) = ⊥ → [[Efq-LogA]] rA A,

which is an instance of the same axiom scheme. The inductive steps are
straightforward.

6.4. Computational Content of Classical Proofs

For a smooth formulation of the following theorem when writing an
application ts where s is of type ε, we mean simply t. Similarly abstractions
of the form λwεt stand for t.

Theorem 6.4.1. Let ~D = D1, . . . , Dn and ~G = G1, . . . , Gm be arbitrary
L-formulas. Assume that we have terms t1, . . . , tn, s1, . . . , sm, r such that

Z ` ~D → tj rA D
X
j for 1 ≤ j ≤ n,(42)

Z ` ~D → wi rA G
X
i → (Gi → A(vi))→ A(siwivi) for 1 ≤ i ≤ m,(43)

Z ` ~D → ∀~y. ~G→ A(r~y).(44)

Let M be a Z0-derivation of ~D → (∀~y. ~G→ ⊥)→ ⊥, and

s := λ~yλ~w.s1w1(. . . (smwm(r~y)) . . .).

6.4. COMPUTATIONAL CONTENT OF CLASSICAL PROOFS 95

Then

Z ` ~D → A([[MX]]t1 . . . tns).

Proof. From the Z0-derivation M we obtain by the substitution ⊥ 7→
X a ZX0 -derivation MX : ~DX → (∀~y. ~GX → X) → X. The Soundness
Theorem 6.3.1 yields

[[MX]] rA
(
~DX → (∀~y. ~GX → X)→ X

)
= ∀~u∀v.~u rA ~DX → (v rA ∀~y. ~GX → X)→ A([[MX]]~uv)

= ∀~u∀v.~u rA ~DX → ∀~y∀~w
(
~w rA ~GX → A(v~y ~w)

)
→ A([[MX]]~uv).(45)

Instantiate (45) with ~t for ~u and s for v. Clearly ~t rA ~DX is derivable from
~D by (42), so it remains to show ~D → ~w rA ~GX → A(s~y ~w).

Let am+1 := r~y and ai := siwiai+1, hence s = λ~yλ~w a1. We show by
induction on j := m− i

~D → G1 → · · · → Gi → wi+1 rA G
X
i+1 → · · · → wm rA G

X
m → A(ai+1).

(46)

Basis. For j = 0 we have i = m and (46) holds by (44). Step. From the IH
(46) and the assumption (43) we obtain

~D → G1 → · · · → Gi−1 → wi rA G
X
i → · · · → wm rA G

X
m → A(siwiai+1).

For j = m we have i = 0 and hence we obtain from (46)

~D → w1 rA G
X
1 → · · · → wm rA G

X
m → A(a1),

which was to be shown.

In order to apply Theorem 6.4.1, we need A = { y | A0 } and terms
tj , si, r such that (42)–(44) hold. The choice of A and r of course depends
on the application at hand and should be done such that (44) holds. The
rest follows from Lemma 6.2.1 by the Soundness Theorem 6.3.1:

Theorem 6.4.2. For every definite formula D and goal formula G we
have terms t, s such that for an arbitrary A = { y | A0 } with an L-formula
A0:

Z ` D → t rA D
X ,(47)

Z ` w rA G
X → (G→ A(v))→ A(swv)(48)

Proof. (47). Let ND be the ZX -derivation of D → DX provided by
Lemma 6.2.1(39). The Soundness Theorem yields

Z ` [[ND]] rA (D → DX), i.e. Z ` D → [[ND]] rA D
X .

(48). Let HG be the ZX -derivation of GX → (G → X) → X from
Lemma 6.2.1(41). By the Soundness Theorem

Z ` [[HG]] rA (GX → (G→ X)→ X), i.e.

Z ` w rA G
X → (G→ A(v))→ A([[HG]]wv).

96 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

For the next corollary we use the notation 〈~r〉 for pairing of a non-empty
list ~r of terms, and r0, r1, . . . , r(k − 1) for the projections.

Corollary 6.4.3. Let ~D = D1, . . . , Dn be definite formulas and ~G =

G1, . . . , Gm be goal formulas. Let M : ~D → (∀~y. ~G → ⊥) → ⊥ be a Z0-
derivation. Then

Z ` ~D → Gi[y1, . . . , yk:=[[MX]]t1 . . . tns0, . . . , [[M
X]]t1 . . . tns(k − 1)],

with

s := λ~yλ~w.s1w1(. . . (smwm〈~y〉) . . .)

and t1, . . . , tn, s1, . . . sm determined by the formulas ~D, ~G only, according to
Theorem 6.4.2.

Proof. Let ν be the product of the types of ~y = y1, . . . , yk, and y a
variable of type ν. We use Theorem 6.4.1 with

A := { yν |
∧∧
i
Gi[y1, . . . , yk:=y0, . . . , y(k − 1)] }.

Then (44) holds with r := λ~y〈~y〉. Moreover, the conclusion

Z ` ~D → A([[MX]]t1 . . . tns)

clearly yields the claim.

6.5. Examples

We now want to give some simple examples of how to apply Theo-
rems 6.4.1 and 6.4.2. Here we will always have a single goal formula G
and A will always be chosen as { y | G }. Hence (44) trivially holds with
r := λyy.

6.5.1. Fibonacci Numbers. Let αn be the n-th Fibonacci number,
i.e.

α0 := 0, α1 := 1, αn := αn−2 + αn−1 for n ≥ 2.

We want to give a (classical) existence proof for the Fibonacci numbers. So
we need to prove

∀n∃clk G(n, k), i.e. (∀k.G(n, k)→ ⊥)→ ⊥
from assumptions expressing that G is the graph of the Fibonacci function,
i.e.

G(0, 0), G(1, 1), ∀n∀k∀l.G(n, k)→ G(n+ 1, l)→ G(n+ 2, k + l).

Clearly the assumption formulas are definite and G(n, k) is a goal formula.
So Theorems 6.4.1 and 6.4.2 can be applied without inserting double nega-
tions.

To construct a derivation, assume

v0 : G(0, 0),

v1 : G(1, 1),

v2 : ∀n∀k∀l.G(n, k)→ G(n+ 1, l)→ G(n+ 2, k + l)

u : ∀k.G(n, k)→ ⊥.

6.5. EXAMPLES 97

Our goal is ⊥. To this end we first prove a strengthened claim in order to
get the induction through:

∀nB with B := (∀k∀l.G(n, k)→ G(n+ 1, l)→ ⊥)→ ⊥.

This is proved by induction on n. The base case follows from v0 and v1.
In the step case we can assume that we have k, l satisfying G(n, k) and
G(n+ 1, l). We need k′, l′ such that G(n+ 1, k′) and G(n+ 2, l′). Using v2
simply take k′ := l and l′ := k + l. – To obtain our goal ⊥ from ∀nB, it
clearly suffices to prove its premise ∀k∀l.G(n, k)→ G(n+ 1, l)→ ⊥. So let
k, l be given and assume u1 : G(n, k) and u2 : G(n+ 1, l). Then u applied to
k and u1 gives our goal ⊥.

The derivation term is

M =λv
G(0,0)
0 λv

G(1,1)
1 λv

∀n∀k∀l.G(n,k)→G(n+1,l)→G(n+2,k+l)
2 λu∀k.G(n,k)→⊥

Indn,BMbaseMstepn(λkλlλu
G(n,k)
1 λu

G(n+1,l)
2 .uku1)

where

Mbase =λw
∀k∀l.G(0,k)→G(1,l)→⊥
0 .w001v0v1

Mstep =λnλwBλw
∀k∀l.G(n+1,k)→G(n+2,l)→⊥
1 .

w(λkλlλu
G(n,k)
3 λu

G(n+1,l)
4 .w1l(k + l)u4(v2klu3u4)).

Now let A := { k | G(n, k) }, and MX be obtained from M by replacing
every occurrence of ⊥ by X. Therefore

[[MX]] = λxN→N
u .R(N→N→N)→N

N [[MX
base]][[M

X
step]]n(λkλl.xuk)

where

[[MX
base]] = λwN→N→N

0 .w001

[[MX
step]] = λnλw(N→N→N)→NλwN→N→N

1 .w(λkλl.w1l(k + l))

Since there are no relevant formulas involved, the extracted term according
to Theorem 6.4.1 is

[[MX]](λxx) = R(N→N→N)→N
N [[MX

base]][[M
X
step]]n(λkλl.k)

This algorithm might be easier to understand if we write it as a Scheme
program:

(define (fibo n) (fibo1 n (lambda (k l) k)))

(define (fibo1 n1 f)

(if (= n1 0)

(f 0 1)

(fibo1 (- n1 1) (lambda (k l) (f l (+ k l))))))

This is a linear algorithm in tail recursive form. It is somewhat unexpected
since it passes λ-expressions (rather than pairs, as one would ordinarily do),
and hence uses functional programming in a proper way. This clearly is
related to the use of classical logic, which by its use of double negations has
a functional flavour.

To remove some of the tedium of doing all that by hand, we certainly
want machine help. We have done such an implementation within our system

98 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

Minlog; here is the original printout of the normalized extracted term, with
only some indentation added.

[n0](Rec nat=>(nat=>nat=>nat)=>nat)

([f1]f1 0 1)

([n1,H2,f3]

H2([n4,n5]f3 n5(n4+n5)))

It is rather obvious that this can be translated into the Scheme program
above.

6.5.2. Wellfoundedness of N. An interesting phenomenon can occur
when we extract a program from a classical proof which uses the minimum
principle. Consider as a simple example the wellfoundedness of < on N, i.e.

∀fN→N∃clk.f(k + 1) < f(k)→ ⊥.

If one formalizes the classical proof “choose k such that f(k) is minimal”
and extracts a program one might expect that it computes a k such that
f(k) is minimal. But this is impossible! In fact the program computes the
least k such that f(k + 1) < f(k) → ⊥ instead. This discrepancy between
the classical proof and the extracted program can of course only show up if
the solution is not uniquely determined.

We begin with a rather detailed exposition of the classical proof, since
we need a complete formalization. Our goal is ∃clk f(k) ≤ f(k+ 1), and the
classical proof consists in using the minimum principle to choose a minimal
element in ran(f) := { y | ∃clx f(x) = y }, the range of f . This suffices, for if
we have such a minimal element, say y0, then it must be of the form f(x0),
and by the choice of y0 we have f(x0) ≤ f(x) for every x, so in particular
f(x0) ≤ f(x0 + 1).

Next we need to prove the minimum principle from ordinary zero-succes-
sor-induction. The minimum principle

(49) ∃clk R(k)→ ∃clk.R(k) ∧ ∀l.l < k → R(l)→ ⊥

is to be applied with R(k) := k ∈ ran(f). Now (49) is logically equivalent to

(50) ∀k
(
R(k)→ (∀l.l < k → R(l)→ ⊥)→ ⊥

)
→ ∀k.R(k)→ ⊥.

The premise of (50) expresses the “progressiveness” of R(k) → ⊥ w.r.t. <;
we abbreviate it to

Prog := ∀k.(∀l.l < k → R(l)→ ⊥)→ R(k)→ ⊥.

We prove (50) by zero-successor-induction on n w.r.t. the formula

B := ∀k.k < n→ R(k)→ ⊥.

Base. B[n:=0] follows easily from the lemma

v1 : ∀m.m < 0→ ⊥.

Step. Let n be given and assume w2 : B. To show B[n:=n+1] let k be given
and assume w3 : k < n+ 1. We will derive R(k)→ ⊥ by using w1 : Prog at
k. Hence we have to prove

∀l.l < k → R(l)→ ⊥.

6.5. EXAMPLES 99

So, let l be given and assume further w4 : l < k. From w4 and w3 : k <
n + 1 we infer l < n (using an arithmetical lemma). Hence, by induction
hypothesis w2 : B at l we get R(l)→ ⊥.

Now a complete formalization is easy. We express m ≤ k by k < m→ ⊥
and take ∀mf(m) 6= k instead of R(k)→ ⊥. The derivation term is

M :=λv∀m.m<0→⊥
1

λu∀k.(f(k+1)<f(k)→⊥)→⊥.

M
Prog→∀k∀m.f(m)6=k
cvind Mprog(f0)0Lf0=f0

where

Mcvind = λwProg
1 λk.Indn,BMbaseMstep(k + 1)kLk<k+1,

Mbase = λkλwk<0
0 λmλw̃

f(m)=k
0 .v1kw0,

Mstep = λnλwB2 λkλw
k<n+1
3 .w1k(λlλwl<k4 .w2l(L

l<n[w4, w3])),

Mprog = λkλu
∀l.l<k→∀mf(m)6=l
1 λmλu

f(m)=k
2 .umλw

f(m+1)<f(m)
5 .

u1(f(m+1))Lf(m+1)<k[w5, u2](m+1)Lf(m+1)=f(m+1)

Here we have used the abbreviations

Prog =
(
∀k.∀l.l < k → ∀mf(m) 6= l

)
→ ∀mf(m) 6= k

B = ∀k.k < n→ ∀mf(m) 6= k

For program extraction let

A := { k | f(k + 1) < f(k)→ F },

and let MX denote the result of replacing every formula C in the derivation
M by CX . Then

[[MX]] = λvN→N
1 λuN→N→N.[[MX

cvind]][[MX
prog]](f0)0

where

[[MX
cvind]] = λw

N→(N→N→N)→N→N
1 λk.RN→N→N

N [[MX
base]][[M

X
step]](k + 1)k

[[MX
base]] = λkλm.v1k

[[MX
step]] = λnλwN→N→N

2 λk.w1k(λl.w2l),

[[MX
prog]] = λkλuN→N→N

1 λm.um(u1(f(m+ 1))(m+ 1)).

Note that k is not used in [[MX
prog]]; this is the reason why the optimization

below is possible.
Now by (47) we generally have D → [[ND]] rA DX for every relevant

definite formula D. In our case for D = ∀k.k < 0→ ⊥ we clearly can derive
directly

(∀k.k < 0→ ⊥)→ (λn0) rA ∀k.k < 0→ X,

since we can use EfqX . So we may assume [[ND]] = λn0. Also, by (48) we
generally have

w rA G
X → (G→ A(v))→ A([[HG]]wv).

100 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

In our case, with G = f(k + 1) < f(k)→ ⊥, we can derive directly

(f(k + 1) < f(k)→ A(w))→ ((f(k + 1) < f(k)→ ⊥)→ A(v))→
A([if f(k + 1) < f(k) then w else v]).

So we may assume [[HG]] = λwλv.[if f(k + 1) < f(k) then w else v]. Now
let

s := λkλw.[[HG]]wk = λkλw.[if f(k + 1) < f(k) then w else k].

Then the extracted term according to Theorem 6.4.1 is

[[MX]][[ND]]s =β [[MX
cvind]]′[[MX

prog]]′(f0)0

where ′ indicates substitution of [[ND]], s for v1, u, so

[[MX
cvind]]′ =βη λw1λk

′.(λkλm0)(λnλw2λk.w1kw2)(k
′ + 1)k′,

[[MX
prog]]′ =β λkλu1λm.[if f(m+1)<f(m) then u1(f(m+1))(m+1) else m]

Therefore we obtain as extracted program

[[MX]][[ND]]s =β Rrbaserstep((f0) + 1)(f0)0

with

rbase := λkλm.0,

rstep := λnλwN→N→N
2 λkλm.

[if f(m+1)<fm then w2(f(m+1))(m+1) else m].

Since the recursion argument (f0) + 1 is a successor, we can convert this
term into

[if f1 < f0 then Rrbaserstep(f0)(f1)1 else 0].

To make this algorithm more readable we may define

h(0, k,m) = 0

h(n+ 1, k,m) = [if f(m+ 1) < fm then h(n, f(m+ 1),m+ 1) else m]

and then write the result as h(f(0) + 1, f(0), 0), or (unfolded) as

[if f(1) < f(0) then h(f(0), f(1), 1) else 0].

The machine extracted program is (original output of Minlog, with
renaming of variables and indentation done manually)

[f][if (f 1<f 0)

((Rec 2 nat=>nat nat=>nat nat=>nat=>nat=>nat)([n]n)f

([k,m]0)

([n,g,k,m]

[if (f(Succ m)<f m)

(g(f(Succ m))(Succ m))

m])

(f 0)

(f 1)

1)

0]

We can rewrite this as a Scheme program as follows.

6.5. EXAMPLES 101

(define (wf f) (wf-aux f (+ (f 0) 1) (f 0) 0))

(define (wf-aux f n k m)

(if (= 0 n)

0

(if (< (f (+ m 1)) (f m))

(wf-aux f (- n 1) (f (+ m 1)) (+ m 1))

m)))

Note that k is not used here (this will always happen if the induction prin-
ciple is used in the form of the minimum principle only), and hence we may
optimize our program to

(define (wf1 f) (wf1-aux f (+ (f 0) 1) 0))

(define (wf1-aux f n m)

(if (= 0 n)

0

(if (< (f (+ m 1)) (f m))

(wf-aux f (- n 1) (+ m 1))

m)))

Now it is immediate to see that the program computes the least k such that
f(k+ 1) < f(k)→ ⊥, where f(0) + 1 only serves as an upper bound for the
search.

Remark 6.5.1. The assumption v1 : ∀m.m < 0 → ⊥ used in the proof
above is only there for “didactical resons”: it serves as an example of how
to treat definite formulas. We can of course omit it and use Efq⊥ instead.

Remark 6.5.2. There is an alternative proof of the wellfoundedness of
N, which uses the minimum principle with a measure function instead. Here
we can take the function f itself as a measure function. We refrain from
analyzing this proof in the same detail as before, but rather present the
machine extracted program, which in fact is slightly simpler.

[f][if (f 1<f 0)

((Rec 1 nat=>nat nat=>nat=>nat)f

([m]0)

([n,f1,m][if (f(Succ m)<f m) (f1(Succ m)) m])

(f 0)

1)

0]

6.5.3. The hsh-Theorem. Let f, g, h, s denote unary functions on the
natural numbers. We show ∃cln h(s(hn)) 6= n and extract an (unexpected)
program from it (this example is due to Ulrich Berger).

Lemma 6.5.3 (Surjectivity). g ◦ f surjective implies g surjective.

Lemma 6.5.4 (Injectivity). g ◦ f injective implies f injective.

Lemma 6.5.5 (Surjectivity-Injectivity). g ◦ f surjective and g injective
implies f surjective.

102 6. PROGRAM EXTRACTION FROM CLASSICAL PROOFS

Proof. Assume y is not in the range of f . Consider g(y). Since g ◦ f
is surjective, there is an x with g(y) = g(f(x)). The injectivity of g implies
y = f(x), a contradiction.

Theorem 6.5.6 (hsh-Theorem). ∀n s(n) 6= 0→ ¬∀n h(s(h(n))) = n.

Proof. Assume h◦s◦h is the identity. Then by the Injectivity Lemma
h is injective. Hence by the Surjectivity-Injectivity Lemma s◦h is surjective,
and therefore by the Surjectivity Lemma s is surjective, a contradiction.

From the Gödel-Gentzen translation and the fact that we can system-
atically replace triple negations by single negations (cf. 1.4.2) we obtain a
derivation of

∀n s(n) 6= 0→ ∃cln h(s(hn)) 6= n.

Now since ∀n s(n) 6= 0 is a definite formula, this is in the form where our
general theory applies. The extracted program is, somewhat unexpectedly,

[s,h][if (h(s(h(h 0)))=h 0)

[if (h(s(h(s(h(h 0)))))=s(h(h 0)))

0

(s(h(h 0)))]

(h 0)]

Let us see why this program indeed provides a counterexample against the
assumption that h ◦ s ◦ h is the identity.

If h(s(h(h0))) 6= h0, take h0. So assume h(s(h(h0))) = h0. If

h(s(h(s(h(h0))))) = s(h(h0)),

then also h(s(h0)) = s(h(h0)), so 0 is a counterexample, because the right
hand side cannot be 0 (this was our assumption on s). So assume

h(s(h(s(h(h0))))) 6= s(h(h0)).

Then s(h(h0)) is a counterexample.

6.5.4. Towards More Interesting Examples. Veldman and Bezem
[36] suggested Dickson’s Lemma [15] as an interesting case study for pro-
gram extraction from classical proofs. It states that for k given infinite
sequences f1, . . . , fk of natural numbers and a given number l there are
indices i1, . . . , il such that every sequence fκ increases on i1, . . . , il, i.e.
fκ(i1) ≤ · · · ≤ fκ(il) for κ = 1, . . . , k. Here is a short classical proof,
using the minimum principle for undecidable sets.

Call a unary predicate (or set) Q ⊆ N unbounded if ∀x∃cly.Q(y)∧x < y.

Lemma 6.5.7. Let Q be unbounded and f a function from a superset of
Q to N. Then the set Qf of left f -minima w.r.t. Q is unbounded; here

Qf (x) := Q(x) ∧ ∀y.Q(y)→ x < y → f(x) ≤ f(y).

Proof. Let x be given. We must find y with Qf (y) and x < y. The
minimum principle for { y | Q(y) ∧ x < y } with measure f yields
(51)

(∃cly.Q(y) ∧ x < y)→ ∃cly.Q(y) ∧ x < y ∧ ∀z.Q(z)→ x < z → f(y) ≤ f(z).

6.6. NOTES 103

Since Q is assumed to be unbounded, the premise is true. We show that the
y provided by the conclusion satisfies Qf (y), i.e.

Q(y) ∧ ∀z.Q(z)→ y < z → f(y) ≤ f(z).

So let z with Q(z) and y < z be given. From x < y we obtain x < z, hence
f(y) ≤ f(z) by the conclusion of (51).

Lemma 6.5.8. Let Q be unbounded and f1, . . . , fk be functions from a
superset of Q to N. Then there is an unbounded subset Q1 of Q such that
f1, . . . , fk increase on Q1, i.e.

Q1(x) ∧Q1(y) ∧ x < y →
k∧∧

κ=1
fκ(x) ≤ fκ(y).

Proof. By induction on k. Let Q2 be Q if k = 1, and in case k ≥ 2
be an unbounded subset of Q where f2, . . . , fk increase (i.e. given by the
induction hypothesis for f2, . . . , fk). Let Q1 be the set of left f1-minima
w.r.t. Q2, i.e.

Q1(x) := Q2(x) ∧ ∀y.Q2(y)→ x < y → f1(x) ≤ f1(y).

By Lemma 6.5.7 Q1 is an unbounded subset of Q2. Now on Q1 f1 increases,
and because of Q1 ⊆ Q2 also f2, . . . , fk increase.

Corollary 6.5.9. For every k, l we have

∀f1, . . . , fk∃cli0, . . . , il
∧∧
λ<l

.iλ < iλ+1 ∧
k∧∧

κ=1
fκ(iλ) ≤ fκ(iλ+1).

For k = 2 (i.e. two sequences) this example has been treated in [11].
However, it is interesting to look at the general case, since then the brute
force search takes time O(nk), and we can hope that the program extracted
from the classical proof is better.

6.6. Notes

This chapter is based on [8]. Klaus Weich originally proposed the func-
tional algorithm computing the Fibonacci numbers. Monika Seisenberger
– apart from being a coauthor of [11] – and Felix Joachimski have con-
tributed a lot to the Minlog system, particularly to the implementation of
the translation of classical proofs into constructive ones. We also benefitted
from helpful comments by Peter Selinger and Matteo Slanina, who presented
this material in a seminar in Stanford, in the fall of 2000.

Bibliography

1. Andreas Abel and Thomas Altenkirch, A predicative strong normalization proof for
a λ-calculus with interleaving inductive types, Types for Proofs and Programs, In-
ternational Workshop, TYPES ’99, Lökeberg, Sweden, June 1999, LNCS, vol. 1956,
Springer Verlag, Berlin, Heidelberg, New York, 2000, pp. 21–40.

2. Franco Barbanera and Stefano Berardi, Extracting constructive content from classical
logic via control–like reductions, Typed Lambda Calculi and Applications (M. Bezem
and J.F. Groote, eds.), LNCS Vol. 664, 1993, pp. 45–59.

3. Holger Benl, Konstruktive Interpretation induktiver Definitionen, Master’s thesis, Ma-
thematisches Institut der Universität München, 1998.

4. Holger Benl and Helmut Schwichtenberg, Formal correctness proofs of functional
programs: Dijkstra’s algorithm, a case study, Computational Logic (U. Berger and
H. Schwichtenberg, eds.), Series F: Computer and Systems Sciences, vol. 165, Pro-
ceedings of the NATO Advanced Study Institute on Computational Logic, held in
Marktoberdorf, Germany, July 29 – August 10, 1997, Springer Verlag, Berlin, Heidel-
berg, New York, 1999, pp. 113–126.

5. Ulrich Berger, Program extraction from normalization proofs, Typed Lambda Calculi
and Applications (M. Bezem and J.F. Groote, eds.), LNCS, vol. 664, Springer Verlag,
Berlin, Heidelberg, New York, 1993, pp. 91–106.

6. , A constructive interpretation of positive inductive definitions, Draft, March
1995.

7. , Programs from classical proofs, Symposia Gaussiana. Proceedings of the 2nd
Gauss Symposium. Conference A: Mathematics and Theoretical Physics. Munich, Ger-
many, August 2-7, 1993 (Berlin, New York) (M. Behara, R. Fritsch, and R.G. Lintz,
eds.), Walter de Gruyter, 1995, pp. 187–200.

8. Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg, Refined program ex-
traction from classical proofs, Annals of Pure and Applied Logic 114 (2002), 3–25.

9. Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg, Term rewriting for nor-
malization by evaluation, Information and Computation 183 (2003), 19–42.

10. Ulrich Berger and Helmut Schwichtenberg, Program extraction from classical proofs,
Logic and Computational Complexity, International Workshop LCC ’94, Indianapolis,
IN, USA, October 1994 (D. Leivant, ed.), LNCS, vol. 960, Springer Verlag, Berlin,
Heidelberg, New York, 1995, pp. 77–97.

11. Ulrich Berger, Helmut Schwichtenberg, and Monika Seisenberger, The Warshall Algo-
rithm and Dickson’s Lemma: Two Examples of Realistic Program Extraction, Journal
of Automated Reasoning 26 (2001), 205–221.

12. Robert L. Constable and Chetan Murthy, Finding computational content in classical
proofs, Logical Frameworks (G. Huet and G. Plotkin, eds.), Cambridge University
Press, 1991, pp. 341–362.

13. Catarina Coquand, A proof of normalization for simply typed lambda calculus writ-
ten in ALF, Proceedings of the 1992 Workshop on Types for Proofs and Programs,
Baastad (Bengt Nordstroem, Kent Peterson, and Gordon Plotkin, eds.), June 1992,
pp. 80–87.

14. Thierry Coquand and Hendrik Persson, Gröbner Bases in Type Theory, Types for
Proofs and Programs (T. Altenkirch, W. Naraschewski, and B. Reus, eds.), LNCS,
vol. 1657, Springer Verlag, Berlin, Heidelberg, New York, 1999.

15. L.E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n
distinct prime factors, Am. J. Math 35 (1913), 413–422.

105

106 BIBLIOGRAPHY

16. Matthias Felleisen, Daniel P. Friedman, E. Kohlbecker, and B.F. Duba, A syntactic
theory of sequential control, Theoretical Computer Science 52 (1987), 205–237.

17. Matthias Felleisen and R. Hieb, The revised report on the syntactic theory of sequential
control and state, Theoretical Computer Science 102 (1992), 235–271.

18. Harvey Friedman, Classically and intuitionistically provably recursive functions,
Higher Set Theory (D.S. Scott and G.H. Müller, eds.), Lecture Notes in Mathematics,
vol. 669, Springer Verlag, Berlin, Heidelberg, New York, 1978, pp. 21–28.

19. Gerhard Gentzen, Untersuchungen über das logische Schließen, Mathematische Zeit-
schrift 39 (1934), 176–210, 405–431.

20. Jean-Yves Girard, Une extension de l’interprétation de Gödel à l’analyse, et son appli-
cation à l’élimination des coupures dans l’analyse et la théorie des types, Proceedings
of the Second Scandinavian Logic Symposium (J.E. Fenstad, ed.), North–Holland,
Amsterdam, 1971, pp. 63–92.

21. Timothy G. Griffin, A formulae–as–types notion of control, Conference Record of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages,
1990, pp. 47–58.

22. Gérard Huet, A unification algorithm for typed λ–calculus, Theoretical Computer Sci-
ence 1 (1975), 27–57.

23. Ulrich Kohlenbach, Analysing proofs in analysis, Logic: from Foundations to Appli-
cations. European Logic Colloquium (Keele, 1993) (W. Hodges, M. Hyland, C. Stein-
horn, and J. Truss, eds.), Oxford University Press, 1996, pp. 225–260.

24. Jean-Louis Krivine, Classical logic, storage operators and second-order lambda-
calculus, Annals of Pure and Applied Logic 68 (1994), 53–78.

25. Daniel Leivant, Syntactic translations and provably recursive functions, The Journal
of Symbolic Logic 50 (1985), no. 3, 682–688.

26. Per Martin-Löf, Hauptsatz for the intuitionistic theory of iterated inductive definitions,
Proceedings of the Second Scandinavian Logic Symposium (J.E. Fenstad, ed.), North–
Holland, Amsterdam, 1971, pp. 179–216.

27. Dale Miller, A logic programming language with lambda–abstraction, function variables
and simple unification, Journal of Logic and Computation 2 (1991), no. 4, 497–536.

28. Grigori Mints, A short introduction to intuitionistic logic, Kluwer Academic/Plenum
Publishers, New York, 2000.

29. Chetan Murthy, Extracting constructive content from classical proofs, Technical Re-
port 90–1151, Dep.of Comp.Science, Cornell Univ., Ithaca, New York, 1990, PhD
thesis.

30. Tobias Nipkow, Higher-order critical pairs, Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science (Los Alamitos) (R. Vemuri, ed.), IEEE
Computer Society Press, 1991, pp. 342–349.

31. Michel Parigot, λµ–calculus: an algorithmic interpretation of classical natural deduc-
tion, Proc. of Log. Prog. and Automatic Reasoning, St. Petersburg, LNCS, vol. 624,
Springer Verlag, Berlin, Heidelberg, New York, 1992, pp. 190–201.

32. Christine Paulin-Mohring and Benjamin Werner, Synthesis of ML programs in the
system Coq, J. Symbolic Computation 11 (1993), 1–34.

33. Monika Seisenberger, On the constructive content of proofs, Ph.D. thesis, Mathema-
tisches Institut der Universität München, 2003.

34. Viggo Stoltenberg-Hansen, Edward Griffor, and Ingrid Lindström, Mathematical the-
ory of domains, Cambridge Tracts in Theoretical Computer Science, Cambridge Uni-
versity Press, 1994.

35. Anne S. Troelstra and Dirk van Dalen, Constructivism in mathematics. an introduc-
tion, sil, vol. 121, 123, North–Holland, Amsterdam, 1988.

36. Wim Veldman and Marc Bezem, Ramsey’s theorem and the pigeonhole principle in
intuitionistic mathematics, Logic Group Preprint Series 72, University of Utrecht,
Dept of Philosophy, January 1992.

Index

→ ∧∃, 2
Abel, 32
abstraction, 19
accessible part, 78
Aczel, 32
algebra

finitary, 16
infinitary, 16

All-AllPartial, 30
All-AllPartial-nat, 30
AllPartial-All, 30
AllPartial-All-nat,, 30
Altenkirch, 32
append, 19
application, 19
arithmetic

classical, 87
arity

of a predicate variable, 27
of a program constant, 26

arrow types, 17
atom

critical, 92
atomic formula, 2

Benl, 32
Berger, 32
boole, 15
bottom, 27
Branch, 16

cases axiom, 32, 50, 81
cases operator, 21
Cases-axiom, 32, 50, 81
C-operator, 21
clause, 75
Compatibility, 29
comprehension term, 27, 29, 75
computation rules, 26
computational variable, 47
Cons, 16
Constr-Total, 29
Constr-Total-Args, 29
constructor pattern, 26
conversion

permutative, 3
conversion relation, 22
Curry-Howard correspondence, 2, 85

definite formula, 88
definition

recursive, 16
degree of totality, 27
Dijkstra algorithm, 69
disjunction, 79
domain, 27
dot notation, 3
Dummy, 15

E-to-Total-nat, 30
elaboration path, 43
elimination axiom, 76

strengthened, 76
Empty, 16
Eq-Refl, 29
Eq-Symm, 29
Eq-to-=-1-nat, 29
Eq-to-=-2-nat, 30
Eq-Trans, 29
equality, 28, 80
=-to-E-1-nat, 30
=-to-E-2-nat, 30
=-to-Eq-nat, 30
Ex-Elim, 30, 51
Ex-ExPartial, 30
Ex-ExPartial-nat, 30
ex-falso-quodlibet, 4, 87
Ex-Intro, 30, 51
exca, 28
excl, 28
existence elimination axiom, 59, 61
existence introduction axiom, 59, 60
existential quantifier, 80
Exnc-Elim, 51
Exnc-Intro, 51
ExPartial-Ex, 30
ExPartial-Ex-nat, 30
Extensionality, 29
extracted program, 49, 93
extraction theorem, 65

107

108 INDEX

False, 15
falsity, 27, 80
falsum, 3
Felleisen, 85
formula, 28

∃-free, 52
atomic, 2
decidable, 44
folded, 29
invariant, 52
irrelevant, 88
isolating, 11
negative, 10, 52
prime, 2, 28
relevant, 88
spreading, 11
unfolded, 29
wiping, 11

formulas, 87
equivalent, 7

Gentzen, 2
goal formula, 88
Gödel-Gentzen translation g, 10
Griffin, 85

Harrop degree, 27
Harrop formula, 27, 48
head, 43

if-construct, 22, 50
if-then-else, 22
imitation, 34
Ind, 31, 50, 52
induction, 30, 49
Inl, 16
Inr, 16
iteration operator, 50

Leaf, 16
left f -minimum, 102
list, 16
list reversal, 20
logic

classical, 4
intuitionistic, 4

machine help, 97
matching tree, 33
measure function, 101
Minlog, 98

nat, 16
Nil, 16

pair types, 17
Pair-Elim, 29
pairing, 19
pattern unification problem, 36

patterns, 46
predicate variable, 11, 27
prime formula, 2
principle of indirect proof, 4
progressive, 98
projection, 34
projections, 19

Q-clause, 36
Q-formula, 33
Q-goal, 36
Q-sequent, 41, 43
Q-substitution, 33, 36
Q-term, 33, 36

realizability, 51
modified, 94

SC, 23
semantical model, 26
set

unbounded, 102
solution, 33, 36
special form, 22
stability, 5, 85
state, 43
state transition, 43
strong computability, 23, 79
substitution, 33

Tait, 17, 32
tautology, 8
Tcons, 16
tensor, 29, 80
term, 19
tlist, 16
Total, 29
Total-to-E-nat, 30
totality, 28
tree, 16
True, 15
truth axiom, 87
truth values, 8
Truth-Axiom, 29

unification problem, 33
unit, 15

valuation, 8
variable, 27

flexible, 33
forbidden, 33
general, 27
signature, 33
total, 27

variable condition
for ∀nc-introduction, 47

Warshall algorithm, 69

INDEX 109

wellfoundedness, 98

yplus, 16

Zucker, 32

