
A TUTORIAL FOR MINLOG, VERSION 4.0

L. CROSILLA

1. Introduction

This is a tutorial for the interactive proof system MINLOG, version 4.0, devel-
oped by Helmut Schwichtenberg and members of the logic group at the University
of Munich (http://www.mathematik.uni-muenchen.de/∼logik/welcome.html).

MINLOG is implemented in Scheme and runs under every Scheme version
supporting the Revised5 Report on the Algorithmic Language Scheme. MINLOG’s
favorite dialect is Petite Chez Scheme from Cadence Research Systems, which is
freely distributed at the Internet address www.scheme.com.

The MINLOG system can be downloaded from the Internet address:
http://www.minlog-system.de/

2. Getting started

The purpose of this Tutorial is to give a very basic introduction to the MINLOG
system by means of some simple examples. For a thorough presentation of MIN-
LOG and the motivation behind it the reader should consult the reference manual
[?]. The papers listed in the MINLOG web page also provide a more detailed and
advanced description of the system. In addition, the MINLOG distribution comes
equipped with a directory of examples, to which the user is referred. The source
code finally provides the ultimate reference.

In order to use MINLOG, one essentially needs a shell in which to run MIN-
LOG and also an editor in which to edit and keep a record of the commands for
later sessions. In this tutorial we shall refer to GNU Emacs. While working with
Emacs, the ideal would be to split the window in two parts, one with the file in
which to store the commands, and the other with the MINLOG interactive section
taking place. For this it is recommended to use the startup script ˜/minlog/minlog
which takes files as (optional) arguments. For example

~/minlog/minlog file.scm

opens a new Emacs-Window which is split into two parts. The upper part con-
taines the file (Buffer file.scm) whereas the lower part shows the Minlogresponse
(Buffer *minlog*).

I would like to thank Professor Schwichtenberg for suggesting to write this tutorial and for useful
comments as well as for providing the example on search. Monika Seisenberger commented on an
early version of the tutorial proposing improvements and provided some more examples. In writing
this tutorial I took inspiration from Martin Ruckert’s Tutorial for an earlier version of MINLOG..

1

2 L. CROSILLA

If you have already an open emacs window and do not want to open a new one
then you can invoke minlog by loading the file minlog.el :

M-x load-file <enter>

~/minlog/minlog.el

REMARKS:
In both cases the file init.scm is loaded.
In the description above I assumed tacitly that you are using an UNIX-like op-

erating system and that minlog is installed in ˜/minlog, where ˜ denotes as usual
your home directory.

To execute a command of your file, one simply places the cursor at the end of
it (after the closed parenthesis), and types Ctrl-x Ctrl-e. In general, Ctrl-x

Ctrl-e will enable us to process any command we type in tutorial.scm, but one
at the time. To process a whole series of commands, one can highlight the region
of interest and type Ctrl-c Ctrl-r. We should also mention at this point that to
undo one step, it is enough to give the command (undo), while (undo n) will undo
the last n steps. Finally, type (exit) to end a Scheme session and Ctrl-x Ctrl-c

to exit Emacs.

3. Propositional logic

3.1. A first example. We shall start from a simple example in propositional logic.
Suppose we want to prove the tautology:

(A→ (B → C))→ ((A→ B)→ (A→ C)).

In the following we shall make use of the convention of association to the right
of the parentheses, which is assumed by MINLOG. Therefore the formula above
becomes: (A → B → C) → (A → B) → A → C. It is very important, especially
in the beginning, to pay the maximum attention to this and similar conventions to
prevent mistakes. It is probably a good idea to rather exceed in parenthesis in the
first examples. MINLOG will automatically delete the parenthesis which are not
needed, therefore facilitating the reading.

Making a sketch of the proof. We need in the first place to make an informal
plan on how to prove this tautology. While making this plan we should consider
the following fact. MINLOG (mainly) implements “Goal Driven Reasoning”, also
called “Backward Chaining”. That means that we start by writing the conclusion
we aim at as our goal and then, step by step, refine this goal by applying to it
appropriate logical rules, until we reach the point of having no more goals to solve.
In other words, MINLOG keeps a list of goals and updates it each time a logical
rule is applied. A logical rule will have the effect of reducing the proof of a formula,
the goal, to the proof of one or more other formulas, which will become the new
goals. The proof is completed when the list of goals is empty.

In this case the tautology we want to prove is a series of implications, hence we
will have to make use of basic rules for “deconstructing” implications. The first
move will then be to assume that the antecedent of the outmost implication is true
and try to derive the consequent from it. That is, we assume A → B → C and

A TUTORIAL FOR MINLOG, VERSION 4.0 3

want to derive (A → B) → A → C; hence we set the latter as our new goal. Then
we observe that (A → B) → A → C is an implication and can be treated in the
same way; so we now assume A→ B → C and A→ B and want to derive A→ C.
Clearly, we can make the same step once more and obtain A→ B → C, A→ B and
A as our premises and try to derive C from them. Now we observe that in order to
prove C under the assumption A→ B → C, we simply need to prove both A and B
under the same assumption. Obviously A is proved, as it is one of our assumptions,
and B immediately follows from A→ B and A.

Writing the formula. Once we have an idea on how to prove the formula, we can
start implementing the proof in MINLOG. The initial step would then be to write
the formula in MINLOG. For this purpose, we declare three predicate constants A,
B and C by writing:

(add-predconst-name "A" "B" "C" (make-arity))

The expression (make-arity) produces the empty arity for A, B and C (see [?]
for a description of (make-arity)). MINLOG will then write:

; ok, predicate constant A: (arity) added

; ok, predicate constant B: (arity) added

; ok, predicate constant C: (arity) added

>

Subsequently, we write the formula and give it a name, say distr (for distribu-
tivity of implication):

(define distr (pf "(A -> B -> C) -> (A -> B) -> A -> C"))

This command has the effect of defining a new variable distr and attaching to
it the Scheme term which is produced by the function pf applied to the formula
we entered. In fact, the function pf, short for “parse formula”, takes a string as
argument and returns a Scheme term. This Scheme term is the way MINLOG
stores the string, or, equivalently, it is the internal form in MINLOG of our formula,
and distr is a name referring to it. By typing distr, one can see the value of this
variable.

Implementing the Proof. We now want to prove this formula with MINLOG.
In order to do this we clearly need to set the formula as our goal.

Setting the goal. Typically, the goals in a proof will be numbered and the top
goal will be denoted by the number 1, preceded by a question mark.

To set distr as our goal, we type:

(set-goal distr)

MINLOG will print:

; ?_1: (A -> B -> C) -> (A -> B) -> A -> C

>

The proof. We have seen in the sketch of the proof that the first step for proving
the tautology is to assume the antecedent of the implication and turn the consequent
into our new goal. This is simply done by writing:

(assume 1)

4 L. CROSILLA

Here the number 1 is needed in order to identify and name the hypothesis. MIN-
LOG will denote this hypothesis by 1:

; ok, we now have the new goal

; ?_2: (A -> B) -> A -> C from

; 1:A -> B -> C

>

We repeat the assume command to decompose the implication in the new goal:

(assume 2)

; ok, we now have the new goal

; ?_3: A -> C from

; 1:A -> B -> C

; 2:A -> B

>

And we decompose the goal once more:

(assume 3)

; ok, we now have the new goal

; ?_4: C from

; 1:A -> B -> C

; 2:A -> B

; 3:A

>

We now need to start using our assumptions. As already mentioned, in order to
prove C it is enough to prove both A and B, by assumption 1. Therefore we write:
(use 1). This has the effect of splitting the goal in two distinct subgoals (note how
the subgoals are numbered):

(use 1)

; ok, ?_4 can be obtained from

; ?_6: B from

; 1:A -> B -> C

; 2:A -> B

; 3:A

; ?_5: A from

; 1:A -> B -> C

; 2:A -> B

; 3:A

>

Then we write:

(use 3)

; ok, ?_5 is proved. The active goal now is

; ?_6: B from

; 1:A -> B -> C

A TUTORIAL FOR MINLOG, VERSION 4.0 5

; 2:A -> B

; 3:A

>

And conclude the proof by:

(use 2)

; ok, ?_6 can be obtained from

; ?_7: A from

; 1:A -> B -> C

; 2:A -> B

; 3:A

>

(use 3)

; ok, ?_7 is proved. Proof finished.

>

To see a record of the complete proof, simply type (display-proof). Other useful
commands are (display-pterm) and (display-proof-expr). See the manual for
a description of the various display commands available in MINLOG.

We observe that an alternative to using the define command at the beginning of
the proof and then separately setting the goal, would be to directly set the formula
one wants to prove as a goal, that is writing (set-goal (pf "(A -> B -> C) ->

(A -> B) -> A -> C")). Note also that the first three assume commands could be
replaced by only one, i.e.: (assume 1 2 3). In alternative to the last two use com-
mands, we could have given only one command: (use-with 2 3), which amounts
to applying a cut to the premises 2 and 3. A final remark to the extent that in
case of rather complex proofs, it is convenient to name specific hypothesis, in place
of making use of bare numbers. One than can simply use the assume commands,
followed by the name of the assumption in double quotes.

Before starting to read the next section, it is advisable to consult the reference
manual [?] for a compendium of the commands utilized in this example. It is worth
noticing that in general these commands have a wider applicability than their usage
as now presented.

3.2. A second example: classical logic. MINLOG implements minimal logic.
If we want to prove a proposition which is true in classical logic but not in minimal
logic, we explicitly need to state and use principles which are classical in nature. In
the following example we shall use Stability, which is added to MINLOG as a global
assumption. Roughly speaking, a global assumption is a proposition which can be
recalled at any time, if needed, and whose proof does not concern us at the moment
(hence it can also be an assumption with no proof). In order to check which global
assumptions we have at our disposal we type: (display-global-assumptions).
To check a particular global assumption whose name we already know, we write
the above command followed by the name of the assumption we want to check, e.g.:

6 L. CROSILLA

(display-global-assumptions "Stab-Log"). Of course we can also introduce our
own global assumptions and remove them at any time (see the reference manual for
the specific commands).

Stability is the logical law for which, for any proposition A, ¬¬A→ A holds. In
MINLOG, ¬A is defined to be A→ ⊥, i.e. A implies falsum. Stability is therefore
the following proposition: ((A→ ⊥)→ ⊥)→ A.

Suppose we want to prove the tautology:

((A→ B)→ A)→ A,

which is known as Peirce formula. For this second example, we will assume that the
reader has prepared her sketch of the proof, and we will only give an intuitive idea
of the proof, preferring to rather concentrate on the MINLOG interaction, which
will be given in its complete form.

As in the previous example, we observe first of all that the goal is an implication,
hence we will assume its antecedent, (A→ B)→ A, and try to prove its consequent,
A. Now classical logic comes into play, because in order to prove A, we will assume
that its negation holds and try to get a contradiction from it. This will be achieved
by use of Stability. We further note that in order to make the argument work, we
will need at some stage to resort to another global assumption, the principle of “ex
falsum quodlibet”. This principle allows one to conclude any formula from a proof
of falsum, i.e. it is the principle: ⊥ → A, for arbitrary A.

We start by setting the goal and assuming the antecedent of the implication:

(add-predconst-name "A" "B" (make-arity))

(define peirce-formula (pf "((A -> B) -> A) -> A"))

(set-goal peirce-formula)

(assume 1)

We obtain:

; ok, we now have the new goal

; ?_2: A from

; 1:(A -> B) -> A

>

We now apply Stability, which is stored in MINLOG with the name Stab-Log,
so that the goal A will be replaced by its double negation: (A → ⊥) → ⊥. Note
that ⊥ is called bot in MINLOG.

(use "Stab-Log")

; ok, ?_2 can be obtained from

; ?_3: (A -> bot) -> bot from

; 1:(A -> B) -> A

>

Since this is an implication, we let:

(assume 2)

; ok, we now have the new goal

; ?_4: bot from

A TUTORIAL FOR MINLOG, VERSION 4.0 7

; 1:(A -> B) -> A

; 2:A -> bot

>

We then use hypothesis 2 to replace the goal ⊥ by A.

(use 2)

; ok, ?_4 can be obtained from

; ?_5: A from

; 1:(A -> B) -> A

; 2:A -> bot

>

Also A can be replaced by A → B by use of hypothesis 1. Subsequently, we can
assume the antecedent of the new goal, A, and call it “hypothesis 3”:

(use 1)

; ok, ?_5 can be obtained from

; ?_6: A -> B from

; 1:(A -> B) -> A

; 2:A -> bot

>

(assume 3)

; ok, we now have the new goal

; ?_7: B from

; 1:(A -> B) -> A

; 2:A -> bot

; 3:A

>

Now we can make use of the principle of ex falsum quodlibet: if we want to
prove B, we can instead prove falsum, since from falsum anything follows, and in
particular B. Therefore our goal can be updated to ⊥ by the following instance of
use:

(use "Efq-Log")

; ok, ?_7 can be obtained from:

; ?_8: bot from

; 1:(A -> B) -> A

; 2:A -> bot

; 3:A

>

The next two steps are obvious.

(use 2)

8 L. CROSILLA

; ok, ?_8 can be obtained from

; ?_9: A from

; 1:(A -> B) -> A

; 2:A -> bot

; 3:A

>

(use 3)

; ok, ?_9 is proved. Proof finished.

>

3.3. Conjunction. To conclude this section on propositional logic, we give a short
example of a tautology which uses conjunction. We want to prove

A ∧B → B ∧ A

We shall simply record the code of our MINLOG proof, asking the reader to check
MINLOG’s reply at each step. A few comments will be added at the end.

(add-predconst-name "A" "B" (make-arity))

(set-goal (pf "(A & B) -> (B & A)"))

(assume 1)

(split)

(use 1)

(use 1)

The command (split) operates on the goal if it is a conjunction and it has the
effect of splitting it into its two components. The command use is utilized to obtain
the left (respectively the right) conjunct in the assumption and “use” it to derive
the goal.

The reader is encouraged to try and prove other examples of tautologies.

4. Predicate logic

4.1. A first example. We now exemplify how to prove a statement in predicate
logic.

Suppose we want to prove that every total relation which is symmetric and tran-
sitive is reflexive. For simplicity we shall work with natural numbers. We hence
want to prove the following statement:

∀n∀m (Rnm→ Rmn) ∧ ∀n∀m∀k (Rnm ∧ Rmk → Rnk)

→ ∀n (∃mRnm→ Rnn),

where n, m, k vary on natural numbers, while R is a binary predicate on natural
numbers.

Before starting to prove the claim, we observe that we can equivalently espress it
by another formula which is simpler to prove in MINLOG, e.g. by one in which

A TUTORIAL FOR MINLOG, VERSION 4.0 9

the conjunctions have been replaced by appropriate implications. That is, we can
instead prove the following formula:

(∀n, m.Rnm→ Rmn)→ (∀n, m, k.Rnm→ Rmk → Rnk)

→ ∀n, m.Rnm→ Rnn,

where the “.” is used to indicate the scope of a quantifier, with the convention that
it binds as far as possible.

The strategy of first simplifying the goal may in some cases allow one to consider-
ably reduce the amount of time needed to prove a statement. However, there might
be cases in which one prefers to prove a more complex formula, for example when
proving a lemma which is then used in the proof of a more intricate theorem. For
completeness and for a comparison, we shall also record a proof of the original goal,
at the end of this section.

Since the predicate R is required to vary on natural numbers, we first of all load a
file, already available with the distribution, which introduces the algebra of natural
numbers and some operations on them, like for example addition. This is obtained
by typing:

(libload "nat.scm")

We can now introduce the constant R. We also want to facilitate our work a
bit further and separately introduce the two assumptions ∀nm.Rnm → Rmn and
∀nmk.Rnm → Rmk → Rnk. We do this by means of a define command, which
enables us to give a name to each assumption. We then use these name to make a
formula in implication form.

In the following py is the analogous for types of the function parse formula. Note
also that the file nat.scm already introduces m, n and k as “default” variables on
the natural numbers, hence we do not need to explicitly declare them here, too.

(add-predconst-name "R" (make-arity (py "nat") (py "nat")))

(define Symm (pf "all n,m.R n m -> R m n"))

(define Tran (pf "all n,m,k.R n m -> R m k -> R n k"))

We now state the goal:

(set-goal (mk-imp Symm Tran (pf "all n,m.R n m -> R n n")))

; ?_1: (all n,m.R n m -> R m n)

-> (all n,m,k.R n m -> R m k -> R n k)

-> all n,m.R n m -> R n n

>

Note that in this specific case, we could have directly written the two formulas as
antecedents of the implication, avoiding the detour through a define command. In
case of more complex formulas, however, or when we need to use the same formulas
for various proofs through one session, this strategy can be quite useful.

We now observe that the goal is an implication, so that the first step would be to
write (assume "Symm" "Tran"). By this command we would obtain a universally
quantified formula and we would then need to proceed to eliminate the quantifiers.
This can be accomplished by another assume command in which we specify two
natural numbers. For simplicity we here fix the natural numbers n and m. So we

10 L. CROSILLA

would write (assume "n" "m"). This would produce an implication which would
also need to be eliminate by another assume command, say (assume 1). We can
put all these commands together by writing:

(assume "Symm" "Tran" "n" "m" 1)

; ok, we now have the new goal

; ?_2: R n n from

; Symm:all n,m.R n m -> R m n

; Tran:all n,m,k.R n m -> R m k -> R n k

; n m 3:R n m

>

The next move is to make use of our assumptions. It is clear that if we take
k to be n in Tran, then the goal can be obtained by an instance of Symm, and the
proof is easily completed. We here utilize use by additionally providing a term, "m",
which will instantiate the only variable which can not be automatically inferred by
unification. In the following pt stands for parse term.

(use "Tran" (pt "m"))

; ?_4: R m n from

; Symm:all n,m.R n m -> R m n

; Tran:all n,m,k.R n m -> R m k -> R n k

; n m 3:R n m

; ?_3: R n m from

; Symm:all n,m.R n m -> R m n

; Tran:all n,m,k.R n m -> R m k -> R n k

; n m 3:R n m

>

The use command has the effect of replacing the current goal with two new
goals. These are obtained from Tran by instantiating the quantifiers with n, m and
n (the two n being inferred by unification) and then by replacing the goal with the
antecedents of the resulting instance of Tran.

We can now write:

(use 3)

> ; ok, ?_3 is proved. The active goal now is

; ?_4: R m n from

; Symm:all n,m.R n m -> R m n

; Tran:all n,m,k.R n m -> R m k -> R n k

; n m 3:R n m

>

We finally employ Symm and another use:

(use "Symm")

A TUTORIAL FOR MINLOG, VERSION 4.0 11

; ok, ?_4 can be obtained from

; ?_5: R n m from

; Symm:all n,m.R n m -> R m n

; Tran:all n,m,k.R n m -> R m k -> R n k

; n m 3:R n m

>

(use 3)

; ok, ?_5 is proved. Proof finished.

>

The same example. We here present a MINLOG proof of the original goal of
the previous example, as it allows us to exemplify the use of some new commands.
We shall leave the proof uncommented and make a few remarks at the end. The
reader will have to examine the proof and check MINLOG’s interaction.

(libload "nat.scm")

(add-predconst-name "R" (make-arity (py "nat") (py "nat")))

(set-goal (pf "(all n,m. R n m -> R m n)

& (all n,m,k. R n m & R m k -> R n k)

-> all n. ex m R n m -> R n n"))

(assume 1)

(inst-with 1 ’left)

(inst-with 1 ’right)

(drop 1)

(name-hyp 2 "Symm")

(name-hyp 3 "Tran")

(assume "n" 4)

(ex-elim 4)

(assume "m" 5)

(cut (pf "R m n"))

(assume 6)

(use-with 3 (pt "n") (pt "m") (pt "n") "?")

(drop "Symm" "Tran" 4)

(split)

(use 5)

(use 6)

(use-with 2 (pt "n") (pt "m") 5)

The use-with command is similar to the use command, but when applied to
a universal quantifier it requires to explicitly specify the terms one wants to in-
stantiate. In its first occurrence in the proof above we write "?" to indicate that
MINLOG will have to replace the current goal with a new goal. In the second occur-
rence of use-with, MINLOG will instantiate as specified the universal quantifiers
in premise 2 and then use hypothesis 5 to prove the goal.

The command inst-with is analogous to use-with, but operates for forward
reasoning; hence it allows one to simplify the hypothesis, instead of the conclusion.

12 L. CROSILLA

In this case, (inst-with 1 ’left) has the effect of producing the left component
of the conjunction which constitutes the first hypothesis. Similarly for the right
component.
ex-elim eliminates an existential quantifier and produces a new universally quan-

tified goal.
As to cut, this command enables one to introduce new goals. (cut A) has the

effect of replacing goal B by two new goals, A→ B and A.
In the proof above we have also made use of the commands drop and name-hyp.

The first allows one to remove one or more hypothesis from the present context,
to make the proof more readable. In fact, it simply replaces the current goal with
another goal in which the hypothesis ‘dropped’ are not displayed anymore (but
they are not removed in general, as should be clear from the example above). The
second command has similar ‘cosmetic’ purposes, and allows one to rename a specific
hypothesis and hence to work with names given by the user instead of numbers
produced by default. Both these commands result especially useful in the case of
long and intricate proofs.

4.2. Another example with classical logic. We conclude this section on predi-
cate logic with a final example of a formula which requires classical logic. We want
to prove the following:

∃cx .Qx→ ∀y Qy,
where Q is now a unary predicate, and we do not require Q to range on the natural
numbers. In addition, the existential quantifier, ∃c, is here a classical existential
quantifier, to be distinguished from the existential quantifier we encountered in the
previous example. A classical quantifier ∃cx is nothing more than an abbreviation
for ¬∀x¬.

The formula we want to prove is known as the “drinker” formula, as it says
something like: “in a bar, there is a person such that if she drinks then everybody
drinks”.

One could state the goal either by direct use of the classical existential quantifier
(called excl in MINLOG) or by replacing it with its meaning by use of the universal
quantifier. In the first case one would write:

(set-goal (pf "excl x. Q x -> all y Q y"))

MINLOG would then automatically replace the excl quantifier by its meaning
when performing the first command.

Otherwise we can state the formula as follows:

(set-goal (pf "(all x.(Q x -> all y Q y) -> bot) -> bot"))

In our implementation we shall introduce Q as a predicate on an arbitrary type,
say α. MINLOG already has a type variable alpha as default, and we shall use it
in the following (hence no declaration of the type alpha is needed).

As the proof is quite simple and does not introduce any new notion, we only write
the code, letting the reader verify it in MINLOG.

(add-predconst-name "Q" (make-arity (py "alpha")))

(add-var-name "x" "y" (py "alpha"))

(set-goal (pf "(all x.(Q x -> all y Q y) -> bot) -> bot"))

A TUTORIAL FOR MINLOG, VERSION 4.0 13

(assume 1)

(use 1 (pt "x"))

(assume 2 "y")

(use "Stab-Log")

(assume 3)

(use 1 (pt "y"))

(assume 4)

(use "Efq-Log")

(use-with 3 4)

We can store the proof as a theorem to be used later on with the command:

(save "Drinker")

5. Induction

Induction on the natural numbers. We now present a simple proof which
exemplifies the use of induction on the natural numbers. The formula to prove is
the following:

∀n, m. n+m = m+ n.

This can be proved by induction on the natural numbers as follows: we fix an n
and show that n + 0 = 0 + n and also that if n + m = m + n then n + Succ(m) =
Succ(m) + n.

As before we will make use of a file already available in the distribution which
contains the definitions of the algebra of the natural numbers and also of the oper-
ations of addition and multiplication on the natural numbers. These are defined by
means of computation and rewrite rules. If the file is not already loaded1, we type:

(libload "nat.scm")

We set the goal by letting:

(set-goal (pf "all n,m.n + m = m + n"))

We now instantiate the first quantifier with n:

(assume "n")

; ok, we now have the new goal

; ?_2: all m n+m=m+n from

; n

>

We apply induction by simply typing:

(ind)

The command ind requires a universally quantified goal and applies induction to
it in accord to the definition of the specific algebra type (in this case nat).
MINLOG’s reply will be something like this:

1It is a good practice to run a new MINLOG session when loading new files which could turn
out to be incompatible with previously loaded files or previous definitions.

14 L. CROSILLA

; ok, ?_2 can be obtained from

; ?_4: all n15.n+n15=n15+n -> n+Succ n15=Succ n15+n from

; n

; ?_3: n+0=0+n from

; n

>

We then replace the goal with its normal form by letting:

(normalize-goal)

; ok, the normalized goal is

; ?_5: T from

; n

>

The latter command can be abbreviated with ng and it will normalize the goal
by using the computation rules for + introduced in the file nat.scm.

The goal is now proved by simply appealing to the axiom Truth-Axiom (which
can be used as an argument to the use command).

(use "Truth-Axiom")

; ok, ?_5 is proved. The active goal now is

; ?_4: all n15.n+n15=n15+n -> n+Succ n15=Succ n15+n from

; n

>

We can now instantiate the quantified variable n15 by m:

(assume "m" 1)

; ok, we now have the new goal

; ?_6: n+Succ m=Succ m+n from

; n m 1:n+m=m+n

>

Finally we normalize the goal and use the assumption:

(ng)

; ok, the normalized goal is

; ?_7: n+m=m+n from

; n m 1:n+m=m+n

>

(use 1)

; ok, ?_7 is proved. Proof finished.

>

To see the proof:

(display-proof)

A TUTORIAL FOR MINLOG, VERSION 4.0 15

Another example. We now present another example of induction on the natural
numbers, which introduces some additional features of MINLOG.

Suppose we want to prove that for all natural numbers n, 2 · n is even. We
define two new program constants (see [?]) Odd and Even which take a natural
number as argument and give a boolean (true or false) as output. The behaviour
of these program constants can be specified by means of computation rules. In this
case the computation rules will simultaneously characterize Odd and Even. The
command used to introduce a new program constant is add-program-constant.
It will require the name of the constant and its type; further arguments may be
the degree of totality, the token type (e.g. const) and the arity (see [?]). In the
following, the type of the new constants Odd and Even will be introduced by means
of the command mk-arrow, which produces an arrow type.

The behaviour of a new program constant can be specified by introducing one
or more computation rules for it. This is accomplished by use of the command
add-computation-rule, having two arguments: a left hand side and a right hand
side. The right hand side specifies the result of the computation rule for the argu-
ment indicated in the left hand side.

The following implementation of the example should clarify how to use these
commands.

(libload "nat.scm")

(add-program-constant "Odd" (mk-arrow (py "nat") (py "boole")) 1)

(add-program-constant "Even" (mk-arrow (py "nat") (py "boole")) 1)

(add-computation-rule (pt "Odd 0") (pt "F"))

(add-computation-rule (pt "Even 0") (pt "T"))

(add-computation-rule (pt "Odd (Succ n)") (pt "Even n"))

(add-computation-rule (pt "Even (Succ n)") (pt "Odd n"))

(set-goal (pf "all n.Even (2*n)"))

(ind)

(ng)

(use "Truth-Axiom")

(ng)

(assume "n" 1)

(use 1)

Induction on Lists. The following example is an exercise on lists over an arbi-
trary type α. Also this example illustrates the use of induction, but since we now
deal with infinitary algebras (see [?]) the task will result a bit harder than when
working with the natural numbers.

Together with the file nat.scm, we now need to load also the file list.scm, which
contains basic definitions and operations on lists over an arbitrary type α. We
recommend to go through the file before starting to work at this example.

We shall introduce a function, Rev, on lists which has the effect of reverting a list,
and then prove the following:

∀y, z.Equal(Rev (y :+: z))((Rev z) :+: (Rev y))),

16 L. CROSILLA

where y and z are lists over an arbitrary type α and :+: denotes the append function
on lists as defined in list.scm. Note that we here need to use the predicate Equal
instead of = because the algebra of lists over α is an infinitary algebra and hence
equality for it has to be treated as a predicate constant with appropriate axioms
(see [?]).

Before stating the goal we need to define Rev. This has to be defined by induction,
by first giving its value for the empty list and then saying how it applies to a non-
empty list. The two defining conditions for Rev will be the following:

Rev (Nilα) = (Nilα),

Rev (a :: y) = (Rev y) :+: (a:)

where, according to the notation in list.scm, Nilα denotes the empty list over the
type α, a :: y denotes the list obtained by adding the object a of type α to the list
y (over α), while a: is the one element list obtained from a.

First of all we load the files nat.scm and list.scm.

(libload "nat.scm")

(libload "list.scm")

To simplify our work, we declare some variables of the appropriate types:

(add-var-name "a" "b" (py "alpha"))

(add-var-name "u" "v" "w" "s" (py "list alpha"))

We then declare a new program constant, Rev, which takes a list over alpha as
argument and gives another list over alpha as output.

(add-program-constant "Rev"

(py "list alpha => list alpha") 1 ’const 1)

We can now introduce two computation rules which correspond to the two con-
ditions for Rev presented above.

(add-computation-rule (pt "(Rev alpha) (Nil alpha)")

(pt "(Nil alpha)"))

(add-computation-rule (pt "(Rev alpha) (a::w)")

(pt "((Rev alpha) w) :+: (a:)"))

Now we could start proving the goal:

all w,s. Equal ((Rev alpha)(w :+: s))

(((Rev alpha) s) :+: ((Rev alpha) w)))

With the purpose of simplifying our proof, we now deliberately introduce three
“ad hoc” global assumptions which will be used as lemmata in the proof of the main
goal. We prove one of these global assumptions at the end of the main proof, and
leave the others as an exercise for the reader.

We can use aga as an abbreviation for add-global-assumption

(aga "Reff" (pf "all a,w,s. (Equal w s)

-> Equal (a::w) (a::s)"))

(aga "Eqrev" (pf "all w,s,u. Equal w s

-> Equal (w :+: u) (s :+: u)"))

A TUTORIAL FOR MINLOG, VERSION 4.0 17

(aga "Asrev" (pf "all v,s,w,u. Equal v ((s :+: w) :+: u)

-> Equal v (s :+: (w :+: u))"))

We now prove a short lemma which says that any list, z, is equal to the list
obtained by appending the empty list to z.

; Lemma

(set-goal (pf "all s. Equal s (s :+:(Nil alpha))"))

(ind)

(ng)

(use-with "Eq-Refl" (py "list alpha") (pt "(Nil alpha)"))

(assume "a" "w" 1)

(use "Reff")

(use 1)

(save "AppendEmpty")

We note that by writing (use-with "Eq-Refl" (py "list alpha") (pt "(Nil

alpha)")), we make use of the axiom of reflexivity for Equal, which is called
Eq-Refl, and apply it to the term Nil alpha of type list alpha.

The lemma and the global assumptions stated above can now be used to prove
the goal.

(set-goal (pf "all w,s. (Equal ((Rev alpha)(w :+: s))

(((Rev alpha) s) :+: ((Rev alpha) w)))"))

(ind)

(ng)

(assume "s")

(use "AppendEmpty")

(assume "a" "w")

(ng)

(assume 1 "s")

(use-with "Asrev" (pt "((Rev alpha)(w :+: s) :+: a:)")

(pt "((Rev alpha) s)")

(pt "((Rev alpha) w)") (pt "a:") "?")

(use-with "Eqrev" (pt "((Rev alpha)(w :+: s))")

(pt "((Rev alpha) s :+: (Rev alpha) w)") (pt "a:") "?")

(use 1)

Finally, we show how to prove the global assumption Eqrev, as it is a typical
application of equality reasoning.

(set-goal (pf "all w,s,u. Equal w s

-> Equal (w :+: u) (s :+: u)"))

(strip)

(simp 1)

(use-with "Eq-Refl" (py "list alpha") (pt "s:+:u"))

Note the command strip which moves at one time all universally quantified
variables and hypotheses of the current goal into the context.
simp simplifies a proof which involves the predicate Equal, by substituting ’Equal’

terms in the goal.

18 L. CROSILLA

6. search

MINLOG allows for automatic proof search. There are two distinct facilities
for performing an automatic search in MINLOG. The first is given by the com-
mand (prop) and exemplifies Hudelmaier-Dyckhoff’s search for the case of minimal
propositional logic (see e.g. [?], [?]). The second is given by the command (search)

and embodies a search algorithm based on Miller’s [?] and on ideas of Berger (see
[?] for details on the algorithm and for some differences with Miller’s algorithm).
The command search enables us to automatically find a proof for a wider class of
formulas compared with prop, since it also works for formulae with quantifiers (see
the reference manual for a detailed description of the class of formulae dealt with
by search).

Prop. One is advised to use prop for propositional (minimal) logic. prop will
first look for a proof in propositional minimal logic. If it fails to find a proof for
the given proposition, it will try with intuitionistic logic, by adding appropriate
instances of “Ex falsum quodlibet”. If this search also gives no positive answer, it
will try to find a proof in classical logic, by adding appropriate instances of Stability.

To apply this search algorithm, one simply needs to type (prop) after stating the
goal or at any point of a proof from which one guesses that (minimal) propositional
logic would suffice. If MINLOG finds a proof, one can then display it by means of
any of the display commands available for proofs; for example by writing dnp (which
is a shortcut for display-normalized-proof).

The reader is encouraged to apply the command to the first examples of proposi-
tional logic of this tutorial, including “Peirce’s law”.

Search. The search command is more powerful then prop since it allows us to
automatically find proofs also for some quantified formulas, but it only operates a
search in minimal logic. If one wants to apply this command to a classical formula
like “Peirce’s law”, one could for example add the appropriate instance of “Ex falsum
quodlibet” and of Stability as antecedents of the goal. In case of more complex
proofs, in which one can not easily modify the actual goal, an alternative would be
to avail oneself of a more complete use of the search command which allows us
to specify some global assumptions or theorems or even hypothesis from the given
context which one would like to be used in the resulting proof.2 Since the search
space in the case of quantified formulas can become really vast, this possibility of
declaring specific assumptions to be used in the proof can be very useful, especially
if we also state the maximum number of multiplicities we allow for each assumption
(i.e. the maximum number of times each assumption can be used in the proof).
One can also use this same device to exclude the use of a specific assumption in the
proof, simply by letting its multiplicity to be 0.

To use the plain version of search, one simply writes (search). See the reference
manual for the precise syntax of the command search when other assumptions are
invoked with the respective multiplicities.

2It is important to notice that in MINLOG we do not quantify over propositions, hence one
needs to exercise some care in choosing the global assumptions to be used in search. In the case
of “Peirce’s law”, one would need to pass e.g. from the global assumption Efq-Log to a theorem
which is a specific instance of it, and make use of the latter in search.

A TUTORIAL FOR MINLOG, VERSION 4.0 19

An example with search. As an example for the use of search, we apply the
algorithm to the following problem: if f is a continuous function then f composed
with itself is also a continuous function. We suggest to solve the problem as follows.

(add-var-name "x" "y" (py "alpha"))

(add-tvar-name "beta")

(add-var-name "U" "V" "W" (py "beta"))

(add-predconst-name "in" (make-arity (py "alpha") (py "beta")))

(add-var-name "f" (py "alpha=>alpha"))

(set-goal

(pf

"all f.(all x,V. in (f x) V -> excl U. in x U

& all y. in y U -> in (f y) V) ->

all x,W. in (f(f x)) W -> excl U. in x U

& all y.in y U -> in (f(f y)) W"))

(search)

(dnp)

Note that one can switch on a verbose search by letting: (set! VERBOSE-SEARCH

#t) before calling search. In this way one can see the single steps performed by
the search algorithm and detect possible difficulties in finding a proof.

7. Conclusion

We finally note that one of the main motivations for developing MINLOG and
one of its most important features is program extraction, that is, the possibility
of using MINLOG to extract functional programs from proof terms. However, the
treatment of program extraction would require a consistent extension of this tutorial
and it is hence omitted for the time being. The reader willing to know more about
this topic is encouraged to consult the reference manual and the relevant papers
listed on the MINLOG web page.

To conclude, we recall that all the examples of this tutorial can be found in the
file tutorial.scm located in the examples directory of the MINLOG distribution.

20 L. CROSILLA

8. Useful Commands for Emacs and Petite Scheme

Emacs

• Start Emacs: Emacs &

• Leave Emacs: C-x C-c

• Split a window in two: C-x 2

• Move to another Buffer: C-x b (then specify the Buffer’s name)

• Move to another window: C-x o

• Load a file: C-x C-f (then give a name of a file with extension .scm)

• Save a file: C-x C-s

• Exit from the Minibuffer: C-g

Scheme

• Load (Petite) Scheme: M-x run-petite

• Evaluate a Scheme expression: C-x C-e

• Evaluate a region: mark the region and then C-c C-r

• Kill a process: C-c C-c

• Leave the Debug: r

• End a Scheme session: (exit)

• Comment: ;

C = Control or Strg
M = Meta or Esc or Alt.

A TUTORIAL FOR MINLOG, VERSION 4.0 21

9. Useful Commands: MINLOG

The following is a list of commands which could be used in a ‘standard’ interactive
proof with MINLOG. Rather than explaining the commands in detail, we shall write
them down, often with a short description of their use gathered from the reference
manual. The reader is anyhow advised to check the full details in the reference
manual.

10. Some declarations needed to start a proof

(add-tvar-name name1 ...)

(add-alg ...), and also
(add-algs ...) (add-param-alg ...) (add-param-algs ...)

(add-var-name name1 ... type)

(add-predconst-name name1 ... arity)

(add-pvar-name name1 ... type)

(add-program-constant name type <rest>)

(add-computation-rule lhs rhs)

(add-rewrite-rule lhs rhs)

(add-global-assumption name formula) (abbr. aga)

To each command above there corresponds one to remove constants, variables
etc already introduced. For example:

(remove-predconst-name name1 ...)

There are also numerous display commands, in particular the following:

(display-program-constants name1 ...) .

(display-global-assumptions string1 ...)

(display-constructors alg-name1 ...)

(display-theorems string1 ...)

22 L. CROSILLA

11. Goals

(set-goal formula)

where formula needs to be closed (if not universal quantifiers will be inserted
automatically).

(normalize-goal goal) (abbr. ng)
replaces the goal by its normal form.

(display-current-goal) (abbr. dcg)

12. Generating interactive Proofs

Implication

(assume x1...)

moves the antecedent of a goal in implication form to the hypotheses. The
hypotheses, x1 . . . , should be identified by numbers or strings.

(use x)

where x is

• a number or string identifying a hypothesis from the context,
• the string “Truth”,
• the name of a theorem or global assumption.
• a closed proof,
• a formula with free variables from the context, generating a new goal.

Conjunction

(split)

expects a conjunction A ∧B as goal and splits it into two new goals, A and B.

(use x . elab-path)

where x is as in the description of the use command for implication and elab-path
consists of ’left or ’right.

Universal Quantifier

(assume x1...)

moves universally quantified variables into the context. The variables need to be
named (by using previously declared names of the appropriate types).

(use x . terms)

where x is as in the case of implication and the optional terms is here a list of
terms. One needs to explicitly provide terms for those variables that cannot be
automatically instantiated by pattern unification. On the contrary, when pattern

A TUTORIAL FOR MINLOG, VERSION 4.0 23

unification succeeds in finding appropriate instances for the quantifiers in the goal,
then these instances will be automatically inserted.

Existential Quantifier

(ex-intro term)

by this command the user provides a term to be used for the present (existential)
goal.

(ex-elim x),
where x is

• a number or string identifying an existential hypothesis from the context,
• the name of an existential global assumption or theorem,
• a closed proof on an existential formula,
• an existential formula with free variables from the context, generating a

new goal.

Classical Existential Quantifier

(exc-intro terms)

this command is analogous to (ex-intro), but it is used in the case of a classical
existential goal.

(exc-elim x)

this corresponds to (ex-elim) and applies to a classical existential quantifier.

13. Other general commands

(use-with x . x-list)

is a more verbose form of use, where the terms are not inferred via unification,
but have to be given explicitly. Here x is as in use, and x-list is a list consisting of

• a number or string identifying a hypothesis form the context,
• the name of a theorem or global assumption,
• a closed proof,
• the string “?” generating a new goal,
• ’left or ’right,
• a term, whose free variables are added to the context.

(inst-with x . x-list)

does for forward chaining the same as use-with for backward chaining. It adds a
new hypothesis which is an instance of a selected hypothesis or of a theorem. Here
x and x-list are as in use-with.

24 L. CROSILLA

(inst-with-to x . x-list name-hyp)

expects a string as its last argument, to name the newly introduced instantiated
hypothesis.

(cut A)

replaces the goal B by the two new goals A and A → B. Note that the same
effect can also be produced by means of the use command.

(ind)

expects a goal ∀xρA with ρ an algebra. If c1, . . . , cn are the constructors of
the algebra ρ, then (ind) will generate n new goals: ∀~xi.A[x:=x1i] → · · · →
A[x:=xki]→ A[x:=ci~xi].

(simind all-formula1 ...)

expects a goal ∀xρA with ρ an algebra. The user provides other formulas to be
proved simultaneously with the given one.

(cases)

expects a goal ∀xρA with ρ an algebra. Assume that c1, . . . , cn are the construc-
tors of the algebra ρ. Then n new (simplified) goals ∀~xiA[x:=ci~xi] are generated.

(simp x)

expects a known fact of the form rboole, ¬rboole, t = s or t ≈ s. In case rboole, the
boolean term r in the goal is replaced by T , and in case ¬rboole it is replaced by F . If
t = s (resp. t ≈ s), the goal is written in the form A[x:=t]. Using Compat-Rev (i.e.
∀x, y.x = y → Py → Px) (resp. Eq-Compat-Rev (i.e. ∀x, y.x ≈ y → Py → Px))
the goal A[x:=t] is replaced by A[x:=s], where P is {x | A }, x is t and y is s. Here
x is

• a number or string identifying a hypothesis form the context,
• the name of a theorem or global assumption, or
• a closed proof.

• a formula with free variables from the context, generating a new goal.

(name-hyp i x1)
expects an index i and a string. Then a new goal is created, which differs from

the previous one only in display aspects: the string names the ith hypothesis.

(drop . x-list),
hides (but does not erase) the hypothesis listed in x-list. If x-list is empty,

all hypotheses are hidden.

A TUTORIAL FOR MINLOG, VERSION 4.0 25

(by-assume-with x y u)

is used when proving a goal G from an existential hypothesis ExHyp : ∃yA.
It corresponds to saying “by ExHyp assume we have a y satisfying A”. Here x
identifies an existential hypothesis, and we assume the variable y and the kernel A
(with label u). This command corresponds to the sequence (ex-elim x), (assume
y u), (drop x).

(undo) or (undo n)

has the effect of cancelling the last step in a proof, or the last n steps, respectively.

14. Automation and Search

(strip)

moves all universally quantified variables and hypotheses of the current goal into
the context.

(strip n)

does the same as (strip) but only for n variables or hypotheses.

(proceed)

automatically refines the goal as far as possible as long as there is a unique proof.
When the proof is not unique, it prompts with the new refined goal, and allows to
proceed in an interactive way.

(prop)

searches for a proof of the stated goal. It is devised for propositional logic only.

(search m (name1 m1) ...)

expects for m a default value of multiplicity (i.e. a positive integer stating how
often the assumptions are to be used). Here name1 . . . are

• numbers or names of hypotheses from the present context or
• names of theorems or global assumptions,

and m1 . . . indicate the multiplicities of the specific name1 To exclude a
hypothesis one can list it with multiplicity 0.

15. Displaying proofs objects

(display-proof . opt-proof) (abbr. dp)

(display-proof-expr . opt-proof) (abbr. dpe)

(display-eterm . opt-proof) (abbr. det)

(check-and-display-proof) (abbr. cdp)

26 L. CROSILLA

(display-normalized-proof . opt-proof) (abbr. dnp)

(display-normalized-proof-expr . opt-proof) (abbr. dnpe)

(display-normalized-eterm . opt-proof) (abbr. dnet)

References

[1] R. Dyckhoff, Contraction–free sequent calculi for intuitionistic logic, Journal of Symbolic Logic
57 (1992), no. 3, 795–807.

[2] J. Hudelmaier, Bounds for cut elimination in intuitionistic propositional logic, Mathematische
Fakultät, Eberhard–Karls–Universität, Tübingen”, 1989.

[3] Dale Miller, A logic programming language with lambda–abstraction, function variables and
simple unification, Journal of Logic and Computation 2 (1991), no. 4, 497–536.

[4] H. Schwichtenberg, Minlog reference manual, LMU München, Mathematisches Institut, There-
sienstraße 39, D-81371 München, 2001.

	1. Introduction
	2. Getting started
	3. Propositional logic
	3.1. A first example
	3.2. A second example: classical logic
	3.3. Conjunction

	4. Predicate logic
	4.1. A first example.
	4.2. Another example with classical logic

	5. Induction
	6. search
	7. Conclusion
	8. Useful Commands for Emacs and Petite Scheme
	9. Useful Commands: MINLOG
	10. Some declarations needed to start a proof
	11. Goals
	12. Generating interactive Proofs
	13. Other general commands
	14. Automation and Search
	15. Displaying proofs objects

