程序包 weka.clusterers
类 FarthestFirst
java.lang.Object
weka.clusterers.AbstractClusterer
weka.clusterers.RandomizableClusterer
weka.clusterers.FarthestFirst
- 所有已实现的接口:
Serializable
,Cloneable
,Clusterer
,CapabilitiesHandler
,OptionHandler
,Randomizable
,RevisionHandler
,TechnicalInformationHandler
Cluster data using the FarthestFirst algorithm.
For more information see:
Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.
Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.
Notes:
- works as a fast simple approximate clusterer
- modelled after SimpleKMeans, might be a useful initializer for it BibTeX:
For more information see:
Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.
Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.
Notes:
- works as a fast simple approximate clusterer
- modelled after SimpleKMeans, might be a useful initializer for it BibTeX:
@article{Hochbaum1985, author = {Hochbaum and Shmoys}, journal = {Mathematics of Operations Research}, number = {2}, pages = {180-184}, title = {A best possible heuristic for the k-center problem}, volume = {10}, year = {1985} } @inproceedings{Dasgupta2002, author = {Sanjoy Dasgupta}, booktitle = {15th Annual Conference on Computational Learning Theory}, pages = {351-363}, publisher = {Springer}, title = {Performance Guarantees for Hierarchical Clustering}, year = {2002} }Valid options are:
-N <num> number of clusters. (default = 2).
-S <num> Random number seed. (default 1)
- 版本:
- $Revision: 5538 $
- 作者:
- Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)
- 另请参阅:
-
构造器概要
构造器 -
方法概要
修饰符和类型方法说明void
buildClusterer
(Instances data) Generates a clusterer.int
clusterInstance
(Instance instance) Classifies a given instance.Returns default capabilities of the clusterer.int
gets the number of clusters to generateString[]
Gets the current settings of FarthestFirstReturns the revision string.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.Returns a string describing this clustererReturns an enumeration describing the available options.static void
Main method for testing this class.int
Returns the number of clusters.Returns the tip text for this propertyvoid
setNumClusters
(int n) set the number of clusters to generatevoid
setOptions
(String[] options) Parses a given list of options.toString()
return a string describing this clusterer从类继承的方法 weka.clusterers.RandomizableClusterer
getSeed, seedTipText, setSeed
从类继承的方法 weka.clusterers.AbstractClusterer
distributionForInstance, forName, makeCopies, makeCopy
-
构造器详细资料
-
FarthestFirst
public FarthestFirst()
-
-
方法详细资料
-
globalInfo
Returns a string describing this clusterer- 返回:
- a description of the evaluator suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- 指定者:
getTechnicalInformation
在接口中TechnicalInformationHandler
- 返回:
- the technical information about this class
-
getCapabilities
Returns default capabilities of the clusterer.- 指定者:
getCapabilities
在接口中CapabilitiesHandler
- 指定者:
getCapabilities
在接口中Clusterer
- 覆盖:
getCapabilities
在类中AbstractClusterer
- 返回:
- the capabilities of this clusterer
- 另请参阅:
-
buildClusterer
Generates a clusterer. Has to initialize all fields of the clusterer that are not being set via options.- 指定者:
buildClusterer
在接口中Clusterer
- 指定者:
buildClusterer
在类中AbstractClusterer
- 参数:
data
- set of instances serving as training data- 抛出:
Exception
- if the clusterer has not been generated successfully
-
clusterInstance
Classifies a given instance.- 指定者:
clusterInstance
在接口中Clusterer
- 覆盖:
clusterInstance
在类中AbstractClusterer
- 参数:
instance
- the instance to be assigned to a cluster- 返回:
- the number of the assigned cluster as an integer if the class is enumerated, otherwise the predicted value
- 抛出:
Exception
- if instance could not be classified successfully
-
numberOfClusters
Returns the number of clusters.- 指定者:
numberOfClusters
在接口中Clusterer
- 指定者:
numberOfClusters
在类中AbstractClusterer
- 返回:
- the number of clusters generated for a training dataset.
- 抛出:
Exception
- if number of clusters could not be returned successfully
-
listOptions
Returns an enumeration describing the available options.- 指定者:
listOptions
在接口中OptionHandler
- 覆盖:
listOptions
在类中RandomizableClusterer
- 返回:
- an enumeration of all the available options.
-
numClustersTipText
Returns the tip text for this property- 返回:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setNumClusters
set the number of clusters to generate- 参数:
n
- the number of clusters to generate- 抛出:
Exception
- if number of clusters is negative
-
getNumClusters
public int getNumClusters()gets the number of clusters to generate- 返回:
- the number of clusters to generate
-
setOptions
Parses a given list of options. Valid options are:-N <num> number of clusters. (default = 2).
-S <num> Random number seed. (default 1)
- 指定者:
setOptions
在接口中OptionHandler
- 覆盖:
setOptions
在类中RandomizableClusterer
- 参数:
options
- the list of options as an array of strings- 抛出:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of FarthestFirst- 指定者:
getOptions
在接口中OptionHandler
- 覆盖:
getOptions
在类中RandomizableClusterer
- 返回:
- an array of strings suitable for passing to setOptions()
-
toString
return a string describing this clusterer -
getRevision
Returns the revision string.- 指定者:
getRevision
在接口中RevisionHandler
- 覆盖:
getRevision
在类中AbstractClusterer
- 返回:
- the revision
-
main
Main method for testing this class.- 参数:
argv
- should contain the following arguments:-t training file [-N number of clusters]
-