程序包 weka.experiment
类 CostSensitiveClassifierSplitEvaluator
java.lang.Object
weka.experiment.ClassifierSplitEvaluator
weka.experiment.CostSensitiveClassifierSplitEvaluator
SplitEvaluator that produces results for a classification scheme on a nominal class attribute, including weighted misclassification costs.
Valid options are:
-W <class name> The full class name of the classifier. eg: weka.classifiers.bayes.NaiveBayes
-C <index> The index of the class for which IR statistics are to be output. (default 1)
-I <index> The index of an attribute to output in the results. This attribute should identify an instance in order to know which instances are in the test set of a cross validation. if 0 no output (default 0).
-P Add target and prediction columns to the result for each fold.
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
-D <directory> Name of a directory to search for cost files when loading costs on demand (default current directory).All options after -- will be passed to the classifier.
- 版本:
- $Revision: 7516 $
- 作者:
- Len Trigg (len@reeltwo.com)
- 另请参阅:
-
构造器概要
构造器 -
方法概要
修饰符和类型方法说明Returns the directory that will be searched for cost files when loading on demand.String[]
Gets the current settings of the Classifier.Object[]
Gets the results for the supplied train and test datasets.String[]
Gets the names of each of the result columns produced for a single run.Object[]
Gets the data types of each of the result columns produced for a single run.Returns the revision string.Returns a string describing this split evaluatorReturns an enumeration describing the available options..Returns the tip text for this propertyvoid
setOnDemandDirectory
(File newDir) Sets the directory that will be searched for cost files when loading on demand.void
setOptions
(String[] options) Parses a given list of options.toString()
Returns a text description of the split evaluator.从类继承的方法 weka.experiment.ClassifierSplitEvaluator
classifierTipText, enumerateMeasures, getAttributeID, getClassForIRStatistics, getClassifier, getKey, getKeyNames, getKeyTypes, getMeasure, getPredTargetColumn, getRawResultOutput, setAdditionalMeasures, setAttributeID, setClassForIRStatistics, setClassifier, setClassifierName, setPredTargetColumn
-
构造器详细资料
-
CostSensitiveClassifierSplitEvaluator
public CostSensitiveClassifierSplitEvaluator()
-
-
方法详细资料
-
globalInfo
Returns a string describing this split evaluator- 覆盖:
globalInfo
在类中ClassifierSplitEvaluator
- 返回:
- a description of the split evaluator suitable for displaying in the explorer/experimenter gui
-
listOptions
Returns an enumeration describing the available options..- 指定者:
listOptions
在接口中OptionHandler
- 覆盖:
listOptions
在类中ClassifierSplitEvaluator
- 返回:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-W <class name> The full class name of the classifier. eg: weka.classifiers.bayes.NaiveBayes
-C <index> The index of the class for which IR statistics are to be output. (default 1)
-I <index> The index of an attribute to output in the results. This attribute should identify an instance in order to know which instances are in the test set of a cross validation. if 0 no output (default 0).
-P Add target and prediction columns to the result for each fold.
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
-D <directory> Name of a directory to search for cost files when loading costs on demand (default current directory).
All options after -- will be passed to the classifier.- 指定者:
setOptions
在接口中OptionHandler
- 覆盖:
setOptions
在类中ClassifierSplitEvaluator
- 参数:
options
- the list of options as an array of strings- 抛出:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of the Classifier.- 指定者:
getOptions
在接口中OptionHandler
- 覆盖:
getOptions
在类中ClassifierSplitEvaluator
- 返回:
- an array of strings suitable for passing to setOptions
-
onDemandDirectoryTipText
Returns the tip text for this property- 返回:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getOnDemandDirectory
Returns the directory that will be searched for cost files when loading on demand.- 返回:
- The cost file search directory.
-
setOnDemandDirectory
Sets the directory that will be searched for cost files when loading on demand.- 参数:
newDir
- The cost file search directory.
-
getResultTypes
Gets the data types of each of the result columns produced for a single run. The number of result fields must be constant for a given SplitEvaluator.- 指定者:
getResultTypes
在接口中SplitEvaluator
- 覆盖:
getResultTypes
在类中ClassifierSplitEvaluator
- 返回:
- an array containing objects of the type of each result column. The objects should be Strings, or Doubles.
-
getResultNames
Gets the names of each of the result columns produced for a single run. The number of result fields must be constant for a given SplitEvaluator.- 指定者:
getResultNames
在接口中SplitEvaluator
- 覆盖:
getResultNames
在类中ClassifierSplitEvaluator
- 返回:
- an array containing the name of each result column
-
getResult
Gets the results for the supplied train and test datasets. Now performs a deep copy of the classifier before it is built and evaluated (just in case the classifier is not initialized properly in buildClassifier()).- 指定者:
getResult
在接口中SplitEvaluator
- 覆盖:
getResult
在类中ClassifierSplitEvaluator
- 参数:
train
- the training Instances.test
- the testing Instances.- 返回:
- the results stored in an array. The objects stored in the array may be Strings, Doubles, or null (for the missing value).
- 抛出:
Exception
- if a problem occurs while getting the results
-
toString
Returns a text description of the split evaluator.- 覆盖:
toString
在类中ClassifierSplitEvaluator
- 返回:
- a text description of the split evaluator.
-
getRevision
Returns the revision string.- 指定者:
getRevision
在接口中RevisionHandler
- 覆盖:
getRevision
在类中ClassifierSplitEvaluator
- 返回:
- the revision
-